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ABSTRACT.

Brownian-Laplace motion is a Lévy process which has both continuous (Brownian) and

discontinuous (Laplace motion) components. The increments of the process follow a gener-

alized normal Laplace (GNL) distribution which exhibits positive kurtosis and can be either

symmetrical or exhibit skewness. The degree of kurtosis in the increments increases as the

time between observations decreases. This and other properties render Brownian-Laplace

motion a good candidate model for the motion of logarithmic stock prices. An option pricing

formula for European call options is derived and it is used to calculate numerically the value

of such an option both using nominal parameter values (to explore its dependence upon

them) and those obtained as estimates from real stock price data.

1. INTRODUCTION.

The Black-Scholes theory of option pricing was originally based on the assumption that

asset prices follow geometric Brownian motion (GBM). For such a process the logarithmic

returns (log(Pt+1/Pt) on the price Pt are independent identically distributed (iid) normal

random variables. However it has been recognized for some time now that the logarithmic

returns do not behave quite like this, particularly over short intervals. Empirical distribu-

tions of the logarithmic returns in high-frequency data usually exhibit excess kurtosis with
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more probability mass near the origin and in the tails and less in the flanks than would occur

for normally distributed data. Furthermore the degree of excess kurtosis is known to increase

as the sampling interval decreases (see e.g. Rydberg, 2000). In addition skewness can some-

times be present. To accommodate for these facts new models for price movement based on

Lévy motion have been developed (see e.g. Schoutens, 2003). For any infinitely divisible

distribution a Lévy process can be constructed whose increments follow the given distribu-

tion. Thus in modelling financial data one needs to find an infinitely divisible distribution

which fits well to observed logarithmic returns. A number of such distributions have been

suggested including the gamma, inverse Gaussian, Laplace (or variance gamma), Meixner

and generalized hyperbolic distributions (see Schoutens, 2003 for details and references).

In this paper a new infinitely divisible distribution – the generalized normal Laplace (or

GNL) distribution – which exhibits the properties seen in observed logarithmic returns, is

introduced. This distribution arises as the convolution of independent normal and gen-

eralized Laplace (Kotz et al., 2001, p. 180) components1. A Lévy process based on the

generalized Laplace (variance-gamma) distribution alone has no Brownian component, only

linear deterministic and pure jump components i.e. its Lévy-Khintchine triplet is of the

form (γ, 0, ν(dx)) (see Schoutens, 2003, p. 58). The new distribution of this paper in effect

adds a Brownian component to this motion, leading to what will be called Brownian-Laplace

motion2.

In the following section the generalized normal Laplace (GNL) distribution is defined

and some properties given. Brownian-Laplace motion is then defined as a Lévy process

whose increments follow the GNL distribution. In Sec. 3 a pricing formula is developed for

European call options on a stock whose logarithmic price follows Brownian-Laplace motion.

In Sec. 4 some numerical examples are given.

1The generalized asymmetric Laplace distribution is better known as the variance-gamma distribution

in the finance literature. It is also known as the Bessel K-function distribution (see Kotz et al., 2001, for a

discussion of the terminology and history of this distribution).
2An alternative name, which invokes two of the greatest names in the history of mathematics, would be

Gaussian-Laplace motion
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2. THE GENERALIZED NORMAL-LAPLACE (GNL) DISTRIBUTION.

The generalized normal Laplace (GNL) distribution is defined as that of a random variable

Y with characteristic function

φ(s) =

[
αβ exp(µis− σ2s2/2)

(α− is)(β + is)

]ρ

(1)

where α, β, ρ and σ are positive parameters and −∞ < µ < ∞. We shall write

Y ∼ GNL(µ, σ2, α, β, ρ)

to indicate that the random variable Y follows such a distribution.

Since the characteristic function (??) can be written

exp(ρµis− ρσ2s2/2)
[

α

α− is

]ρ [ β

β + is

]ρ

it follows that Y can be represented as

Y
d
= ρµ + σ

√
ρZ +

1

α
G1 −

1

β
G2 (2)

where Z,G1 and G2 are independent with Z ∼ N(0,1) and G1, G2 gamma random variables

with scale parameter 1 and shape parameter ρ, i.e. with probability density function (pdf)

g(x) =
1

Γ(ρ)
xρ−1e−x.

This representation provides a straightforward way to generate pseudo-random deviates fol-

lowing a GNL distribution. Note that from (??) it is easily established that the GNL is

infinitely divisible. In fact the n-fold convolution of a GNL random variable also follows a

GNL distribution.

The mean and variance of the GNL(µ, σ2, α, β, ρ) distribution are

E(Y ) = ρ

(
µ +

1

α
− 1

β

)
; var(Y ) = ρ

(
σ2 +

1

α2
+

1

β2

)

while the higher order cumulants are (for r > 2)

κr = ρ(r − 1)!

(
1

αr
+ (−1)r 1

βr

)
.
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The parameters µ and σ2 influence the central location and spread of the distribution,

while α and β affect the symmetry. If α > β the distribution is skewed to the left, and

vice versa. The parameter ρ affects the lengths of the tails. The nature of the tails can be

determined from the order of the poles of its characteristic (or moment generating) function

(see e.g. Doetsch, 1970, p. 231ff). Precisely f(y) ∼ c1y
ρ−1e−αy (y → ∞) and f(y) ∼

c2(−y)ρ−1eβy (y → −∞), (where c1 and c2 are constants). Thus for ρ < 1, both tails are

fatter than exponential; for ρ = 1 they are exactly exponential and for ρ > 1 they are less

fat than exponential. This exactly mimics the tail behaviour of the generalized Laplace

distribution. Thus in the tails the generalized Laplace component of the GNL distribution

dominates over the normal component.

The parameter ρ affects all moments. However the coefficients of skewness (γ1 = κ3/κ
3/2
2 )

and of excess kurtosis (γ2 = κ4/κ
2
2) both decrease with increasing ρ (and converge to zero as

ρ →∞) with the shape of the distribution becoming more normal with increasing ρ, (exem-

plifying the central limit effect since the sum of n iid GNL(µ, σ2, α, β, ρ) random variables

has a GNL(µ, σ2, α, β, nρ) distribution).

When α = β the distribution is symmetric. In the limiting case α = β = ∞ the GNL

reduces to a normal distribution.

The family of GNL distributions is closed under linear transformation i.e. if Y ∼

GNL(µ, σ2, α, β, ρ) then, for constants a and b, a + bY ∼ GNL(bµ + a/ρ, b2σ2, α/b, β/b, ρ).

A closed-form for the density has not been obtained except in the special case ρ = 1. In

this case the GNL distribution becomes what has been called an (ordinary) normal-Laplace

(NL) distribution since it can be represented as the convolution of independent normal and

Laplace variates (Reed & Jorgensen, 2004). The NL probability density function (pdf) is of

the form

f(y) =
αβ

α + β
φ
(

y − µ

σ

)
[R (ασ − (y − µ)/σ) + R (βσ + (y − µ)/σ)] , (3)

where R is Mills’ ratio (of the complementary cumulative distribution function (cdf) to the
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pdf of a standard normal variate):

R(z) =
Φc(z)

φ(z)
=

1− Φ(z)

φ(z)
.

Fig. 1 shows some histograms of samples of size one million from various GNL distri-

butions, generated using (??). In all six cases the distributions have expected value zero.

The three distributions in the top row all have the same variance (0.00165) while the three

distributions in the lower row have a variance twice as large (0.00331). The distributions

in the left and centre panels are symmetric (α = β = 17.5, 12.5 in left and centre panels

respectively) while those the right-hand panels are skewed (α = 20.00 > β = 15.75). Plotted

on top of the histograms are normal densities with mean 0 and variance 0.00165 (top row)

and 0.00331 (bottom row). Although the left-hand panels exhibit some kurtosis (γ2 = 4.68

and 2.84 in top and bottom rows) it is barely discernible by eye; the centre panels have

greater kurtosis (γ2 = 17.99 and 8.99 in top and bottom rows) which is clearly visible to the

eye. The right-hand panels are left-skewed with γ1 = −0.390 and -.276 in top and bottom

rows.

2.1. ESTIMATION.

The lack of a closed-form for the GNL density means a similar lack for the likelihood

function. This presents difficulties for estimation by maximum likelihood (ML). However

it may be possible to obtain ML estimates of the parameters of the distribution using the

EM-algorithm and the representation (??), but to date this has not been accomplished. An

alternative method of estimation is the method of moments. While method-of-moments

estimates are consistent and asymptotically normal, they are not generally efficient (not

achieving the Cramér-Rao bound) even asymptotically. A further problem is the difficulty

in restricting the parameter space (e.g. for the GNL the parameters α, β, ρ and σ2 must be

positive), since the moment equations may not lead to solutions in the restricted space.

In the case of a symmetric GNL distribution (α = β) method-of-moments estimators of

the four model parameters can be found analytically. They are

α̂ = β̂ =

√
20

k4

k6

; ρ̂ =
100

3

k3
4

k2
6

; µ̂ =
k1

ρ̂
and σ̂2 =

k2

ρ̂
− 2

α̂2

5



where ki (i = 1, 2, 4, 6) is the ith. sample cumulant obtained either from the sample moments

about zero, using well-established formulae (see e.g. Kendall & Stuart, 1969, p. 70) or from

a Taylor series expansion of the sample cumulant generating function log( 1
n

∑n
i=1 esyi).

For the five parameter (asymmetric) GNL distribution numerical methods must be used

in part to solve the moment equations, which can be reduced to a pair of nonlinear equations

in two variables e.g.

12k3(α
−5 − β−5) = k5(α

−3 − β−3); 3k3(α
−4 − β−4) = k4(α

−3 − β−3)

with solutions for the other parameters being obtained analytically from these.

3 .A LÉVY PROCESS BASED ON THE GNL DISTRIBUTION – BROWNIAN-LAPLACE

MOTION.

Consider now a Lévy process {Xt}t≥0, say for which the increments Xt+τ −Xτ have char-

acteristic function (φ(s))t where φ is the characteristic function (??) of the GNL(µ, σ2, α, β, ρ)

distribution (such a construction is always possible for an infinitely divisible distribution -

see e.g. Schoutens, 2003). It is not difficult to show that the Lévy-Khintchine triplet for

this process is (ρµ, ρσ2, Λ) where Λ is the Lévy measure of asymmetric Laplace motion (see

Kotz et al., 2001, p.196). Laplace motion has an infinite number of jumps in any finite time

interval (a pure jump process). The extension considered here adds a continuous Brownian

component to Laplace motion leading to the name Brownian-Laplace motion.

The increments Xt+τ −Xτ of this process will follow a GNL(µ, σ2, α, β, ρt) distribution

and will have fatter tails than the normal – indeed fatter than exponential for ρt < 1.

However as t increases the excess kurtosis of the distribution drops, and approaches zero

as t → ∞. Exactly this sort of behaviour has been observed in various studies on high-

frequency financial data (e.g. Rydberg, 2000) - very little excess kurtosis in the distribution

of logarithmic returns over long intervals but increasingly fat tails as the reporting interval is

shortened. Thus Brownian-Laplace motion seems to provide a good model for the movement

of logarithmic prices.
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3.1 OPTION PRICING FOR ASSETS WITH LOGARITHMIC PRICES FOLLOWING

BROWNIAN-LAPLACE MOTION.

We consider an asset whose price St is given by

St = S0 exp(Xt)

where {Xt}t≥0 is a Brownian-Laplace motion with X0 = 0 and parameters µ, σ2, α, β, ρ. We

wish to determine the risk-neutral valuation of a European call option on the asset with

strike price K at time T and risk-free interest rate r.

It can be shown using the Esscher equivalent martingale measure (see e.g. Schoutens,

2003, p. 77) that the option value can be expressed in a form similar to that of the Black-

Scholes formula. Precisely

OV = S0

∫ ∞
γ

d∗TGNL(x; θ + 1)dx− e−rT K
∫ ∞

γ
d∗TGNL(x; θ)dx (4)

where γ = log(K/S0) and

d∗TGNL(x; θ) =
eθxd∗TGNL(x)∫∞

−∞ eθyd∗TGNL(y)dy
(5)

is the pdf of XT under the risk-neutral measure. Here d∗TGNL is the pdf of the T -fold con-

volution of the generalized normal-Laplace, GNL(µ, σ2, α, β, ρ), distribution and θ is the

unique solution to the following equation involving the moment generating function (mgf)

M(s) = φ(−is)

log M(θ + 1)− log M(θ) = r. (6)

The T -fold convolution of GNL(µ, σ2, α, β, ρ) is GNL(µ, σ2, α, β, ρT ) and so its moment

generating function is (from (??))

M(s) =

[
αβ exp(µs + σ2s2/2)

(α− s)(β + s)

]ρT

.

This provides the denominator of the expression (??) for the risk-neutral pdf.

Now let

Iθ =
∫ ∞

γ
d∗TGNL(x; θ)dx =

1

M(θ)

∫ ∞
γ

eθxd∗TGNL(x)dx (7)
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so that

OV = S0Iθ+1 − e−rT KIθ.

Thus to evaluate the option value we need only evaluate the integral in (??). This can be

done using the representation (??) of a GNL random variable as the sum of normal and

positive and negative gamma components. Precisely the integral can be written as

∫ ∞
0

g(u; α)
∫ ∞
0

g(v; β)
∫ ∞

γ
eθx 1

σ
√

ρT
φ

(
x− u + v − µρT

σ
√

ρT

)
dxdvdu (8)

where

g(x; a) =
aρT

Γ(ρT )
xρT−1e−ax

is the pdf of a gamma random variable with scale parameter a and shape parameter ρT ; and

φ is the pdf of a standard normal deviate. After completing the square in x and evaluating

the x integral in terms of Φc, the complementary cdf of a standard normal, (??) can be

expressed

Iθ =
∫ ∞
0

g(u; α− θ)
∫ ∞
0

g(v; β + θ)Φc

(
γ − u + v − µρT − θσ2ρT

σ
√

ρT

)
dvdu. (9)

For given parameter values the double integral (??) can be evaluated numerically quite

quickly and thence the option value computed.

4. NUMERICAL RESULTS.

In this section comparisons are made between the value of a European call option under

the assumption that price movements follow geometric Brownian-Laplace motion and the

corresponding Black-Scholes option values (assuming geometric Brownian motion). We begin

with nominal parameter values and then consider parameter values obtained from fitting to

real financial data.

In all examples the strike price is set at K = 1 and the risk-free interest rate at r = 0.05

per annum. Fig.2 shows the difference between the Black-Scholes (BS) option value and the

Brownian-Laplace (BL) option value assuming the (daily) increments for the logarithmic

returns process are the six GNL distributions in Fig.1. Recall that for the three top panels

the mean and variance are all 0 and 0.00165 respectively; while for the lower panels they are
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0 and 0.00331. The BS option values were computed using these values and thus are the

same for all three panels in the top row; and likewise for the three panels in the bottom row

In the top-left hand panel the parameters of the GNL distributed increments are µ =

0, σ2 = 0.01, α = 17.5, β = 17.5, ρ = 0.1, which results in a symmetric distribution with

coefficient of excess kurtosis γ2 = 4.68. In the top middle panel α and β are reduced to

12.5 and σ2 adjusted to 0.00373 (in order to maintain the variance at 0.00165) with other

parameters remaining the same. This results in kurtosis with γ2 = 17.99. In the top right-

hand panel some skewness was introduced by setting α = 20.00, β = 15.75 and adjusting µ

to 0.0135 (in order to maintain the mean at zero). This results in coefficient of skewness

γ1 = −0.390 and of excess kurtosis γ2 = 4.94.

In each panel the the three curves correspond to the difference between the BS and

the BL option values with exercise date T = 10, 30 and 60 days in advance (in all panels

highest peak corresponds to T = 10 and the lowest peak to T = 60). As can be seen the

differences follow W-shaped curves similar to those obtained by Eberlein (2001), under the

assumption of generalized hyperbolic Lévy motion. The biggest difference, which occurs “at

the money” (S = 1) in the middle panel with T = 10, is about three tenths of a cent, but

nonetheless amounts to 5.9% of the BS value. The corresponding maximum difference in the

left-hand panel amounts to 1.5% of the BS value. Schoutens (2003, p.34) presents computed

coefficients of kurtosis for various stock indices which range from 1.63 to 40.36 (this latter

figure is for data spanning the crash of October, 1987 which resulted in a log return of -

0.229). This would suggest that the parameter values considered in the top left-hand and

center panels are quite plausible.

The effect of skewness in the distribution of returns can be seen in the top right-hand

panel of Fig.1. The BS option value exceeds the BL one for smaller values of S with the

situation reversed for larger values. The magnitude of the greatest positive difference (BS

overvaluing the option) occurs “out of the money” (S < K = 1) and amounts to 3.2% of the

BS value. The greatest negative difference occurs “in the money” (S > K = 1) and while

of similar absolute magnitude amounts to only 0.34% of the (much higher) BS value. The
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value of the coefficient of skewness γ1 = −0.390 used in this example is well within the range

of those reported by Schoutens (2003, p.34) which range from -0.21 to -1.66, so the results

suggest that ignoring skewness may cause considerable error in the theoretical valuation of

options, as indeed is well known.

The bottom panels of Fig.1 show the effect of changing the parameter ρ to 0.2 (from 0.1

in the top panels). This has the effect of increasing the variance of the increments (by a

factor of two) but at the same time reducing γ1 (skewness) by a factor of
√

2 and reducing γ2

(kurtosis) by a factor of 2. Overall it can be seen that the effect is to dampen the magnitude

of the differences between BS and BL option values, but at the same time widen somewhat

the range of values of S over which differences occur. The maximum difference (centre panel,

T = 10, S = 1) amounts to 0.23 of a cent or 3.3% BS option value.

We turn now to an example using real data. Fig. 3 shows plots for the price of AT &T

stock from Jan. 2, 2004 to Jan. 19, 2005. The Q-Q plot (of quantiles of the logarithmic

returns against quantiles of a standard normal) in the lower right panel suggests some excess

kurtosis. Also there is a suggestion of skewness to the left. However this seems to be

caused largely by the one large negative return. The coefficients of skewness and excess

kurtosis for the logarithmic returns are respectively -.667 and 6.07, but if the one large

negative return is removed they become .217 and 1.66 (note change of sign of skewness). It

could be that the data follow an asymmetric distribution or alternatively that they follow

a symmetric somewhat fat-tailed distribution, with one large negative value occurring by

chance. In view of this both a symmetric GNL distribution (with 4 parameters) and an

asymmetric GNL distribution (with 5 parameters) appear to be plausible models and have

in consequence been fitted to the data. The method-of-moments estimates are in the two

cases respectively: (i) µ̂ = −0.000117, σ̂2 = 0.0000731, α̂ = β̂ = 57.35, ρ̂ = 0.3938; and

µ̂ = 0.00698, σ̂2 = 0.000934, α̂ = 55.53, β̂ = 39.50, ρ̂ = 0.1412.

Fig. 4 shows Q-Q plots of logarithmic returns against (a) the 5-parameter GNL distrib-

ution; (b) the 4-parameter symmetric GNL distribution and (c) the 4-parameter generalized

Laplace (GL) distribution (Kotz et al., 2001). It can be seen that while there is little to
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choose between the fit of (a) and (b) in the tails, (b) does not fit so well in the upper

flank; also both GNL models provide a considerably better fit than the generalized Laplace

distribution (c), and the normal distribution (Fig. 3).

The Kolmogorov-Smirnov goodness of fit statistic has values 0.0333 and 0.0736 for the

fit of the 5- and 4-parameter GNL distribution, respectively, and a value of 0.0662 for the

generalized Laplace distribution.

Fig. 5 shows various differences in calculated option values as a function of current stock

price with exercise date T = 10, 30 and 60 days ahead. The left-hand panel is the difference

between the BS and BL using the fitted symmetric GNL distribution; the centre panel is

similar but using the fitted asymmetric GNL distribution; and the right hand panel is the

difference between the BL option value using the fitted symmetric and asymmetric GNL

distributions. As one would expect, in absolute terms the differences are slightly larger for

the fitted asymmetric GNL. However in percentage terms this is not the case. In comparison

with the BL option value using the symmetric GNL the BS formula overvalues the option

by the largest amount exactly “at the money” (at S = 1) with T = 10. This over-valuation

amounts to 2.3% of the BS value. The biggest undervaluation with T = 10 occurs at

S = .925 and amounts to 13.7% of the BS value. In comparison with the BL option value

using the asymmetric GNL the corresponding percentages for the maximum overvaluation

and undervaluation are 3.4% (overvaluation at S = .975) and 0.52% (undervaluation at

S = 1.075). Note that the time until exercise affects the magnitude of the difference much

less when the asymmetric model is fitted. This is true also for the difference between the

BL option values using the fitted asymmetric and symmetric GNL distributions (right hand

panel in Fig. 4).
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Reed, W. J. and Jorgensen, M., (2004). The double Pareto-lognormal distribution - A new

parametric model for size distributions. Commun. Stat - Theory & Methods, 33, 1733–1753.

Rydberg, T. H. (2000). Realistic statistical modelling of financial data. Inter. Stat. Rev.,

68, 233- -258.
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