Apoo: an Environment for a First Course
in Assembly Language Programming

Rogério Reis Nelma Moreira

Technical Report Series: DCC-98-9

Departamento de Ciéncia de Computadores — Faculdade de Ciéncias
&

Laboratorio de Inteligéncia Artificial e Ciéncia de Computadores

Universidade do Porto
Rua do Campo Alegre, 823 4150 Porto, Portugal
Tel: +351+2+46078830 — Fax: +351+2+6003654

http://www.ncc.up.pt/fcup/DCC/Pubs/treports.html

Apoo: an Environment for a First Course in Assembly
Language Programming

Rogério Reis Nelma Moreira
{rvr,nam}@ncc.up.pt

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 823, 4150 Porto, Portugal

November 1998

Abstract

Teaching the very basic concepts of a computer architecture, instruction set and
operation based on a real microprocessor is usually an unfruitful task as the essential
notions are obscured by the specific details of its architecture. A machine emulator has
the benefit of providing a portable environment that can be run in several platforms
and that can be easily adapted for pedagogical purposes. Apoo! is a virtual machine
with a very simple architecture and instruction set that mimics almost all the essential
features of a modern microprocessor. The Apoo Interface is an graphical environment
that monitors the state of the machine during the execution of a program and allows
the writing/editing/execution of programs in assembly language. The Apoo Tutor is a
module that aims the grading of student programs based on a description of what should
be the execution of the program for specified input data sets. This module was used
to evaluate students programming skills in an interactive learning/grading system, not
only allowing the detection of errors but trying to give extra information in order that
the student could understand and correct his/her mistakes more easily.

1 Introduction

In the past few years at the Faculty of Sciences of the University of Porto, at an
introductory course of Computer Science (for Computer Science majors) we teached the
MC68000 assembly language. Initially using MC68000 based computers, then, when
they become too obsolete and thus impossible to maintain we turned to the e68k?2,
an emulator of the MC68000 processor with the obvious benefits of robustness and
tracing facilities [Fil92]. Nevertheless the actual architecture of the MIC68000 with
its 14 address modes and more than 50 mnemonics* was still in the way of the first
year students mind to grasp the essentials of computing programming. Issue was not to
update the model micro-processor to a more recent architecture like MIPS R2000 as it
is done by the SPIM emulator [PH94], but to create an abstract processor for teaching
purposes only, in the spirit of the MIX [Knu73] or the SCRAM [Dew93]. MIX is too
archaic and cumbersome, and the SCR.AM although used to explain the circuit layout of
a micro-processor, has not the expressiveness required to teach basic algorithms (easily).

! Although Apoo could be an achronym for an Abstract Processor with an Original Orientation, in fact
it is just the name of a yellowish vagabond cat that keeps poking at our back door.

% Available at http://www.ncc.up.pt/ mig/e68k

3A graphical interface is also available in http://www.ncc.up.pt/ nam/Tke68k

4And the e68k implementation is notably accurate.

This led us to design a simple assembly language with special emphasis on flow control
and basic data manipulation, with an user friendly environment. The implementation
language chosen was Python[Lut96] basically because of the following reasons:

e as a very high level object oriented language, the code for Apoo and Apoo Tutor
is only about 20K bytes long;

e all the code of the virtual machine could be written in such a way that the
introduction of new machine instructions is a matter of writing only a couple of
lines work (literally);

e it is highly portable (it worked without any modification in a Windows 95);

e it provided an interface to the Tk graphical toolkit, that allowed the easy building
of a graphical environment;

e it’s neat...

In the next section, the basic architecture of the virtual processor and the new
assembly language are described, as well as some implementation details. Section 3
introduces the graphical environment and its functionalities. In Section 4, the tutor
module and its integration in a grading system is discussed. Some comments on the
practical experience with our students and future work are sketched in Section 5.

2 Apoo Virtual Machine

Apoo has a set of general purpose registers® (8 in the default configuration), a data
memory area, a program memory area, a system stack and a program counter register.
Each register or memory cell can hold a 32-bits® integer. Registers are named Ri,
where i ranges from 0 up to the number of registers minus 1.
Memory cells are created as needed by means of two different pseudo-instructions, as
tabled in Figure 1:

e the mem pseudo-instruction reserves an array of cells;

e the const pseudo-instruction reserves individual cells initializing them with the
given values.

Every data memory address referred must have been reserved by one of the previous
pseudo-instructions.

As Apoo is a virtual machine, which is emulated, and the aim was to teach assembly
language, there is no machine code associated with its instruction set. Each program
memory cell will hold a whole instruction. In particular, a program in memory will begin
in program memory address 0. The program counter, as usual, will contain the address
of the next instruction to be executed, i.e., the number of the next instruction.

Finally, the system stack is used to implement subroutines and argument passing.

2.1 The Assembly Language

Each assembly instruction has the following form:
(<Label>:) Operation <Operandl> <Operand2>
where

Label is any string of letters or digits; if present, must begin in the first column of a
line, and will be associated, as usual, with the address of the instruction in that
line.

Operation a mnemonic of its functionality.

®The number of available registers, is set when a new instance of the virtual processor is created.
5As that is the precision of integers in Python

Pseudo-instruction | Meaning

(Label:) mem Num | Reserves Num memory cells and associates Label (if present)
with the address of the first cell

Label: const Numl | Reserves 1 memory cell whose address associates with Label
and whose contents is Num1
const Num2 | Reserves 1 memory cell whose contents is Num?2

Figure 1: Pseudo-instructions

Operands can be numeric (data or addresses), labels or registers (RO...R(nregs —1)).

A line beginning with a # is ignored by the parser; so it can be used to write comments
in the program.

The instructions of the Apoo assembly language are listed in Figure 2. They can be
divided in three categories: data transfer, arithmetic and program control.

In data transfer instructions, the first operand refers to the source and the second to
the destination. This are addressing modes used:

Immediate the first operand is a constant:
Ex.: 1loadn 100 R1
Direct both operands are registers or memory cell addresses:

memory-register Ex.: load 100 R1
register-memory Ex.: store R1 100
register-register Ex.: storer R1 R2
Indirect the effective address is the contents of the source (respectively destination)
operand
memory-register Ex.: loadi R2 R1

register-memory Ex.: storei R1 R2

In all the arithmetic instructions the operands can only be registers.

Example 1 The following program loads the values 3, 4 and 5 in registers R1, R2 and
R3, respectively, adds its contents and stores the result in memory cell whose address is
3:

loadn 3 R1
loadn 4 R2
loadn 5 R3
add R1 R2
add R2 R3
store R3 3

The control flow instructions change the value of the program counter (PC), in order
to alter the normal flow of the program. They are divided in the following groups:

Control Transfer

Unconditional are always executed.
Ex.: jump 100

Conditional its operation is conditioned by the value of a register.
Ex.: jzero R1 100

Subroutines

Call to subroutine Ex.: jsr 100
Return from subroutine Ex.: rtn

Save and retrieve arguments in the system stack These instructions can also
be used anywhere else...

Ex.: push R1
Ex.: pop R1.

Halt halts the execution of a program. It must always be present in a program.

And that is all!!!

Let us see some examples of trivial Apoo programs.

Example 2 This program adds the n values stored in memory starting at memory cell
labeled Ni, saving the result in the cell labelled Patang.

Ni: const 3
const 4
const 5
n: const 3
Patang: mem 1
begin: zero R4
loadn Ni R1
load n R2
loop: jzero R2 end
loadi R1 R4
add R4 R3
dec R2
inc R1
jump loop
end: store R3 Patang

Example 3 The following program calls a subroutine that finds the mazimum value of
a sequence of values stored in memory.

N:
val:

MAX:

const 3

const 7

const 8

const 20

mem 1

#R4=maximum; R2=position
load N R1

loadn val R2

#R1=number of values
#R2=beginning of the sequence

jsr max
store R4 MAX
halt

max: loadi R2 R4

loop: inc R2
dec R1
jzero Rl cont
#loads in R3 the next value
loadi R2 R3
#makes a copy in order to compare with the maximum
storer R3 R5
sub R4 R5
#if R4-R5 > 0 continue
jpos R5 loop
#stores in the new maximum
storer R3 R4
jump loop
cont: rtn

In appendix A a more detailed explanation of each instruction can be found.

2.2 Implementation

The virtual machine is implemented as a Python class named Vpu. The main attributes
are:

nreg the number of registers.

reg the list of internal registers.

RAM the memory data cells, the address of each cell corresponds to its position on this
list.

PC the program counter.

stack the system stack.

labelp a dictionary that associates program labels with program instruction numbers.
labelm a dictionary that associates memory data labels with memory addresses.

code a dictionary that associates each mnemonic with the corresponding code written
in Python. For instance, the mnemonic load has the following code associated:

if type(Al) == type(’’):
try: add = self.labelm[A1]
except KeyError: raise LabelError
else: add = A1l
try: foo = RAM[add]
except IndexError: raise OutOfMemory(add)
Reg[A2] = foo
incPC()

where A1l and A2 stand for the operands of the operation. First it is tested if the first
operand is a label. If that is the case, the associated memory address is retrieved.
The contents of the associated memory cell is then fetched and, if no error occurs,
its value stored in the register which number is given by the second argument.

Prog the list of instructions of the program in memory.
BreakP a list of the instructions numbers which have a breakpoint set in.

time the amount of time used by the execution until now.

Operation | Operandl | Operand2 | Meaning

Data to Register Transfer

load Mem Ri Loads the contents of memory address Mem into register
Ri; Mem can be a label
loadn Num Ri Loads number Num into register Ri; Num can be a label,
in which case it represents an address
loadi Ri Rj Loads the contents of memory whose address is the
contents of Ri into Rj (indirect load)
Data to Memory Transfer
store Ri Mem Stores the contents of Ri at memory address Mem; Mem
can be a label
storer Ri Rj Stores the contents of Ri into Rj
storei Ri Rj Stores the contents of Ri into memory cell whose address
is the contents of Rj
Data to the System Stack Transfer
push Ri Pushes the contents of Ri into the top of the stack
pop Ri Pops the element from the top of the stack into Ri
Two Operand Arithmetic
add Ri Rj Add the contents of register Ri to the contents of register
Rj and stores the result in Rj (Rj=Ri+Rj)
sub Ri Rj Subtracts the contents of register Rj from the contents
of register Rj and stores the result in Rj (Rj=Ri-Rj)
mul Ri Rj Multiplies the contents of register Ri and the contents
of register Rj, and stores the result in Rj (Rj=Ri*Rj)
div Ri Rj Stores in Rj the quotient of integer division of the
contents of register Ri by the contents of register Rj
(Rj=Ri/Rj)
mod Ri Rj Stores into Rj the rest of integer division of the contents
of register Ri by the contents of register Rj (Rj=Ri%Rj)
One Operand Arithmetic
zero Ri Stores 0 in Ri (Ri=0)
inc Ri Increments by 1 the contents of Ri (Ri=Ri+1)
dec Ri Decrements by 1 the contents of Ri (Ri=Ri-1)
Control Transfer
jump Addr Jumps to instruction at address Addr; Addr can be a
label
jzero Ri Addr Jumps to instruction at address Addr, if the contents of
Ri is zero; Addr can be a label
jpos Ri Addr Jumps to instruction at address Addr, if the contents of
Ri is positive; Addr can be a label
jneg Ri Addr Jumps to instruction at address Addr, if the contents of
Ri is negative; Addr can be a label
jsr Addr Pushes the contents of PC into the stack and jumps to
instruction at address Addr
rtn Pops an address from the top of the stack into the PC
halt Stops execution; Every program must have this instruc-
tion in order to end gracefully, otherwise an Out of
Program error will occur
Figure 2: Apoo Assembly Language

Loading a program The parsing process — Load — is accomplished in a single step.
Each line of the program, unless it is a comment, is considered an instruction. If it has
a label in it, the label is associated with a memory cell. If the operation is a pseudo-
instruction mem or const, data memory cells are created accordingly (with 0’s in the
case of a mem) and the label is associated with the first memory address. If the operation
is one of the admissible mnemonics, the label is associated with the current program
instruction number.

Each instruction is parsed ensureing the correct number and type of its operands and
stored in the Prog list along with its operands. Syntactic errors stop the whole process
without trying to recover.

Running a program At the beginning, the program counter is set to 0. Step by
step, each instruction in the Prog list is executed, according to the code corresponding
to its mnemonic. Currently, possible infinite loops are detected having a pre-defined
limit for the number of steps in a program run. As it is explained in the next section, a
program can run:

e until a halt instruction is reached;

e until a previously defined breakpoint is reached;
e until a run-time execution error occurs;

e in a “step-by-step” fashion.

The system timer, started in the beginning of the execution, is automatically stopped
every time any of these events occur.

3 The Apoo Interface

Look at Figure 3 and Figure 4!

The Apoo Interface is an environment to programming in assembly language
and to monitor the execution of the Apoo virtual machine, providing an easy way
to write/edit/debug/execute Apoo assembly programs.

During the execution of a program, it shows the contents of the program counter,
registers and memory data. In accordance with what was said concerning the program
memory segment, the program in memory is displayed in assembly language (not in
machine code).

To execute a program we must first either

e Enter in Edit mode and write its instructions.
e Open a text file with its instructions.

After that, we can try to Load it. If a parsing error occurs, we can enter Edit mode
and correct it; the interface will show the text line in which the error occurred.

When the program is successfully loaded (into memory), it can be executed in three
different ways:

Run executes the program, until a halt instruction is reached or a run-time execution
error occurs; at the end the display of the state of the machine is updated(i.e., the
values of the program counter, registers and memory data).

Step executes the next instruction and the the display of the state of the machine is
updated.

Continue continues the execution until a breakpoint is reached.

In an instruction line, a breakpoint can be set or cleared as follows:

e to set a breakpoint: “Double-click” Buttonl that line (the foreground becomes
green)

e to clear a breakpoint: “Double-click” Button?2 again (the foreground will return to
black)

In Edit mode we can change the text code of a program or create a new one. To
enter this mode one must press the Edit button or the New button. After editing we can
Save or SaveAs the current edited text. We leave Edit mode by loading the program —
pressing the Load button — or opening a new file.

4 Apoo Tutor

In order to evaluate student’s programming skills in the Apoo assembly language, we
designed a new module that given a program (made by a student) and a script, valuates
the program by “executing” the script. This allows to test if the program has syntactic
errors and if given some initial input values it correctly calculates the expected results.
This module will not verify the correctness of the program against some specification, but
will detect, locate and explain a set of possible errors. In this way, not only the grading
process is simplified but also it can help the students in correcting their mistakes. As it
will be apparent from the commands of a script file this kind of evaluation takes much
benefit from the fact that we have full access to the interpreter of the language.

An example of a tutor script is shown in Figure 5. This module can be executed,
from an UNIX shell (or by other program) with the following arguments:

$ vpu_tutor tutor-script apoo-program
A tutor script can have the following commands:

load Tries to load the program and reports syntactic errors, if any.

initial This command has the following syntax:
initial [label:num[,num]*]* [label;size]*

The first set of labels corresponds to memory cells defined with the const pseudo-
instruction, and the second one to memory cells defined with the mem pseudo-
instruction; num and size must be integers. This verifies if the program initializes
that set of labels with the corresponding values.

init Attributes values, distinct from the initial ones, to memory cells and registers. It
can be used several times in a script, for diferent sets of initial input values, for
different runs. Its syntax is as follows:

[init [RI:num]* [label:num]*]

where RI stands for one of the registers and num for an integer.

exec This command tries to execute (run) the program in memory if used without
argument.

exec [label]

Used with an argument, it tries to execute the subroutine with name label.

final This command verifies if the values of the referred memory cells or registers are
as specified after an execution. It has the following syntax:

final [RI:numl* [label:num[,num]*]x*

where RI is as before and nums are the values to be matched.

— R

o | ope [e | o st | |

(N
(N
(N
O
O
O
O
o

Figure 3: Apoo Interface

10

— R

o | ope [e | o st | |

(N
2
I
R
5
O
O
o

Figure 4: Running a Program

11

value This command must always have an integer as argument, that represents the
grading of the previous command, if it was successful:

value num
end Marks the end of the script.

Whenever an error is detected or a end command is reached the tutor exits writing to
the standard output the evaluated grade and a message reporting an error or the sucess
in solving the problem.

: 1
load a const
const -3
value 20 const 40
initial a:1,-3,40,0 b;1
value 10 const 0
b: mem 1
exec
value 20
final a:1,-3,40,0 b:38 R3:38 loadn a R1
value 20 zero R3
init a:9,10,10,0 loop: loadi Rl R2
exec jzero R2 end
add R2 R3
value 10 inc R1
final b:39 R3:39 jump Loop
1 2
szue 0 end: store R3 b
halt

Figure 5: An example of a tutor script and a correspondent correct program.

4.1 Integrated Grading System

The Apoo Tutor and the Apoo Interface were integrated in the Ganesh grading
system [LM98], that is in development in our department.

This system provides, among other features, a solving environment that allows a
student to be individually examined in a specific domain. In our case the domain is the
Apoo assembly language. For each examination the student is given a set of problems
to solve, by writing programs and submitting them for automatic grading. Apoo Tutor
is called to grade the program and the student can debug and test his programs with the
Apoo Interface (with the file functionalities disabled to avoid importing and exporting
alien files).

During the examination, the student can submit the programs as many times as he
want, until the problem is correctly solved (as far as the tutor script is concerned...) or
the time for the examination expires.

5 Future Work

Taking in consideration the experience of the last year’s course, in which only in 12
hours (lecture and practice time) were needed for the students to grasp all the important
aspects of an assembly language like Apoo, it seems that the inclusion of logical and
bitwise operations as well as different sized operands can be included in the curriculum

12

of the course with great benefit. Thus low level implementation of acces to memory cells
of different sizes is required for the inclusion of those type of instructions in the Apoo
assembly language.

A Apoo machine code and its automatic generation and interpretation can be useful
to give as an example, the same way as it is done for SCRAM in [Dew93].

Likewise, an abstract circuit layout for Apoo would be a neat pedagogical tool.

6 Acknowledgments

We would like to thank Sabine Broda and Zé Paulo Leal who were really S-testers of the
system and kindly accepted to teach and grade the students with it. We are also very
grateful to our students who were patient enough with the inevitable bugs.

References

[Dew93] A. K. Dewdney. The (New) Turing Omnibus. Computer Series Press. W.H.
Freeman and Company, 1993.

[Fil92] Miguel Filgueiras. A Portable Environment for Programming in mc68000
Assembly. Technical report, Centro de Informética da Universidade do Porto,
1992.

[Knu73] Donald Knuth. The Art of Computer Programming. Fundamental Algorithms,
volume 1. Addison-Wesley, second edition, 1973.

[LM98] José Paulo Leal and Nelma Moreira. Automatic Grading of Programming
Exercices. Technical Report DCC-98-4, DCC-FC & LIACC, Universidade do
Porto, July 1998.

[Lut96] Mark Lutz. Programming Python. Nutshell Handbook. O’Reilly & Associates,
Inc, 1996.

[PH94] David A. Patterson and John L. Hennsyy. Computer Organization & Design.
The Hardware/Software Interface. Morgan Kaufmann Publishers, 1994.

13

A Apoo Assembly Language

Data Transfer

1. Direct (memory-register)
load <memory address> <Ri>

Loads the contents of memory whose address is Mem into register Ri.
Example: load 100 R1

Data Memory

RI[4]

v =

2. Immediate
loadn <number> <Ri>

Loads number number into register Ri.
Example: loadn 100 R1

RL[100

3. Indirect (memory-register)
loadi <Ri> <Rj>

Loads the contents of memory cell whose address is the contents of register Ri
into register Rj.
Example: loadi R2 R1

Data memory

RIL 4]

v -\

R2[100]

4. Direct (register-memory)

store <Ri> <memory address>

Stores the contents of register Ri in the memory cell whose address is given.
Example: store R1 100

Data memory

RI[4]

v 2 | 100

14

5. Direct (register-register)
storer <Ri> <Rj>

Stores the contents of register Ri into register Rj.
Example: storer R1 R2

RL[10m]

¢

R2[1uf

6. Indirect (register-memory)
storei <Ri> <Rj>

Stores the contents of register Ri into the memory cell whose address is the
contents of register Rj.
Example: storei R1 R2

Data memory

RIL 4]

v =

R[]

Arithmetic Only between registers.
1. Add (register-register)
add <Ri> <Rj>

Action: Rj=Ri+Rj
Example: add R1 R2
if R1=100 and R2=50, after the instruction R2=150

2. Subtraction (register-register)
sub <Ri> <Rj>

Action: Rj=Ri-Rj
Example: sub R1 R2
3. Multiplication (register-register)
mul <Ri> <Rj>

Action: Rj=Ri*Rj
Example: mul R1 R2
4. Integer division (register-register)
div <Ri> <Rj>

Action: Rj=Ri/Rj

Example: div R1 R2
5. Remainder of integer division (register-register)

15

mod <Ri> <Rj>

Action: Rj=Ri%Rj
Example: mod R1 R2
6. Set to zero (register)
zero <Ri>

Action: Ri=0
Example: zero R1
7. Increment (register)
inc <Ri>

Action: Ri=Ri+1
Example: inc R1
8. Decrement (register)
dec <Ri>

Action: Ri=Ri-1
Example: dec R1
Control Flow
Modify the value of the program counter (PC) in order to alter the normal flow of
the program.
1. Unconditional
jump <address>

Loads the address address into the PC. This address must correspond to a
memory cell whose contents is a program instruction. Usually this address is
given by a label.

Example: jump loop

If the label loop corresponds to the program address 100 we have:

Program memory

PCl 10]

=

2. Conditional: its execution is conditioned by the value of a register.

(a) if zero
jzero <Ri> <address>

Loads the address address into the PC, if the contents of register Ri is
zZ€ero.

16

Example: jzero R1 loop
As in the previous example:

RIC Program merory
S E—T1

=

if R1 # 0 the instruction will do nothing and, as usual, the contents of the
PC will be incremented to point to the next instruction in memory.

(b) if positive
jpos <Ri> <address>

Loads the address address into the PC, if the contents of register Ri is a
positive integer.
Example: jpos R1 loop

S E— Program merory
S E—T1

=

(c) if negative

jneg <Ri> <address>

Loads the address address into the PC, if the contents of register Ri is a
negative integer.
Example: jneg R1 loop

RIL] Proga memory
S E—

=

3. Execution halt
halt

Stops the execution of the program. Every program must have this instruction
on order to end properly, otherwise an Out of Program error will occur.

17

