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Abslruct: The authors propose a semiparametric approach to modeling and forecasting age-specific mor- 
tality in the United States. Their method is based on an extension of a class of semiparametric models to 
time series. It combines information from several time series and estimates the predictive distribution con- 
ditional on past data. The conditional expectation, which is the most commonly used predictor in practice, 
is the first moment of this distribution. The authors compare their method to that of Lee and Carter. 

Prevision de taux de rnortalite par la rnodelisation d’un rapport de densites 
Rburnt : Les auteurs proposent une methode semiparamktrique pour la modelisation et la prevision de la 
mortalit6 par tranche d‘tiges aux fitats-Unis. Leur approche s’appuie sur la generalisation d’une classe de 
modbles semiparametriques au cas de series chronologiques. Elle exploite l’information provenant de plu- 
sieurs series et estime la loi pr&ictive ?I partir du comportement passe. L’esp6rance conditionnelle, qui sert 
le plus souvent de predicteur en pratique, en est le premier moment. Les auteurs comparent leur mdthode h 
celle de Lee et Carter. 

1. INTRODUCTION 
Since 1900, the United States Government has been collecting mortality data from death registra- 
tion records assembled by state vital statistics offices. The data are broken down mainly by state, 
cause, race, gender, and age, and are published in the form of death rates and life expectancies 
decennially and/or annually for over 100 years. However, the existing electronically documented 
mortality data are relatively short. In this study we shall use well documented mortality time 
series from 1970 to 2002 to forecast mortality patterns in the U.S. This gives us relatively short 
annual age-specific time series, consisting of a little over 30 observations each, stratified by fac- 
tors such as state, gender, and race. Prediction of future annual death rates based on these time 
series must take into account their short length. 

The objective of the present study is to forecast mortality patterns, using relatively short 
historical time records, by following a two-stage procedure. First, to each short series we fit a 
first order autoregressive model, and then, to overcome the problem of short series, the result- 
ing residuals are combined or merged in some fashion to provide estimates of future predictive 
distributions. Point forecasts, such as the conditional expectation, are obtained as a byproduct. 

In this paper we apply a semiparametric forecasting method advanced recently in Kedem, 
Gagnon & Guo (2005). The method compensates for short individual records by combining 
them via a density ratio model as described in Section 2. Accordingly, the residuals from several 
different fitted models are combined in this way in order to estimate the entire future conditional 
distributions of interest. From this we obtain future conditional probabilities as well as the con- 
ditional expectation of future values given past information, the most common predictor. We 
focus primarily on the prediction of centered annual age-specific log-death rates for the entire 
U.S. using data from 1970 to 2002. 

1.1. U.S. mortalityrate data. 

The death or mortality rate for age x and year t is the number of people who died at age x during 
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year t divided by the number of people of age x at the beginning of year t. It is customary to 
report death rate on a (natural) logarithmic scale. Our data structure has the form of log-death 
rate denoted as m(x, t) for ages z = I, . . . ,85,  and year t = 1971, . . . ,2002. 

Comparison of Log Death Rate Curves for Years 
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FIGURE 1 :  Log-death rate m(x, t )  as a function of age x for some fixed t. 

The plot of m(x, t) as a function of age x resembles a pointed hook with a rather long handle, 
surprisingly similar to a dentist probe, as seen from Figure 1. Wei, Curtin & Anderson (2003) 
fitted to these data the eight parameter model of Heligman & Pollard (1980), demonstrating that 
the model captures well the pointed hook pattern of mortality versus age. Figure 1 also shows 
that the hook pattern repeats itself year after year persistently, and that in general annual death 
rates decline, again quite persistently. The decline in death rate for fixed age as a function of time 
is shown in Figure 2 on a log-scale for several ages. Except for age 0, these time series appear 
almost as parallel straight lines, but when drawn separately they are much more oscillatory. 

Age-specific Time Series of Log Death Rates 
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FIGURE 2: Age-specific time series m(x, t )  for some fixed x. 
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Let d(x, t) denote the centered log-death rate matrix, d(z, t) = m(x, t )  - c, m(x, t) /n.  
We model d(z, t) instead of m(z, t) in order to compare our method with that of Lee & Carter 
(1992) who also use centered data. Plots of d(x,t) are shown in Figure 3 as a function of x 
for some fixed t, and also as a function o f t  for various fixed ages x. From the plots we see 
that neighboring time series d(z, t) and d(x’, t), where z and x’ are close, e.g. ages 60 and 
61, behave quite similarly. To compensate for short time records, the semiparametric method 
combines information from several agewise neighboring time series. 

Centered Year-Specific Log Death Rate Curves 
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Centered Age-specific Time Series of Log Death Rates 
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FIGURE 3: Plots of centered log-death rates d(z ,  t )  as a function of 2 for fixed t (top) and as a function of 
t for fixed x (bottom). 

1.2. The Lee-Carter model. 

The model proposed by Lee & Carter (1992) is used by the U.S. Census Bureau as a bench- 
mark for their population forecasts, and its use has been recommended by the two most recent 
U.S. Social Security Technical Advisory Panels. It also appears to be the dominant method in 
the academic literature and is used widely by scholars forecasting all-cause and cause-specific 
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mortality around the world. See Lee (2000) and Lee & Miller (2001). The Lee-Carter model is 
based on principal components. If m denotes the number of mortality time series, each corre- 
sponding to a specific age, the Lee-Carter model searches for the first principal component in m 
dimensional time series data, and solves for the age and time parameters by using singular value 
decomposition. 

The method presented in this paper is very different and seems appropriate for short range 
forecasting. Both methods, however, are extrapolative in that future mortality rates are esti- 
mated from past rates. Lee & Carter (1992) employed tabulated mortality data available from 
1900 to 1987. However we shall compare the two methods using the annual data systematically 
collected from 1970 to 2002. 

2. AN APPROACH TO SEMIPARAMETRIC TIME SERIES FORECASTING 

Our approach for tackling the problem of short time series is based on a certain “tilt” model 
studied in several works including Fokianos, Kedem, Qin & Short (2001), Gilbert, Lele & 
Vardi (1999), Qin (1993), Qin (1998), Qin & Zhang (1997), and Vardi (1982, 1985). 

In what follows next, zjt  denotes the j th time series depending on covariate vector zj t  

through model fj. 

2.1. The density ratio model. 

Consider the following m = q + 1 time series regressions, 

Xlt = f l ( z l , t - l ) + E l t ,  t = 1 ,... ,n1, 

zqt = fq(.q,t-l) +Eqt, t = 1 ,..., nq, 
zmt = fm(Zrn, t - l )  + E d  t = 1 ,..., n,, 

where the ni are small, the vectors z ~ , ~ - I  contain past values of covariate time series, and &kt are 
independent noise components. Since &kt cannot be used directly for estimation, our proposed 
strategy is to first fit model (1) and then use the residuals ekt wherever Ekt are required. 

Suppose the Ekt have probability densities, 

Define the reference density g ( z )  = gm(z) with G(z) = G,(z) the corresponding cumulative 
distribution function. Then we shall assume the density ratio model relative to the reference g(z), 

7 4- (3) 

This in turn gives the tilt model 

with a normalizing constant a3, vector ,Bj, and a vector valued distortion or tilt function h(z) .  
Implicitly, crj  is a function of &. The distorted densities g j ,  the reference g ,  as well as the aj 
and Pj are all unknown, but the distortion function h(z) is assumed to be known and its choice 
depends on the data. 
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An important special case of (3) is obtained in the normal case. Assume that z1 - N(p1, u?) 
and 2 2  N N ( p 2 ,  ug) with densities g1 and 92 ,  respectively. Then the density ratio (3) becomes 

with a and P = ( P I ,  P2)T  depending on the normal parameters, 

and a two dimensional distortion function h(z) = (z, z2)T. Notice that h(z) degenerates to z2 
when 111 = ~2 = 0, and ( 5 )  reduces to 

g 1 ( z )  = ea+Pz2g2(z) (6)  

with scalars a, P. The tilt model (6) is useful when the distributions are centered at zero and are 
symmetric. 

2.2. Estimation. 
Combine all the residuals from the q + 1 regressions into a single vector of length n = n1 + 
* * * + nq + nm, 

(7) 

Maximum likelihood estimates for the aj , / I j ,  and G (  z) can be obtained from the entire vector of 
residuals (7) by maximizing the likelihood over a class of step cumulative distribution functions 
with jumps at the values el, . . . , en. Let pi = dG(e+) denote the probability of jump at point e+. 
Then the semiparametric likelihood becomes 

T 
e = ( e l ,  . . . , en)T = ( ( e l l ,  . . . , eln,) ,  . . (eql ,  . . . , eqnq ), (em1 , . emn, )) . 

The likelihood (8) is sometimes referred to as empirical likelihood. To maximize the likeli- 
hood (8) we follow a profiling procedure used in Fokianos, Kedem, Qin & Short (2001). First, 
fix the a and P. Then, subject to the normalization constraint C r = l  pi = 1, and the constraints 
induced by the tilt model (4) 

n 

C p , [ e x p { c y ,  + ~ , T h ( e i ) )  - 11 = 0, j = 1,. . . , q, 
i=l 

the pi which maximize (8) are given by 

1 1 p . =  ( p)=-  
nm 1 + p1 exp{al+ P:h(ei)) + * * + pq exp{aq + P,Th(ei)) 2 -Pi 0, 

where p3 = n3/nmr j = 1,. . . , q, are the relative series sizes. The final solution for the pj is 

(9) 

obtained by substituting p i ( a ,  P)  back into the likelihood (8) and finding maximum likelihood 
estimators ii3 and fi3 through profiling. With I ( B )  the indicator of the event B, the estimated 

1 1 
$2 = G 1 + p1 exp{&1+ pTh(e,))  + * - + pq exp{&, + f i z h ( e + > )  
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reference cumulative distribution function is given by 

i = l  

Smoothing the $i in (9) by a kernel or, alternatively, smoothing increments of G  ̂in (10) gives the 
reference density estimate g (Fokianos 2004). 

The main point of the semiparametric paradigm discussed here is that the reference cumula- 
tive distribution function G(z) is estimated from many samples giving an improved estimate 
as compared with the empirical cumulative distribution function which is obtained from the 
reference sample only. This fact has been addressed carefully by several authors. In particu- 
lar, very general optimality properties of the semiparametric estimates are discussed rigorously 
in Gilbert (2000). Let en = (&I, .  . . , Liq, 81,. . . , fiq)'. Then, as Gilbert (2000) has shown, 
(en, G^) are asymptotically normal and efficient. Likewise, Zhang (2000b) has shown that quan- 
tile estimates obtained by the semiparametric method from both case and control samples are 
more efficient than estimates that are based on the control sample only, ignoring the case in- 
formation. More recently, Fokianos (2004) showed that by merging information following the 
semiparametric paradigm, we obtain improved kernel density estimates with the same bias as 
the traditional kernel density estimates but with smaller asymptotic variance. Our data analysis 
below supports this claim. Moreover, merging information in this way can result in power- 
ful tests for distribution equality. See Fokianos, Kedem, Qin & Short (2001), Gagnon (2005), 
and Kedem & Wen (2007). Regarding the uncertainty in G^, as shown by Zhang (2000b) and 
more recently by Lu (2007), fi (e - G) converges to a Gaussian process with mean zero and 
a rather complex covariance structure. In addition, it can be shown that the estimates h and 
f i  are asymptotically normal with a covariance structure depending on functionals of G; see 
Fokianos, Kedem, Qin & Short (2001), Kedem & Wen (2007), Lu (2007), Qin & Zhang (1997), 
and Zhang (2000a). 

We shall apply the semiparametric paradigm in forecasting U.S. mortality rates by combining 
information, or borrowing strength, from several (agewise) neighboring short U.S. mortality time 
series, 

2.3. Forecasting. 
The preceding discussion motivates the following time series forecasting method (Kedem, Ga- 
gnon & Guo 2005). Since ~ , , ~ + l  = fm(zm,t)  + ~~,~+_+l, and E m , t f l  N G, where G is the 
reference distribution estimated semiparametrically by G as in (lo), we estimate the predictive 
distribution at time t + 1 conditional on past data z,,t as follows: 

All sorts of point predictors can be obtained from (1 1). In particular, a one-step ahead predictor 
for ~ , , ~ + l  given the past can be approximated by calculating the (conditional) mean of the 
shifted distribution C(z - fm(zm, t ) ) .  Approximate prediction intervals can also be obtained 
from the estimated distribution (1 1). 
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2.4. About independence. 
Strictly speaking, the method as outlined above requires independent noise components &ktr but 
since the Ekt are replaced by the corresponding residuals in practice, strict independence is not 
guaranteed. The question is then whether the independence requirement may be relaxed. 

In Kedem & Fokianos (2002) it was shown that, subject to some regularity conditions, by 
using partial likelihood it is possible to bypass independence and extend the generalized linear 
models methodology to dependent time series. With this in mind, if the likelihood (8) is inter- 
preted in a partial sense, then this suggests the method may still be viable even when residuals are 
used, as is evident from the present application to mortality rates forecasting, and another very 
different application to filtered mortality time series reported in Kedem, Gagnon & Guo (2005). 

More directly, the independence question was investigated in Kedem, Gagnon 8t Guo (2005) 
by means of an extensive simulation applied to the bivariate linear system 

zt = a 1 z t - 1 +  a2gt-1 + E t ,  

Yt = h z t - 1  + b2gt-1 + vt, 

t = 1,. . . , N, with independent Gaussian noise components E t  N N(0, of) and vt N N(0, oz) 
satisfying the density ratio model with 

Then, estimating G when all the parameters in (12) and (13) were known and using known 
independent noise components ~ t ,  vt, and also when all the parameters were estimated (onse 
with N = 50 and once with N = 500) and using residuals it, 7j t ,  gave nearly the same G, 
and hence nearly identical forecasts. This suggests that there are situations where the quality 
of prediction of the semiparametric method is not necessarily affected much by the use of the 
observed residuals. 

3. ONE YEAR AHEAD PREDICTION OF U.S. MORTALITY 

3.1. A two-stage procedure. 
Define ak = ct m(k, t)/n. As mentioned above, we analyze the centered log-death rate matrix 
d ( k ,  t), d(k, t )  = m(k, t) - ak. For each fixed age k, consider the annual time series of centered 
log death-rates from 1970 to 2001. Thus t = 1, .  . . ,32. 

Write z k t  = d(k, t ) .  First, to each such time series we fit the first order autoregressive model 
with drift c k ,  

(14) 

The drift parameter is added in order to capture a downward trend observed in the age-specific 
centered log death-rate time series as exemplified in Figure 3. Accordingly, the functions fk in 
the system (1) are given by fk(Zk,t- l )  = bkzk,t-1 + c k .  The coefficient bk and the drift c k  are 
estimated by least squares, and in our application the &kt are replaced by the residuals derived 
from the model (14). 

Next, we choose a density ratio model for the residuals. Data analysis shows that the residuals 
corresponding to model (14) are centered around zero and that their histograms resemble those 
obtained from small normal samples. This motivates the distortion model (6) with h(z)  = z2. 

We consider the mth residual sample (e,l, . , . , emn,) as the reference where each compo- 
nent has distribution function G and density g. Similarly, assume that each residual component of 
the vector ( e k l ,  . . . , e k n k )  has distribution Gk and density gk, k = 1, . . . , q. Following the above 
semiparametric paradigm, and combining it with insight gained from histograms of residuals 
from (14), we assume the density ratio relationship, 

z k t  = & z k , t - l  + ~k + E k t ,  k = 1,. . . , q, m. 

gk(z) = eak+fl*x2 g(z), k = 1 ,..., q. (15) 
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An application of the semiparametric procedure to the combined data e defined by (7) gives the 
semiparametric estimate for the reference distribution. Similarly, from (10) and (15) we obtain 
the estimated distribution function of the kth sample from which the predictive distribution 
is computed by 

h 

P ( zk , t+ l  I z I ~ k t )  M Gk(z - h Z k t  - ck) .  (16) 

3.2. Data analysis. 

We consider 85 age-specific time series of log-death rates (all-cause) for ages 1, . . . ,85, where 
the age category 85 includes ages 85 and older. To simplify the analysis, this grouping or lumping 
of ages 85 and older had to be done at some point and we chose, somewhat arbitrarily, age 85 
as a threshold. However, the data file does have the specificity to subpartition this category to 
obtain a more detailed mortality prediction. Mortality at age 0 is not considered in the present 
analysis due to its behavior which is very different from that at other ages. See Figure 2. 

From the previous discussion, the assumption that the density ratio model (15) holds for 
time series groups corresponding to neighboring ages seems reasonable. Indeed, in retrospect 
our data analysis lends credence to this assumption. In our analysis, therefore, we apply the 
semiparametric method by combining information from each of the age groups, consisting of 
five ages each and dubbed “Sage,” 1-5, 6-10, . . ., 81-85, a total of 17 groups, where the time 
series “in the middle” of each group is taken as the reference. For example, in the group 1-5, the 
time series of age 3 is taken as the reference, meaning that the relevant distribution from this time 
series serves as the reference distribution for the group. We applied the semiparametric model 
separately to each group to estimate the reference distribution and the corresponding distorted 
distributions to obtain predicted mortality curves. 

As an illustration, consider the age group 31-35 from 1970 to 2001. As mentioned before, 
we chose a quadratic distortion function h(z) = x2 due to the rough symmetry of the residu- 
als around zero, resembling the behavior of normal residuals. There are altogether five residual 
samples, and the sample of residuals from age 33 is considered as the reference. The actual condi- 
tional point predictions of log death-rate in 2002 for the age group 31-35-are obtained from (16) 
by computing the-first moments of the shifted predictive distributions Gk, k = 31, .  . . ,35, re- 
spectively, with G33 as the reference. This analysis is repeated for all 17 groups. The 2002 
prediction results for all ages are compared with the true 2002 centered log-rates in the tables 
and figures below. 

0 1 5  O W  O M  00 O M  0 10 0 1 5  010 001 0 0  OM OIO 

FIGURE 4: Estimated reference probability density function of age 33 from the combined data e for the 
3-age group 32-34 (left), and the 5-age group 31-35 (right), respectively. 

It is also interesting to compare the results from the 3-age group 32-34 with the 5-age group 
31-35. Figure 4 shows the histograms and overlaid estimated reference density of age 33 ob- 



2008 DENSITY RATIO MODELING 201 

tained from the combined data e for the 3-age and 5-age groups. Since we combined more 
information in the 5-age group there is a noticeable improvement in the density fit. 

For age group 31-35, the estimated tilted cumulative distribution functions e k ( z )  from (19,  
each estimated from 5 x 32 = 160 residuals, and the corresponding empirical cumulative dis- 
tribution functions, each from 32 residuals, are shown in Figure 5 for ages 31, 32, 33, 34 (the 
cumulative distribution function for age 35 is not plotted). Since more information is us2d (or 
combined) in deriving the ek(z) than used in obtaining the empirical distributions, the Gk(z) 
are smoother as is evident from the figure. So, in some sense, the semiparametric cumulative 
distribution functions are smooth versions of the corresponding empirical distributions. 

Age 31 Age 32 
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FIGURE 5:  Comparison of the empirical (solid line) and estimated (dotted line) cumulative distribution 
functions for the indicated ages. The estimated cumulative distribution function for age 35 is not shown. 

The corresponding Sage smoothed probability density functions gk(z) (solid lines) and their 
related histograms are shown in Figure 6 for ages 31,32,33,34. For the sake of comparison, for 
ages 32, 33, 34 the figure also depicts the 3-age smoothed gk(z) (dotted lines). The estimated 
probability density function for age 35 is not shown. The plots point to the consistency of the 
method in that the 3-age and 5-age estimates are not far apart. 

Once the estimated reference e(z) and the estimated distributions z k ( z )  are obtained, we 
apply (16) to approximate the probability distribution of the one-year-ahead centered log-death 
rate in 2002 for the age group 31-35. As a point predictor we use the mean of the predictive 
distribution, that is, the conditional expectation. The corresponding 95% confidence interval is 
also derived from the estimated predictive distribution. 

Table 1 gives the prediction results only (to save space) for ages 5,10,20,. . . ,80. For each 
indicated age it gives the semiparametric prediction for 2002 and the corresponding prediction 
interval (PI), as well as the Lee-Carter prediction. Comparison by mean square error (MSE) 
between the two methods is given in Table 2. Generally speaking, compared with the Lee- 
Carter method, the semiparametric method improves the prediction as measured by MSE. The 
improvement of the semiparametric method is more noticeable for age groups which display 
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more steady and gradual change of death rate as in age groups 3 1-50 and 7 1-85. From Table 2, 
the overall prediction MSE from the semiparametric method in the three cases reported there are 
0.104,O. 187,0.249, compared, respectively, to 0.297,0.619,0.645 from the Lee-Carter method. 
The most significant improvement is for the age groups 3 1-50 and 71-85, whereas both methods 
perform quite similarly for all other age groups as we see from the table. 

Age 31 Age 32 

0 1 5  0 1 0  005 0 0  005 010 015 0 1 5  0 1 0  005  0 0  005 010 

X X 

Age 33 Age 34 

0 1 5  0 1 0  0 0 5  0 0  005 010 0 1 5  0 1 0  005 0 0  005 010 

x x 

F I G U R E  6: Histograms and overlaid estimated probability density functions for 3-age group 32-34 (dotted 
line) and 5-age group 31-35 (solid line). The estimated probability density function for age 35 is not 

shown. 

In the above data analysis we combined information from non-overlapping 5-age groups. The 
analysis was repeated for the general poulation case by using a sliding window of overlapping 5-  
age groups, each time moving up by a single year. Interestingly, the MSE results were very close 
to those reported in Table 2, replacing the SP row 0.104, 0.050, 0.015, 0.030, 0.009 by 0.105, 
0.051, 0.014, 0.031, 0.008. This suggests that the choice of the reference time series within an 
age group may be arbitrary. 

TABLE 1 : Prediction comparison between the semiparametric and Lee-Carter methods for 2002 for some 
ages. The first two rows give the 95% PI bounds for the semiparametric forecasts, and the rest are the 

predictions from the semiparametric method (SP), true values in 2002, and the prediction from the 
Lee-Carter (LC) method. 

Age 5 10 20 30 40 50 60 70 80 

Lower -8.781 -8.933 -7.072 -6.977 -6.276 -5.473 -4.628 -3.776 -2.905 

Upper -8.599 -8.671 -6.870 -6.755 -6.094 -5.362 -4.557 -3.695 -2.774 

True -8.639 -8.785 -6.970 -6.868 -6.172 -5.416 -4.622 -3.733 -2.824 
SP -8.699 -8.819 -6.997 -6.858 -6.178 -5.431 -4.601 -3.749 -2.842 

LC -8.661 -8.835 -7.023 -6.810 -6.252 -5.534 -4.615 -3.752 -2.874 

From Table 2, we see that the MSE from the semiparametric method is lower for the general 
population case than in both the female and white female cases. This is not surprising since 
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more data are available from the total population, whereas in the other two cases we deal with 
subpopulations. The fact that the age group 1-30 has a larger MSE than that from the other 
groups is due to the large variation of the data associated with that age group. 

Since our mortality data are truncated at age 85, we cannot calculate traditional life tables 
from the death rate forecasts. Instead we provide in Table 3 a comparison between the true and 
predicted (by our method) number of survivors by age and sex out of 100,000 live births. The 
true values and their forecasts are close. 

TABLE 2: Mean square error of (all-cause) prediction from the semiparametric (SP) and Lee-Carter (LC) 
methods for the general population, female, and white female. 

Agegroup 1-85 1-30 31-50 51-70 71-85 

General SPmodel 0.104 0.050 0.015 0.030 0.009 
LCmodel 0.297 0.078 0.180 0.026 0.013 

Female SPmodel 0.187 0.121 0.026 0.032 0.008 
LCmodel 0.619 0.226 0.341 0.027 0.025 

W. Female SPmodel 0.249 0.176 0.031 0.033 0.007 
LCmodel 0.645 0.257 0.329 0.041 0.019 

4. TWO-YEAR AHEAD FORECASTING 

So far we have discussed one-year ahead prediction. However, our one-step procedure can be 
extended to multi-year ahead forecasting. One way to proceed is to use the predicted values 
from previous steps when making long term predictions. Thus in two-year ahead forecasting we 
use the previous one-year ahead forecasts, and proceed as above. The prediction error may get 
amplified through each additional step even if minor deviations of prediction from true values 
occur. The results from this procedure are reported in Table 4(a). Again, the overall MSE is 
lower for the semiparametric method as compared with the Lee-Carter method. 

A second procedure for forecasting j-years ahead is to extend the above one-step ahead fore- 
casting method to residuals resulting from time series regression models where the present at 
time t is regressed on observed values up to and including t - j. Thus in the present case, to 
get two-year ahead mortality forecasts we use (14) with the modification that x k t  is regressed 
on Z k , t - 2 .  The MSE from this method is reported in Table 4(b). Once more, the overall MSE is 
lower for the semiparametric method as compared with the Lee-Carter method. The disadvan- 
tage of this procedure is that some data are lost due to the larger time lags. 

5. CONCLUDING REMARKS 
We have used a two-stage forecasting semiparametric procedure suitable for short time series 
to obtain forecasts of U.S. age-specific mortality rates. To estimate conditional predictive dis- 
tributions, the method combines short time series by appealing to a density ratio model. Point 
predictors as well as future probabilities can be obtained from the estimated conditional distri- 
butions. A comparison with the well known Lee-Carter singular value decomposition method 
points to the potential of the semiparametric method. In general the semiparametric method 
provides more precise short term prediction as compared with the Lee-Carter procedure. 

The method we used is non-Bayesian. Bayesian methods for forecasting in short time series 
are available, a useful special case of which is discussed by De Oliveira, Kedem & Short (1997), 
and Kedem & Fokianos (2002). Interestingly, there too the prediction is based on a predictive 
distribution, but the method is very different. 
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Death rates drop rapidly from infants to children, thus, combining data from age zero with 
other ages to form an age group is less appealing. It seems preferable to employ methods suitable 
for univariate time series to forecast the annual mortality for age zero. When monthly infant death 
rates are available, the semiparametric method can be applied to this age group separately. 

TABLE 3: Number of survivors by age and sex, out of 100,000 born alive, 
from both semiparametric forecasts and true values in 2002. 

Forecast True 
Age Total Male Female Total Male Female 
0 I00000 
1 99311 
5 99182 

10 99107 
15 99013 
20 98685 
25 98219 
30 97746 
35 97189 
40 96384 
45 95231 
50 93558 
55 91205 
60 87762 
65 82616 
70 75218 
75 65081 
80 51665 
85 35348 

lo0000 
9923 1 
99085 
99004 
98890 
98425 
97717 
9703 1 

96275 
9522 1 
93739 
91581 
88625 
84429 
78258 
69571 
57967 
43306 
26897 

1 ooooo 
9937 1 

99256 
99 186 
99108 
98914 
98679 
98394 
98012 
97425 
96550 
95293 
93446 
90632 
86313 
79978 
71052 
58630 
42244 

1 oooO0 
99298 
99174 
99098 
99000 
98662 
98192 
97722 
97171 
96386 
95216 
93515 
91 I28 
87629 
82484 
75148 
65014 
5 1680 
35442 

1 ooooo 
992 17 
99076 
98992 
98875 
98400 
97691 
97006 
96249 
95228 
93733 
91553 
88521 
8421 1 
77986 
69339 
57710 
43142 
26938 

1OOOOO 
99360 
99252 
99 184 
99104 
98902 
98662 
98384 
98009 
97422 
96520 
95220 
93381 
90570 
86328 
80074 
71164 
58758 
42330 

For convenience, we chose to fit to the mortality rate time series the AR( 1) model (14). This 
of course is only one possibility and there are other choices. For example, we could set the 
coefficient bk in (14) to be 1, or use an AR(2) model. A model which provides a better fit could 
reduce the prediction error. 

TABLE 4: Prediction MSE from the semiparametric (SP) and Lee-Carter (LC) methods for two-year 
ahead forecasting. (a) Predicted one-year ahead forecasts are used. (b) Autoregression lagged by 2. 

Agegroup 1-85 1-30 31-50 51-70 71-85 

(a) SPmodel 0.180 0.128 0.019 0.026 0.007 
LC model 0.389 0.088 0.246 0.033 0.021 

(b) SPmodel 0.211 0.132 0.048 0.025 0.005 
LC model 0.389 0.088 0.246 0.033 0.021 
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