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Abstract. Traditionally retail banks have supported the credit decision-making on
scorecards developed for predicting default in a six-month period or more. How-
ever, the underlying pay/no pay cycles justify a decision in a 30-day period. In this
work several classification models are built on this assumption. We start by assess-
ing binary scorecards, assigning credit applicants to good or bad risk classes ac-
cording to their record of defaulting. The detection of a critical region between good
and bad risk classes, together with the opportunity of manually classifying some
of the credit applicants, led us to develop a tripartite scorecard, with a third output
class, the review class, in-between the good and bad classes. With this model 87%
decisions are automated, which compares favourably with the 79% automation rate
of the actual scorecards.
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Introduction

The ubiquity of digital communications has led to the generalization of online payments
in individuals’ Demand Deposit Accounts (DDAs). Retail banks have to assure a prompt
answer for those payment requests, which can be in the order of millions a day. When
the DDA has insufficient balance the bank has to decide whether or not to pay that debit
transaction (a pay/no pay decision-making) in a process named Non Sufficient Funds
(NSF). This pay/no pay decision must be performed at the latest by the end of the day,
to fit the Financial Net Settlement System service level’s requirements. Optimizing this
decision-making entails the decision to be uniform, objective and fast, with the minimum
of mistakes and losses.

Currently at a retail bank, most of the decisions (79%) are automatically man-
aged, while critical decisions are left for manual assessment. However, the automatic be-
havioural scoring models in use were developed to predict default in a six-month period;
furthermore, to keep the implementation straightforward, they do not entirely emulate
human reasoning. Therefore, some distinctive features of the problem are not material-
ized in them. Both customers’ earnings and NSF process cycles take one month to be
completed. Hence, if a “pay” decision is made, it is expected that the DDA cures within
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30 days (the DDA is cured when it does not exceed its balance and overdraft limits). This
led us to consider the development of a specific model to classify short-term credit risk
for mass-market customers of the retail bank.

1. A Credit Model for the Pay/no pay Decision

The research summarized here was conducted by using a large real-life dataset (com-
prising 187733 records) from the credit data of the leading Portuguese retail bank. We
choose the SAS Enterprise Miner package to perform all computations. Each customer’s
DDA in the sample was labelled as good if it cured within 30 days and as bad, otherwise.
Rejected transactions were also included in the sample. They were assigned to good or
bad classes according to their balance in the following month. The adopted class defini-
tion is based on Portuguese economic practices, as well as specific market segments, and
therefore to the pattern of NSF and customers’ earnings cycles.

In pay/no pay decision-making, human evaluation is usually supported in the exist-
ing information of the three-month period preceding the decision day. This human proce-
dure was incorporated in the models using a three-month observation window. The sam-
ple comprises DDAs with pay/no pay decisions of an entire month, the decision period.
For those DDAs, data were collected for the previous three-month period – the observa-
tion window. The performance was evaluated for each customer’s DDA according to his
behaviour in the 30-day period after having had a pay/no pay decision – the performance
window [1]. The driving idea was to look to pay/no pay decisions in the decision period
and evaluate whether the DDA cured in the following 30-day period. If so, the DDA was
labelled as non-defaulter; if not, as defaulter.

The information gathered for each costumer’s DDA comprises 47 characteristics
related with the DDA transactional pattern (e.g. the structure and volume of monthly
debits and credits and balance cycles) and customers’ behaviour in their relation with
credit. The current or past flawed experiences with financial institutions were included
in the sample as well, such as missing payments and bankruptcy status.

The original sample dataset was randomly divided into three subsets: 70% for the
training set, 20% and 10% to be the validation and test groups, respectively. The propor-
tion of each target class in the actual population, 18% defaulter and 82% non-defaulter,
was kept in the sample dataset.

The classifiers were trained both with an equal loss matrix and a loss matrix that
integrates the cost of misclassification, empirically estimated using a sample of historical
decisions.

1.1. Estimation of the loss matrix

In this application models are required to minimize the total loss associated with the
decisions, rather than the number of errors. One of the most efficient approaches to build
models that are sensitive to non-uniform costs of errors is to make the decision based
on both the estimated probabilities of the unseen instances and a measure of business
performance (profit, loss, volume of acquisitions, etc) [2]. We adopted the expected loss
value for each possible decision.
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For each approval in pay/no pay decision-making, the bank charges an amount M
that equals the maximum between a fixed fee and the interests. When the transaction is a
cheque, the bank charges an additional fee: f+ if the cheque is paid, f− otherwise. The
estimation of the loss matrix was based on the following principles:1

• The error of classifying an actual defaulter as non-defaulter generates a loss that
is equal to the value of the transaction;2 since the mean value of cheques is higher,
the costs of misclassifications was differentiated by group of transactions. There-
fore, the expected cost of a bad decision in cheques, lc, and the expected cost of
a bad decision in other cases, lo, was weighted by the expected proportions of
cheques and other transactions in the true population, pc and po. The expected
loss is therefore pc lc + (1 − pc)lo.

• The error of classifying an actual non-defaulter as defaulter produces a loss cor-
responding to the fees that the Bank dos not charge/collect and the revenue from
charging the fee f−, in the case of cheque refusal. Weighting those fees by the
corresponding proportion, the loss is given by pc ( f+ − f−) + M .

Although fees and interests are pre-defined, some scenarios can correspond to ex-
clusions, decreasing the amount to be charged. Hence, rather than using the standard pre-
defined fees, which would lead to unrealistic and inflated profits, matrix parameters were
estimated empirically using a sample of historical decisions. Mean charged fees and the
expected costs were then calculated for each of the two groups, cheques and others. Loss
matrix parameters (normalized values) were estimated as 0.28, 0.22, 0.44, and 0.34 for
pc, M, f+ and f−, respectively. The normalized cost of misclassification is 18 if the
transaction is a cheque, and is 10 for other type of transactions.

These principles allow a practical evaluation of the expected loss of a single decision
in the pay/no pay decision-making, and can be summarized in a loss matrix that puts
more weight on costumers wrongly predicted as non-defaulters with the proportion 1:49.

2. Binary Scorecard

Several standard binary classification models, based on logistic regression, classification
trees [3] and neural networks [4,5], were designed from the same input dataset. More
than just discriminating between the two classes, the models yielded a scored dataset as
a result of their training.3 Two different strategies were gauged: training the models to
estimate only the probabilities of each class of the target variable, without incorporating
any business objectives for which the predictor will be used. This strategy corresponds
in adopting the equal-loss matrix, with which both types of errors are equally weighted.
In a second strategy the training of the models incorporates the estimated business costs,

1Our approach for evaluating the loss of a pay/no pay decision does not incorporate indirect profits such
as commercial benefits from keeping relation with good customers active, neither the costs of preserving bad
customers. Although quantifying them would lead to valuable results it would also require considering some
non-trivial business assumptions. As that would take us beyond the objectives of the current work, they were
not considered.

2Although in practice the loss of misclassifying a defaulter is less than the value of the transaction, we
considered the worst scenario in which the credit is totally lost.

3A scored dataset consists of a set of posterior probabilities for each level of the target variable, correspond-
ing to the probability of defaulting and not defaulting.
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focusing not in the minimization of the misclassification rate but in the optimization of
the profit or loss. The selection of the cutoff for each case is easily determined. If the
probability of defaulting pd of a given costumer is known, the best cutoff for a gen-

eral loss matrix
[

l1 l2
l3 l4

]
is determined by comparing the expected loss of predicting as

defaulter, l1 pd + l3 (1 − pd), with the expected loss of predicting as non-defaulter,

l2 pd + l4 (1 − pd). The resulting cutoff is
(

1 + l2−l1
l3−l4

)−1
. For the equal-loss matrix

case, the threshold is 0.5; for the estimated loss matrix, the threshold is 0.02. The best
results are summarized in Table 1. For each model, the minimum loss, the sensitivity

Table 1. Results for the best binary models.
(a) Minimization of business rules.

Model Loss Specificity Sensitivity Error rate

Logistic Regression 0.724 27.2% 98.6% 59.9%
Decision Tree 0.697 28.4% 98.8% 58.9%

Neural Network 0.697 34.3% 98.2% 54.1%

Naïve 1 0.820 0.0% 100.0% 82.0%
Naïve 2 8.820 100.0% 0.0% 18.0%

(b) Minimization of the error rate.

Model Loss Specificity Sensitivity Error rate

Logistic Regression 0.094 98.4% 55.2% 9.4%
Decision Tree 0.083 97.8% 64.5% 8.3%

Neural Network 0.089 98.1% 59.6% 8.9%

Naive 1 0.820 0.0% 100.0% 82.0%
Naive 2 0.180 100.0% 0.0% 18.0%

(percentage of actual defaulters predicted as defaulters), the specificity (percentage of
actual non-defaulters predicted as non-defaulters), and the error rate are provided. As
a reference performance, the results for two baseline classifiers are also presented. The
Naive 1 model refuses all examples, while Naïve 2 model classifies all as non-defaulters.

Models tuned with the matrix incorporating the business rules have high sensitivity
(above 98%), while their specificity is low (below 35%). This strategy led to models with
high error rates. When the models were developed to minimize the error rate the results
were essentially reversed. The error rate of these models is mostly due to misclassified
defaulters in the set.

2.1. Tripartite Scorecard

The results attained with the binary classifiers show that none could discriminate the
defaulter from the non-defaulter in a satisfactory way. We also observed a certain overlap
between the distribution of the defaulter and of the non-defaulter, when analysed over
the predicted probability of defaulting, meaning that the models were not effective in
distinguishing them. When varying the cutoff value we are just trading off between the
two types of possible errors. Pushing the cutoff near the values obtained for the estimated
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matrix, almost all defaulters are correctly predicted, while most of the non-defaulters
are incorrectly predicted as defaulters. Relaxing the cutoff to values around the value
obtained for the default matrix, the errors are reversed. When deploying a system of
this kind in a retail bank, there is the opportunity of defining a third type of decision,
the review class: an example predicted as review will be evaluated manually by human
experts, possibly making use of some additional information. Therefore, we investigated
the possibility of designing models with three output classes [6]: defaulter, review and
non-defaulter. Bipartite and tripartite scorecards have been used in the industry before,
but only in an ad hoc way, with no effort being made to find the optimal division [7].

Table 2. Confusion matrix for a three-output model.

Predicted Defaulter Review Predicted Non-Defaulter

True Defaulter p1 p2 p3

True Non-Defaulter p4 p5 p6

Considering the generic confusion matrix for a three-output model (Table 2) the
training of the models was driven to find two cutoffs simultaneously that provide low er-
ror rates p3 and p4 (assuming that all manual decisions are correct) and high automation
rate. The lack of standard formulations and implementations to solve a problem of this
kind, led us to start with a simple approach. Starting on the models previously designed,
the two cutoffs were determined as follows:

• A cutoff was initialized as 0.0. Next, it was iteratively raised until a predefined
probability p3 (= 0.025) was obtained.

• A cutoff was initialized as 1.0. Next, it was iteratively lowered until a predefined
probability of error p4 (= 0.050) was obtained.

Finally, the percentage of automatic correct decisions (p1 + p6), the percentage
of defaulters in the approved set (p3/p6), the error rate (p3 + p4) and the automation
(p1 + p3 + p4 + p6) were measured. Three models, presented in Table 3, were chosen
from all under evaluation.

Table 3. Tripartite Scorecard Results.

Cutoff Cutoff Specificity Sensitivity Approved Error Automation
Model Low High defaulters rate

Logistic Regression 10.5% 30.5% 92.6% 84.8% 3.5% 7.2% 82.1%
Decision Tree 7.0% 23.7% 93.2% 80.2% 4.9% 8.0% 86.6%

Neural Network 11.0% 27.3% 92.8% 84.2% 3.7% 7.4% 85.0%

The three-class output models have more balanced measures of sensitivity and speci-
ficity, with a better prediction of the true classes. About 15% of the decisions, corre-
sponding to the overlapping region, are left for human assessment.

Assuming that the percentage of actual defaulters approved automatically does not
consider the effects of the recovery actions that can be performed, we accepted a value
up to 5%. The Tree based model was considered the most adequate for the pay/no pay
decision-making, providing 87% of automatic decisions. Furthermore, a Decision Tree
model is suitable for deployment and explanation of the decisions.
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3. Discussion

This study focuses on the development of a scorecard for supporting the evaluation of
default risk in the pay/no pay decision-making of a retail bank.

Binary classification models were developed based on well-known classification
techniques. Although an extensive study was conducted, the attained discrimination be-
tween the two classes (default and non-default) was not satisfactory. When the weights
of the two types of errors are heavily asymmetric, the boundary between the two classes
is pushed near values where the highest cost error seldom happens. For equal misclassifi-
cation losses, the boundary is biased to predict accurately the dominant class. Therefore,
the research continued with the development of tripartite scorecards, with a third output
class, the review class, in-between the good and bad classes. The final model enables
87% of automatic decisions, comparing favourably with the actual scorecards.

More principled approaches for optimally determining the boundaries between the
good, review and bad classes are currently being investigated. A complementary model
is also being developed for managing the resulting credit in arrears.
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