
An Operational Semantics for

Concurrent Separation Logic

Pedro Soares1 António Ravara2 Simão Melo de Sousa3

1LIACC 2CITI & DI-FCT

Universidade do Porto Universidade Nova de Lisboa

psoares@fc.up.pt aravara@fct.unl.pt
3LIACC & DI-FE

Universidade da Beira Interior

desousa@di.ubi.pt

Technical Report Series: DCC-2014-11

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/



An Operational Semantics for

Concurrent Separation Logic

Pedro Soares1 António Ravara2 Simão Melo de Sousa3

1LIACC 2CITI & DI-FCT

Universidade do Porto Universidade Nova de Lisboa

psoares@fc.up.pt aravara@fct.unl.pt
3LIACC & DI-FE

Universidade da Beira Interior

desousa@di.ubi.pt

Abstract

The deductive veri�cation of concurrent programs gained new tools with the advent of
Concurrent Separation Logic (CSL). This program logic is a compositional method that combines
the Owicki-Gries method with Separation Logic, allowing to reason and prove correct concurrent
programs manipulating shared mutable data structure. The soundness of Concurrent Separation
Logic had been established using a denotational semantics (based on traces). An alternative
proof based on structural operational semantics was obtained only for a fragment of the logic �
the Disjoint CSL � which disallows modifying shared variables between concurrent threads. In
this work, we lift such a restriction, proving the soundness of full Concurrent Separation Logic
with respect to an operational semantics.

1 Introduction

The aim of this work is to present a new soundness proof for the Concurrent Separation Logic, [7],
with respect to a structural operational semantics, [11]. This work adapts and extends the results
presented by Vafeiadis, [15].

The axiomatic veri�cation of programs goes back to Hoare Logic, [6]. This seminal work introduces
two key ideas, i) the speci�cation of programs by means of what is know by a Hoare triple: {P}C{Q},
where P and Q are �rst order formulae, called the precondition and postcondition respectively,
and C is an imperative program; ii) a deductive proof system to ensure the partial correctness of
programs. We say that a program is partially correct, if every execution of C from a state respecting
the precondition does not abort and the postcondition holds for its �nal state, when the execution
terminates. The state for this logic is formed only by the store, i.e. a partial function that records
the value of each variable. Hoare's work gave rise to numerous deductive systems, for instance
Owicki-Gries method, see e.g. [9, 10], and Separation Logic, see e.g. [8, 13, 14].

The Owicki-Gries method is one of the �rst attempts to give a resource-sensitive proof system for
concurrent programs. Each resource has a mutual exclusion lock, an assertion, called invariant, and
a set of variables, called protected variables. To reason about concurrent programs synchronizing
via resources, Owicki and Gries augmented the programming language with i) parallel composition,
C ‖ C; ii) local resources, resource r in C; and iii) a critical region, with r when B do C, where r
denotes a resource.

The execution of parallel composition non-deterministically chooses one of the commands to
execute �rst. As usual, the execution is assumed weakly fair, i.e. if a commands is continually
available to be executed, then this command will be eventually selected. The resource command
declares a local variable r to be used in C. The critical region command waits for the availability
of the resource r, and when B holds, it acquires r and starts the execution of C; the resource r is
released upon the termination of the execution.
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The programs derivable by the Owicki-Gries method have to respect resources invariants �
properties respected when acquiring and releasing resources � and respect the protection of variables
� to change a protected variable, it has to acquire all resources protecting that variable. The
parallel rule of the proof system proposed by Owicki, [9], requires that every free variable occurring
in one command can not be changed by another, except by protected variables occurring within the
derivation proof of its critical region. Thus, the Owicki-Gries method is not compositional.

Separation Logic supports reasoning about imperative programs with shared mutable data and
consequently about dynamical data structures, such as lists and trees. In order to do this, the assertion
and program languages used in the Hoare Logic had to be augmented. The assertions are extended
with the constructs emp, representing the empty memory; e 7→ e′, representing a single memory
location e with the value e′; and P ∗Q, representing a portion of memory that can be divided in two
disjoint parts, one satisfying P and the other satisfying Q. The programing language is augmented
with commands for reading a memory location, x:=[e]; for writing on a memory location, [e]:=e'; for
allocating a memory cell, x:=cons(e); and for deallocating a memory cell, dispose(e). Naturally, the
proof system is also extended with a rule for each new commands and with a frame rule, used to
enlarge the portion of memory considered in the speci�cation of a program. This rule is crucial to
achieve local reasoning: program speci�cations only need to consider the memory relevant for their
execution; the frame rule allows to extend those memory portions. Therefore, this local reasoning
mechanism can be used to establish the partial correctness of disjoint concurrent programs, i.e.
concurrent program where each thread do not modi�ed variables used by others threads.

In these settings, the memory is usually represented by the heap � a partial function from the
set of locations to the set of values. The store and the heap together de�ne the state of a program.
In order to prove the soundness of the frame rule, and thus of local reasoning, it is su�cient to ensure
the validity of two key properties: safety monotonicity and the frame property. Safety monotonicity
states that if an execution does not abort for a given memory portion, then the execution does
not abort for any memory portion that contains the initial one. The frame property says that if
a command does not abort for a given memory portion, then every execution on a larger portion
corresponds to an execution on the initial one.

Since the introducing of Separation Logic, di�erent authors adapted Separation Logic to the
veri�cation of concurrent programs. Vafeiadis introduced RGSep, combining Separation Logic with
Rely/Guarantee reasoning [16]. Reddy and Reynolds introduced a syntactic control of interference in
Separation Logic [12], borrowing ideas from works on fractional permissions [2]. O'Hearn proposed
Concurrent Separation Logic (CSL), combining Separation Logic with the Owicki-Gries method [7].
Brookes formalized this version of the logic, extending the traditional Hoare triples with a resource
context Γ and a rely-set A, what leads to speci�cations of the form Γ |=A {P}C{Q}. A resource
context records the invariant and the protected variables of each resource. A rely-set consists of
all free variable of a speci�cation, with the exception of the variables occurring inside a critical
region. This set ensures that CSL is a compositional proof method, proved sound with respect to a
denotational semantics based on traces, where a program state is represented by the store, the heap
and the sets of resources, expressing variable ownership [4]. Actually, the rely-set was introduced
after Wehrman and Berdine discovered a counter-example to the initial proof of soundness of CSL
[3], and it is analogous to the set of variables used by Owicki and Gries to check non-interference in
their parallel rule, playing the same role in the parallel rule used by Brookes.

Alternatively, Vafeiadis proposed a structural operational semantics for concurrent programs
synchronizing via resources, and proved the soundness of a fragment of CSL, the Disjoint Concurrent
Separation Logic, where concurrent threads are not allowed to modify shared variables [15].

Our motivation for this work was to remove the disjointness condition and obtain a soundness
proof using a structural operational semantics for the full Concurrent Separation Logic. The goal is
relevant because it is a step in the development of more expressive provers well integrated in software
development environments.

Concretely, the contributions of this work are the following.

• A novel notion of environment transition that simulates actions made by other threads. We
de�ne it taking into account the rely-set, available resources and their invariants (Section 4.1).
This relation is important to study the interferences made by other threads. Furthermore it
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allows to show the soundness of the parallel rule. Note that Vafeadis uses a di�erent notion of
environment transition [16].

• The resource con�guration that expresses ownership. It is de�ned with three sets: owned
resources, locked resources, and available resources (De�nition 24). A program state is formed
by a store, a heap and a resource con�guration.

• A collection of examples of programs which we prove correct in Concurrent Separation Logic.
The aim is to illustrate the expressiveness of the proof system; hence we selected �classical�
problems. In particular, we show correct programs to push and pop over a stack in parallel;
to lock and release of a binary semaphore in parallel; and to multiply two matrices in parallel
(Section 2.6). These examples together with the programs proved by O'Hearn and Brookes,
[7, 3, 4], support the usefulness of Concurrent Separation Logic.

In the rest of this paper, we review the syntax of concurrent resource-oriented program with shared
mutable data (Section 2.4) and Concurrent Separation Logic proof system (Section 2.5), following the
work of Brookes [4]. Next, we present a structural operational semantics for the previous programs
(Section 3.4), along the lines of the work of Vafeiadis [15]. We prove that this operational semantics
respects safety monotonicity and the frame property (Section 3.6) and we give a speci�c formula for
the resource con�guration along an execution (Section 3.7). Afterwards, we introduce the environment
transition relation (Section 4.1). Finally, we prove the soundness of Concurrent Separation Logic with
respect to the operational semantic we de�ned (Section 4.4).

2 Concurrent Separation Logic

In the following sections, Concurrent Separation Logic is revisited, as presented by Brookes [4]. First,
the syntax of expressions, Boolean expressions and assertions are de�ned. This part follows the work
done for Separation Logic, see e.g. [13]. Next, the syntax of commands for concurrent programs
is speci�ed. Then, the inference rules for Concurrent Separation Logic are given. To �nish some
examples of derivable programs in Concurrent Separation Logic are presented.

2.1 Expressions and Boolean expressions

We write Var for the set of variables, which are usually expressed with lowercase letter, e.g. x, y, . . ..
Let Val denote the set of values. The set of values include at least the natural numbers and the

representation of null, i.e. N0 ∪ {null} ⊆ Val.
The set of expressions is denoted by Exp and it is given by the following grammar

e := x | n | e1 + e2 | e1 − e2 | e1 × e2, x ∈ Var, n ∈ Val.

The set of Boolean expressions is denoted by Bool and it is de�ned by

B := true | false | e1 = e2 | e1 < e2 | B1 ∧B2 | B1 ∨B2 | ¬B, e1, e2 ∈ Exp.

Next, we de�ne the set of variables, that occur free inside an expression.

De�nition 1. Let e ∈ Exp. The set of free variables in e is denoted by FVE(e) and it is given by:

• FVE(x) = {x},

• FVE(n) = ∅,

• FVE(e1 + e2) = FVE(e1 − e2) = FVE(e1 × e2) = FVE(e1) ∪ FVE(e2).

For the set of expressions, {e1, e2, . . . , en}, we write FVE(e1, e2, . . . , en) to denote the set FVE(e1)∪
FVE(e2) ∪ . . . ∪ FVE(en). The set of free variables for a Boolean expression is de�ned below.
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De�nition 2. Let B ∈ Bool. The set of free variables in B is denoted by FVBE(B) and it is given
by:

• FVBE(true) = FVBE(false) = ∅,

• FVBE(e1 = e2) = FVBE(e1 < e2) = FVE(e1) ∪ FVE(e2),

• FVBE(B1 ∧B2) = FVBE(B1 ∨B2) = FVBE(B1) ∪ FVBE(B2) ,

• FVBE(¬B) = FVBE(B).

For the set of Boolean expressions, {B1, B2, . . . , Bn}, we write FVBE(B1, B2, . . . , Bn) to denote
the set FVBE(B1) ∪ FVBE(B2) ∪ . . . ∪ FVBE(Bn).

In both de�nition, when no confusing arise we omit the subscript.
Next, we see how the partial substitution interact with expressions and Boolean expressions.

De�nition 3. Let e ∈ Exp, x ∈ Var and v ∈ Exp. The partial substitution in the expression e of x
by v is denoted by e[v/x]E, and it is de�ned by:

• if y = x, then y[v/x]E = v, else y[v/x] = y

• n[v/x]E = n,

• (e1 + e2)[v/x]E = e1[v/x]E + e2[v/x]E,

• (e1 − e2)[v/x]E = e1[v/x]E − e2[v/x]E,

• (e1 × e2)[v/x]E = e1[v/x]E × e2[v/x]E.

We denote the partial substitutions e[v1/x1]E [v2/x2]E . . . [vn/xn]E by e[v1/x1, v2/x2, . . . , vn/xn]E .

De�nition 4. Let B ∈ Bool, x ∈ Var and v ∈ Exp. The partial substitution in the Boolean
expression B of x by v is denoted by B[v/x]BE, and it is de�ned by:

• true[v/x]BE = true,

• false[v/x]BE = false,

• (e1 = e2)[v/x]BE = (e1[v/x]E = e2[v/x]E),

• (e1 < e2)[v/x]BE = (e1[v/x]E < e2[v/x]E),

• (B1 ∧B2)[v/x]BE = (B1[v/x]BE ∧B2[v/x]BE),

• (B1 ∨B2)[v/x]BE = (B1[v/x]BE ∨B2[v/x]BE),

• (¬B)[v/x]BE = ¬B[v/x]BE.

The notation B[v1/x1, v2/x2, . . . , vn/xn]B stands for B[v1/x1]B [v2/x2]B . . . [vn/xn]B .
As before, we omit the subscript in partial substitutions when no confusing arise.

2.2 Assertions

We begin this section by de�ning the syntax of assertions.

De�nition 5. The set of assertions is denoted by Astn and it is given by:

P := B | ¬P | P1 ∧ P2 | P1 ∨ P2 | P1 ⇒ P2 | ∀xP | ∃xP
| emp | e 7→ e′ | P1 ∗ P2 | P1 −∗P2,

where B ∈ Bool, x ∈ Var and e, e′ ∈ Exp.
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Besides the assertion usually used in Hoare Logic, we also consider the assertion introduced by
Separation Logic. They intent to describe the following ideas:

emp the empty memory.
e 7→ e′ a memory with the location e, which has the value e′.
P1 ∗ P2 a memory that can be divided in two disjoint parts such that one part veri�es P1

and the other part veri�es P2.
P1 −∗P2 a memory such that, for every disjoint memory that veri�es P1, the union of

memories veri�es P2 .

The set of variables that occur free inside an assertion are de�ned below.

De�nition 6. Let P ∈ Astn. The set of free variables in P is denoted by FVA(P ) and it is given
by:

• FVA(B) = FVBE(B),

• FVA(emp) = ∅,

• FVA(¬P ) = FVA(P ),

• FVA(∀xP ) = FVA(∃xP ) = FVA(P ) \ {x},

• FVA(P1 ∧ P2) = FVA(P1 ∨ P2) = FVA(P1 ⇒ P2) = FVA(P1 ∗ P2) = FVA(P1 −∗P2) =
FVA(P1) ∪ FVA(P2),

• FVA(e 7→ e′) = FVE(e, e′).

As before, for a set of assertions {P1, P2, . . . , Pn}, we write FVA(P1, P2, . . . , Pn) to represent the
set FVA(P1) ∪ FVA(P2) ∪ . . . ∪ FVA(Pn). And, when no confusing arise we omit the subscript.

Next, we de�ne the partial substitution on assertions.

De�nition 7. Let P ∈ Astn. We denote the partial substitution in the assertion P of x ∈ Var for
v ∈ Exp by P [v/x]A, and it is inductively de�ned in the following way:

• B[v/x]A = B[v/x]BE,

• (¬P )[v/x]A = ¬P [v/x]A,

• (P1 ∧ P2)[v/x]A = P1[v/x]A ∧ P2[v/x]A,

• (P1 ∨ P2)[v/x]A = P1[v/x]A ∨ P2[v/x]A,

• (P1 ⇒ P2)[v/x]A = P1[v/x]A ⇒ P2[v/x]A,

• if x′ = x, then (∀x′P )[v/x]A = ∀x′P , else (∀x′P )[v/x]A = ∀x′(P )[v/x]A,

• if x′ = x, then (∃x′P )[v/x]A = ∃x′P , else (∃x′P )[v/x]A = ∃x′(P )[v/x]A,

• emp[v/x]A = emp,

• (e 7→ e′)[v/x]A = (e[v/x]E 7→ e′[v/x]E),

• (P1 ∗ P2)[v/x]A = P1[v/x]A ∗ P2[v/x]A,

• (P1 −∗P2)[v/x]A = P1[v/x]A −∗P2[v/x]A.

We write P [v1/x1, v2/x2, . . . , vn/xn]A for the partial substitution P [v1/x1]A[v2/x2]A . . . [vn/xn]A.
When no confusing arise, we omit the subscript.

Despite we did not give the semantic of assertions, we introduce the notions of validity and precise
assertions. The interested readers can see the sections 3.1 and 3.2 for the formal de�nitions.

We say that an assertion P is valid and write |= P , if P is satis�ed by every storage and heap
(de�nition 21).

If for a given storage and heap, the subheap that satis�es P is uniquely determined, then we say
that P is precise (de�nition 22).

For instance, we give examples of valid and precise assertions.
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Example 1. The following assertions are valid:

• |= P ⇒ P ,

• |= P ∗ emp⇒ P ,

• |= P ⇒ P ∗ emp.

Example 2.

• emp is a precise assertion.

• e 7→ e′ is a precise assertion.

• if P is precise and B ∈ B, then P ∧B is precise.

• if P1 and P2 are precise assertions, then P1 ∗ P2 is a precise assertion.

2.3 Resources context

The set of resources names is denoted by Res. The resources names are usually denoted by lowercase
letters di�erent from those used for variables, i.e. Res ∩Var = ∅.

Next, we de�ne the resource context as it is de�ned in [4]. The global properties are represented
by resource contexts.

De�nition 8. A resource context Γ has the following form

r1(X1) : R1, r2(X2) : R2, . . . , rn(Xn) : Rn,

where r1, r2, . . . , rn are distinct resources names, R1, R2, . . . , Rn are assertions and X1, X2, . . . , Xn

are sets of variables such that FV (Ri) ⊆ Xi, for each i = 1, 2, . . . , n.
We say that the resource context Γ is well-formed if Ri is a precise assertion, for every i.

As noted by others authors, because we'll consider the conjunction rule in the inferences rules, it is
necessarily to use precise assertion to de�ne the resource context. This is illustrated with an example
in [7, Section 11]. Moreover, the results presented in this text do not require that the resource context
is precise, except for the conjunction rule.

The following examples are instances of well-formed resources context.

Example 3.

• A resource context that establish the equality of two variables has the form

r(x, y) : x = y ∧ emp.

• The resource st represents a stack
st(z) : stack(z),

where stack(z) is inductively de�ned by:

� z = null ∧ emp, or
� ∃a,bz 7→ a, b ∗ stack(b),

and z 7→ a, b is abbreviation to z 7→ a ∗ z + 1 7→ b.

• Let ai,j ∈ Val, i = 1, . . . , n and j = 1, . . . ,m. A matrix, n × m, with coe�cients ai,j is
represented by the following resource context

mat(X,n,m) : X 7→ a1,1, a1,2 . . . , an,m.
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• Let i = 1, . . . ,m. The next resource context represents the i-column of the matrix above

coli(X,n,m) : X + (i− 1) 7→ a1,i ∗X + (i− 1) +m 7→ a2,i ∗ . . . ∗X + (i− 1) + (n− 1)m 7→ an,i.

• Let j = 1, . . . , n. The j-line of the matrix above is represent by

linj(X,m) : X + (j − 1)m 7→ aj,1, aj,2, . . . aj,m.

• Let p and q denote di�erent threads. A binary semaphore for the threads p and q can be
represented in the following way

se(wantp,wantq) : wantp + wantq ≤ 1 ∧ (wantp = 0 ∨ wantq = 0) ∧ emp.

In the next de�nition, we �x some notation for resource contexts.

De�nition 9. Let Γ be a well-formed resource context with the form

r1(X1) : R1, r2(X2) : R2, . . . , rn(Xn) : Rn.

• We denote by Res(Γ) the set {r1, r2, . . . rn},

• For ri ∈ Res(Γ), we say that the variables in Xi are protected by the resource ri and we denote
Xi by PV (ri),

• We denote by PV (Γ) the set
⋃

r∈Res(Γ) PV (r),

• For ri ∈ Res(Γ), the assertion Ri is denoted by Γ(ri),

• For a set D = {rj1 , rj2 , . . . , rjk} ⊆ Res(Γ), we de�ne

~
r∈D

Γ(r) = Rj1 ∗Rj2 ∗ . . . ∗Rjk ,

• We write inv(Γ) to represent ~
r∈Res(Γ)

Γ(r).

Below, we see how to change the resources names inside a resource context.

De�nition 10. Let r, r′ ∈ Res and Γ be a resource context with the form

r1(X1) : R1, r2(X2) : R2, . . . , rn(Xn) : Rn,

such that r′ /∈ Res(Γ). We de�ne the substitution Γ[r′/r] by:

• if r = ri, Γ[r′/r] = r1(X1) : R1, r2(X2) : R2, . . . , r
′(Xi) : Ri, . . . , rn(Xn) : Rn.

• Γ[r′/r] = Γ, otherwise.

For every resource context, we associate to each resource a set of protected variables. Then the
resource context determines a system of permission, as noted in [12] and [5].

2.4 Programming Language

The commands C are given by the following grammar:

C := skip | x:=e | x:=[e] | [e]:=e' | x:=cons(e) | dispose(e)
| C1 ; C2 | if B then C1 else C2 | while B do C | C1 ‖ C2

| resource r in C | with r when B do C,

where x ∈ Var, e, e' ∈ Exp, B ∈ Bool and e = (e1, . . . , en) is a vector of expressions.
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The set of commands that result from the grammar above is denoted by Com.
The set of commands is composed by the commands consider by Hoare Logic, Separation Logic,

and Concurrent Separation Logic. The commands appended by Separation Logic capture the follow-
ing ideas:

x:=[e] it loads the value on the location e to the variable x.
[e]:=e' it changes the value on the location e to e'.
x:=cons(e) it allocates n contiguous locations in the memory with the values e1, . . . , en

and assigns the �rst location to the variable x.
dispose(e) it deallocates the location e from the memory.

The commands added by Concurrent Separation Logic express the following ideas:

C1 ‖ C2 it computes in parallel the commands C1 and C2, with weakly fairness
(i.e. every enable command is eventually considered in the execution).

with r when B do C if B is satis�ed and the resource is not locked, it acquires the resource
r and execute C, after the execution it releases the resource r.

resource r in C it executes the command C with the local resource r.

Next, we give some examples of program in Com.

Example 4.

• With our granularity of commands, we can increment a variable in parallel using the following
program

x:=x+1 ‖ x:=x+1

• Let st denotes a stack. To pop an element from st, we use

with st when ¬(z = null) do y:=z ; x1:=y ; z:=[y+1] ; dispose(y+1),

and to push the element x to the stack

with st do y:=cons(x,z) ; z:=y.

• Let X be a matrix n × k, Y a matrix k ×m, i = 1, . . . , n and j = 1, . . . ,m. The i-line of X,
lini, multiplied by the j-column of Y , colj, is obtained by

with lini do with colj do x:=0; l:=0;while l < k do a:=[X+(i-1)k + l]; b:=[Y+(j-1) + k l]; x:=x+ a b; l:=l+1.

• The resource se represents a binary semaphore for the threads p and q. In the thread p, the
semaphore is acquired using the command above

with se when wantq = 0 do wantp:=1,

and the semaphore is released by

with se do wantp:=0.

We use analogous commands, for the thread q.

Next, we de�ne the set of variables that occur free in a command.

De�nition 11. Let C ∈ Com. The set of free variables in C is denoted by FV (C) and it is given
by:

• FV (skip) = ∅,

• FV (x:=e) = FV (x:=[e]) = {x} ∪ FVE(e),

• FV (x:=cons((e1, . . . , en))) = {x} ∪ FVE(e1, . . . , en),
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• FV ([e]:=e') = FVE(e, e'),

• FV (dispose(e)) = FVE(e),

• FV (C1 ; C2) = FV (C1 ‖ C2) = FV (C1) ∪ FV (C2),

• FV (if B then C1 else C2) = FVBE(B) ∪ FV (C1) ∪ FV (C2),

• FV (while B do C) = FV (with r when B do C) = FVBE(B) ∪ FV (C),

• FV (resource r in C) = FV (C),

Let {C1, C2, . . . , Cn} ⊂ Com, we denote FV (C1)∪FV (C2)∪. . .∪FV (Cn) by FV (C1, C2, . . . , Cn).
In the following de�nition, we de�ne the set of variables that can be modi�ed by a command.

De�nition 12. Let C ∈ Com. The set of variables modi�ed by C is named mod(C) and it is given
by:

• mod(x:=e) = mod(x:=[e]) = mod(x:=cons(e)) = {x},

• mod(if B then C1 else C2) = mod(C1 ; C2) = mod(C1 ‖ C2) = mod(C1) ∪mod(C2),

• mod(while B do C) = mod(with r when B do C) = mod(resource r in C) = mod(C),

• mod(α) = ∅, otherwise.

The set of auxiliary variables have been useful to deduce more speci�c post conditions for a
program's speci�cation, see e.g. [10]. Next, we give the de�nition of auxiliary variables for a command.

De�nition 13. Let C ∈ Com. We say that X is a set of auxiliary variables for C if every occurrence
of x ∈ X in C is inside a assignment to a variable in X.

After we have used the auxiliary variables to deduce a speci�cation, we want to remove them
from the program. We replace the assignments to auxiliary variables by the command skip. This is
formalized in the next de�nition.

De�nition 14. Let C ∈ Com and X a set of auxiliary variables for C. We denote by C \ X the
substitution of every assignments to auxiliary variables in C by skip. It is inductively de�ned by:

• If x ∈ X, then (x:=e) \X = skip, else (x:=e) \X = x:=e,

• (if B then C1 else C2) \X = if B then C1 \X else C2 \X,

• (while B do C) \X = while B do (C \X),

• (C1 ; C2) \X = (C1 \X) ; (C2 \X),

• (C1 ‖ C2) \X = (C1 \X) ‖ (C2 \X),

• (with r when B do C) \X = with r when B do (C \X),

• (resource r in C) \X = resource r in (C \X),

• C \X = C, otherwise.

Below, we de�ne the set of resources that appear in a command.

De�nition 15. Let C ∈ C. The set of resources that occur in a command C is denoted by Res(C)
and it is de�ned by:

• Res(with r when B do C) = Res(resource r in C) = Res(C) ∪ {r},

• Res(C1 ; C2) = Res(if B then C1 else C2) = Res(C1 ‖ C1) = Res(C1) ∪Res(C2),
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• Res(while B do C) = Res(C),

• Res(C) = ∅, otherwise.

To change the name of resources inside a command, we use the next de�nition.

De�nition 16. Let C ∈ Com and r, r′ ∈ Res such that r′ /∈ Res(C). We denote the substitution of
r for r′ on C by C[r′/r] and it is de�ned by:

• (if B then C1 else C2)[r′/r] = if B then C1[r′/r] else C2[r′/r],

• (while B do C)[r′/r] = while B do (C[r′/r]),

• (C1 ; C2)[r′/r] = (C1[r′/r]) ; (C2[r′/r]),

• (C1 ‖ C2)[r′/r] = (C1[r′/r]) ‖ (C2[r′/r]),

• (with r̂ when B do C)[r′/r] = with r̂[r′/r] when B do (C[r′/r]),

• (resource r̂ in C)[r′/r] = resource r̂[r′/r] in (C[r′/r]),

• C[r′/r] = C, otherwise,

where r̂[r′/r] = r′, if r̂ = r, and r̂[r′/r] = r̂, otherwise.

2.5 Inference rules

In this section, we write the inference rules for Concurrent Separation Logic, proposed in [4]. We
start by de�ning the speci�cation of programs that will be used in the inference rules.

De�nition 17. Let Γ be a resource context, A ⊆ Var, P,Q ∈ Astn and C ∈ Com. The speci�cation
of a program have the form

Γ `A {P}C{Q}

Moreover we say that the speci�cation of the program is well-formed, if Γ is a well-formed resource
context, FV (P,Q) ⊆ A and FV (C) ⊆ A ∪ PV (Γ).

The set A used in the speci�cation of program above is called the rely-set.
In the rules below, we only use well-formed speci�cations of programs.

(SKIP )

Γ `A {P}skip{P}

(ASSIGNMENT )

x /∈ PV (Γ) FV (e) ⊆ A
Γ `A {P [e/x]}x:=e{P}

(SEQUENCE)

Γ `A1
{P1}C1{P2} Γ `A2

{P2}C2{P3}
Γ `A1∪A2

{P1}C1 ; C2{P3}

(CONDITIONAL)

Γ `A1
{P ∧B}C1{Q} Γ `A2

{P ∧ ¬B}C2{Q}
Γ `A1∪A2

{P}if B then C1 else C2{Q}
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(LOOP )

Γ `A {P ∧B}C{P}
Γ `A {P}while B do C{P ∧ ¬B}

(CONSEQUENCE)

Γ `A {P}C{Q} |= P ′ ⇒ P |= Q⇒ Q′ A ⊆ A′

Γ `A′ {P ′}C{Q′}

(AUXILIARY )

Γ `A∪X {P}C{Q} X ∩ FV (P,Q) = ∅ X ∩ PV (Γ) X is auxiliary for C

Γ `A {P}C \X{Q}

(CONJUNCTION)

Γ `A1 {P1}C{Q1} Γ `A2 {P2}C{Q2}
Γ `A1∪A2

{P1 ∧ P2}C{Q1 ∧Q2}

(LOOKUP )

x /∈ PV (Γ) ∪ FV (e, e')

Γ `A {P [e'/x] ∧ e 7→ e'}x:=[e]{P ∧ e 7→ e'}

(UPDATE)

Γ `A {e 7→ −}[e]:=e'{e 7→ e'}

(ALLOCATION)

x /∈ FV (e1, . . . , en) ∪ PV (Γ)

Γ `A {emp}x:=cons((e1, . . . , en)){x 7→ e1, . . . , en}

(DISPOSAL)

Γ `A {e 7→ −}dispose(e){emp}

(FRAME)

Γ `A {P}C{Q} mod(C) ∩ FV (R) = ∅
Γ `A∪FV (R) {P ∗R}C{Q ∗R}

(PARALLEL)

Γ `A1
{P1}C1{Q1} Γ `A2

{P2}C2{Q2} mod(C1) ∩A2 = mod(C2) ∩A1 = ∅
Γ `A1∪A2

{P1 ∗ P2}C1 ‖ C2{Q1 ∗Q2}

(CRITICAL REGION)

Γ `A∪X {(P ∧B) ∗R}C{Q ∗R}
Γ, r(X) : R `A {P}with r when B do C{Q}
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(LOCAL RESOURCE)

Γ, r(X) : R `A {P}C{Q}
Γ `A∪X {P ∗R}resource r in C{Q ∗R}

(RENAMING)

Γ[r′/r] `A {P}C[r′/r]{Q} r′ /∈ Res(C) r′ /∈ Res(Γ)

Γ `A {P}C{Q}

We remind the reader to the di�erence between the (RENAMING) rule presented above and
the rule presented in [4]. Note that the renaming rule presented here implies the correspondent rule
in [4].

2.6 Examples

In this section, we give some examples of derivable program's speci�cations for the rules presented
before.

We start by the operations of pop and push on a stack. And we show that we can perform, in
parallel, both operations on the same stack.

Example 5.

The operation of pop in a stack has the following speci�cation that rely in one variable,

st(z, y) : stack(z) `{x1} {emp}pop() ; dispose(x1){emp},
where pop() = with st when ¬(z = null) do y:=z ; x1:=y ; z:=[y+1] ; dispose(y+1).

We protect the variable y by the resource st, so we do not need to rely on it. Note that the
speci�cation is well-formed.

Consider the following speci�cation.

`{x1,z,y} {emp ∗ ∃a,b z 7→ a, b ∗ stack(b)}
y:=z;

{emp ∗ ∃a,b y 7→ a, b ∗ stack(b)}
x1:=y;

{emp ∗ ∃a,b x1 7→ a ∗ y+1 7→ b ∗ stack(b))}
{∃b b = b ∧ y + 1 7→ b}
z:=[y+1];

{∃b z = b ∧ y + 1 7→ b}
{emp ∗ ∃a x1 7→ a ∗ y+1 7→ z ∗ stack(z))}
{y + 1 7→ z}
dispose(y+1)

{emp}
{(∃a x1 7→ a) ∗ (stack(z))}

By the (CRITICAL REGION), we have

st(z, y) : stack(z) `{x1} {emp}
pop();

{ ∃a x1 7→ a}
dispose(x1)

{emp}
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The push operator in a stack has the following speci�cation,

st(z, y) : stack(z) `{x2} {emp}push(x2){emp},

where push(x) = with st do y:=cons(x,z) ; z:=y.
As before, we note that the speci�cation is well-formed. And the speci�cation above is obtained,

from the following speci�cation and the (CRITICAL REGION).

`{x2,z,y} {emp ∗ stack(z)}
{emp}
y:=cons(x2,z)

{y 7→ x2, z}
{y 7→ x2, z ∗ stack(z)}
{emp ∗ ∃a,b y 7→ a, b ∗ stack(b)}
z:=y

{emp ∗ ∃a,b z 7→ a, b ∗ stack(b)}
{emp ∗ stack(z)}

Noting that mod(push(x2))∩{x1} = ∅ and mod(pop)∩{x2} = ∅, we can apply the (PARALLEL)
rule and we have the following speci�cation

st(z, y) : stack(z) `{x1,x2} {emp}(pop() ; dispose(x1)) ‖ push(x2){emp}.

The next example shows that we can create a simple binary semaphore for two threads. This
example is inspired in the solutions presented for the critical region problem in [1, Section 3].

In contrast to the solution obtained in [1, Section 3], we obtain a simpler solution for the critical
region problem. The program that we obtain is more simple, because we can use the command
with r when B do C. This example is similar to an example proposed in [7, Section 4].

Example 6.

We have the following speci�cations for the thread p:

se(wantp,wantq) : S `∅ {emp}lockp(){emp},

se(wantp,wantq) : S `∅ {emp}releasep(){emp},

where

• S = wantp + wantq ≤ 1 ∧ (wantp = 0 ∨ wantq = 0) ∧ emp,

• lockp() = with se when wantq = 0 do wantp:=1,

• releasep() = with se do wantp:=0.

Consider the next well-formed speci�cation of programs.

`{wantp,wantq} {(emp ∧ wantq = 0) ∗ S}
{wantq = 0 ∧ emp}
wantp:=1

{wantp = 1 ∧ wantq = 0 ∧ emp}
{emp ∗ S}
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and

`{wantp,wantq} {emp ∗ S}
{0 + wantq ≤ 1 ∧ emp}
wantp:=0

{wantp = 0 ∧ wantp + wantq ≤ 1 ∧ emp}
{emp ∗ S}

Applying the (CRITICAL REGION) we obtain the desired speci�cations. Considering the
analogous programs and derivations for the thread q we obtain:

• se(wantp,wantq) : S `∅ {emp}lockq(){emp}

• se(wantp,wantq) : S `∅ {emp}releaseq(){emp},

where lockq() = with se when wantp = 0 do wantq:=1 and releaseq() = with se do wantq:=0.

Using the (PARALLEL) rule, we obtain the next speci�cation

se(wantp,wantq) : S `∅ {emp}(lockp() ; releasep()) ‖ (lockq() ; releaseq()){emp}

Now, we give an informal reason to explain why the resource, se, and the operations, lock and
release, are a solution to the critical region problem. In particular, we discuss the properties of
mutual exclusion, free from deadlock, and free from starvation. We do not formalize this discussion,
because Concurrent Separation Logic is not suitable for this questions.

Consider the following program

lockp() lockq()
C.R. C.R.

releasep() releaseq()

Note that when the thread p (q) enter the critical region (C.R.), it changes the value of the variable
wantp (wantq, respectively) to 1. The mutual exclusion follows from the invariant wantp+wantq ≤ 1.

The execution of this program is free from deadlock, because the invariant impose that one of the
control variables wantp,wantq have the value 0.

Assuming that the parallel execution is fair, we also have that the program is free from starvation.
Because each thread automatically releases the semaphore after computing the critical region.

In the last example, we view the multiplication of matrices. We illustrate the problem by
multiplying a line from one matrix with a column from the other matrix. Moreover we show that we
can perform the multiplication of two lines with two column in parallel. To compute the multiplication
of two matrix is enough to compute the operation for each line and column in parallel.

Example 7.

Let i1, j1 ∈ N and lini1 , colj1 the resources de�ned in the example 3. Consider the following
derivation.
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`{X,k,Y,k,m,r1,l1,a1,b1} {lini1(X, k) ∗ colj1(Y, k,m)}
r1:=0 ; l1:=0;

{(lini1(X, k) ∗ colj1(Y, k,m)) ∧ r1 = 0 ∧ l1 = 0}

{(lini1(X, k) ∗ colj1(Y, k,m)) ∧ r1 =

l1∑
i=0

ai1,ibi,j1 ∧ l1 ≤ k}

while l1 < k do (

{(lini1(X, k) ∗ colj1(Y, k,m)) ∧ r1 =

l1∑
i=0

ai1,ibi,j1 ∧ l1 ≤ k ∧ l1 < k}

a1:=[X + (i1 − 1)k + l1] ; b1:=[Y + (j1 − 1) + kl1];

{(lini1(X, k) ∗ colj1(Y, k,m)) ∧ r1 + a1b1 =

l1+1∑
i=0

ai1,ibi,j1 ∧ l1 ≤ k ∧ l1 < k}

r1:=r1 + a1b1;

{(lini1(X, k) ∗ colj1(Y, k,m)) ∧ r1 =

l1+1∑
i=0

ai1,ibi,j1 ∧ l1 ≤ k ∧ l1 < k}

l1:=l1 + 1

{(lini1(X, k) ∗ colj1(Y, k,m)) ∧ r1 =

l1∑
i=0

ai1,ibi,j1 ∧ l1 − 1 ≤ k ∧ l1 − 1 < k}

{(lini1(X, k) ∗ colj1(Y, k,m)) ∧ r1 =

l1∑
i=0

ai1,ibi,j1 ∧ l1 ≤ k}

)

{(lini1(X, k) ∗ colj1(Y, k,m)) ∧ r1 =

l1∑
i=0

ai1,ibi,j1 ∧ l1 ≤ k ∧ l1 ≥ k}

{(lini1(X, k) ∗ colj1(Y, k,m)) ∧ r1 =

k∑
i=0

ai1,ibi,j1}

Denoting by multii1,j1 the program

r1:=0 ; l1:=0 ; while l1 < k do ( a1:=[X + (i1 − 1)k + l];
b1:=[Y + (j1 − 1) + kl];
r1:=r1 + a1b1;
l1:=l1 + 1

)

And applying the critical region rule, we have the speci�cation above

lini1(X, k), colj1(Y, k,m) `A1
{emp}with lini1 do with colj1 do multii1,j1{r1 =

k∑
i=0

ai1,ibi,j1 ∧ emp},

where A1 = {k, r1, l1, a1, b1}.
On the same way, we obtain the following speci�cation

lini2(X, k), colj2(Y, k,m) `A2
{emp}with lini2 do with colj2 do multii2,j2{r2 =

k∑
i=0

ai2,ibi,j2 ∧ emp},

where A2 = {k, r2, l2, a2, b2}.
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Note that mod(multii1,j1) = {r1, l1, a1, b1} and mod(multii2,j2) = {r2, l2, a2, b2}.
Then A1 ∩ mod(multii2,j2) = ∅, A2 ∩ mod(multii1,j1) = ∅ and by the (PARALLEL) rule, we

conclude that

lini1(X, k), colj1(Y, k,m), lini2(X, k), colj2(Y, k,m) `A1∪A2 {emp}

with lini1 do with colj1 do multii1,j1‖with lini2 do with colj2 do multii2,j2

{r1 =

k∑
i=0

ai1,ibi,j1 ∧ r2 =

k∑
i=0

ai2,ibi,j2 ∧ emp}.

We �nish this analyze by noting that we can use the (LOCAL RESOURCE) rule and obtain
the next speci�cation

`{X,Y,n,m,k,r1,l1,a1,b1,r2,l2,a2,b2} {mat(X,n, k) ∗mat(Y, k,m)}

resource lini1 in resource lini2 in resource colj1 in resource colj2 in

with lini1 do with colj1 do multii1,j1‖with lini2 do with colj2 do multii2,j2

{mat(X,n, k) ∗mat(Y, k,m) ∧ r1 =

k∑
i=0

ai1,ibi,j1 ∧ r2 =

k∑
i=0

ai2,ibi,j2}.

3 Operational Semantics

Now, the operational semantics is introduced. The soundness of Concurrent Separation Logic will be
proved using this operational semantics.

The evaluation of expressions, Boolean expressions and assertions are recapped, as it is done
in [17, 13, 14]. Next, the language of programs is augmented with a command that expresses the
execution of the critical region with the resource acquired. This extension follows the propose done
by Vafeiadis [15].

The resource con�guration, expressing the ownership of resources, is added to the usual de�nition
of program's state. Then the transitions of programs and the notion of validity are presented. In the
following, some results about the transitions of programs are proved, e.g. safety monotonicity, frame
property, and the behave of resource con�gurations along an execution is speci�ed.

3.1 Expressions and Boolean Expressions evaluation

We represent the value assignment to each variable by the function s : Var→ Val, which it is denoted
by storage. The set of all storages is denoted by S.

We write s[x1 : v1 | x2 : v2 | . . . | xn : vn] to represent the modi�ed storage such that s[x1 : v1 | x2 :
v2 | . . . | xn : vn](y) = s(y), if y /∈ {x1, x2, . . . , xn} and s[x1 : v1 | x2 : v2 | . . . | xn : vn](xi) = vi,
where i = 1, 2, . . . , n.

Next, we de�ne how the expressions and boolean expressions are evaluated.

De�nition 18. Let s ∈ S and e ∈ Exp. Inductively, the evaluation of e is de�ned by:

• [[x]]s = s(x),

• [[n]]s = n,

• [[e1 + e2]]s = [[e1]]s + [[e2]]s,

• [[e1 − e2]]s = [[e1]]s − [[e2]]s,

• [[e1 × e2]]s = [[e1]]s × [[e2]]s.

De�nition 19. Let s ∈ S and B ∈ Bool. Inductively, the evaluation of B is de�ned by:
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• [[true]]s = true,

• [[false]]s = false,

• if [[e1]]s = [[e2]]s, then [[e1 = e2]]s = true, else [[e1 = e2]]s = false,

• if [[e1]]s < [[e2]]s, then [[e1 < e2]]s = true, else [[e1 < e2]]s = false,

• [[B1 ∧B2]]s = [[B2]]s ∧ [[B1]]s,

• [[B1 ∨B2]]s = [[B1]]s ∨ [[B2]]s,

• [[¬B]]s = ¬[[B]]s.

Usually, we write s(e) for [[e]]s and s(B) for [[B]]s.
Next, we see that the evaluation of expressions or Boolean expressions only depends on their free

variables.

Proposition 1. Let e ∈ Exp, B ∈ Bool and s, s′ ∈ S.

• If s(x) = s′(x), for every x ∈ FV (e), then s(e) = s′(e),

• If s(x) = s′(x), for every x ∈ FV (B), then s(B) = s′(B).

Proof. First, we prove by induction on the structure of the expressions.
Let s, s′ ∈ S and e ∈ Exp such that s(x) = s′(x), for every x ∈ FV (e).
Suppose that e = x. Then x ∈ FV (e) and

s(e) = s(x) = s′(x) = s′(e).

Suppose that e = n, n ∈ Val. Then

s(e) = n = s′(e).

Suppose that e = e1 + e2. Then FV (e) = FV (e1) ∪ FV (e2).
By induction hypothesis, we know that s(e1) = s′(e1) and s(e2) = s′(e2). Hence

s(e) = s(e1) + s(e2) = s′(e1) + s′(e2) = s′(e).

The cases e1 − e2 and e1 × e2 are similar to the previous case. The proof for the expressions is
complete.

Next, we prove by induction on the structure of the Boolean expressions.
Let s, s′ ∈ S and B ∈ Bool such that s(x) = s′(x), for every x ∈ FV (B).
Suppose that B = true or B = false. Then

s(B) = s′(B).

Suppose that B = (e1 = e2). Then FV (B) = FV (e1) ∪ FV (e2).
Using the proposition for the expressions, we know that

s(e1) = s′(e1) s(e2) = s′(e2).

Note that s(e1) = s(e2) if and only if s′(e1) = s′(e2). Therefore

s(B) = s′(B).

The case B = (e1 ≤ e2) is similar to the previous one.
Suppose that B = B1 ∧B2. Then FV (B) = FV (B1) ∪ FV (B2).
By induction hypothesis, we know that

s(B1) = s′(B1) s(B2) = s′(B2).

Therefore
s(B) = s(B1) ∧ s(B2) = s′(B1) ∧ s′(B2) = s′(B).

The cases B1 ∨B2 and B = ¬B′ are proved in the same way.
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3.2 Assertions evaluation

The set of locations is denoted by Loc. And each location correspond to a natural number, i.e.
Loc ⊆ N.

The partial function h : Loc→ Val is used to represent the memory, which it is denoted by heap.
We represent the set of heaps by H.

Next, we de�ne some operations over the set of heaps.

De�nition 20. Let h, h1, h2 ∈ H.

• If dom(h1) ∩ dom(h2) = ∅, we say that h1 and h2 are disjoints heaps and we write that h1⊥h2

.

• We say that h1 is a sub-heap of h2 and we write that h1 ⊆ h2, if dom(h1) ⊆ dom(h2) and
h1(x) = h2(x), for every x ∈ dom(h1).

• If h1⊥h2, we denote by h1 ] h2 the unique heap such that dom(h1 ] h2) = dom(h1) ∪ dom(h2)
and h1 ] h2(x) = hi(x), for x ∈ dom(hi) and i = 1, 2.

• If h2 ⊆ h1, we write h1 \ h2 to represent the unique heap such that dom(h1 \ h2) = dom(h1) \
dom(h2) and h1 \ h2(x) = h1(x), for x ∈ dom(h1) \ dom(h2).

• If A ⊆ dom(h), we write h \ A to denote the unique heap obtained by restrict the domain of h
by dom(h) \A.

As before, we use the notation h[l1 : v1 | l2 : v2 | . . . | ln : vn] to represent a extension or
modi�cation on the heap.

In the following de�nition, we see how the assertions are evaluated.

De�nition 21. Let s ∈ S, h ∈ H and P ∈ Astn. Inductively, we de�ne the relation s, h |= P as
follows:

• s, h |= B, if s(B) = true,

• s, h |= ¬P , if s, h 6|= P ,

• s, h |= P1 ∧ P2, if s, h |= P1 and s, h |= P2,

• s, h |= P1 ∨ P2, if s, h |= P1 or s, h |= P2,

• s, h |= P1 ⇒ P2, if s, h 6|= P1 or s, h |= P2,

• s, h |= ∀xP , if for every v ∈ Val, s[x : v], h |= P ,

• s, h |= ∃xP , if there exists v ∈ Val such that s[x : v], h |= P ,

• s, h |= emp, if dom(h) = ∅,

• s, h |= e 7→ e′, if dom(h) = {s(e)} and h(s(e)) = s(e′),

• s, h |= P1 ∗ P2, if there exist h1, h2 such that h = h1 ] h2, s, h1 |= P1 and s, h2 |= P2,

• s, h |= P1 −∗P2, if for every h
′ such that h⊥h′ and s, h′ |= P1 we have that s, h ] h′ |= P2.

We say that is P is valid and we write |= P , if for every s ∈ S and h ∈ H we have that s, h |= P .

For a given heap and storage, the precise assertions uniquely determine the subheap that verify
it. This notion is formalized in the next de�nition.

De�nition 22. Let P ∈ Astn. We say that P is precise if for every h ∈ H and s ∈ S, there is at
maximum one sub heap h′ ⊆ h such that s, h′ |= P .
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In the proposition below, we stated that the evaluation of assertions only depends in their free
variables.

Proposition 2. Let P ∈ Astn, s, s′ ∈ S and h ∈ H. If s(x) = s′(x), for every x ∈ FV (P ), then

s, h |= P i� s′, h |= P.

Proof. The prove is done by induction on the structure of the assertions.
Let s, s′ ∈ S, h ∈ H and P ∈ Astn such that s(x) = s′(x), for every x ∈ FV (P ).
Suppose that P = B. Then FV (P ) = FV (B). By the proposition 1, we know that

s(B) = s′(B).

If s, h |= P , we have that s(B) = true. Hence s′, h |= P . The converse is analogous.
Suppose that P = ¬P ′. Then FV (P ) = FV (P ′).
By induction hypothesis, we know that

s, h |= P ′ i� s′, h |= P ′.

Then
s, h |= ¬P ′ i� s, h 6|= P ′ i� s′, h 6|= P ′ i� s′, h |= ¬P ′

Suppose that P = P1 ∧ P2. Then FV (P ) = FV (P1) ∪ FV (P2).
By induction hypothesis, we know, for i = 1, 2, that

s, h |= Pi i� s′, h |= Pi.

Then

s, h |= P1 ∧ P2 i� s, h |= P1 ∧ s, h |= P2 i� s′, h |= P1 ∧ s′, h |= P2 i� s′, h |= P1 ∧ P2

The cases P1 ∨ P2 and P1 ⇒ P2 are similar to the previous case.
Suppose that P = ∀xP ′. Then FV (P ) = FV (P ′) \ {x}.
By the de�nition

s, h |= P i� s[x : v], h |= P ′,

for every v ∈ Val.
Note that s[x : v](y) = s′[x : v](y), for every y ∈ FV (P ′). Then, by the induction hypothesis

s[x : v], h |= P ′ i� s′[x : v], h |= P ′,

for every v ∈ Val. Therefore
s, h |= P i� s′, h |= P,

The case ∃xP is identical to the previous case.
Suppose that P = emp. Then

s, h |= emp i� dom(h) = ∅ i� s′, h |= emp.

Suppose that P = e 7→ e′. Then FV (P ) = FV (e, e′).
If s, h |= e 7→ e′, then dom(h) = {s(e)} and h(s(e)) = s(e′). By proposition 1, we know that

s(e) = s′(e) s(e′) = s′(e′)

Hence dom(h) = {s′(e)} and h(s′(e)) = s′(e′). Therefore

s′, h |= e 7→ e′.

The other direction is similar.
Suppose that P = P1 ∗ P2. Then FV (P ) = FV (P1) ∪ FV (P2).
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If s, h |= P1 ∗ P2, then there are h1, h2 such that h = h1 ] h2 and

s, h1 |= P1 s, h2 |= P2.

By induction hypothesis, we have that s, hi |= Pi if and only if s′, hi |= Pi, for i = 1, 2. Then

s′, h |= P1 ∗ P2.

Analogous, if s′, h |= P1 ∗ P2, then s, h |= P1 ∗ P2.
Suppose that P = P1 −∗P2. Then FV (P ) = FV (P1) ∪ FV (P2).
If s, h |= P1 −∗P2, then for every h′⊥h such that s, h′ |= P1, we have that s, h ] h′ |= P2.
By induction hypothesis, we have that

s, h′ |= P1 i� s′, h′ |= P1

and
s, h ] h′ |= P2 i� s′, h ] h′ |= P2.

Then for every h′⊥h such that s′, h′ |= P1, we have that s, h
′ |= P1 and s, h] h′ |= P2. Hence, by

induction hypothesis s′, h ] h′ |= P2

Therefore
s′, h |= P1 −∗P2.

The other direction is similar.

The next proposition is proved in [14, Proposition 3].

Proposition 3. Let P ∈ Astn, x1, x2, . . . , xn ∈ Var, v1, v2, . . . , vn ∈ Exp and s ∈ S. Then, for
every h ∈ H

s, h |= P [v1/x1, v2/x2, . . . , vn/xn] i� s[x1 : s(v1) | x2 : s(v2) | . . . | xn : s(vn)], h |= P.

3.3 Extended Programming Language

We extend the set of commands with the command within r do C, following the propose done in [15].
Intuitively, this command represents the execution of C with the resource r acquired. The set of
extended commands is denoted by C.

We extend the de�nitions given before for commands in the following way:

• FV (within r do C) = FV (C);

• mod(within r do C) = mod(C);

• Res(within r do C) = Res(C) ∪ {r};

• (within r do C)\X = within r do (C\X), whereX is a set of auxiliary variables for within r do C;

• (within r̂ do C)[r′/r] = within r̂[r′/r] do (C[r′/r]), where r′ /∈ Res(within r do C).

For every command in the extended language, we can associate a set of locked resources. This set
is formed by the resources that have been acquired during the execution, and did not release yet.

De�nition 23. Let C ∈ C. The set of resources locked by C is denoted by Locked(C) and it is
inductively de�ned by:

• Locked(C1 ; C2) = Locked(C1),

• Locked(C1 ‖ C2) = Locked(C1) ∪ Locked(C2),

• Locked(within r do C) = Locked(C) ∪ {r},

• Locked(resource r in C) = Locked(C) \ {r},

• Locked(C) = ∅, otherwise.
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3.4 Transitions of Programs

To express the ownership of resources, we introduce the resource con�gurations, that will be part of
the state of a program.

Let O,L,D ⊆ Res. We say that ρ = (O,L,D) is a resource con�guration if O, L and D are
disjoint pairwise. We represent the set of all resource con�gurations by O.

In the resource con�guration the set O represents the resources owned by the program, the set L
represents the resources locked by the environment and the set D represents the resources available.

We �x the following notation for resource con�gurations.

De�nition 24. Let ρ = (O,L,D), ρ′ ∈ O and r ∈ Res.

• If r ∈ O ∪ L ∪D, we write that r ∈ ρ, else r /∈ ρ.

• If ρ′ = (O′, L′, D′) and O′ = O \ {r}, L′ = L \ {r} and D′ = D \ {r}, then we write that
ρ′ = ρ \ {r}.

Except when remarked, we will represent the set of resources in a resource con�guration with the
same superscript, e.g. ρ′ = (O′, L′, D′).

The state of a program is given by (s, h, ρ), where s ∈ S, h ∈ H and ρ ∈ O, or by the abort state,
abort.

The transitions in the operational semantic are represented by →p, where →p⊆ (C × S × H ×
O)× ((C × S ×H×O) ∪ {abort}). This relation is de�ned by the following rules:

s(e) = v

x:=e, (s, h, ρ)→p skip, (s[x : v], h, ρ)
(ASSIGN)

s(B) = true

if B then C1 else C2, (s, h, ρ)→p C1, (s, h, ρ)
(IF1)

s(B) = false

if B then C1 else C2, (s, h, ρ)→p C2, (s, h, ρ)
(IF2)

skip;C2, (s, h, ρ)→p C2, (s, h, ρ)
(SEQ1)

C1, (s, h, ρ)→p C
′
1, (s

′, h′, ρ′)

C1 ; C2, (s, h, ρ)→p C
′
1 ; C2, (s

′, h′, ρ′)
(SEQ2)

while B do C, (s, h, ρ)→p if B then C ; while B do C else skip, (s, h, ρ)
(LOOP )

s(e) ∈ dom(h) h(s(e)) = v

x:=[e], (s, h, ρ)→p skip, (s[x : v], h, ρ)
(READ)

s(e) = l ∈ dom(h) s(e') = v

[e]:=e', (s, h, ρ)→p skip, (s, h[l : v], ρ)
(WRI)

s(e) = l ∈ dom(h)

dispose(e), (s, h, ρ)→p skip, (s, h \ {l}, ρ)
(FREE)

l /∈ dom(h) s(e) = v

x:=cons(e), (s, h, ρ)→p skip, (s[x : l], h[l : v], ρ)
(ALL)

C1, (s, h, ρ)→p C
′
1, (s

′, h′, ρ′)

C1 ‖ C2, (s, h, ρ)→p C
′
1 ‖ C2, (s

′, h′, ρ′)
(PAR1)

C2, (s, h, ρ)→p C
′
2, (s

′, h′, ρ′)

C1 ‖ C2, (s, h, ρ)→p C1 ‖ C ′2, (s′, h′, ρ′)
(PAR2)

skip‖skip, (s, h, ρ)→p skip, (s, h, ρ)
(PAR3)

r /∈ ρ
resource r in skip, (s, h, ρ)→p skip, (s, h, ρ)

(RES0)

r /∈ ρ = (O,L,D) r ∈ Locked(C) C, (s, h, (O ∪ {r}, L,D))→p C
′, (s′, h′, ρ′)

resource r in C, (s, h, ρ)→p resource r in C ′, (s′, h′, ρ′ \ {r})
(RES1)
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r /∈ ρ = (O,L,D) r /∈ Locked(C) C, (s, h, (O,L,D ∪ {r}))→p C
′, (s′, h′, ρ′)

resource r in C, (s, h, ρ)→p resource r in C ′, (s′, h′, ρ′ \ {r})
(RES2)

ρ = (O,L,D ∪ {r}) ρ′ = (O ∪ {r}, L,D) s(B) = true

with r when B do C, (s, h, ρ)→p within r do C, (s, h, ρ′)
(WITH0)

r ∈ O C, (s, h, (O \ {r}, L,D))→p C
′, (s′, h′, (O′, L′, D′))

within r do C, (s, h, (O,L,D))→p within r do C ′, (s′, h′, (O′ ∪ {r}, L′, D′)
(WITH1)

ρ = (O ∪ {r}, L,D) ρ′ = (O,L,D ∪ {r})
within r do skip, (s, h, ρ)→p skip, (s, h, ρ′)

(WITH2)

We use a simple version of the allocation command, because the allocation of multiple spaces do
not add any di�cult to our study.

In addition to the transition presented above, there is some execution that abort. Next, we de�ne
the transitions to the abort state.

C1, (s, h, ρ)→p abort

C1 ; C2, (s, h, ρ)→p abort
(SEQA)

s(e) /∈ dom(h)

dispose(e), (s, h, ρ)→p abort
(FREEA)

s(e) /∈ dom(h)

x:=[e], (s, h, ρ)→p abort
(READA)

s(e) /∈ dom(h)

[e]:=e', (s, h, ρ)→p abort
(WRIA)

C1, (s, h, ρ)→p abort

C1 ‖ C2, (s, h, ρ)→p abort
(PAR1A)

C2, (s, h, ρ)→p abort

C1 ‖ C2, (s, h, ρ)→p abort
(PAR2A)

r ∈ Locked(C) C, (s, h, (O ∪ {r}, L,D))→p abort

resource r in C, (s, h, (O,L,D))→p abort
(RESA1)

r /∈ Locked(C) C, (s, h, (O,L,D ∪ {r}))→p abort

resource r in C, (s, h, (O,L,D))→p abort
(RESA2)

r ∈ ρ
resource r in C, (s, h, ρ)→p abort

(RESA)
r /∈ ρ

with r when B do C, (s, h, ρ)→p abort
(WITHA)

C, (s, h, ρ \ {r})→p abort

within r do C, (s, h, ρ)→p abort
(WITHA1)

r /∈ O
within r do C, (s, h, (O,L,D))→p abort

(WITHA2)

First, we see that all transitions respect the resource con�guration, i.e. the set of resources
obtained after a transition are disjoint pairwise. Moreover, we see that every transition of program
do not add or delete resource from the resource context, and the resources locked by the environment
are not altered.

Proposition 4. Let C,C ′ ∈ C, s, s′ ∈ S, h, h′ ∈ H, O,O′, L, L′, D,D′ ⊆ Res. If (O,L,D) ∈ O and

C, (s, h, (O,L,D))→p C
′, (s′, h′, (O′, L′, D′)),

then (O′, L′, D′) ∈ O, L = L′ and O ∪D = O′ ∪D′.

Proof. Let C,C ′ ∈ C, s, s′ ∈ S, h, h′ ∈ H, O,O′, L, L′, D,D′ ⊆ Res such that (O,L,D) ∈ O and

C, (s, h, (O,L,D))→p C
′, (s′, h′, (O′, L′, D′)).

We prove by induction on the rules of →p.
The rules (ASSIGN), (IF1), (IF2), (SEQ1), (LOOP ), (READ), (WRI), (ALL), (FREE),

(PAR3), (RES0) do not change the resource con�guration. Therefore the conclusion is immediate.
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If the transition is given by (SEQ2). We have C = C1 ; C2 and C ′ = C ′1 ; C2 such that

C1, (s, h, (O,L,D))→p C
′
1, (s

′, h′, (O′, L′, D′)).

By induction hypothesis, (O′, L′, D′) ∈ O, L = L′ and O ∪D = O′ ∪D′.
The rules (PAR1) and (PAR2) are analogous to the previous rule.

If the transition is given by (RES1). We have C = resource r in C̃, C ′ = resource r in C̃ ′, r /∈
(O,L,D) and r ∈ Locked(C̃) such that

C̃, (s, h, (O ∪ {r}, L,D))→p C̃ ′, (s
′, h′, (O′′, L′′, D′′)),

where (O′′, L′′, D′′) \ {r} = (O′, L′, D′).
By induction hypothesis L = L′′, (O′′, L′′, D′′) ∈ O and O ∪ {r} ∪D = O′′ ∪D′′.
From r /∈ L, it follows that r /∈ L′′. Hence L = L′.
Because r /∈ (O,L,D), we know that

O′ ∪D′ = (O′′ ∪D′′) \ {r} = (O ∪ {r} ∪D) \ {r} = O ∪D.

We still need to check that (O′, L′, D′) ∈ O. We know that O′ = O′′ \ {r} and D′ = D′′ \ {r}.
Then

O′ ∩D′ = (O′′ \ {r}) ∩ (D′′ \ {r}) ⊆ O′′ ∩D′′ = ∅,
O′ ∩ L′ = (O′′ \ {r}) ∩ L′′ ⊆ O′′ ∩ L′′ = ∅,
D′ ∩ L′ = (D′′ \ {r}) ∩ L′′ ⊆ D′′ ∩ L′′ = ∅.

Hence (O′, L′, D′) ∈ O.
The rule (RES2) is analogous to the previous rule.

If the transition is given by (WITH0). We have D′ = D \ {r}, O′ = O ∪ {r}, L = L′ and r ∈ D.
Then

O′ ∩D′ = (O ∪ {r}) ∩ (D \ {r}) = (O ∩ (D \ {r})) ⊆ O ∩D = ∅,
O′ ∩ L′ = (O ∪ {r}) ∩ L = (O ∩ L) ∪ ({r} ∩ L) = {r} ∩ L = ∅

L′ ∩D′ = L ∩ (D \ {r}) ⊆ L ∩D = ∅.
Therefore (O′, L′, D′) ∈ O. Moreover, L = L′ and O′ ∪D′ = (O ∪ {r}) ∪ (D \ {r}) = O ∪D.

If the transition is given by (WITH1). We have C = within r do C̃, C ′ = within r do C̃ ′ and
r ∈ O such that

C̃, (s, h, (O \ {r}, L,D))→p C̃ ′, (s
′, h′, (O′′, L′′, D′′)),

where O′ = O′′ ∪ {r}, L′′ = L′, D′′ = D′.
By induction hypothesis, we know that (O′′, L′′, D′′) ∈ O, L = L′′ and (O \ {r}) ∪D = O′′ ∪D′′.
Therefore L = L′ and

O ∪D = {r} ∪O′′ ∪D′′ = O′ ∪D′.
It remains to check that (O′, L′, D′) ∈ O, this follows from the next

O′ ∩ L′ = (O′′ ∪ {r}) ∩ L′′ = (O′′ ∩ L′′) ∪ ({r} ∩ L) = ∅,

O′ ∩D′ = (O′′ ∪ {r}) ∩D′′ = (O′′ ∩D′′) ∪ ({r} ∩D′′) = ∅,
L′ ∩D′ = L′′ ∩D′′ = ∅.

If the transition is given by (WITH2). We have r ∈ O, L = L′, D′ = D ∪ {r} and O′ = O \ {r}.
Consider the following

O′ ∩ L′ ⊆ O ∩ L = ∅,
O′ ∩D′ = (O \ {r}) ∩ (D ∪ {r}) ⊆ (O ∩D) ∪ ((O \ {r}) ∩ {r}) = ∅,

L′ ∩D′ = L ∩ (D ∪ {r}) = (L ∩D) ∪ (L ∩ {r}) = ∅.
Then (O′, L′, D′) ∈ O. We also see that L = L′ and

O′ ∪D′ = (O \ {r}) ∪ (D ∪ {r}) = O ∪D.
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3.5 Validity

Now, we de�ne the validity of a program's speci�cation in the operational semantic.
For k ∈ N0. We denote by →k

p the composition of k transitions.

De�nition 25. We write Γ |= {P}C{Q}, if for every state s ∈ S and h ∈ H such that s, h |=
P ∗ inv(Γ), we have that

• C, (s, h, (∅, ∅, res(Γ)) 6→k
p abort, for every k ≥ 0. And

• If there exist s′, h′ and k ≥ 0 such that

C, (s, h, (∅, ∅, res(Γ)))→k
p skip, (s′, h′, (∅, ∅, res(Γ))),

then s′, h′ |= Q ∗ inv(Γ).

Next, we present some examples of speci�cation valid in the operational semantics.

Example 8. The following speci�cations of programs are valid

• r(x, y) : x = y ∧ emp |= {emp}x:=x+1 ‖ y:=y+1 {emp}

• |= {x = 0}x:=x+1 ‖ x:=x+1{x = 2}

• buf(z, full) : R |= {emp}(x:=cons(-) ; PUT (x)) ‖ (GET (y) ; dispose(y)){emp},
where R = (full = 1∧z 7→ −)∨(full = 0∧emp), PUT (x) = with buf when full = 0 do z:=x ; full:=1
and GET (y) = with buf when full = 1 do y:=z ; full:=0.

Note that, the �rst two examples are not derivable in Concurrent Separation Logic, at least
without the use of additional resources and auxiliary variables. And the last speci�cation is proved
in the [4] for Concurrent Separation Logic, so this example will be a consequence of the soundness
prove.

Next, we see that the transitions of commands only depends on their free variables and do not
change other variables.

Proposition 5. Let C ∈ C, X ⊆ Var, s, s′ ∈ S, h ∈ H and ρ ∈ O such that FV (C) ⊆ X.

• If s(x) = s′(x), for every x ∈ FV (C), and C, (s, h, ρ)→p abort, then

C, (s′, h, ρ)→p abort.

• If s(x) = s′(x), for every x ∈ X, and C, (s, h, ρ) →p C
′, (s1, h

′, ρ′), then there exists s′1 ∈ S
such that s1(x) = s′1(x), for every x ∈ X, and

C, (s′, h, ρ)→p C
′, (s′1, h

′, ρ′).

Proof. The prove is done by induction on the rule of the transitions. First, the transition to the abort
state.

Let s, s′ ∈ S, h ∈ H, ρ ∈ O and C ∈ C such that s(x) = s′(x), for every x ∈ FV (C), and

C, (s, h, ρ)→p abort.

Suppose that the transition is given by (FREEA). Then C = dispose(e), FV (C) = FV (e) and

s(e) /∈ dom(h).

Because s(x) = s′(x), for every x ∈ FV (e), we have by proposition 1 that

s(e) = s′(e).
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Therefore s′(e) /∈ dom(h) and

C, (s′, h, ρ)→p abort.

The transitions (READA) and (WRIA) are similar to the previous case.

Suppose that the transition is given by (SEQA). Then C = C1 ; C2, FV (C) = FV (C1)∪FV (C2)
and

C1, (s, h, ρ)→p abort.

By induction hypothesis, we know that C1, (s
′, h, ρ)→p abort. Therefore

C, (s′, h, ρ)→p abort.

The cases (PAR1A), (PAR2A), ((RESA1)), (RESA2) and (WITHA1) are identical.

The transitions (RESA), (WITHA) and (WITHA2) are independent from the storage and the
conclusion is trivial

Next, we prove the second part of the proposition.

Let X ⊆ Var, s, s1, s
′ ∈ S, h, h′ ∈ H, ρ, ρ′ ∈ O and C,C ′ ∈ C such that FV (C) ⊆ X, s(x) = s′(x),

for every x ∈ X, and

C, (s, h, ρ)→p C
′, (s1, h

′, ρ′).

We'll show that there exists s′1 such that s1(x) = s′1(x), for every x ∈ X, and

C, (s′, h, ρ)→p C
′, (s′1, h

′, ρ′).

The transitions given by the rules (SEQ1), (LOOP ), (PAR3), (RES0) and (WITH2) are
independent from the storage and do not change it. Therefore, taking s′1 = s1, the conclusion is
immediate.

Suppose that the transition is given by (ASSIGN). Then C = x:=e, C ′ = skip, s1 = s[x : v],
h′ = h and ρ′ = ρ, where v = s(e). And FV (C) = {x} ∪ FV (e).

From the proposition 1, we know that s′(e) = s(e) = v. Taking s′1 = s′[x : v], we have that

C, (s′, h, ρ)→p C
′, (s′1, h

′, ρ′).

Moreover, for every y ∈ X, we have the following

s′1(y) = s′[x : v](y) = s[x : v](y) = s1(y).

The cases (IF1), (IF2), (READ), (WRI), (ALL), (FREE) and (WITH0) are analogous to the
previous case.

Suppose that the transition is given by (SEQ2). Then C = C1 ; C2, C
′ = C ′1 ; C2 and

C1, (s, h, ρ)→p C
′
1, (s1, h

′, ρ′).

Because FV (C1) ⊆ FV (C), we can apply the induction hypothesis and conclude that there is s′1
such that s′1(x) = s1(x), for every x ∈ X and

C1, (s
′, h, ρ)→p C

′
1, (s

′
1, h
′, ρ′).

Applying the (SEQ2) rule, we conclude that

C, (s′, h, ρ)→p C
′, (s′1, h

′, ρ′).

The cases (RES1), (RES2), (WITH1), (PAR1) and (PAR2) are analogous to the previous
case.
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3.6 Safety monotonicity and Frame Property

Next, we prove the safety monotonicity and the frame property for the operational semantic presented
here. In the work of Separation Logic, this results were introduced to prove the soundness of the
frame rule.

Proposition 6. Let C ∈ C, s ∈ S, h, hF ∈ H and ρ ∈ O such that h⊥hF . If C, (s, h, ρ) 6→p abort
then

C, (s, h ] hF , ρ) 6→p abort.

Proof. Let C ∈ C, s ∈ S, h, hF ∈ H and ρ ∈ O such that h⊥hF and

C, (s, h ] hF , ρ)→p abort.

We'll prove the proposition by induction on the relation, →p.
Suppose that the transition to the abort state is given by (RESA), (WITHA) or (WITHA2).

Then the transitions does not depended on the heap and we have that

C, (s, h, ρ)→p abort.

Suppose that is given by (FREEA), (READA) or (WRIA). Then s(e) /∈ dom(h ] hF ).
It follows that s(e) /∈ dom(h) and

C, (s, h, ρ)→p abort.

Suppose that is given by (SEQA) or (PAR1A). Then C = C1 ; C2 or C = C1 ‖ C2 and

C1, (s, h ] hF , ρ)→p abort.

By induction, we know that C1, (s, h, ρ)→p abort. Hence

C, (s, h, ρ)→p abort.

The remaining cases (PAR2A), (RESA1), (RESA2) and (WITHA1) are similar to the previous
case.

The frame property is stated in the following proposition.

Proposition 7. Let C,C ′ ∈ C, s, s′ ∈ S, h, h′, hF ∈ H and ρ, ρ′ ∈ O such that h⊥hF .
If C, (s, h, ρ′) 6→p abort and C, (s, h ] hF , ρ)→p C

′, (s′, h′, ρ′), then hF ⊆ h′ and

C, (s, h, ρ)→p C
′, (s′, h′ \ hF , ρ′).

Proof. Let C,C ′ ∈ C, s, s′ ∈ S, h, h′, hF ∈ H and ρ, ρ′ ∈ O such that h⊥hF , C, (s, h, ρ′) 6→p abort
and

C, (s, h ] hF , ρ)→p C
′, (s′, h′, ρ′).

We prove the proposition by induction on the rules of →p. Next, we consider the di�erent
transition rules.

Suppose that the transition is given by (ASSIGN).
We have C = x:=e, C ′ = skip, s(e) = v, s′ = s[x : v], h′ = h ] hF and ρ′ = ρ.
Then hF ⊆ h′ and h′ \ hF = h.
Using the (ASSIGN) rule, we get that

C, (s, h, ρ)→p C
′, (s′, h′ \ hF , ρ′).

Suppose that the transition is given by (IF1).
We have C = if B then C1 else C2, C

′ = C1, s(B) = true, s′ = s, h′ = h ] hF and ρ′ = ρ.
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Then hF ⊆ h′ and h′ \ hF = h.
The rule (IF1) gives that

C, (s, h, ρ)→p C
′, (s′, h′ \ hF , ρ′).

The case (IF2) is analogous to the previous case.

Suppose that the transition is given by (SEQ1).
We have C = skip ; C2, C

′ = C2, s
′ = s, h′ = h ] hF and ρ′ = ρ.

Then hF ⊆ h′ and h′ \ hF = h.
By (SEQ1), we get that

C, (s, h, ρ)→p C
′, (s′, h′ \ hF , ρ′).

Suppose that the transition is given by (SEQ2).
We have C = C1 ; C2 and C ′ = C ′1 ; C2 such that

C1, (s, h ] hF , ρ)→p C
′
1, (s

′, h′, ρ′).

If C1, (s, h, ρ)→ abort, then C, (s, h, ρ)→ abort. Hence

C1, (s, h, ρ) 6→ abort.

From the induction hypothesis, we conclude that hF ⊆ h′ and

C1, (s, h, ρ)→p C
′
1, (s

′, h′ \ hF , ρ′).

Therefore
C, (s, h, ρ)→p C

′, (s′, h′ \ hF , ρ′).

Suppose that the transition is given by (READ).
We have C = x:=[e], C ′ = skip, s(e) ∈ dom(h ] hF ), (h ] hF )(s(e)) = v, s′ = s[x : v], h′ = h ] hF

and ρ′ = ρ.
Then hF ⊆ h′ and h′ \ hF = h.
If s(e) /∈ dom(h), then C, (s, h, ρ)→ abort. Hence

s(e) ∈ dom(h).

From the previous fact and (h ] hF )(s(e)) = v, we know that h(s(e)) = v. Applying the rule
(READ), we conclude that

C, (s, h, ρ)→p C
′, (s′, h′ \ hF , ρ′).

Suppose that the transition is given by (WRI).
We have C = [e]:=e', C ′ = skip, s(e) = l ∈ dom(h] hF ), s(e') = v, s′ = s, h′ = (h] hF )[l : v] and

ρ′ = ρ.
As before, we know that s(e) ∈ dom(h). Hence, we rewrite the heap in the following expression

h′ = h[l : v] ] hF .

Then hF ⊆ h′ and h′ \ hF = h[l : v].
From s(e) = l ∈ dom(h), s(e') = v and the rule (WRI), we conclude that

C, (s, h, ρ)→p C
′, (s′, h′ \ hF , ρ′).

Suppose that the transition is given by (FREE).
We have C = dispose(e), C ′ = skip, s(e) = l ∈ dom(h]hF ), s′ = s, h′ = (h]hF ) \ {l} and ρ′ = ρ.
Like in the previous cases, we know that s(e) ∈ dom(h). Hence

h′ = (h \ {l}) ] hF .

Then hF ⊆ h′ and h′ \ hF = h \ {l}.
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Moreover, we have that
C, (s, h, ρ)→p C

′, (s′, h′ \ hF , ρ′).

Suppose that the transition is given by (ALL).
We have C = x:=cons(e), C ′ = skip, l /∈ dom(h ] hF ), s(e) = v, s′ = s[x : l], h′ = (h ] hF )[l : v]

and ρ′ = ρ.
We have l /∈ dom(h), because l /∈ dom(h ] hF ). Note that, we can rewrite the heap in the

expression
h′ = h[l : v] ] hF .

Then hF ⊆ h′ and h′ \ hF = h[l : v].
From l /∈ dom(h), we can apply the rule (ALL) and obtain that

C, (s, h, ρ)→p C
′, (s′, h′ \ hF , ρ′).

The cases (PAR1), (PAR2), (RES1), (RES2) and (WITH1) are similar to the case (SEQ2).

The cases (LOOP ), (PAR3), (RES0), (WITH0) and (WITH2) are similar to the case (SEQ1).

Next, we prove that adding some of the resources locked by the environment to the resources
owned by the execution do not introduce new transition to abort. This result will be used to prove
the soundness of the parallel rule. This result can be seen as an analogous to the safety monotonicity
with respect to resource con�gurations.

Proposition 8. Let C ∈ C, s ∈ S, h ∈ H and (O1 ∪O2, L,D), (O1, L ∪O2, D) ∈ O.
If C, (s, h, (O1, L ∪O2, D)) 6→p abort, then

C, (s, h, (O1 ∪O2, L,D)) 6→p abort.

Proof. We'll prove the contra-position by induction on the rules of →p.
Let C ∈ C, s ∈ S, h ∈ H and (O1 ∪O2, L,D), (O1, L ∪O2, D) ∈ O such that

C, (s, h, (O1 ∪O2, L,D))→p abort.

If the transition to the abort state is given by (FREEA), (READA) or (WRIA).
Note that the transition is independent from the resource con�guration. Then

C, (s, h, (O1, L ∪O2, D))→p abort.

If the transition to the abort state is given by (SEQA). We have

C1, (s, h, (O1 ∪O2, L,D))→p abort.

Using the induction hypotheses, it follows that C1, (s, h, (O1, L ∪O2, D))→p abort. Then

C, (s, h, (O1, L ∪O2, D))→p abort.

The cases (PAR1A) and (PAR2A) are similar to the previous case.

If the transition to the abort state is given by (RESA) or (WITHA).
The conclusion follows from

r ∈ (O1, L ∪O2, D) i� r ∈ (O1 ∪O2, L,D).

If the transition to the abort state is given by (RESA1). We have C = resource r in C̃, r ∈
Locked(C̃) and

C̃, (s, h, (O1 ∪O2 ∪ {r}, L,D))→p abort.

By induction hypothesis, we have that C̃, (s, h, (O1 ∪ {r}, L ∪O2, D))→p abort. Hence

C, (s, h, (O1, L ∪O2, D))→p abort.
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The case (RESA2) is analogous to the previous case

If the transition to the abort state is given by (WITHA1). We have C = within r do C̃ and

C̃, (s, h, (O1 ∪O2, L,D) \ {r})→p abort.

By induction hypothesis, we have that C̃, (s, h, (O1, L ∪O2, D) \ {r})→p abort. Therefore

C, (s, h, (O1, L ∪O2, D))→p abort.

If the transition to the abort state is given by (WITHA2). We have r /∈ O1 ∪ O2. Then r /∈ O1

and
C, (s, h, (O1, L ∪O2, D))→p abort.

In the next proposition, we see that passing some resources from the set of owned resources to the
set of locked resources do not a�ect the execution of program, providing that the execution do not
abort for the smaller set of owned resources. This result can be seen as the analogous to the frame
property for resource con�gurations.

Proposition 9. Let C,C ′ ∈ C, s, s′ ∈ S, h, h′ ∈ H and (O1 ∪ O2, L,D), (O1, L ∪ O2, D) ∈ O.
If C, (s, h, (O1, L ∪ O2, D)) 6→p abort and C, (s, h, (O1 ∪ O2, L,D)) →p C

′, (s′, h′, (O′, L,D′)), then
O2 ⊆ O′ and

C, (s, h, (O1, L ∪O2, D))→p C
′, (s′, h′, (O′ \O2, L ∪O2, D

′)).

Proof. Let C,C ′, s, s′, h, h′, O1, L,O2, D,O
′, D′ such that C, (s, h, (O1, L ∪O2, D)) 6→p abort and

C, (s, h, (O1 ∪O2, L,D))→p C
′, (s′, h′, (O′, L,D′)).

The prove is done by induction on the rules of transition above.

If the transition is given by one of the following rules: (ASSIGN), (IF1), (IF2), (SEQ1),
(LOOP ), (READ), (WRI), (FREE), (ALL) or (PAR3). Note that the transitions do not depend
on the resource con�guration. Then, the conclusion is immediate.

If the transition is given by (WITH0).
We have C = with r when B do C̃, C ′ = within r do C̃, r ∈ D, s(B) = true, s′ = s, h′ = h,

O′ = O1 ∪O2 ∪ {r}and D′ = D \ {r}.
Then O2 ⊆ O′ and O′ \O2 = O1 ∪ {r}. Therefore

C, (s, h, (O1, L ∪O2, D))→p C
′, (s′, h′, (O′ \O2, L ∪O2, D

′)).

If the transition is given by (WITH1).
We have C = within r do C̃, C ′ = within r do C̃ ′, r ∈ (O1 ∪O2) ∩O′ and

C̃, (s, h, (O1 ∪O2 \ {r}, L,D))→p C̃ ′, (s
′, h′, (O′ \ {r}, L,D′)).

From C, (s, h, (O1, L ∪O2, D)) 6→p abort, we know that r ∈ O1 and

C̃, (s, h, (O1 \ {r}, L ∪O2, D)) 6→p abort.

Now, we can apply the induction hypothesis to conclude that O2 ⊆ O′ \ {r} and

C̃, (s, h, (O1 \ {r}, L ∪O2, D))→p C̃ ′, (s
′, h′, ((O′ \ {r}) \O2, L ∪O2, D

′)).

Note that O2 ⊆ O′ \ {r} ⊆ O′ and (O′ \ {r}) \O2 = (O′ \O2) \ {r}.
From r ∈ O1 ∩O′ and r /∈ O2, we know that r ∈ O1 ∩ (O′ \O2). Therefore

C, (s, h, (O1, L ∪O2, D))→p C
′, (s′, h′, (O′ \O2, L ∪O2, D

′)).
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If the transition is given by (WITH2).
We have C = within r do skip, C ′ = skip, s′ = s, h′ = h, r ∈ O1 ∪ O2, O

′ = (O1 ∪ O2) \ {r} and
D′ = D ∪ {r}.

As before, we know that r ∈ O1. Hence we can rewrite the set of owned resources in the following
expression

O′ = (O1 \ {r}) ∪O2.

Then O2 ⊆ O′ and

C, (s, h, (O1, L ∪O2, D))→p C
′, (s′, h′, (O′ \O2, L ∪O2, D

′)).

If the transition is given by (RES0).
We have C = resource r in skip, C ′ = skip, s′ = s, h′ = h, r /∈ (O1 ∪ O2, L,D), O′ = O1 ∪ O2 and

D′ = D. Then O2 ⊆ O′.
From r /∈ (O1 ∪O2, L,D), we know that r /∈ (O1, L ∪O2, D). Therefore

C, (s, h, (O1, L ∪O2, D))→p C
′, (s′, h′, (O′ \O2, L ∪O2, D

′)).

If the transition is given by (RES1).
We have C = resource r in C̃, C ′ = resource r in C̃ ′, r /∈ (O1 ∪O2, L,D), r ∈ Locked(C̃) and

C̃, (s, h, (O1 ∪O2 ∪ {r}, L,D))→p C̃ ′, (s
′, h′, (O′′, L,D′′)),

such that O′′ ∪D′′ = O′ ∪D′ ∪ {r}.
From C, (s, h, (O1, L ∪O2, D)) 6→p abort, we know that r /∈ (O1, L ∪O2, D) and

C̃, (s, h, (O1 ∪ {r}, L ∪O2, D)) 6→p abort.

By induction hypothesis, we have that O2 ⊆ O′′ and

C̃, (s, h, (O1 ∪ {r}, L ∪O2, D))→p C̃, (s, h, (O
′′ \O2, L ∪O2, D

′′)).

From O′′ ⊆ O′ ∪ {r} and r /∈ O2, we have that O2 ⊆ O′.
Moreover, we get that (O′′ \O2) ∪D′′ = (O′ \O2) ∪D′ ∪ {r}. Therefore

C, (s, h, (O1, L ∪O2, D))→p C
′, (s′, h′, (O′ \O2, L ∪O2, D

′)).

The case (RES2) is similar to the previous case.

If the transition is given by (SEQ2).
We have C = C1 ; C2, C

′ = C ′1 ; C2 and

C1, (s, h, (O1 ∪O2, L,D))→p C
′
1, (s

′, h′, (O′, L,D′)).

We have C1, (s, h, (O1, L ∪O2, D)) 6→p abort, because C, (s, h, (O1, L ∪O2, D)) 6→p abort.
By the induction hypothesis, we conclude that O2 ⊆ O′ and

C1, (s, h, (O1, L ∪O2, D))→p C
′
1, (s

′, h′, (O′ \O2, L ∪O2, D
′)).

Therefore
C, (s, h, (O1, L ∪O2, D))→p C

′, (s′, h′, (O′ \O2, L ∪O2, D
′)).

The cases (PAR1) and (PAR2) are similar to the previous case.

To study the renaming rule we de�ne the rename of resources inside a resource context.

De�nition 26. Let r, r′ ∈ Res and ρ = (O,L,D) ∈ O such that r′ /∈ ρ. The substitution of r by r′

on ρ is denoted by ρ[r′/r], and it is given by

ρ[r′/r] = (O[r′/r], L[r′/r], D[r′/r]),

where A[r′/r] = {r̂[r′/r] : r̂ ∈ A}.
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The next proposition ensures that renaming resources do not introduce transitions to abort.

Proposition 10. Let C ∈ C, s ∈ S, h ∈ H, ρ ∈ O and r, r′ ∈ Res such that r′ /∈ Res(C) and r′ /∈ ρ.
If C[r′/r], (s, h, ρ[r′/r]) 6→p abort then

C, (s, h, ρ) 6→p abort.

Proof. Let C ∈ C, s ∈ S, h ∈ H, ρ ∈ O and r, r′ ∈ Res such that r′ /∈ Res(C) and r′ /∈ ρ.
We will prove, by induction on →p, that if C, (s, h, ρ)→p abort, then

C[r′/r], (s, h, ρ[r′/r])→p abort.

Suppose that the transition to the abort state is given by (FREEA), (READA) or (WRIA).
Note that the transitions is independent from the resource con�guration and C[r′/r] = C. Then

C[r′/r], (s, h, ρ[r′/r])→p abort.

Suppose that the transition is given by (SEQA). Then C = C1 ; C2 and

C1, (s, h, ρ)→p abort.

We know that r′ /∈ Res(C1), because r′ /∈ Res(C). Using the induction hypothesis, we have that

C1[r′/r], (s, h, ρ[r′/r])→p abort.

Hence
C[r′/r], (s, h, ρ[r′/r])→p abort.

The cases (PAR1), (PAR2) are identical to the previous case.

Suppose that the transition is given by (RESA). We have C = resource r̂ in C̃ and r̂ ∈ ρ.
Note that C[r′/r] = resource r̂[r′/r] in C̃[r′/r] and

r̂ ∈ ρ i� r̂[r′/r] ∈ ρ[r′/r].

Therefore
C[r′/r], (s, h, ρ[r′/r])→p abort.

The cases (WITHA) and (WITHA2) are analogous to the case before.

Suppose that the transition is given by (RESA1). We have C = resource r̂ in C̃, r̂ ∈ Locked(C̃)
r̂ /∈ ρ = (O,L,D) and

C̃, (s, h, (O ∪ {r̂}, L,D))→p abort.

We have that r′ /∈ Res(C̃) ⊂ Res(C). From the induction hypothesis, we conclude that

C̃[r′/r], (s, h, (O[r′/r] ∪ {r̂[r′/r]}, L[r′/r], D[r′/r]))→p abort.

Note that C[r′/r] = resource r̂[r′/r] in C̃[r′/r] and

r̂ ∈ Locked(C̃) i� r̂[r′/r] ∈ Locked(C̃[r′/r]).

Therefore
C[r′/r], (s, h, ρ[r′/r])→p abort.

The case (RESA2) is analogous to the previous case.

Suppose that the transition is given by (WITHA1). We have C = within r̂ do C̃ and

C̃, (s, h, ρ \ {r̂})→p abort.

We know that r′ /∈ Res(C̃) and r′ /∈ ρ \ {r̂}, because r′ /∈ Res(C) and r′ /∈ ρ respectively. By
induction hypothesis, we have the following transition

C̃[r′/r], (s, h, (ρ \ {r̂})[r′/r])→p abort.

Note that (ρ \ {r̂})[r′/r] = ρ[r′/r] \ {r̂[r′/r]}. Therefore

C[r′/r], (s, h, ρ[r′/r])→p abort.
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In the next propositions, we see that the auxiliary variables do not in�uence executions. First,
we de�ne the number of assignment to auxiliary variables inside a command.

De�nition 27. Let C ∈ C and X ⊆ Var, such that X is a set of auxiliary variables for C. We
denote by l(C) the number of assignments to auxiliary variables, and it is de�ned inductively by:

• if x ∈ X, then l(x:=e) = 1,

• l(C1 ; C2) = l(if B then C1 else C2) = l(C1 ‖ C2) = l(C1) + l(C2),

• l(while B do C) = l(resource r in C) = l(with r when B do C) = l(C),

• l(C) = 0, otherwise.

In the proposition below, we see that we can suppress the auxiliary variables from a command
and there is not new transitions to abort.

Proposition 11. Let C ∈ C, s ∈ S, h ∈ H, ρ ∈ O and X ⊆ Var such that X is a set of auxiliary
variables for C. If C, (s, h, ρ) 6→p abort, then

C \X, (s, h, ρ) 6→p abort.

Proof. We prove the proposition by induction on the structure of C.
Let C ∈ C, s ∈ S, h ∈ H, ρ ∈ O, X ⊆ Var such that X is a set of auxiliary variables for C and

C, (s, h, ρ) 6→p abort.

Let C = skip. We have C \X = skip and

C \X, (s, h, ρ) 6→p abort.

Let C = x:=e. Then C \X = skip or C \X = C. In both cases, we have that

C \X, (s, h, ρ) 6→p abort.

Let C = x:=[e] | x:=cons(e) | dispose(e). We have C \X = C and

C \X, (s, h, ρ) 6→p abort.

Let C = if B then C1 else C2. Then C \X = if B then C1 \X else C2 \X and

C \X, (s, h, ρ) 6→p abort.

Let C = C1 ; C2. We have C \X = C1 \X ; C2 \X and C1, (s, h, ρ) 6→p abort.
Note that X is a set of auxiliary variables for C1. By induction hypothesis, we obtain that

C1 \X, (s, h, ρ) 6→p abort.

Therefore
C \X, (s, h, ρ) 6→p abort.

Let C = while B do C̃. We have C \X = while B do C̃ \X and

C \X, (s, h, ρ) 6→p abort.

Let C = C1 ‖ C2. We have C \X = C1 \X ‖ C2 \X,

C1, (s, h, ρ) 6→p abort and C2, (s, h, ρ) 6→p abort.

Note that X is a set of auxiliary variables for C1 and C2. By induction hypothesis we have that

C1 \X, (s, h, ρ) 6→p abort and C2 \X, (s, h, ρ) 6→p abort.
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Therefore
C \X, (s, h, ρ) 6→p abort.

Let C = with r when B do C̃. We have C \X = with r when B do C̃ \X and r ∈ ρ. Therefore

C \X, (s, h, ρ) 6→p abort.

Let C = within r do C̃. We have C \X = within r do C̃ \X, r ∈ O and

C̃, (s, h, ρ \ {r}) 6→p abort.

Note that X is a set of auxiliary variables for C̃. Using the induction hypothesis, we conclude
that

C̃ \X, (s, h, ρ \ {r}) 6→p abort.

Therefore
C \X, (s, h, ρ) 6→p abort.

Let C = resource r in C̃. We have C \X = resource r in C̃ \X, r /∈ ρ,

• if r ∈ Locked(C̃), then C̃, (s, h, (O ∪ {r}, L,D)) 6→p abort, and

• if r /∈ Locked(C̃), then C̃, (s, h, (O,L,D ∪ {r})) 6→p abort.

Note that X is a set of auxiliary variables for C̃. By induction hypothesis, we have that

• if r ∈ Locked(C̃), then C̃ \X, (s, h, (O ∪ {r}, L,D)) 6→p abort, and

• if r /∈ Locked(C̃), then C̃ \X, (s, h, (O,L,D ∪ {r})) 6→p abort.

It is easy to see that Locked(C̃ \X) = Locked(C̃). Therefore

C \X, (s, h, ρ) 6→p abort.

In the next proposition, we reinforce the idea that the suppression of auxiliary variables do not
change the executions. Moreover, we prove that only the set of auxiliary variables is di�erent in an
execution with auxiliary variables and an execution without auxiliary variables.

Proposition 12. Let C,C ′ ∈ C, s, s′ ∈ S, h, h′ ∈ H, ρ, ρ′ ∈ O, l ∈ N0 and X ⊆ Var such that X is
a set of auxiliary variables for C and l = l(C). If C \X, (s, h, ρ) →p C

′, (s′, h′, ρ′), then there exist
C ′′, s′′, l′′ and k ≤ l + 1 such that

C, (s, h, ρ)→k
p C
′′, (s′′, h′, ρ′),

where s′′(y) = s′(y), for every y /∈ X, C ′ = C ′′ \X, l′′ = l(C ′′) and l′′ ≤ 2l − (k − 1).

Proof. We prove the proposition by induction on the rules of →p.
Let C,C ′ ∈ C, s, s′ ∈ S, h, h′ ∈ H, ρ, ρ′ ∈ O, l ∈ N0 and X ⊆ Var such that X is a set of auxiliary

variables for C, l = l(C) and
C \X, (s, h, ρ)→p C

′, (s′, h′, ρ′).

Suppose that the transition is given by (ASSIGN), (WRI), (FREE), (WRI) or (ALL). Then
C = C \X and C ′ = skip.

Considering C ′′ = skip, s′′ = s′, l′′ = 0 and k = 1. We have the following transition

C, (s, h, ρ)→p C
′′, (s′′, h′, ρ′).

Moreover, we have s′′(y) = s′(y), for every y /∈ X, C ′ = C ′′ \X, l′′ = l(C ′′) and l′′ ≤ 2l− (k−1).
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Suppose that the transition is given by (IF1). Then C = if B then C1 else C2, C
′ = C1 \X and

l = l1 + l2, where li = l(Ci), for i = 1, 2.
Considering C ′′ = C1, s

′′ = s′, l′′ = l1 and k = 1. We have the following transition

C, (s, h, ρ)→p C
′′, (s′′, h′, ρ′).

Moreover, we have s′′(y) = s′(y), for every y /∈ X, C ′ = C ′′ \ X, l′′ = l1 = l(C1) = l(C ′′) and
l′′ = l1 ≤ 2(l1 + l2)− (k − 1) = 2l − (k − 1).

If the transition is given by (IF2), the proof is analogous to the previous case.

Suppose that the transition is given by (LOOP ). Then C = while B do C̃, C ′ = if B then C̃ \
X ; while B do C̃ \X else skip.

Considering C ′′ = if B then C̃ ; while B do C̃ else skip, s′′ = s′, l′′ = 2l and k = 1. We have the
following transition

C, (s, h, ρ)→p C
′′, (s′′, h′, ρ′).

Moreover, we have s′′(y) = s′(y), for every y /∈ X, C ′ = C ′′ \ X, l′′ = 2l = 2l(C̃) = l(C ′′) and
l′′ = 2l ≤ 2l − (k − 1).

Suppose that the transition is given by (SEQ2). Then C = C1 ; C2, C
′ = C ′1 ; C2\X and l = l1+l2

such that li = l(Ci), for i = 1, 2, and

C1 \X, (s, h, ρ)→p C
′
1, (s

′, h′, ρ′).

Note that X is a set of auxiliary variables for C1. By induction hypothesis we know that there
are C ′′1 , s

′′
1 , l
′′
1 and k1 ≤ l1 + 1 such that

C1, (s, h, ρ)→k1
p C ′′1 , (s

′′
1 , h
′, ρ′),

where s′′1(y) = s′(y), for every y /∈ X, C ′1 = C ′′1 \X, l′′1 = l(C ′′1 ) and l′′1 = 2l1 − (k − 1).
Considering C ′′ = C ′′1 ; C2, k = k1 ≤ l + 1, s′′ = s′′1 and l′′ = l′′1 + l2. Applying the rule (SEQ2)

to the transitions above, we have the following transitions

C, (s, h, ρ)→k
p C
′′, (s′′, h′, ρ′).

Moreover, we have s′′(y) = s′′1(y) = s′(y), for every y /∈ X, C ′ = C ′1 ; C2 \X = C ′′1 \X ; C2 \X =
C ′′ \X, l′′ = l′′1 + l2 = l(C ′′1 ) + l(C2) = l(C ′′) and l′′ = l′′1 + l2 ≤ 2l1 + 2l2 − (k − 1) = 2l − (k − 1).

The cases (PAR1), (PAR2), (RES1), (RES2) and (WITH1) are similar to the previous case.

Suppose that the transition is given by (WITH0). We have C = with r when B do C̃ and C ′ =
within r do C̃ \X.

Considering C ′′ = within r do C̃, k = 1, s′′ = s′ and l′′ = l. We have the following transition

C, (s, h, ρ)→p C
′′, (s′′, h′, ρ′).

Moreover, we have s′′(y) = s′(y), for every y /∈ X, C ′ = C ′′ \ X, l′′ = l(C̃) = l(C ′′) and
l′′ ≤ 2l − (k − 1).

Before we �nish the proof of the proposition, we prove the following lemma.

Lemma 1. Let C ∈ C, s ∈ S, h ∈ H, ρ ∈ O and X a set of auxiliary variables for C. If C \X = skip,
then there exists s′ such that s′(y) = s(y), for every y /∈ X, and

C, (s, h, ρ)→l(C)
p skip, (s′, h, ρ).

Proof. From C \X = skip, it follows that C = skip or C = x:=e, for some x ∈ X.
Suppose that C = skip. Then l(C) = 0. The conclusion is immediate, by taking s′ = s.
Suppose that C = x:=e, for some x ∈ X. Then l(C) = 1. Consider s′ = s[x : v], where v = s(e).
We have s′(y) = s(y), for every y /∈ X, and

C, (s, h, ρ)→p skip, (s′, h, ρ).
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Suppose that the transition is given by (SEQ1). Then C = C1 ; C2, C1 \X = skip, C ′ = C2 \X,
s′ = s, h′ = h and ρ′ = ρ.

Using the transition of the lemma above together with the rule (SEQ2), and the rule (SEQ1),
we know that there is s′′ such that s′′(y) = s(y), for every y /∈ X, and

C, (s, h, ρ)→l(C1)
p skip ; C2, (s

′′, h, ρ)→p C2, (s
′′, h, ρ).

Considering C ′′ = C2, k = l(C1) + 1 and l′′ = l(C2). We have

C, (s, h, ρ)→k
p C
′′, (s′′, h, ρ).

Moreover, we have s′′(y) = s(y) = s′(y), for every y /∈ X, C ′ = C ′′ \ X, l′′ = l(C ′′) and
l′′ = l(C2) ≤ l(C1) + 2l(C2) = 2l − (k − 1).

Suppose that the transition is given by (PAR3). Then C = C1 ‖ C2, C1 \ X = C2 \ X = skip,
C ′ = skip, s′ = s, h′ = h and ρ′ = ρ.

From the lemma above we know that exist transition for the commands C1 and C2. Applying the
rules (PAR1) and (PAR2) to the transitions obtained from the lemma, then the rule (PAR3) we
know that there is s′′ such that s′(y) = s(y), for every y /∈ X, and

C, (s, h, ρ)→l(C1)+l(C2)
p skip ‖ skip, (s′′, h, ρ)→p skip, (s′′, h, ρ).

Considering C ′′ = skip, k = l(C) + 1 and l′′ = 0. We have the following transitions

C, (s, h, ρ)→k
p skip, (s′′, h, ρ).

Moreover, we have s′′(y) = s(y) = s′(y), for every y /∈ X, C ′ = C ′′ \ X, l′′ = l(C ′′) and
l′′ ≤ 2l − (k − 1).

Using the lemma above, the cases (WITH2) and (RES0) are analogous to the previous cases.

3.7 Reachable commands

In the extended programming language, there is some command that can not appear in any execution
of commands considered by Concurrent Separation Logic. We start this section by de�ning the
reachable commands.

De�nition 28. We say that C ∈ C is reachable, if there exist C ′ ∈ Com, k ≥ 0, s, s′ ∈ S, h, h′ ∈ H
and ρ, ρ′ ∈ O such that

C ′, (s′, h′, ρ′)→k
p C, (s, h, ρ),

and C ′, (s′, h′, ρ′) 6→j
p abort, for every j ≤ k.

Next, we give some examples of reachable commands, and we illustrate some di�culties to handle
the de�nition above. This di�culties motivate the subsequent study done in this section.

Example 9.

• If C ∈ Com, then it is reachable.

• within r do skip is a reachable command, because

with r do skip, (s, h, (∅, ∅, {r}))→p within r do skip, (s, h, ({r}, ∅, ∅)),

and with r do skip ∈ Com.

• Intuitively, the command within r do within r do skip should not be reachable. However to prove
this we need to consider all the possible executions. Next, we introduce some notions and results
that will help us to check which commands are not reachable.

36



As the example above show the de�nition of reachable is not very suitable to use. To overcome
this di�culty we introduce, as done in [16], the notion of user commands and well-formed commands.

The set of user commands is represent by the following function.

De�nition 29. The function usr_cmd : C → {true, false} is de�ned by:

• usr_cmd(C1 ; C2) = usr_cmd(C1) ∧ usr_cmd(C2),

• usr_cmd(if B then C1 else C2) = usr_cmd(C1) ∧ usr_cmd(C2),

• usr_cmd(while B do C) = usr_cmd(C),

• usr_cmd(resource r in C) = usr_cmd(C),

• usr_cmd(with r when B do C) = usr_cmd(C)

• usr_cmd(C1 ‖ C2) = usr_cmd(C1) ∧ usr_cmd(C2),

• usr_cmd(within r do C) = false,

• usr_cmd(α) = true, otherwise.

It is easy to check that usr_cmd(C) = true if and only if C ∈ Com.
The set of well formed commands is represent by the following function.

De�nition 30. The function wf_cmd : C → {true, false} is de�ned by:

• wf_cmd(C1 ; C2) = wf_cmd(C1) ∧ usr_cmd(C2),

• wf_cmd(if B then C1 else C2) = usr_cmd(C1) ∧ usr_cmd(C2),

• wf_cmd(with r when B do C) = wf_cmd(while B do C) = usr_cmd(C),

• wf_cmd(resource r in C) = wf_cmd(C),

• wf_cmd(C1 ‖ C2) = wf_cmd(C1) ∧ wf_cmd(C2)∧(Locked(C1) ∩ Locked(C2) = ∅),

• wf_cmd(within r do C) = wf_cmd(C) ∧ r /∈ Locked(C),

• wf_cmd(C) = true, otherwise.

We write C ∈ wf_cmd, if wf_cmd(C) = true.
In the following result we will see that a reachable command is a well-formed command. First,

we see that the user commands are well-formed.

Proposition 13. Let C ∈ C. If usr_cmd(C) = true, then C ∈ wf_cmd and Locked(C) = ∅.

Proof. Prove by induction on the structure of C.

Let C ∈ C such that usr_cmd(C) = true.
Let C = skip | x:=e | x:=[e] | [e]:=e' | x:=cons(e) | dispose(e).
We have that C ∈ wf_cmd and Locked(C) = ∅.
Let C = if B then C1 else C2. Then usr_cmd(C1) = true and usr_cmd(C2) = true.
By the de�nition C ∈ wf_cmd and Locked(C) = ∅.
Let C = C1 ; C2. Then usr_cmd(C1) = true and usr_cmd(C2) = true.
Applying the induction hypothesis, we get that C1 ∈ wf_cmd and Locked(C1) = ∅.
Therefore C ∈ wf_cmd and Locked(C) = ∅.
Let C = while B do C̃ | with r when B do C̃. Then usr_cmd(C̃) = true.
By the de�nition C ∈ wf_cmd and Locked(C) = ∅.
Let C = resource r in C̃. Then usr_cmd(C̃) = true.
Applying the induction hypothesis, we get that C̃ ∈ wf_cmd and Locked(C̃) = ∅.
Therefore C ∈ wf_cmd and Locked(C) = ∅.
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Let C = within r do C̃. Then usr_cmd(C) = false.

Let C = C1 ‖ C2. Then usr_cmd(C1) = true and usr_cmd(C2) = true.
By the induction hypothesis C1 ∈ wf_cmd, C2 ∈ wf_cmd, Locked(C1) = ∅ and Locked(C2) = ∅.
Therefore C ∈ wf_cmd and Locked(C) = ∅.

Next, we see that the transitions on the operational semantics preserve the well-form of commands.

Proposition 14. Let C,C ′ ∈ C, s, s′ ∈ S, h, h′ ∈ H and ρ, ρ′ ∈ O. If C ∈ wf_cmd, C, (s, h, ρ) 6→p

abort and C, (s, h, ρ)→p C
′, (s′, h′, ρ′), then C ′ ∈ wf_cmd.

Proof. Prove by induction on the rules of →p:
Let C,C ′ ∈ C, s, s′ ∈ S, h, h′ ∈ H and ρ, ρ′ ∈ O such that C ∈ wf_cmd, C, (s, h, ρ) 6→p abort and

C, (s, h, ρ)→p C
′, (s′, h′, ρ′).

Suppose that the transition is given by (ASSIGN), (READ), (WRI), (ALL), (FREE), (RES0),
(WITH2) or (PAR3). We have C ′ = skip. Then C ′ ∈ wf_cmd.

Suppose that the transition is given by (IF1). We have C = if B then C1 else C2, C
′ = C1.

From C ∈ wf_cmd, we know that user_cmd(C ′) = true.
Therefore by proposition 13, we have that C ′ ∈ wf_cmd.
The cases (IF2) and (SEQ1) are analogous to the previous case.

Suppose that the transition is given by (SEQ2). We have C = C1 ; C2, C
′ = C ′1 ; C2 and

C1, (s, h, ρ)→p C
′
1, (s

′, h′, ρ′).

From C ∈ wf_cmd, we know that C1 ∈ wf_cmd and user_cmd(C2) = true.
From C, (s, h, ρ) 6→p abort, we also know that

C1, (s, h, ρ) 6→p abort.

Applying the induction hypothesis, we get that C ′1 ∈ wf_cmd. Therefore C ′ ∈ wf_cmd.
Suppose that the transition is given by (LOOP ).
We have C = while B do C̃ and C ′ = if B then C̃ ; while B do C̃ else skip.
From C ∈ wf_cmd, we know that user_cmd(C̃) = true. Therefore

wf_cmd(C ′) = usr_cmd(C̃; while B do C̃ ) ∧ usr_cmd(skip)

= usr_cmd(C̃) ∧ usr_cmd(while B do C̃)

= usr_cmd(C̃) = true.

Suppose that the transition is given by (RES1). We have r /∈ ρ, C = resource r in C̃,
C ′ = resource r in C̃ ′, r ∈ Locked(C̃) and

C̃, (s, h, (O ∪ {r}, L,D))→p C̃ ′, (s
′, h′, ρ′′),

where ρ′′ \ {r} = ρ′. From C ∈ wf_cmd, we know that C̃ ∈ wf_cmd.
We also know that C̃, (s, h, (O ∪ {r}, L,D)) 6→p abort, because C, (s, h, ρ) 6→p abort.

Applying the induction hypothesis, we obtain that C̃ ′ ∈ wf_cmd. Therefore C ′ ∈ wf_cmd.
The case (RES2) is analogous to the previous case.

Suppose that the transition is given by (WITH0). We have C = with r when B do C̃ and C ′ =
within r do C̃.

From C ∈ wf_cmd, it follows user_cmd(C̃) = true.
By proposition 13, we know that C̃ ∈ wf_cmd and Locked(C̃) = ∅. Therefore C ′ ∈ wf_cmd.
Suppose that the transition is given by (WITH1). We have r ∈ O ∩ O′, C = within r do C̃,

C ′ = within r do C̃ ′ and

C̃, (s, h, (O \ {r}, L,D))→p C̃ ′, (s
′, h′, (O′ \ {r}, L′, D′)).
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From C ∈ wf_cmd, we know that C̃ ∈ wf_cmd and r /∈ Locked(C̃).
We also know that C̃, (s, h, (O \ {r}, L,D)) 6→p abort, because C, (s, h, (O,L,D))→p abort.

Applying the induction hypothesis, we conclude that C̃ ′ ∈ wf_cmd.
To conclude that C ′ ∈ wf_cmd, we need to check that r /∈ Locked(C̃ ′).
Having in mind that r /∈ (O \ {r}, L,D)), we conclude that the resource r is not acquired by the

transition C̃, (s, h, (O \ {r}, L,D))→p C̃ ′, (s
′, h′, (O′ \ {r}, L′, D′)).

Hence r /∈ Locked(C̃ ′) and C ′ ∈ wf_cmd.
Suppose that the transition is given by (PAR1). We have C = C1 ‖ C2, C

′ = C ′1 ‖ C2 and

C1, (s, h, (O,L,D))→p C
′
1, (s

′, h′, (O′, L′, D′)).

From C ∈ wf_cmd, we know that C1 ∈ wf_cmd, C2 ∈ wf_cmd and Locked(C1)∩Locked(C2) =
∅.

Note that C1, (s, h, (O,L,D)) 6→p abort, because C, (s, h, (O,L,D))→p abort.
Then, by induction hypothesis, we conclude that C ′1 ∈ wf_cmd.
To prove that C ′ ∈ wf_cmd, we need to check that Locked(C ′1) ∩ Locked(C2) = ∅.
Suppose that there is r such that r ∈ Locked(C ′1) ∩ Locked(C2).
We have that r /∈ Locked(C1), because Locked(C1) ∩ Locked(C2) = ∅. Then the resource r need

to be acquired by the transition

C1, (s, h, (O,L,D))→p C
′
1, (s

′, h′, (O′, L′, D′)).

It can only acquire the resource r if r ∈ D. By the rule (WITHA2), if r ∈ D and r ∈ Locked(C2),
then C2, (s, h, (O,L,D))→p abort.

Hence, if r ∈ Locked(C ′1) ∩ Locked(C2), then C, (s, h, (O,L,D))→p abort.
The previous show that Locked(C ′1) ∩ Locked(C2) = ∅. Therefore C ′ ∈ wf_cmd.
The case (PAR2) is analogous to the previous case.

By induction on the number of transitions and the previous propositions, we have the following
corollary. This corollary gives a necessary condition to the reachable commands.

Corollary 1. If C is reachable, then C ∈ wf_cmd.

Using the corollary above, we revisit the motivational example presented at the begin of this
section.

Example 10. The command within r do within r do skip is not well-formed. Then, by the corollary
1, it is not reachable.

The next proposition shows how the resource con�guration is modi�ed by a transition.

Proposition 15. Let C ∈ wf_cmd, C ′ ∈ C, s, s′ ∈ S, h, h′ ∈ H and ρ = (O,L,D), ρ′ =
(O′, L′, D′) ∈ O. If C, (s, h, ρ) 6→p abort and C, (s, h, ρ)→p C

′, (s′, h′, ρ′), then

O′ = (O ∪ (Locked(C ′) \ Locked(C))) \ (Locked(C) \ Locked(C ′)).

Proof. Using the proposition 14, we start by noting that C ′ ∈ wf_cmd.
Let C,C ′ ∈ wf_cmd, s, s′ ∈ S, h, h′ ∈ H and ρ = (O,L,D), ρ′ = (O′, L′, D′) ∈ O. If

C, (s, h, ρ) 6→p abort and
C, (s, h, ρ)→p C

′, (s′, h′, ρ′).

We prove the proposition by induction on the rules for the transition above.
Suppose that the transition is given by (ASSIGN), (LOOP ), (READ), (WRI), (ALL), (FREE),

(PAR3) or (RES0). We have Locked(C) = ∅, Locked(C ′) = ∅ and ρ′ = ρ.
Then the conclusion is immediate.

Suppose that the transition is given by (IF1). We have C = if B then C1 else C2, C
′ = C1 and

ρ′ = ρ.
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From C ∈ wf_cmd, we know that usr_cmd(C1) = true and Locked(C) = Locked(C ′) = ∅.
Then the conclusion is obvious.

The case (IF2) is analogous to the previous case.

Suppose that the transition is given by (SEQ1). We have C = skip ; C2, C
′ = C2 and ρ′ = ρ.

From C ∈ wf_cmd, we know that usr_cmd(C2) = true and Locked(C ′) = Locked(C) = ∅.
Then the conclusion is trivial.

Suppose that the transition is given by (SEQ2). We have C = C1 ; C2, C
′ = C ′1 ; C2 and

C1, (s, h, ρ)→p C
′
1, (s

′, h′, ρ′).

From C, (s, h, ρ) 6→p abort, we know

C1, (s, h, ρ) 6→p abort.

Applying the induction hypothesis, we get that

O′ = (O ∪ (Locked(C ′1) \ Locked(C1))) \ (Locked(C1) \ Locked(C ′1)).

The conclusion is valid, because Locked(C) = Locked(C1) and Locked(C ′) = Locked(C ′1).

Suppose that the transition is given by (PAR1). We have C = C ′1 ‖ C2, C = C ′1 ‖ C2 and

C1, (s, h, ρ)→p C
′
1, (s

′, h′, ρ′).

Note that C1, (s, h, ρ) 6→p abort, because C, (s, h, ρ) 6→p abort. And that C1 ∈ wf_cmd, because
C ∈ wf_cmd. Using the induction hypothesis, we have that

O′ = (O ∪ (Locked(C ′1) \ Locked(C1))) \ (Locked(C1) \ Locked(C ′1)).

We know that Locked(C1) ∩ Locked(C2) = ∅ and Locked(C ′1) ∩ Locked(C2) = ∅, because the
commands C and C ′ are well-formed.

By Locked(C) = Locked(C1) ∪ Locked(C2), Locked(C ′) = Locked(C ′1) ∪ Locked(C ′2) and the
equalities above, we have that

O′ = (O ∪ (Locked(C ′) \ Locked(C))) \ (Locked(C) \ Locked(C ′)).

The case (PAR2) is analogous to the previous case.

Suppose that the transition is given by (RES1). We have r /∈ ρ, C = resource r in C̃,
C ′ = resource r in C̃ ′, r ∈ Locked(C̃) and

C̃, (s, h, (O ∪ {r}, L,D))→p C̃
′, (s′, h′, ρ′′),

where ρ′′ \ {r} = ρ′.
Note that C̃, (s, h, (O ∪ {r}, L,D)) 6→p abort. Using the induction hypothesis, we obtain that

O′′ = (O ∪ {r} ∪ (Locked(C̃ ′) \ Locked(C̃))) \ (Locked(C̃) \ Locked(C̃ ′)).

We have the following equalities of sets:

(A ∪B) \ C = (A \ C) ∪ (B \ C),

(A \B) \ C = (A \ C) \ (B \ C)

Therefore

O′ = O′′ \ {r} = ((O ∪ {r} ∪ (Locked(C̃ ′) \ Locked(C̃))) \ {r}) \ ((Locked(C̃) \ Locked(C̃ ′)) \ {r}).

From r /∈ O, we obtain that

O′ = (O ∪ ((Locked(C̃ ′) \ {r}) \ (Locked(C̃) \ {r}))) \ ((Locked(C̃) \ {r}) \ (Locked(C̃ ′) \ {r})).
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Note that Locked(C) = Locked(C̃) \ {r} and Locked(C ′) = Locked(C̃ ′) \ {r}. Hence

O′ = (O ∪ (Locked(C ′) \ Locked(C))) \ (Locked(C) \ Locked(C ′)).

The case (RES2) is analogous to the previous case.

Suppose that the transition is given by (WITH0).
We have C = with r when B do C̃, C ′ = within r do C̃, ρ = (O,L,D∪{r}) and ρ′ = (O∪{r}, L,D).
From C ∈ wf_cmd, we know C̃ ∈ usr_cmd. Hence, Locked(C ′) = {r} and Locked(C) = ∅. The

conclusion is straightforward.

Suppose that the transition is given by (WITH1). We have r /∈ (O,L,D), ρ = (O ∪ {r}, L,D),
ρ′ = (O′ ∪ {r}, L′, D′), C = within r do C̃, C ′ = within r do C̃ ′ and

C̃, (s, h, (O,L,D))→p C̃
′, (s′, h′, (O′, L′, D′)).

Note that C̃, (s, h, (O,L,D)) 6→p abort. Using the induction hypothesis, we have that

O′ = (O ∪ (Locked(C̃ ′) \ Locked(C̃))) \ (Locked(C̃) \ Locked(C̃ ′)).

Using that Locked(C) = Locked(C̃)∪ {r} and Locked(C ′) = Locked(C̃ ′)∪ {r}, we conclude that

O′ ∪ {r} = (O ∪ {r} ∪ (Locked(C ′) \ Locked(C))) \ (Locked(C) \ Locked(C ′)).

Suppose that the transition is given by (WITH2). We have C = within r do skip, C ′ = skip,
ρ = (O ∪ {r}, L,D) and ρ′ = (O′, L′, D′ ∪ {r}).

The conclusion follows from Locked(C) = {r} and Locked(C ′) = ∅.

For any execution that start with every resource available, in the next proposition we give the
explicit formula to the resource con�guration at any time of that execution.

Proposition 16. Let k ≥ 0, C,C ′ ∈ C, s, s′ ∈ S, h, h′ ∈ H, ρ′ ∈ O such that C ∈ Com and C ′ is
reachable from C. If C, (s, h, (∅, ∅, Res(Γ))→k

p C
′, (s′, h′, ρ′), then

ρ′ = (Locked(C ′), ∅, Res(Γ) \ Locked(C ′)).

Proof. Let k ≥ 0, C,C ′ ∈ C, s, s′ ∈ S, h, h′ ∈ H, ρ′ ∈ O such that C ∈ Com, C ′ is reachable from C
and

C, (s, h, (∅, ∅, Res(Γ))→k
p C
′, (s′, h′, ρ′).

The prove is done by induction on k.
Let k = 0, it is immediately from usr_cmd(C) = true and Locked(C) = ∅.
Let k = n+ 1. Then there exist C ′′, s′′, h′′, ρ′′ such that

C, (s, h, (∅, ∅, Res(Γ))→n
p C

′′, (s′′, h′′, ρ′′)→p C
′, (s′, h′, ρ′).

Note that C ′′ is reachable from C. By the induction hypothesis, we have that

ρ′′ = (Locked(C ′′), ∅, Res(Γ) \ Locked(C ′′)).

Using the proposition 15, we know that

O′ = (Locked(C ′′) ∪ (Locked(C ′) \ Locked(C ′′))) \ (Locked(C ′′) \ Locked(C ′)).

Next we see that O′ = Locked(C ′). Let r ∈ Locked(C ′).
Suppose that r ∈ Locked(C ′′). Then

r ∈ Locked(C ′′) \ (Locked(C ′′) \ Locked(C ′)) ⊆ O′.

Suppose that r /∈ Locked(C ′′). Then

r ∈ (Locked(C ′) \ Locked(C ′′)) \ (Locked(C ′′) \ Locked(C ′)) ⊆ O′.
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Therefore

Locked(C ′) ⊆ O′.

Let r ∈ O′.
If r ∈ Locked(C ′′), then r ∈ Locked(C ′).
If r /∈ Locked(C ′′), then r ∈ Locked(C ′).
Hence

Locked(C ′) = O′.

By proposition 4, we conclude that

ρ′ = (Locked(C ′), ∅, Res(Γ) \ Locked(C ′)).

4 Extended operational semantics

In this section, the operational semantics is extended with the environment transition. The envi-
ronment transition allows the environment to change the heap associated to global properties and
to change the value assignment to variables not protected by the rely-set and/or resources acquired.
The notion of validity for the extended operational semantic is introduced, the notion of safety for
the next n transition.

Finally the soundness of Concurrent Separation Logic with respect the operational semantics is
proved.

4.1 Environment Transition

The transformation on the environment is de�ned by the following relation.

De�nition 31. Let s, s′ ∈ S, h, h′ ∈ H, (O,L,D), (O′, L′, D′) ∈ O and A ⊆ Var.
We say that (s, h, (O,L,D)) is transformed by the environment to (s′, h′, (O′, L′, D′)) and we write

(s, h, (O,L,D))
A
! (s′, h′, (O′, L′, D′)) if:

• s(x) = s′(x) for every x ∈ A, and

• O′ = O and L′ ∪D′ = L ∪D, and

• h′ = h.

The transformation on the environment de�ned above naturally de�nes the relation
A
!⊆ (S ×

H ×O)× (S ×H ×O). The next proposition is immediate from the de�nition.

Proposition 17. Let A′, A ⊆ Var. The relation A
! is an equivalence relation.

If A′ ⊆ A and (s, h, ρ)
A
! (s′, h′, ρ′), then (s, h, ρ)

A′

! (s′, h′, ρ′).

Let Γ be a well-formed resource context and A ⊆ Var.

The environment transition denoted by the relation
A,Γ−−→e⊆ (C × S ×H×O)× (C × S ×H×O),

it is de�ned by the following rule.
Let hG, h

′
G ∈ H, C ∈ C, s, s′ ∈ S, h, h′ ∈ H, ρ, ρ′ ∈ O and A′ = A ∪

⋃
r∈Locked(C) PV (r). If

(s, h, ρ)
A′

! (s′, h, ρ′), s, hG |= ~
r∈D

Γ(r) and s′, h′G |= ~
r∈D′

Γ(r), then

C, (s, h ] hG, ρ)
A,Γ−−→e C, (s

′, h ] h′G, ρ′)
(ENV )

.

Using the rule of the environment we can:
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• change the storage, except inside the rely-set A and the variables protected by the resources
acquired at the moment;

• interchange the resources locked by the environment and available; and

• modi�ed the subheap that it is uniquely determined by the resources available.

We extend the transitions on the operational semantic with the environment transition, and we

de�ne the following relation
A,Γ−−→⊆ (C ×S ×H×O)× ((C ×S ×H×O)∪{abort}). This new relation

is given by
A,Γ−−→=→p ∪

A,Γ−−→e .

4.2 Safety

We start by de�ning the set of variables that the next transition can change.

De�nition 32. Let C ∈ C. The set of variables possible to change by C in the next transition is
denoted by chng and it is given by:

• chng(x:=E) = chng(x:=[E]) = chng(x:=cons(E)) = {x},

• chng(C1 ; C2) = chng(C1),

• chng(within r do C) = chng(resource r in C) = chng(C),

• chng(C1 ‖ C2) = chng(C1) ∪ chng(C2),

• chng(C) = ∅, otherwise.

Now, we introduce the notion of safety in the next n transitions.

De�nition 33. Let C ∈ C, s ∈ S, h ∈ H, ρ ∈ O, Γ a well-formed resource context , A ⊆ Var and
Q ∈ Astn. We say that:

• Safe0(C, s, h, ρ,Γ, Q,A) is always valid.

• Safen+1(C, s, h, ρ,Γ, Q,A) is valid if:

(i) If C = skip, then s, h |= Q.

(ii) The next transition of C does not abort for (s, h, ρ), i.e.

C, (s, h, ρ) 6→p abort.

(iii) The next transition of C does not change variables protected by resources not owned, i.e.

chng(C) ∩
⋃

r∈L∪D
PV (r) = ∅.

(iv) For every hG, C
′, s′, ĥ and ρ′ such that s, hG |= ~

r∈D
Γ(r) and

C, (s, h ] hG, ρ)
A,Γ−−→ C ′, (s′, ĥ, ρ′),

then there exist h′ and h′G such that ĥ = h′ ] h′G, Safen(C ′, s′, h′, ρ′,Γ, Q,A) is valid and

s′, h′G |= ~
r∈D′

Γ(r).

The next theorem is proved by induction on the number of program's transitions.
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Theorem 1. Let C ∈ Com, P,Q ∈ Astn, Γ a well-formed resource context and A ⊆ Var. If for
every s, h and n ≥ 0 such that s, h |= P , we have that Safen(C, s, h, (∅, ∅, Res(Γ)),Γ, Q,A) is valid,
then

Γ |= {P}C{Q}.

If a speci�cation is safe for n transitions, then it is also valid for less transitions. This is stated in
the proposition below.

Proposition 18. Let C ∈ C, s ∈ S, h ∈ H, ρ ∈ O, Γ a well-formed resource context, Q ∈ Astn,
A ⊆ Var, n ∈ N0 and k ≤ n. If Safen(C, s, h, ρ,Γ, Q,A) is valid, then Safek(C, s, h, ρ,Γ, Q,A) is
valid.

Proof. Let C ∈ C, s ∈ S, h ∈ H, ρ ∈ O, Γ a well-formed resource context, Q ∈ Astn, A ⊆ Var,
n ∈ N0 and k ≤ n such that Safen(C, s, h, ρ,Γ, Q,A) is valid.

If k = 0, it is trivial.
If k > 0, the �rst three conditions are immediate because n > 0.
Let hG such that s, hG |= ~

r∈D
Γ(r).

Consider the re�exive environment transition, we conclude that Safen−1(C, s, h, ρ,Γ, Q,A) is
valid.

Repeating the argument before, we obtain that Safek(C, s, h, ρ,Γ, Q,A) is valid.

4.3 Safety's properties

In this section, we give technical results that will be used in the last section, when we prove the
soundness of Concurrent Separation Logic.

For the skip rule, we have the following result.

Proposition 19. Let s ∈ S, h ∈ H, ρ ∈ O, Γ a well-formed resource context, Q ∈ Astn and
A ⊆ Var such that FV (Q) ⊆ A. If s, h |= Q, then Safen(skip, s, h, ρ,Γ, Q,A) is valid for every
n ≥ 0.

Proof. Let s ∈ S, h ∈ H, ρ ∈ O, Γ a well-formed resource context, Q ∈ Astn and A ⊆ Var such that
FV (Q) ⊆ A and s, h |= Q.

We prove the proposition by induction on n.
Let n = 0. It is trivially valid.
Let n = k + 1.
From s, h |= Q, we obtain the condition (i) of Safen(skip, s, h, ρ,Γ, Q,A).
The command skip never aborts, then the property (ii) of Safen(skip, s, h, ρ,Γ, Q,A) is immediate.
From chng(skip) = ∅, we have the property (iii) of Safen(skip, s, h, ρ,Γ, Q,A).
It remains to prove the condition (iv) of Safen(skip, s, h, ρ,Γ, Q,A).
Let hG, C

′, s′, h′ and ρ′ such that s, hG |= ~
r∈D

Γ(r) and

skip, (s, h ] hG, ρ)
A,Γ−−→ C ′, (s′, h′, ρ′).

The only possible transitions to the command skip are given by environments transitions. Then
C ′ = skip,

(s, h, ρ)
A
! (s′, h, ρ′)

and there is h′G such that h′ = h ] h′G and

s′, h′G |= ~
r∈D′

Γ(r).

It is enough to check that Safek(skip, s′, h, ρ′,Γ, Q,A) is valid.
Note that s(x) = s′(x), for every x ∈ FV (Q) ⊆ A. By proposition 2, we have that

s′, h |= Q.

Therefore by induction hypothesis, Safek(skip, s′, h, ρ′,Γ, Q,A) is valid.
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The result below will be used to prove the soundness of the sequence rule.

Proposition 20. Let C1 ; C2 ∈ wf_cmd, s ∈ S, h ∈ H, ρ ∈ O, R,Q ∈ Astn, A1, A2 ⊆ Var, n ∈ N0

and Γ a well-formed resource context such that ρ = (Locked(C1), L,D), L∪D = Res(Γ)\Locked(C1),
FV (R) ⊆ A1, and FV (Q) ⊆ A2.

If, for every s′, h′ |= R and L′ ∪D′ = Res(Γ), Safen(C2, s
′, h′, (∅, L′, D′),Γ, Q,A2) is valid and

Safen(C1, s, h, ρ,Γ, R,A1) is valid, then Safen(C1 ; C2, s, h, ρ,Γ, Q,A1 ∪A2) is valid.

Proof. Let C1 ; C2 ∈ wf_cmd, s ∈ S, h ∈ H, ρ ∈ O, R,Q ∈ Astn, A1, A2 ⊆ Var, n ∈ N0 and Γ is
a well-formed resource context such that ρ = (Locked(C1), L,D), L ∪ D = Res(Γ) \ Locked(C1),
FV (R) ⊆ A1, FV (Q) ⊆ A2, Safen(C1, s, h, ρ,Γ, R,A1) is valid and, for every s′, h′ |= R and
L′ ∪D′ = Res(Γ), Safen(C2, s

′, h′, (∅, L′, D′),Γ, Q,A2) is valid.
We start by noting that Locked(C) = Locked(C1). From C1 ; C2 ∈ wf_cmd, we know that

C1 ∈ wf_cmd and C2 ∈ Com. Then Locked(C2) = ∅.
We prove the proposition by induction on n.
For n = 0, it is trivial. Let k = n+ 1.
The �rst property of Safen(C1 ; C2, s, h, ρ,Γ, Q,A1 ∪A2) is immediate, because C1 ; C2 6= skip.
From Safen(C1, s, h, ρ,Γ, R,A1), we know that

C1, (s, h, ρ) 6→p abort.

Then
C1 ; C2, (s, h, ρ) 6→p abort.

So the property (ii) of Safen(C1 ; C2, s, h, ρ,Γ, Q,A1 ∪A2) is veri�ed.
We have chng(C1 ; C2) = chng(C1).
It follows from Safen(C1, s, h, ρ,Γ, R,A1), that

chng(C1 ; C2) ∩
⋃

r∈L∪D
PV (r) = chng(C1) ∩

⋃
r∈L∪D

PV (r) = ∅.

The previous establish the property (iii) of Safen(C1 ; C2, s, h, ρ,Γ, Q,A1 ∪A2).
Let hG, C

′, s′, h′ and ρ′ such that hG⊥h, s, hG |= ~
r∈D

Γ(r) and

C1 ; C2, (s, h ] hG, ρ)
A1∪A2,Γ−−−−−−→ C ′, (s′, h′, ρ′).

Below we consider the possible transitions.

Suppose that the transition is given by (SEQ1). We have C ′ = C2, C1 = skip, s′ = s, h′ = h]hG
and ρ′ = ρ = (∅, L,D), where L ∪D = Res(Γ).

Taking h′G = hG. We have that
s, hG |= ~

r∈D
Γ(r).

From Safen(skip, s, h, ρ,Γ, R,A1), we know

s, h |= R.

By the hypothesis, we have that Safen(C2, s, h, (∅, L,D),Γ, Q,A2) is valid.

From
A2!⊇A1∪A2! and proposition 18, we conclude that Safek(C2, s, h, (∅, L,D),Γ, Q,A1 ∪ A2) is

valid.

Suppose that the transition is given by (SEQ2). We have C ′ = C ′1 ; C2 and

C1, (s, h ] hG, ρ)→p C
′
1, (s

′, h′, ρ′).

From Safen(C1, s, h, (Locked(C), L,D),Γ, R,A1) be valid and the previous transition, we know
that there is h′G ⊆ h′ such that Safek(C ′1, s

′, h′ \ h′G, ρ′,Γ, R,A1) is valid and

s′, h′G |= ~
r∈D′

Γ(r).
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By the proposition 15, we obtain that

ρ′ = (Locked(C ′1), L′, D′),

where L′ ∪D′ = Res(Γ) \ Locked(C ′1).
From proposition 18, we have that Safek(C2, s

′, h′, (∅, L′, D′),Γ, Q,A2) is valid, for every
s′, h′ |= R and L′ ∪D′ = res(Γ).

Hence, by induction, we conclude that Safek(C ′1 ; C2, s
′, h′ \ h′G, ρ′,Γ, Q,A1 ∪A2) is valid.

Suppose that the transition is given by (ENV ). Let A′ = A1 ∪A2 ∪
⋃

r∈Locked(C) PV (r).

We have C ′ = C1 ; C2,

(s, h, ρ)
A′

! (s′, h, ρ′),

and there exists h′G ⊆ h′ such that h′ = h ] h′G and

s′, h′G |= ~
r∈D′

Γ(r).

It is su�cient to check that Safek(C1 ; C2, s
′, h, ρ′,Γ, Q,A1 ∪A2) is valid.

From A1∪
⋃

r∈Locked(C1) PV (r) ⊆ A1∪A2∪
⋃

r∈Locked(C) PV (r), we have the following environment
transformation

(s, h, ρ)
A′

1! (s′, h, ρ′),

where A′1 = A1 ∪
⋃

r∈Locked(C1) PV (r).

Considering the same hG and h′G, as before, we have the following environment transition

C1, (s, h ] hG, ρ)
A1,Γ−−−→e C1, (s

′, h ] h′G, ρ′).

Using that Safen(C1, s, h, ρ,Γ, R,A1) is valid and the environment transition above, we obtain
that Safek(C1, s

′, h, ρ′,Γ, R,A1) is valid.
Note that ρ′ = (Locked(C1), L′, D′) and L′ ∪D′ = Res(Γ) \ Locked(C1).
By the induction hypothesis, we conclude that Safek(C1 ; C2, s

′, h, ρ′,Γ, Q,A1 ∪A2) is valid.

To prove the soundness of the parallelism's rule, we'll use the next proposition.

Proposition 21. Let n ∈ N0, s ∈ S, C1 ‖ C2 ∈ wf_cmd, h, h1, h2 ∈ H, ρ, ρ1, ρ2 ∈ O, Q1, Q2 ∈ Astn
and A1, A2 ⊆ Var such that FV (Q1) ⊆ A1, FV (Q2) ⊆ A2, ρ = (O1∪O2, L,D), ρ1 = (O1, L∪O2, D),
ρ2 = (O2, L ∪O1, D), and h = h1 ] h2.

If Safen(C1, s, h1, ρ1,Γ, Q1, A1) and Safen(C2, s, h2, ρ2,Γ, Q2, A2) are valid, and A1∩mod(C2) =
A2 ∩mod(C1) = ∅, then Safen(C1 ‖ C2, s, h, ρ,Γ, Q1 ∗Q2, A1 ∪A2) is valid.

Proof. Let n ∈ N0, s ∈ S, C1 ‖ C2 ∈ wf_cmd, h, h1, h2 ∈ H, ρ, ρ1, ρ2 ∈ O, Q1, Q2 ∈ Astn

and A1, A2 ⊆ Var such that ρ = (O1 ∪ O2, L,D), ρ1 = (O1, L ∪ O2, D), ρ2 = (O2, L ∪ O1, D),
FV (Q1) ⊆ A1, FV (Q2) ⊆ A2, h = h1 ] h2 and the next expression are valid

Safek+1(C1, s, h1, ρ1,Γ, Q1, A1), (1)

Safek+1(C2, s, h2, ρ2,Γ, Q2, A2). (2)

We prove the proposition by induction on n. For n = 0, it is trivial.
Let n = k + 1.
From C1 ‖ C2 6= skip, the condition (i) of Safen(C1 ‖ C2, s, h, ρ,Γ, Q1 ∗Q2, A1∪A2) is immediate.
Applying the safety monotonicity (proposition 6) to the assumptions (1) and (2), we see that

C1, (s, h1 ] h2, ρ1) 6→p abort and C2, (s, h1 ] h2, ρ2) 6→p abort.

By the proposition 8,

C1, (s, h, ρ) 6→p abort and C2, (s, h, ρ) 6→ abort.
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Therefore
C1 ‖ C2, (s, h, ρ) 6→p abort.

The previous prove that the condition (ii) of Safen(C1 ‖ C2, s, h, ρ,Γ, Q1∗Q2, A1∪A2) is respected.
By the assumptions (1) and (2), we have that

chng(C1) ∩
⋃

r∈L∪O2∪D
PV (r) = ∅ and chng(C2) ∩

⋃
r∈L∪O1∪D

PV (r) = ∅.

Then
(chng(C1) ∪ chng(C2)) ∩

⋃
r∈L∪D

PV (r) = ∅.

The condition (iii) of Safen(C1 ‖ C2, s, h, ρ,Γ, Q1 ∗Q2, A1 ∪A2) follows from the previous state-
ments and chng(C) = chng(C1) ∪ chng(C2).

Next, we prove the condition (iv) of Safen(C1 ‖ C2, s, h, ρ,Γ, Q1 ∗ Q2, A1 ∪ A2). Let hG, C
′, s′,

h′ and ρ′ such that s, hG |= ~
r∈D

Γ(r) and

C1 ‖ C2, (s, h1 ] h2 ] hG, ρ)
A1∪A2,Γ−−−−−−→ C ′, (s′, h′, ρ′).

Below, we consider the four possible transitions.

Suppose that the transition is given by (PAR1). We have that C ′ = C ′1 ‖ C2 and

C1, (s, h1 ] h2 ] hG, ρ)→p C
′
1, (s

′, h′, ρ′).

From the assumption (1), we know that C1, (s, h1, ρ1) 6→p abort.
By the safety monotonicity (proposition 6), for every hF⊥h, we have that C1, (s, h1 ] hF , ρ1) 6→p

abort.
Using the proposition 9, we get that O2 ⊆ O′ and

C1, (s, h1 ] h2 ] hG, ρ1)→p C
′
1, (s

′, h′, (O′ \O2, L ∪O2, D
′)).

By the frame property (proposition 7), we have that h2 ⊆ h′ and

C1, (s, h1 ] hG, ρ1)→p C
′
1, (s

′, h′ \ h2, (O
′ \O2, L ∪O2, D

′)).

Consider ρ′1 = (O′ \O2, L∪O2, D
′). By (1) be valid, we know that there are h′1 and h′G such that

h′ = h′1 ] h2 ] h′G, Safek(C ′1, s
′, h′1, ρ

′
1,Γ, Q1, A1) is valid and

s′, h′G |= ~
r∈D′

Γ(r).

It is su�cient to check that Safek(C ′1 ‖ C2, s
′, h′1 ] h2, ρ

′,Γ, Q1 ∗Q2, A1 ∪A2) is valid.
First, we see that we have the following environment transformation

(s, h2, ρ2)
A′

2! (s′, h2, ρ
′
2),

where ρ′2 = (O2, L ∪ (O′ \O2), D′) and A′2 = A2 ∪
⋃

r∈Locked(C2) PV (r).

We have that s(x) = s′(x), for every x ∈ A2, because mod(C1) ∩A2 = ∅.
Note that Locked(C2) ⊆ O2, otherwise we obtain by the rule (WITHA2) that C2, (s, h, ρ2) →p

abort.
From property (iii) of (1) and Locked(C2) ⊆ O2, we have that s(x) = s′(x) for every x ∈ A′2.
It is straightforward that O2 = O2 and h2 = h2.
From the proposition 4, we know that O1 ∪D = (O′ \O2) ∪D′. Then

L ∪O1 ∪D = L ∪ (O′ \O2) ∪D′.
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Hence we can consider the following environment transition

C2, (s, h2 ] hG, ρ2)
A2,Γ−−−→e C2, (s

′, h2 ] h′G, ρ′2),

By (2), we conclude that Safek(C2, s
′, h2, ρ

′
2,Γ, Q2, A2) is valid.

To apply the induction hypothesis, we need to check that ρ′, ρ′1, ρ
′
2 respect the conditions in the

proposition. This is immediate from O′ = (O′ \O2) ∪O2.
By the induction hypothesis, we conclude that Safek(C ′1 ‖ C2, s

′, h′1 ] h2, ρ
′,Γ, Q1 ∗Q2, A1 ∪A2).

The case (PAR2) is analogous to the previous case.

Suppose that the transition is given by (PAR3). We have C ′ = skip, C1 = skip, C2 = skip, s′ = s,
h′ = h ] hG and ρ′ = ρ.

Taking h′G = hG. We know that
s, hG |= ~

r∈D
Γ(r).

Because Safen(skip, s, h1, ρ1,Γ, Q1, A1) and Safen(skip, s, h2, ρ2Γ, Q2, A2) are valid, we have that

s, h1 |= Q1 and s, h2 |= Q2.

Then
s, h1 ] h2 |= Q1 ∗Q2.

From the proposition 19, we conclude that Safek(skip, s, h1 ] h2, ρ,Γ, Q1 ∗Q2, A1 ∪A2) is valid.

Suppose that the transition is given by (ENV ). Let A′ = A1 ∪A2 ∪
⋃

r∈Locked(C1 ‖ C2) PV (r).

We have that C ′ = C1 ‖ C2, ρ
′ = (O1 ∪O2, L

′, D′),

(s, h, ρ)
A′

! (s′, h, ρ′),

and there exists h′G such that h′ = h1 ] h2 ] h′G and

s′, h′G |= ~
r∈D′

Γ(r).

We start by proving that

(s, h1, ρ1)
A′

1! (s′, h1, ρ
′
1),

where ρ′1 = (O1, L
′ ∪O2, D

′) and A′1 = A1 ∪
⋃

r∈Locked(C1) PV (r).

We know that s(x) = s′(x), for every x ∈ A′1 ⊆ A′. It is straightforward that O1 = O1 and
h1 = h1.

From L ∪D = L′ ∪D′, we infer that L ∪O2 ∪D = L′ ∪O2 ∪D′. Then we have the environment
transformation above.

From the environment transformation above, s, hG |= ~
r∈D

Γ(r), s′, h′G |= ~
r∈D′

Γ(r) and (1), we

conclude that Safek(C1, s
′, h1, ρ

′
1,Γ, Q1, A1) is valid.

Analogous, we obtain that Safek(C2, s
′, h2, ρ

′
2,Γ, Q2, A2) is valid, where ρ′2 = (O2, L

′ ∪O1, D
′).

Note that the new resources con�gurations ρ′, ρ′1 and ρ′2 respect the condition in the proposition.
Therefore, by the induction hypothesis, Safek(C1 ‖ C2, s

′, h1]h2, ρ
′,Γ, Q1 ∗Q2, A1∪A2) is valid.

For the critical region, we have the following auxiliary result.

Proposition 22. Let C ∈ wf_cmd, s ∈ S, h ∈ H, ρ ∈ O, Γ a well-formed resource context,
Q,R ∈ Astn, A,X ⊆ Var, r ∈ Res and n ∈ N0 such that Γ′ = Γ, r(X) : R is a well-formed resource
context, ρ = (O,L,D), r ∈ O and FV (Q) ⊆ A.

If Safen(C, s, h, ρ \ {r},Γ, Q ∗ R,A ∪ X) is valid, then Safen(within r do C, s, h, ρ,Γ′, Q,A) is
valid.
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Proof. Let C ∈ wf_cmd, s ∈ S, h ∈ H, ρ ∈ O, Γ a well-formed resource context, Q,R ∈ Astn,
A,X ⊆ Var and r ∈ Res such that Γ′ = Γ, r(X) : R is a well-formed resource context, ρ = (O,L,D),
r ∈ O, FV (Q) ⊆ A and Safen(C, s, h, ρ \ {r},Γ, Q ∗R,A ∪X) is valid.

We prove by induction on n that Safen(within r do C, s, h, ρ,Γ′, Q,A) is valid.
For n = 0, it is trivial.
Let n = k + 1.
Because within r do C 6= skip, we have the property (i) of Safen(within r do C, s, h, ρ,Γ′, Q,A).
From Safen(C, s, h, ρ \ {r},Γ, Q ∗R,A ∪X) be valid, we get that

C, (s, h, ρ \ {r}) 6→p abort.

From the previous and r ∈ O, we obtain that

within r do C, (s, h, ρ) 6→p abort.

Hence, the property (ii) of Safen(within r do C, s, h, ρ,Γ′, Q,A) is respected.
From Safen(C, s, h, ρ \ {r},Γ, Q ∗R,A ∪X) be valid and r ∈ O, we know that

chng(within r do C) ∩
⋃

r̂∈L∪D

PV (r̂) = chng(C) ∩
⋃

r̂∈L∪D

PV (r̂) = ∅.

Then, we have the condition (iii) of Safen(within r do C, s, h, ρ,Γ′, Q,A).
Let hG, C

′, s′, h′ and ρ′ such that s, hG |= ~
r̂∈D

Γ′(r̂) and

within r do C, (s, h ] hG, ρ)
A,Γ′

−−−→ C ′, (s′, h′, ρ′).

Next, we consider the possible transitions.

Suppose that the transition is given by (WITH1). We have C ′ = within r do C̃, r ∈ O ∩O′ and

C, (s, h ] hG, ρ \ {r})→p C̃, (s
′, h′, ρ′ \ {r}).

Taking in account that Safen(C, s, h, ρ \ {r},Γ, Q ∗R,A∪X) is valid, we know that there are h′G
and h′L such that h′ = h′L ] h′G, Safek(C̃, s′, h′L, ρ

′ \ {r},Γ, Q ∗R,A ∪X) is valid and

s′, h′G |= ~
r̂∈D′

Γ(r̂).

From r ∈ O′, we conclude that
s′, h′G |= ~

r̂∈D′
Γ′(r̂).

Applying the induction hypothesis to Safek(C̃, s′, h′L, ρ
′ \ {r},Γ, Q ∗ R,A ∪ X), we obtain that

Safek(within r do C̃, s′, h′L, ρ
′,Γ′, Q,A) is valid.

Suppose that the transition is given by (WITH2).
We have that C ′ = skip, C = skip, s = s′, h′ = h ] hG, O′ = O \ {r}, L′ = L and D′ = D ∪ {r}.

From Safen(skip, s, h, ρ,Γ, Q ∗R,A ∪X) be valid, we have that

s, h |= Q ∗R.

Then there exists hR ⊆ h such that

s, hR |= R and s, h \ hR |= Q.

Let h′G = hG ] hR. Then
s, h′G |= ~

r̂∈D′
Γ′(r̂).

By the proposition 19, FV (Q) ⊆ A and s, h \ hR |= Q, we conclude that Safek(skip, s, h \
hR, ρ

′,Γ′, Q,A) is valid. The conclusion follows from h′ \ h′G = h \ hR.
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Suppose that the transition is given by (ENV ). Let A′ = A ∪ PV (r) ∪
⋃

r̂∈Locked(C) PV (r̂).

We have C ′ = within r do C,

(s, h, ρ)
A′

! (s′, h, ρ′)

and there exists h′G ⊆ h′ such that h′ = h ] h′G and

s′, h′G |= ~
r̂∈D′

Γ′(r̂).

From r ∈ O ∩O′, we get that

s′, h′G |= ~
r̂∈D′

Γ(r̂) and s, hG |= ~
r̂∈D

Γ(r̂).

Noting that A′ = A∪X∪
⋃

r̂∈Locked(C) PV (r̂), we can consider the following environment transition

C, (s, h ] hG, ρ \ {r})
A∪X,Γ−−−−→e C, (s

′, h ] h′G, ρ′ \ {r}).

From Safen(C, s, h, ρ\{r},Γ, Q∗R,A∪X), we have that Safek(C, s′, h, ρ′ \{r},Γ, Q∗R,A∪X)
is valid.

Therefore, by the induction hypothesis, Safek(within r do C, s′, h, ρ′,Γ′, Q,A) is valid.

The following auxiliary proposition deals with the local resource rule.

Proposition 23. Let C ∈ wf_cmd, s ∈ S, h ∈ H, Γ a well-formed resource context, Q,R ∈ Astn,
A,X ⊆ Var, r ∈ Res, n ∈ N0 and ρ = (O,L,D) ∈ O such that r /∈ ρ, FV (Q) ⊆ A and Γ′ =
Γ, r(X) : R is a well-formed resource context. We have the following statements:

• If r ∈ Locked(C) and Safen(C, s, h, (O ∪ {r}, L,D),Γ′, Q,A) is valid, then
Safen(resource r in C, s, h, ρ,Γ, Q ∗R,A ∪X) is valid.

• If r /∈ Locked(C), Safen(C, s, h, (O,L,D∪{r}),Γ′, Q,A) is valid and there exists hR such that
hR⊥h and s, hR |= R, then Safen(resource r in C, s, h ] hR, ρ,Γ, Q ∗R,A ∪X) is valid.

Proof. Let C, s, h, ρ, Γ, Q, R, A, X, r, n as stated in the proposition such that r /∈ ρ, FV (Q) ⊆ A
and Γ′ = Γ, r(X) : R is a well-formed resource context. Consider the next statements:

P (n) is If r ∈ Locked(C) and Safen(C, s, h, (O ∪ {r}, L,D),Γ′, Q,A) is valid, then
Safen(resource r in C, s, h, ρ,Γ, Q ∗R,A ∪X) is valid.

Q(n) is If r /∈ Locked(C), Safen(C, s, h, (O,L,D ∪ {r}),Γ′, Q,A) is valid and there
exist hR⊥h such that s, hR |= R, then Safen(resource r in C, s, h]hR, ρ,Γ, Q∗
R,A ∪X) is valid.

This prove has three parts. First, we note that P (O) ∧ Q(0) is true. Next, we prove that
P (n) ∧ Q(n) ⇒ Q(n + 1), for every n ≥ 0. Last, we show that P (n) ∧ Q(n) ⇒ P (n + 1), for every
n ≥ 0. This three steps prove the proposition.

It is trivial that P (0) and Q(0) are true.

Next, we prove that P (n) ∧Q(n) implies Q(n+ 1).
Suppose that r /∈ Locked(C), hR⊥h, s, hR |= R and Safen+1(C, s, h, (O,L,D ∪ {r}),Γ′, Q,A) is

valid.
The property (i) of Safen+1(resource r in C, s, h ] hR, ρ,Γ, Q ∗ R,A ∪X) is immediate, because

resource r in C 6= skip.
Suppose that

resource r in C, (s, h ] hR, ρ)→p abort.

Then, we have one of the following:

• r ∈ ρ, or,
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• r ∈ Locked(C) and C, (s, h ] hR, (O ∪ {r}, L,D))→p abort, or,

• r /∈ Locked(C) and C, (s, h ] hR, (O,L,D ∪ {r}))→p abort.

The �rst two cases are contradictory with the hypothesis r /∈ ρ and r /∈ Locked(C).
Hence, it must be the third case. So, we have that

C, (s, h ] hR, (O,L,D ∪ {r}))→ abort.

However, from Safen+1(C, s, h, (O,L,D∪{r}),Γ′, Q,A) be valid and proposition 6, we have that

C, (s, h ] hR, (O,L,D ∪ {r})) 6→p abort.

We reached an absurd, so the property (ii) of Safen+1(resource r in C, s, h]hR, ρ,Γ, Q∗R,A∪X)
is valid.

Observe that
chng(C) = chng(resource r in C).

From Safen+1(C, s, h, (O,L,D ∪ {r}),Γ′, Q,A), we know that

chng(resource r in C) ∩
⋃

r̂∈L∪D

PV (r̂) ⊆ chng(C) ∩
⋃

r̂∈L∪D∪{r}

PV (r̂) = ∅.

Hence, we obtain the property (iii) of Safen+1(resource r in C, s, h ] hR, ρ,Γ, Q ∗R,A ∪X).
Let hG, C

′, s′, h′ and ρ′ such that s, hG |= ~
r̂∈D

Γ(r̂) and

resource r in C, (s, h ] hR ] hG, ρ)
A∪X,Γ−−−−→ C ′, (s′, h′, ρ′).

Next, we study the possible transitions.

Suppose that the transition is given by (RES0). We have that C = C ′ = skip, s′ = s, h′ =
h ] hR ] hG and ρ′ = ρ.

Taking h′G = hG. We know that h′G ⊆ h′ and

s, h′G |= ~
r̂∈D

Γ(r̂).

From Safen+1(skip, s, h, (O,L,D ∪ {r}),Γ′, Q,A) be valid, we have that

s, h |= Q.

Moreover, we have
s, h ] hR |= Q ∗R.

By the proposition 19, we conclude that Safen(skip, s, h ] hR,Γ, Q ∗R,A ∪X) is valid.

The transition (RES1) is not possible, because r /∈ Locked(C).

Suppose that the transition is given by (RES2). We have that C ′ = resource r in C̃ and

C, (s, h ] hR ] hG, (O,L,D ∪ {r}))→p C̃, (s
′, h′, ρ′′),

where ρ′ = ρ′′ \ {r}.
Note that

s, hR ] hG |= ~
r̂∈D∪{r}

Γ′(r̂).

From Safen+1(C, s, h, (O,L,D ∪ {r}),Γ′, Q,A) and the transition above, we know that there is
h′G such that h′G ⊆ h′, Safen(C̃, s′, h′ \ h′G, ρ′′,Γ′, Q,A) is valid and

s′, h′G |= ~
r̂∈D′′

Γ′(r̂).
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To complete the analysis of this transition, we need to study two di�erent cases: r ∈ O′′ or r ∈ D′′
(note that r /∈ L′′, because the proposition 4).

First, we suppose that r ∈ O′′. We have that D′′ = D′ and

s′, h′G |= ~
r̂∈D′

Γ(r̂).

From the proposition 15, we also have that r ∈ Locked(C̃).
From r ∈ O′′, we can apply the hypothesis P (n) to Safen(C̃, s′, h′ \ h′G, ρ′′,Γ′, Q,A) and obtain

that Safen(resource r in C̃, s′, h′ \ h′G, ρ′,Γ, Q ∗R,A ∪X) is valid.
To the other case, we suppose that r ∈ D′′. Note that

~
r̂∈D′′

Γ′(r̂) = R ∗
(

~
r̂∈D′

Γ(r̂)

)
.

Then there exists h′R ⊆ h′G such that s′, h′R |= R and

s′, h′G \ h′R |= ~
r̂∈D′

Γ(r̂).

From the proposition 15, it follows that r /∈ Locked(C̃). Note that

h′ = h′ \ h′G ] h′R ] h′G \ h′R.

Therefore Safen(resource r in C̃, s′, h′ \ h′G ] h′R, ρ′,Γ, Q ∗R,A ∪X) is valid, by Q(n).
Hence there exists h′G ⊆ h′ such that Safen(resource r in C̃, s′, h′ \h′G, ρ′,Γ, Q ∗R,A∪X) is valid

and
s′, h′G |= ~

r̂∈D′
Γ(r̂).

Suppose that the transition is given by (ENV ). Let A′ = A∪X ∪
⋃

r̂∈Locked(resource r in C) PV (r̂).

We have C ′ = resource r in C,

(s, h ] hR, ρ)
A′

! (s′, h ] hR, ρ′)

and there exists h′G ⊆ h′ such that h′ = h ] hR ] h′G and

s′, h′G |= ~
r̂∈D′

Γ(r̂).

Let A′′ = A ∪
⋃

r̂∈Locked(C) PV (r̂).

From r /∈ Locked(C), we have that Locked(C) = Locked(resource r in C) and A′′ ⊆ A′. Therefore

(s, h, (O,L,D ∪ {r})) A′′

! (s′, h, (O′, L′, D′ ∪ {r})).

From FV (R) ⊆ X ⊆ A′ and the proposition 2, we have that

s′, hR |= R.

Moreover, we know that

s, hG ] hR |= ~
r̂∈D∪{r}

Γ′(r̂), s′, h′G ] hR |= ~
r̂∈D′∪{r}

Γ′(r̂).

Then, we have the following environment transition

C, (s, h ] hR ] hG, (O,L,D ∪ {r}))
A,Γ′

−−−→e C, (s
′, h ] hR ] h′G, (O′, L′, D′ ∪ {r})),

and (O′, L′, D′ ∪ {r}) \ {r} = ρ′.
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From Safen+1(C, s, h, (O,L,D ∪ {r}),Γ′, Q,A) and the environment transition above, it follows
that Safen(C, s′, h, (O′, L′, D′ ∪ {r}),Γ′, Q,A) is valid.

By Q(n), we see that Safen(resource r in C, s′, h ] hR, ρ′,Γ, Q ∗R,A ∪X) is valid.

To �nish, we prove that P (n) ∧Q(n) implies P (n+ 1).
Suppose that r ∈ Locked(C) and Safen+1(C, s, h, (O ∪ {r}, L,D),Γ′, Q,A) is valid.
The properties (i), (ii) and (iii) of Safen+1(resource r in C, s, h, (O,L,D),Γ, Q ∗ R,A ∪ X) are

obtained in a similar way that before.
Let hG, C

′, s′, h′ and ρ′ such that s, hG |= ~
r̂∈D

Γ(r̂) and

resource r in C, (s, h ] hG, ρ)
A∪X,Γ−−−−→ C ′, (s′, h′, ρ′).

Next, we study the possible transitions.

The transition (RES0) can not occur because r ∈ Locked(C).

Suppose that the transition is given by (RES1). We have C ′ = resource r in C̃ and

C, (s, h ] hG, (O ∪ {r}, L,D))→p C̃, (s
′, h′, ρ′′),

where ρ′ = ρ′′ \ {r}.
Because r /∈ D, we know that

s, hG |= ~
r̂∈D

Γ′(r̂).

Considering the transition above, it follows from Safen+1(C, s, h, (O ∪ {r}, L,D),Γ′, Q,A) that
there is h′G such that h′G ⊆ h′, Safen(C̃, s′, h′ \ h′G, ρ′′,Γ′, Q,A) is valid and

s′, h′G |= ~
r̂∈D′′

Γ′(r̂).

Like in the previous step, we have to study two cases r ∈ O′′ or r ∈ D′′.
First, we suppose that r ∈ O′′. We have D′′ = D′ and

s′, h′G |= ~
r̂∈D′

Γ(r̂).

By the proposition 15, we know that r ∈ Locked(C̃).
Using P (n), we obtain that Safen(resource r in C̃, s′, h′ \ h′G, ρ′,Γ, Q ∗R,A ∪X) is valid.
For the other case, we suppose that r ∈ D′′. Note that

~
r̂∈D′′

Γ′(r̂) = R ∗ ~
r̂∈D′

Γ(r̂).

Hence, we know that there exists h′R ⊆ h′G such that s′, h′R |= R and

s′, h′G \ h′R |= ~
r̂∈D′

Γ(r̂).

From the proposition 15, it follows r /∈ Locked(C̃). And note that

h′ = h′ \ h′G ] h′R ] h′G \ h′R.

So by Q(n), we have Safen(resource r in C̃, s′, h′ \ h′G ] h′R, ρ′,Γ, Q ∗R,A ∪X) is valid.
Therefore there exists h′G such that Safen(resource r in C̃, s′, h′ \ h′G, ρ′,Γ, Q ∗R,A∪X) is valid,

h′G ⊆ h′ and
s′, h′G |= ~

r̂∈D′
Γ(r̂).

The transition (RES2) can not happen because r ∈ Locked(C).

Suppose that the transition is given by (ENV ). Let A′ = A∪X ∪
⋃

r̂∈Locked(resource r in C) PV (r̂).
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We have that C ′ = resource r in C,

(s, h ] hR, ρ)
A′

! (s′, h ] hR, ρ′)

and there exists h′G ⊆ h′ such that h′ = h ] hR ] h′G and

s′, h′G |= ~
r̂∈D′

Γ(r̂).

Let A′′ = A ∪
⋃

r̂∈Locked(C) PV (r̂). Note that A′′ = A′, because Locked(resource r in C) ∪ {r} =

Locked(C) and PV (r) = X.
Therefore

(s, h, (O ∪ {r}, L,D))
A′′

! (s′, h, (O′ ∪ {r}, L′, D′)).

Moreover, we know that

s, hG |= ~
r̂∈D

Γ′(r̂), s′, h′G |= ~
r̂∈D′

Γ′(r̂).

Then, we have the following environment transition

C, (s, h ] hG, (O′ ∪ {r}, L,D))
A,Γ′

−−−→e C, (s
′, h ] h′G, (O ∪ {r}, L′, D′)),

and (O′ ∪ {r}, L′, D′) \ {r} = ρ′.
From Safen+1(C, s, h, (O ∪ {r}, L,D),Γ′, Q,A) be valid and the environment transition above, it

follows that Safen(C, s′, h, (O′ ∪ {r}, L′, D′),Γ′, Q,A) is valid.
By P (n), we see that Safen(resource r in C, s′, h, ρ′,Γ, Q ∗R,A ∪X) is valid.

The soundness of the frame rule follows from the next proposition.

Proposition 24. Let C ∈ wf_cmd, s ∈ S, h, hR ∈ H, ρ ∈ O, Q,R ∈ Astn, Γ a well-formed
resource context, A ⊆ Var such that h⊥hR and s, hR |= R. If Safen(C, s, h, ρ,Γ, Q,A) is valid and
mod(C) ∩ FV (R) = ∅, then Safen(C, s, h ] hR, ρ,Γ, Q ∗R,A ∪ FV (R)) is valid.

Proof. We prove the proposition by induction on n.
Let C ∈ wf_cmd, s ∈ S, h, hR ∈ H, ρ ∈ O, Q,R ∈ Astn, Γ a well-formed resource context,

A ⊆ Var such that h⊥hR, s, hR |= R, mod(C) ∩ FV (R) = ∅ and Safen(C, s, h, ρ,Γ, Q,A) is valid.
For n = 0, it is straightforward. Let n = k + 1.
Suppose that C = skip, otherwise it is immediate. From Safen(C, s, h, ρ,Γ, Q,A), we have that

s, h |= Q. Hence
s, h ] hR |= Q ∗R.

By Safen(C, s, h, ρ,Γ, Q,A) and proposition 6, we have that

C, (s, h ] hR, ρ) 6→ abort.

Again by Safen(C, s, h, ρ,Γ, Q,A), we know the following

chng(C) ∩
⋃

r∈L∪D
PV (r) = ∅.

Until now, we proved the properties (i), (ii) and (iii) of Safen(C, s, h]hR, ρ,Γ, Q∗R,A∪FV (R)).
Next, we prove the property (iv). Let hG, C

′, s′, h′ and ρ′ such that hG⊥(h]hR), s, hG |= ~
r∈D

Γ(r)

and

C, (s, h ] hR ] hG, ρ)
A∪FV (R),Γ−−−−−−−−→ C ′, (s′, h′, ρ′).

Next, we consider two cases for the transition.

Suppose that it is a program transition, i.e.
A∪FV (R),Γ−−−−−−−−→=→p.
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By the frame property, we have that there is h′′ such that h′ = h′′ ] hR and

C, (s, h ] hG, ρ)→p C
′, (s′, h′′, ρ′).

From Safen(C, s, h, ρ,Γ, Q,A) be valid and the transition above, we know that there exists h′G ⊆
h′′, such that Safek(C ′, s′, h′′ \ h′G, ρ′,Γ, Q,A) is valid and

s′, h′G |= ~
r∈D′

Γ(r).

From mod(C) ∩ FV (R) = ∅, we have that mod(C ′) ∩ FV (R) = ∅ and

s′, hR |= R.

Applying the induction hypothesis, we obtain that Safek(C ′, s′, h′ \ h′G, ρ′,Γ, Q ∗R,A ∪ FV (R))
is valid.

Suppose that the transition is an environment transition, i.e.
A∪FV (R),Γ−−−−−−−−→=

A∪FV (R),Γ−−−−−−−−→e.
Let A′ = A ∪ FV (R) ∪

⋃
r∈Locked(C) PV (r). We have

(s, h ] hR, ρ)
A′

! (s′, h ] hR, ρ′),

and there exists h′G ⊆ h′ such that h′ = h ] hR ] h′G and

s′, h′G |= ~
r∈D′

Γ(r).

Let A′′ = A ∪
⋃

r∈Locked(C) PV (r). Note that A′′ ⊆ A′. Then

(s, h, ρ)
A′′

! (s′, h, ρ′).

From Safen(C, s, h, ρ,Γ, Q,A) and the corresponded transition of the environment to the trans-
formation above, we have that Safek(C, s′, h, ρ′,Γ, Q,A) is valid.

From FV (R) ⊆ A′, we know that
s′, hR |= R.

By the induction hypothesis, we conclude that Safek(C, s′, h ] hR, ρ′,Γ, Q ∗ R,A ∪ FV (R)) is
valid.

Before, we give the auxiliary result for the renaming rule, we complete the analysis started in the
proposition 10. In the next proposition, we state that the executions are independent of the resources
names.

Proposition 25. Let C,C ′ ∈ wf_cmd, s, s′ ∈ S, h, h′ ∈ H, ρ, ρ′ ∈ O, A ⊆ Var, Γ,Γ′ well-formed
resource contexts and r, r′ ∈ Res such that r′ /∈ Res(C), r′ /∈ ρ, r′ /∈ Γ and Γ′ = Γ[r′/r].

If C, (s, h, ρ)
A,Γ−−→ C ′, (s′, h′, ρ′), then

C[r′/r], (s, h, ρ[r′/r])
A,Γ′

−−−→ C ′[r′/r], (s′, h′, ρ′[r′/r]).

Proof. The prove is done by induction on the rule of
A,Γ−−→.

Let C,C ′ ∈ wf_cmd, s, s′ ∈ S, h, h′ ∈ H, ρ, ρ′ ∈ O, A ⊆ Var, Γ,Γ′ well-formed resource contexts
and r, r′ ∈ Res such that Γ′ = Γ[r′/r], r′ /∈ Res(C), r′ /∈ ρ, r′ /∈ Γ and

C, (s, h, ρ)
A,Γ−−→ C ′, (s′, h′, ρ′).

Suppose that the transition is given by (ASSIGN), (IF1), (IF2), (SEQ1), (LOOP ), (READ),
(WRI), (ALL), (FREE) or (PAR3). Then the transition neither depend in the resources names
nor in the resource context. So, it is trivial that

C[r′/r], (s, h, ρ[r′/r])
A,Γ′

−−−→ C ′[r′/r], (s′, h′, ρ′[r′/r]).
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Suppose that the transition is given by (SEQ2), (PAR1) or (PAR2). Using the induction
hypothesis, it is straightforward that

C[r′/r], (s, h, ρ[r′/r])
A,Γ′

−−−→ C ′[r′/r], (s′, h′, ρ′[r′/r]).

Suppose that the transition is given by (RES0). Then C = resource r̂ in skip, C ′ = skip and r̂ /∈ ρ.
We note that C[r′/r] = resource r̂[r′/r] in skip, C ′[r′/r] = skip and r̂[r′/r] /∈ ρ[r′/r]. Therefore

C[r′/r], (s, h, ρ[r′/r])
A,Γ′

−−−→ C ′[r′/r], (s′, h′, ρ′[r′/r]).

Suppose that the transition is given by (RES1). Then C = resource r̂ in C̃, C ′ = resource r̂ in C̃ ′,
r̂ /∈ ρ, r̂ ∈ Locked(C) and

C̃, (s, h, (O ∪ {r̂}, L,D))→p C̃
′, (s′, h′, ρ′′),

where ρ′′ \ {r̂} = ρ′.
From r′ /∈ Res(C), we know that r̂ is di�erent from r′ and r′ /∈ Res(C̃).
As before, we note that C[r′/r] = resource r̂[r′/r] in C̃[r′/r], C ′[r′/r] = resource r̂[r′/r] in C̃ ′[r′/r]

and r̂[r′/r] /∈ ρ[r′/r].
From r /∈ ρ and r̂ be di�erent from r′, we have that

r′ /∈ (O ∪ {r̂}, L,D).

We also know that C̃ ∈ wf_cmd, because C ∈ wf_cmd. By the induction hypothesis, we have
the following transition

C̃[r′/r], (s, h, (O ∪ {r̂}, L,D)[r′/r])→p C̃
′[r′/r], (s′, h′, ρ′′[r′/r]).

As noted in the proposition 10, we know that (ρ′′ \ {r̂})[r′/r] = ρ′′[r′/r] \ {r̂[r′/r]} and

r̂ ∈ Locked(C) i� r̂[r′/r] ∈ Locked(C[r′/r]).

Then r̂[r′/r] ∈ Locked(C[r′/r]) and ρ′′[r′/r] \ {r̂[r′/r]} = ρ′[r′/r]. Therefore,

C[r′/r], (s, h, ρ[r′/r])
A,Γ′

−−−→ C ′[r′/r], (s′, h′, ρ′[r′/r]).

The cases (RES2) and (WITH1) are analogous to the previous case.

Suppose that the transition is given by (WITH0). Then s(B) = true, C = with r̂ when B do C̃,
C ′ = within r̂ do C̃, ρ = (O,L,D ∪ {r̂}) and ρ′ = (O ∪ {r̂}, L,D).

If r̂ is di�erent from r, the conclusion is immediate. Then, we suppose that r̂ = r.
We have C[r′/r] = with r′ when B do C̃[r′/r], C ′[r′/r] = within r′ do C̃[r′/r], ρ[r′/r] = (O,L,D ∪

{r′}) and ρ′[r′/r] = (O ∪ {r′}, L,D).
It follows that

C[r′/r], (s, h, ρ[r′/r])
A,Γ′

−−−→ C ′[r′/r], (s′, h′, ρ′[r′/r]).

The case (WITH2) is analogous to the previous case.

Suppose that the transition is given by (ENV ). Let A′ = A ∪
⋃

r̂∈Locked(C) PV (r̂). We have

C ′ = C and there exists ĥ such that h = ĥ ] hG, h′ = ĥ ] h′G,

s, hG |= ~
r̂∈D

Γ(r̂), s′, h′G |= ~
r̂∈D′

Γ(r̂)

and

(s, ĥ, ρ)
A′

! (s′, ĥ, ρ′).
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Let A′′ = A ∪
⋃

r̂∈Locked(C[r′/r]) PV (r̂). Note that A′′ = A′. It is obvious that C ′[r′/r] = C[r′/r],

s, hG |= ~
r̂∈D[r′/r]

Γ′(r̂), s′, h′G |= ~
r̂∈D′[r′/r]

Γ′(r̂)

and

(s, ĥ, ρ[r′/r])
A′′

! (s′, ĥ, ρ′[r′/r]).

Therefore

C[r′/r], (s, h, ρ[r′/r])
A,Γ′

−−−→ C ′[r′/r], (s′, h′, ρ′[r′/r]).

The soundness of the rename rule follows from the next proposition.

Proposition 26. Let C ∈ wf_cmd, s ∈ S, h ∈ H, ρ = (O,L,D) ∈ O, A ⊆ Var, Γ a well-formed
resource context and r, r′ ∈ Res such that r′ /∈ Res(C), r′ /∈ Res(Γ) and O ∪ L ∪D = Res(Γ).

If Safen(C[r′/r], s, h, ρ[r′/r],Γ[r′/r], Q,A) is valid, then Safen(C, s, h, ρ,Γ, Q,A) is valid.

Proof. We prove the proposition by induction on n. Let C ∈ wf_cmd, s ∈ S, h ∈ H, ρ = (O,L,D) ∈
O, A ⊆ Var, Γ a well-formed resource context and r, r′ ∈ Res such that r′ /∈ Res(C), r′ /∈ Res(Γ),
O ∪ L ∪D = Res(Γ) and Safen(C[r′/r], s, h, ρ[r′/r],Γ[r′/r], Q,A) is valid.

First, note that r /∈ ρ, because r′ /∈ Res(Γ) and O ∪ L ∪D = Res(Γ).
For n = 0, it is trivially true. Let n = k + 1.
If C = skip, then C[r′/r] = skip. By Safen(C[r′/r], s, h, ρ[r′/r],Γ[r′/r], Q,A), we have that

s, h |= Q.

So the property (i) of Safen(C, s, h, ρ,Γ, Q,A) is veri�ed.
From Safen(C[r′/r], s, h, ρ[r′/r],Γ[r′/r], Q,A) be valid and the proposition 10, we have that

C[r′/r], (s, h, ρ[r′/r]) 6→p abort.

Hence, we have the property (ii) of Safen(C, s, h, ρ,Γ, Q,A).
From Safen(C[r′/r], s, h, ρ[r′/r],Γ[r′/r], Q,A) be valid, we have

chng(C) ∩
⋃

r̂∈L∪D

PV (r̂) = chng(C[r′/r]) ∩
⋃

r̂∈(L∪D)[r′/r]

PV (r̂) = ∅.

Then the property (iii) of Safen(C, s, h, ρ,Γ, Q,A) is respected.
Let hG, C

′, s′, h′ and ρ′ such that hG⊥h, s, hG |= ~
r̂∈D

Γ(r̂) and

C, (s, h ] hG, ρ)
A,Γ−−→ C ′, (s′, h′, ρ′).

Note that C ′ ∈ wf_cmd, because the proposition 14. By the proposition 25, we have that

C[r′/r], (s, h ] hG, ρ[r′/r])
A,Γ[r′/r]−−−−−−→ C ′[r′/r], (s′, h′, ρ′[r′/r]).

Moreover, we know that
s, hG |= ~

r̂∈D[r′/r]
Γ[r′/r](r̂).

By Safen(C[r′/r], s, h, ρ[r′/r],Γ[r′/r], Q,A) and the previous transition, we have that there exists
h′G such that h′G ⊆ h′, Safek(C ′[r′/r], s′, h′ \ h′G, ρ′[r′/r],Γ[r′/r], Q,A) is valid and

s′, h′G |= ~
r̂∈D′[r′/r]

Γ[r′/r](r̂).

It is easy to see that
s′, h′G |= ~

r̂∈D′
Γ(r̂).

By induction hypothesis, we have that Safek(C ′, s′, h′ \ h′G, ρ′,Γ, Q,A) is valid.
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To prove the soundness of the rule for auxiliary variables, we have the following result.

Proposition 27. Let C ∈ wf_cmd, s, s′ ∈ S, h ∈ H, ρ, ρ′ ∈ O, Q ∈ Astn, A,X ⊆ Var, Γ a
well-formed resource context and l ∈ N0 such that ρ′ = (Locked(C), Res(Γ) \ Locked(C), ∅), X is a
set of auxiliary variables for C, l = l(C), FV (Q) ∩X = ∅, FV (Q) ⊆ A and X ∩ PV (Γ) = ∅.

If Safe3n+2nl(C, s, h, ρ
′,Γ, Q,A ∪X) is valid and s(x) = s′(x), for every x /∈ X, then Safen(C \

X, s′, h, ρ,Γ, Q,A) is valid, where ρ = (Locked(C\X), L,D) such that L∪D = Res(Γ)\Locked(C\X).

Proof. Let C ∈ wf_cmd, s, s′ ∈ S, h ∈ H, ρ, ρ′ ∈ O, Q ∈ Astn, A,X ⊆ Var, Γ a well-formed
resource context and l ∈ N0 such that ρ′ = (Locked(C), Res(Γ)\Locked(C), ∅), X is a set of auxiliary
variables for C, l = l(C), FV (Q)∩X = ∅, FV (Q) ⊆ A,X∩PV (Γ) = ∅, Safe3n+2nl(C, s, h, ρ,Γ, Q,A∪
X) is valid and s′(x) = s(x), for every x /∈ X.

We remind that Locked(C) = Locked(C \X).
We will prove the proposition by induction on n.
For n = 0, it is trivial. Let n = k + 1.
Suppose that C \X = skip. Then C = skip or C = x:=e, where x ∈ X.
If C = skip, then l = 0. From Safe3n+2nl(C, s, h, ρ,Γ, Q,A ∪X), it is immediate that

s, h |= Q.

Because s(y) = s′(y), for every y ∈ FV (Q), we have that

s′, h |= Q.

If C = x:=e, x ∈ X, then l = 1. Consider the transition given by (ASSIGN)

C, (s, h, ρ)→p skip, (s[x : v], h, ρ),

where v = s(e).
Then, we know that Safe3n+2nl−1(skip, s[x : v], h, ρ,Γ, Q,A ∪X) is valid. Therefore

s[x : v], h |= Q.

Note that s[x : v](y) = s′(y), for every y ∈ FV (Q). Then we have that

s′, h |= Q.

The analysis above show that the property (i) of Safen(C \X, s′, h, ρ,Γ, Q,A) is true.
From Safe3n+2nl(C, s, h, ρ

′,Γ, Q,A ∪X), we know that

C, (s, h, ρ) 6→p abort.

By proposition 11, we have that

C \X, (s, h, ρ) 6→p abort.

Having in account that s(x) = s′(x), for every x ∈ FV (C \X) = FV (C) \X and the proposition
5, we know that

C \X, (s′, h, ρ) 6→p abort.

Hence the property (ii) of Safen(C \X, s′, h, ρ,Γ, Q,A) is veri�ed.
Note that

chng(C \X) = chng(C) \X.

Again by Safe3n+2nl(C, s, h, ρ
′,Γ, Q,A ∪X), we have that

chng(C \X) ∩
⋃

r∈Res(Γ)\Locked(C\X)

PV (r) ⊆ chng(C) ∩
⋃

r∈L∪D
PV (r) = ∅.
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The property (iii) of Safen(C \X, s′, h, ρ,Γ, Q,A) is establish by the previous inequalities of sets.

Let hG, Ĉ, ŝ, ĥ and ρ̂ such that hG⊥h, s′, hG |= ~
r∈D

Γ(r) and

C \X, (s′, h ] hG, ρ)
A,Γ−−→ Ĉ, (ŝ, ĥ, ρ̂).

First, we note that we have the following environment transition

C, (s, h, ρ′)
A∪X,Γ−−−−→e C, (s, h ] hG, ρ).

Now, we suppose that the transition in the execution of C \ X is a program transition, i.e.
A,Γ−−→=→p.

From X ∩FV (C \X) = ∅ and the proposition 5, we know that there is ŝ′ such that ŝ′(x) = ŝ(x),
for every x /∈ X, and

C \X, (s, h ] hG, ρ)
A,Γ−−→ Ĉ, (ŝ′, ĥ, ρ̂).

Using the proposition 12, we know that there exist C ′′ and j ≤ l + 1 such that Ĉ = C ′′ \X

C, (s, h ] hG, ρ)→j
p C
′′, (ŝ′′, ĥ, ρ̂),

where ŝ′(x) = ŝ′′(x), for every x /∈ X, and l′′ ≤ 2l − (j − 1), where l′′ = l(C ′′).
Considering the following (j + 1)-transitions

C, (s, h, ρ′)
A∪X,Γ−−−−→

j+1

C ′′, (ŝ′′, ĥ, ρ̂).

From Safe3n+2nl(C, s, h, ρ
′,Γ, Q,A∪X) be valid, we conclude that there exists h′G ⊆ ĥ such that

Safen+2nl−j−1(C ′′, ŝ′′, ĥ \ h′G, ρ̂,Γ, Q,A ∪X) is valid and

ŝ′′, h′G |= ~
r∈D̂

Γ(r).

From ŝ′′(x) = ŝ(x), for every x /∈ X, X ∩ PV (Γ) = ∅ and the proposition 2, we obtain that

ŝ, h′G |= ~
r∈D̂

Γ(r).

By the proposition 4, we have that ρ̂ = (Locked(C ′′), L̂, D̂), where L∪D = Res(Γ) \Locked(C ′′).
Let ρ̂′ = (Locked(C ′′), Res(Γ) \ Locked(C ′′), ∅) and consider the environment transition below

C ′′, (ŝ′′, (ĥ \ h′G) ] h′G, ρ̂)
A∪X,Γ−−−−→e C

′′, (ŝ′′, ĥ \ h′G, ρ̂′).

Hence, Safe3n+2nl−(j+2)(C
′′, ŝ′′, ĥ \ h′G, ρ̂′,Γ, Q,A ∪X) is valid.

From l′′ ≤ 2l − (j − 1), we know that

2kl′′ ≤ 2nl − 2k(j − 1).

Because (j − 1) ≤ 2k(j − 1), for every k ≥ 0 and j ≥ 1, we obtain that

2kl′′ ≤ 2nl − (j − 1).

Note that 2nl − (j − 1) ≥ 2kl′′ is equivalent to

3n+ 2nl − (j + 2) ≥ 3k + 2kl′′.

Using the proposition 18, we see that Safe3k+2kl′′(C
′′, ŝ′′, ĥ \ h′G, ρ̂′,Γ, Q,A ∪X) is valid.

By the induction hypothesis, we conclude that Safek(C ′′ \X, ŝ, ĥ \ h′G, ρ̂,Γ, Q,A) is valid.
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To �nish, we suppose that the transition is an environment transition,i.e.
A,Γ−−→=

A,Γ−−→e.
Let A′ = A ∪

⋃
r∈Locked(C\X) PV (r). We have Ĉ = C \X,

(s′, h, ρ)
A′

! (ŝ, h, ρ̂),

and there exists h′G ⊆ ĥ such that ĥ = h ] h′G and

ŝ, h′G |= ~
r∈D̂

Γ(r).

Note that ρ̂ = (Locked(C \X), L,D), such thatL ∪D = Res(Γ) \ Locked(C \X).
Let ŝ′ ∈ S, such that ŝ′(x) = ŝ(x), if x /∈ X, and ŝ′(x) = s(x), if x ∈ X.
We have the following environment transformation

(s, h, ρ′)
A′′

! (ŝ′, h, ρ′),

where A′′ = A ∪X ∪
⋃

r∈Locked(C) PV (r).
Then, we can consider the environment transition

C, (s, h, ρ′)
A∪X,Γ−−−−→ C, (ŝ′, h, ρ′).

By the proposition 18 and the previous transition, we obtain that Safe3k+2kl(C, ŝ
′, h, ρ′,Γ, Q,A∪

X) is valid.
Note that ŝ′(x) = ŝ(x), for every x /∈ X. Therefore by the induction hypothesis, we have that

Safek(C \X, ŝ, h, ρ̂,Γ, Q,A) is valid.

4.4 Soundness

In this section, we �nally prove the soundness of Concurrent Separation Logic with respect to the
operational semantics.

Theorem 2. If Γ `A {P}C{Q} is a derivable well-formed speci�cation, then Γ |= {P}C{Q}.

The proof of this result is a immediate consequence of the next theorem and the theorem 1.

Theorem 3. Let C ∈ Com, P,Q ∈ Astn, Γ a well-formed resource context and A ⊆ Var.
If Γ `A {P}C{Q} is a derivable well-formed speci�cation, then for every s ∈ S, h ∈ H and n ≥ 0

such that s, h |= P , we have that Safen(C, s, h, (∅, L,D),Γ, Q,A) is valid, where L ∪D = Res(Γ).

Proof. Let C ∈ Com, P,Q ∈ Astn, Γ a well-formed resource context, A ⊆ Var, s ∈ S and h ∈ H
such that Γ `A {P}C{Q} is a derivable well-formed speci�cation and s, h |= P . We will prove the
proposition by induction on the inference rules.

(SKIP )

We have that C = skip, Q = P and FV (P ) ⊆ A. By the proposition 19 and s, h |= P , we know
that Safen(skip, s, h, (∅, L,D),Γ, P,A) is valid, for every n ∈ N0, where L ∪D = Res(Γ).

(ASSIGNMENT )

We have C = x:=e, x /∈ PV (Γ), {x} ∪ FV (Q) ∪ FV (e) ⊆ A and P = Q[e/x]. We will prove by
induction on n that, if s, h |= Q[e/x] and x /∈ PV (Γ), then Safen(x:=e, s, h, (∅, L,D),Γ, Q,A) is valid,
where L ∪D = Res(Γ).

For n = 0, it is trivial. Let n = k + 1.
The property (i) of Safen(x:=e, s, h, (∅, L,D),Γ, Q,A) is immediate, because x:=e 6= skip.
The property (ii) of Safen(x:=e, s, h, (∅, L,D),Γ, Q,A) is valid, because the command does not

abort.
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We have that chng(x:=e) = {x}. From x /∈ PV (Γ), it follows that

chng(x:=e) ∩
⋃

r∈L∪D
PV (r) = ∅.

Hence the property (iii) of Safen(x:=e, s, h, (∅, L,D),Γ, Q,A) is valid.
Let hG, C

′, s′, h′ and ρ′ such that hG⊥h, s, hG |= ~
r∈D

Γ(r) and

x:=e, (s, h ] hG, (∅, L,D))
A,Γ−−→ C ′, (s′, h′, ρ′).

Next we consider the possible transitions.

If the transition is given by (ASSIGN).
We have that C ′ = skip, s′ = s[x : v], h′ = h ] hG and ρ′ = (∅, L,D), where v = s(e). From

x /∈ PV (Γ), we have that
s[x : v], hG |= ~

r∈D
Γ(r).

We just need to check that Safek(skip, s[x : v], h, (∅, L,D),Γ, Q,A) is valid.
By the proposition 3 and s, h |= Q[e/x], we know that

s[x : v], h |= Q.

From FV (Q) ⊆ A and the proposition 19, we have that Safek(skip, s[x : v], h, (∅, L,D),Γ, Q,A)
is valid.

If the transition is given by (ENV ).
We have C ′ = x:=e,

(s, h, (∅, L,D))
A
! (s′, h, ρ′)

and there exists h′G ⊆ h′ such that h′ = h ] h′G and

s′, h′G |= ~
r∈D′

Γ(r).

From {x} ∪ FV (Q) ∪ FV (e) ⊆ A, we know that

s′, h |= Q[e/x].

Moreover ρ′ = (∅, L′, D′), where L′ ∪D′ = L ∪D = res(Γ).
Therefore, by induction hypothesis we have that Safek(x:=e, s′, h, ρ′,Γ, Q,A) is valid.

(LOOKUP )

We have that C = x:=[e], Q = R ∧ e 7→ e', P = R[e'/x] ∧ e 7→ e', x /∈ FV (e, e'), x /∈ PV (Γ) and
{x} ∪ FV (R) ∪ FV (e, e') ⊆ A.

We prove by induction on n that, if s, h |= R[e'/x] ∧ e 7→ e', x /∈ FV (e, e') and x /∈ PV (Γ), then
Safen(x:=[e], s, h, (∅, L,D),Γ, Q,A) is valid, where L ∪D = Res(Γ).

For n = 0, it is trivial. Let n = k + 1.
The property (i) of Safen(x:=[e], s, h, (∅, L,D),Γ, Q,A) is immediate, because x:=[e] 6= skip.
From s, h |= e 7→ e', it follows the property (ii) of Safen(x:=[e], s, h, (∅, L,D),Γ, Q,A).
We have that chng(x:=[e]) = {x}. Because x /∈ PV (Γ), we have that

chng(x:=[e]) ∩
⋃

r∈L∪D
PV (r) = ∅.

The previous establish the property (iii) of Safen(x:=[e], s, h, (∅, L,D),Γ, Q,A).
Let hG, C

′, s′, h′ and ρ′ such that hG⊥h, s, hG |= ~
r∈D

Γ(r) and

x:=[e], (s, h ] hG, (∅, L,D))
A,Γ−−→ C ′, (s′, h′, ρ′).
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Next we consider the possible transitions.

If the transition is given by (READ).
We have C ′ = skip, s′ = s[x : v′], h′ = h ] hG and ρ′ = (∅, L,D), where v′ = s(e').
From x /∈ PV (Γ), we know that

s[x : v′], hG |= ~
r∈D

Γ(r).

We just need to check that Safek(skip, s[x : v′], h, (∅, L,D),Γ, Q,A).
By proposition 3 and s, h |= R[e'/x] ∧ e 7→ e', we have that

s[x : v′], h |= R ∧ e 7→ e'.

Therefore by the proposition 19, Safek(skip, s[x : v′], h, (∅, L,D),Γ, Q,A) is valid.

If the transition is given by (ENV ). We have C ′ = x:=[e],

(s, h, (∅, L,D))
A
! (s′, h, ρ′)

and there exists h′G ⊆ h′ such that h′ = h ] h′G and

s′, h′G |= ~
r∈D′

Γ(r).

From FV (R) ∪ {e, e', x} ⊆ A, we have that

s′, h |= R[e'/x] ∧ e 7→ e'.

Note that ρ′ = (∅, L′, D′), where L′ ∪D′ = L ∪D = Res(Γ).
Therefore by induction hypothesis, we have that Safek(x:=[e], s′, h, ρ′,Γ, R ∧ e 7→ e', A) is valid.

(UPDATE)

We have that C = [e]:=e', Q = e 7→ e', P = e 7→ − and FV (e, e') ⊆ A.
We prove by induction on n that, if s, h |= e 7→ −, then Safen([e]:=e', s, h, (∅, L,D),Γ, Q,A) is

valid, where L ∪D = Res(Γ).
For n = 0, it is trivial. Let n = k + 1.
The property (i) of Safen([e]:=e', s, h, (∅, L,D),Γ, Q,A) is immediate, because [e]:=e' 6= skip.
From s, h |= e 7→ −, it follows the property (ii) of Safen([e]:=e', s, h, (∅, L,D),Γ, Q,A).
We have that chng([e]:=e') = ∅. Then, the property (iii) of Safen([e]:=e', s, h, (∅, L,D),Γ, Q,A)

is immediate.
Let hG, C

′, s′, h′ and ρ′ such that hG⊥h, s, hG |= ~
r∈D

Γ(r) and

[e]:=e', (s, h ] hG, (∅, L,D))
A,Γ−−→ C ′, (s′, h′, ρ′).

Above, we consider the possible transitions.

If the transition is given by (WRI). We have C ′ = skip, s′ = s, h′ = (h ] hG)[s(e) : s(e')] and
ρ′ = (∅, L,D).

Because s, h |= e 7→ −, we know that s(e) ∈ dom(h) and we can rewrite

h′ = h[s(e) : s(e')] ] hG.

Taking h′G = hG. Then
s, hG |= ~

r∈D
Γ(r).

We just need to check that Safek(skip, s, h[s(e) : s(e')], (∅, L,D),Γ, Q,A).
We have that

s, h[s(e) : s(e')] |= e 7→ e'.
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Therefore, by the proposition 19, Safek(skip, s, h[s(e) : s(e')], (∅, L,D),Γ, Q,A) is valid.

If the transition is given by (ENV ). We have C ′ = [e]:=e',

(s, h, (∅, L,D))
A
! (s′, h, ρ′)

and there exists h′G ⊆ h′ such that h′ = h ] h′G and

s′, h′G |= ~
r∈D′

Γ(r).

It is su�cient to check that Safek([e]:=e', s′, h, ρ′,Γ, Q,A) is valid.
From FV (e) ⊆ A, we get that s′, h |= e 7→ −.
And note that ρ′ = (∅, L′, D′), where L′ ∪D′ = L ∪D = Res(Γ).
Then, it follows from the induction hypothesis that Safek([e]:=e', s′, h, ρ′,Γ, Q,A) is valid.

(ALLOCATION)

We have C = x:=cons(e), P = emp, Q = x 7→ e, x /∈ PV (Γ), x /∈ FV (e) and FV (e) ∪ {x} ⊆ A.
We prove by induction on n that, if s, h |= emp, then Safen(x:=cons(e), s, h, (∅, L,D),Γ, Q,A) is

valid, where L ∪D = Res(Γ).
For n = 0, it is trivial. Let n = k + 1.
The property (i) of Safen(x:=cons(e), s, h, (∅, L,D),Γ, Q,A) is veri�ed, because x:=cons(e) 6= skip.
The property (ii) of Safen(x:=cons(e), s, h, (∅, L,D),Γ, Q,A) is trivial, because the command

does not abort.
We have that chng(x:=cons(e)) = {x}. Because x /∈ PV (Γ), we know that

chng(x:=cons(e)) ∩
⋃

r∈L∪D
PV (r) = ∅.

The previous establish the property (iii) of Safen(x:=cons(e), s, h, (∅, L,D),Γ, Q,A).
Let hG, C

′, s′, h′ and ρ′ such that hG⊥h, s, hG |= ~
r∈D

Γ(r) and

x:=cons(e), (s, h ] hG, (∅, L,D))
A,Γ−−→ C ′, (s′, h′, ρ′).

Next, we consider the possible transitions.

If the transition is given by (ALL). We have C ′ = skip, s′ = s[x : l], h′ = (h ] hG)[l : s(e)] and
ρ′ = (∅, L,D), such that l /∈ dom(h ] hG).

Rewriting the heap, we see that
h′ = h[l : s(e)] ] hG.

Taking h′G = hG. Because x /∈ PV (Γ), we have that

s′, hG |= ~
r∈D

Γ(r).

We need to check that Safek(skip, s′, h′, (∅, L,D),Γ, Q,A) is valid.
It is easy to see that

s′, h[l : s(e)] |= x 7→ e.

Therefore by proposition 19, we obtain that Safek(skip, s′, h′, (∅, L,D),Γ, Q,A) is valid.

If the transition is given by (ENV ). We have C ′ = x:=cons(e),

(s, h, (∅, L,D))
A
! (s′, h, ρ′)

and there exists h′G ⊆ h′ such that h′ = h ] h′G and

s′, h′G |= ~
r∈D′

Γ(r).

It is enough to check that Safek(x:=cons(e), s′, h, ρ′,Γ, Q,A) is valid. This follows from the
induction hypothesis, because s′, h |= emp and ρ′ = (∅, L′, D′), where L′ ∪D′ = L ∪D = Res(Γ).
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(DISPOSAL)

We have C = dispose(e), P = e 7→ −, Q = emp and FV (e) ⊆ A.
We prove by induction on n that, if s, h |= P , then Safen(dispose(e), s, h, (∅, L,D),Γ, Q,A) is

valid, where L ∪D = Res(Γ).
For n = 0, it is trivial. Let n = k + 1.
The property (i) of Safen(dispose(e), s, h, (∅, L,D),Γ, Q,A) is veri�ed, because dispose(e) 6= skip.
From s, h |= e 7→ −, it follows the property (ii) of Safen(dispose(e), s, h, (∅, L,D),Γ, Q,A).
By chng(dispose(e)) = ∅, we have the property (iii) of Safen(dispose(e), s, h, (∅, L,D),Γ, Q,A).
Let hG, C

′, s′, h′ and ρ′ such that hG⊥h, s, hG |= ~
r∈D

Γ(r) and

dispose(e), (s, h ] hG, (∅, L,D))
A,Γ−−→ C ′, (s′, h′, ρ′).

Next, we consider the possible transitions.

If the transition is given by (FREE). We have C ′ = skip, s′ = s, h′ = (h ] hG) \ {s(e)} and
ρ′ = (∅, L,D).

From s, h |= e 7→ −, we know that {s(e)} = dom(h) and we can rewrite the heap in the following
expression

h′ = h \ {s(e)} ] hG.

Consider h′G = hG. Then
s, hG |= ~

r∈D
Γ(r).

We need to check that Safek(skip, s, h \ {s(e)}, (∅, L,D),Γ, Q,A) is valid.
From s, h |= e 7→ −, we have that

s, h \ {s(e)} |= emp.

Therefore by proposition 19, we conclude that Safek(skip, s, h \ {s(e)}, (∅, L,D),Γ, Q,A) is valid.

If the transition is given by (ENV ). We have C ′ = dispose(e),

(s, h, (∅, L,D))
A
! (s′, h, ρ′)

and there exists h′G ⊆ h′ such that h′ = h ] h′G and

s′, h′G |= ~
r∈D′

Γ(r).

We just need to check that Safek(dispose(e), s′, h, ρ′,Γ, Q,A) is valid. This follows from the
induction hypothesis, because s′, h |= e 7→ − and ρ′ = (∅, L′, D′), where L′ ∪D′ = L ∪D = Res(Γ).

(SEQUENCE)

We have C = C1 ; C2 and A = A1 ∪ A2. By induction on the inference rules, there is R ∈ Astn
such that

• if s′, h′ |= P , then Safen(C1, s
′, h′, (∅, L,D),Γ, R,A1) is valid, where L∪D = res(Γ) and n ≥ 0.

• if s′, h′ |= R, then Safen(C2, s
′, h′, (∅, L,D),Γ, Q,A2) is valid, where L∪D = res(Γ) and n ≥ 0.

The conclusion is immediate from proposition 20, observing that Locked(C1) = ∅.

(CONDITIONAL)

We have that C = if B then C1 else C2, FV (P,Q) ⊆ A1 ∩A2 and A = A1 ∪A2. And by induction
on the inference rules,

• if s′, h′ |= P ∧ B, then Safen(C1, s
′, h′, (∅, L,D),Γ, Q,A1) is valid, where L ∪D = res(Γ) and

n ≥ 0; and
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• if s′, h′ |= P ∧¬B, then Safen(C2, s
′, h′, (∅, L,D),Γ, Q,A2) is valid, where L∪D = res(Γ) and

n ≥ 0.

We prove by induction on n that, if s, h |= P , then Safen(if B then C1 else C2, s, h, (∅, L,D),Γ, Q,A)
is valid, where L ∪D = res(Γ).

For n = 0, it is trivial. Let n = k + 1.
The property (i) of Safen(if B then C1 else C2, s, h, (∅, L,D),Γ, Q,A) is valid, because C 6= skip.
The property (ii) of Safen(if B then C1 else C2, s, h, (∅, L,D),Γ, Q,A) is respected, because the

command does not abort.
We have that chng(if B then C1 else C2) = ∅.
Then the property (iii) of Safen(if B then C1 else C2, s, h, (∅, L,D),Γ, Q,A) is immediate.
Let hG, C

′, s′, h′ and ρ′ such that hG⊥h, s, hG |= ~
r∈D

Γ(r) and

if B then C1 else C2, (s, h ] hG, (∅, L,D))
A,Γ−−→ C ′, (s′, h′, ρ′).

Next, we consider the possible transitions.

If the transition is given by (IF1). We have C ′ = C1, s, h |= B, s′ = s, h′ = h ] hG and
ρ′ = (∅, L,D).

Take h′G = hG. We know that
s, hG |= ~

r∈D
Γ(r).

We just need to check that Safek(C1, s, h, (∅, L,D),Γ, Q,A) is valid.
We know that s, h |= P ∧B. Hence Safek(C1, s, h, (∅, L,D),Γ, Q,A1) is valid. From A1 ⊆ A, we

know that
A1!⊇ A

! .

Therefore Safek(C1, s, h, (∅, L,D),Γ, Q,A) is valid.

For the transition (IF2) we use an identical argument.
If the transition is given by (ENV ). We have C ′ = if B then C1 else C2,

(s, h, (∅, L,D))
A
! (s′, h, ρ′)

and there exists h′G ⊆ h′ such that h′ = h ] h′G and

s′, h′G |= ~
r∈D′

Γ(r).

From FV (P ) ⊆ A, s, h |= P and the proposition 2, we know that

s′, h |= P.

Then by the induction hypothesis, we obtain that Safek(C, s′, h, ρ′,Γ, Q,A) is valid.

(LOOP )

We have C = while B do C̃ and FV (P ) ∪ FV (B) ⊆ A.
By induction on inference rules, if s′, h′ |= P ∧B, then Safen(C̃, s′, h′, (∅, L,D),Γ, P,A) is valid,

where L ∪D = res(Γ) and n ≥ 0.
We will prove by induction on n that, if s, h |= P , then Safen(while B do C̃, s, h, (∅, L,D),Γ, P ∧

¬B,A) is valid, where L ∪D = res(Γ).
For n = 0, it is trivial. Let n = k + 1.
From while B do C̃ 6= skip, we get the property (i) of Safen(while B do C̃, s, h, (∅, L,D),Γ, P ∧

¬B,A).
The property (ii) of Safen(while B do C̃, s, h, (∅, L,D),Γ, P ∧ ¬B,A) is veri�ed, because the

command does not abort.
The property (iii) of Safen(while B do C̃, s, h, (∅, L,D),Γ, P ∧ ¬B,A) is immediate, because we

know that chng(while B do C̃) = ∅.
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Let hG, C
′, s′, h′ and ρ′ such that hG⊥h, s, hG |= ~

r∈D
Γ(r) and

while B do C̃, (s, h ] hG, (∅, L,D))
A,Γ−−→ C ′, (s′, h′, ρ′).

Next, we consider the possible transitions.

If the transition is given by (LOOP ). We have C ′ = if B then C̃ ; while B do C̃ else skip, s′ = s,
h′ = h ] hG and ρ′ = (∅, L,D).

Considering h′G = hG, we know that

s, hG |= ~
r∈D

Γ(r).

We just need to check that Safek(if B then C̃ ; while B do C̃ else skip, s, h, (∅, L,D),Γ, P ∧¬B,A)
is valid.

By induction on the inference rules, if s, h |= P ∧B, then Safek(C̃, s, h, (∅, L,D),Γ, P,A) is valid.
By induction on n, we know that if s, h |= P , then Safek(while B do C̃, s, h, (∅, L,D),Γ, P∧¬B,A)

is valid.
Noting that Locked(C̃) = ∅, we can apply the proposition 20 to conclude that if s, h |= P ∧ B,

then Safek(C̃ ; while B do C̃, s, h, (∅, L,D),Γ, P ∧ ¬B,A).
From proposition 19, we obtain that if s, h |= P∧¬B, then Safek(skip, s, h, (∅, L,D),Γ, P∧¬B,A)

is valid.
Repeating the argument used in the (CONDITIONAL) rule, we obtain that if s, h |= P , then

Safek(if B then C̃ ; while B do C̃ else skip, s, h, (∅, L,D),Γ, P ∧ ¬B,A) is valid.

If the transition is given by (ENV ). We have C ′ = while B do C̃,

(s, h, (∅, L,D))
A
! (s′, h, ρ′)

and there exists h′G ⊆ h′ such that h′ = h ] h′G and

s′, h′G |= ~
r∈D′

Γ(r).

From FV (P ) ⊆ A, s, h |= P and the proposition 2, it follows that

s′, h |= P.

Therefore by induction on n we have that Safek(while B do C̃, s′, h, (∅, L′, D′),Γ, Q,A) is valid.

(PARALLEL)

We have C = C1 ‖ C2, P = P1∗P2, Q = Q1∗Q2, A = A1∪A2, FV (P1, Q1) ⊆ A1, FV (P2, Q2) ⊆ A2

and A1 ∩mod(C2) = A2 ∩mod(C1) = ∅.
By induction on the inference rules,

• if s′, h′ |= P1, then Safen(C1, s
′, h′, (∅, L,D),Γ, Q1, A1), where L ∪D = res(Γ) and n ≥ 0.

• if s′, h′ |= P2, then Safen(C2, s
′, h′, (∅, L,D),Γ, Q2, A2), where L ∪D = res(Γ) and n ≥ 0.

From s, h |= P , we know that there are h1, h2 such that h = h1 ] h2,

s, h1 |= P1 s, h2 |= P2.

Hence Safen(C1, s, h1, (∅, L,D),Γ, Q1, A1) and Safen(C2, s, h2, (∅, L,D),Γ, Q2, A2) are valid.
Applying the proposition 21, we get that Safen(C1 ‖ C2, s, h, (∅, L,D),Γ, Q1 ∗ Q2, A1 ∪ A2) is

valid.

(CRITICAL REGION)
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We have C = with r when B do C̃, FV (P,Q) ⊆ A and Γ = Γ′, r(X) : R is a well-formed resource
context.

By induction on the inference rules, if s′, h′ |= (P ∧ B) ∗ R, L′ ∪ D′ = res(Γ′) and n ≥ 0 then
Safen(C̃, s′, h′, (∅, L′, D′),Γ′, Q ∗R,A ∪X) is valid.

We will prove by induction on n that, if s, h |= P and L ∪ D = res(Γ) = res(Γ′) ∪ {r}, then
Safen(with r when B do C̃, s, h, (∅, L,D),Γ, Q,A) is valid.

For n = 0, it is trivial. Let n = k + 1.
The property (i) of Safen(with r when B do C̃, s, h, (∅, L,D),Γ, Q,A) is veri�ed, because C 6=

skip.
We have the property (ii) of Safen(with r when B do C̃, s, h, (∅, L,D),Γ, Q,A), because r ∈ L∪D.
We know that chng(with r when B do C̃) = ∅.
Then the property (iii) of Safen(with r when B do C̃, s, h, (∅, L,D),Γ, Q,A) is immediate.
Let hG, C

′, s′, h′ and ρ′ such that hG⊥h, s, hG |= ~
r̂∈D

Γ(r̂) and

with r when B do C̃, (s, h ] hG, (∅, L,D))
A,Γ−−→ C ′, (s′, h′, ρ′).

Next, we consider the possible transitions.

If the transition is given by (WITH0). We have C ′ = within r do C̃, r ∈ D, s′ = s, h′ = h ] hG,
ρ′ = ({r}, L,D \ {r}) and s, h ] hG |= B.

From r ∈ D and s, hG |= ~
r̂∈D

Γ(r̂), we know that there exist hR and h′G such that hG = hR ] h′G
and

s, hR |= R, s, h′G |= ~
r∈D\{r}

Γ(r).

We just need to check that Safek(within r do C̃, s, h ] hR, ({r}, L,D \ {r}),Γ, Q,A) is valid.
We have that

s, h ] hR |= (P ∧B) ∗R.

Hence Safek(C̃, s, h, (∅, L,D \ {r}),Γ′, Q ∗R,A ∪X) is valid, because L ∪D \ {r} = Res(Γ′).
By the proposition 22, we conclude that Safek(within r do C̃, s, h ] hR, ({r}, L,D \ {r}),Γ, Q,A)

is valid.

If the transition is given by (ENV ). We have C ′ = with r when B do C̃,

(s, h, (∅, L,D))
A
! (s′, h, (∅, L′, D′))

and there exists h′G ⊆ h′ such that h′ = h ] h′G and

s′, h′G |= ~
r∈D′

Γ(r).

Note that L′ ∪D′ = L ∪D = Res(Γ) ∪ {r}.
It is su�cient to prove that Safek(with r when B do C̃, s′, h, (∅, L′, D′),Γ, Q,A) is valid.
From FV (P ) ⊆ A, s, h |= P and the proposition 2, it follows that

s′, h |= P.

Therefore by induction hypothesis on n, Safek(with r when B do C̃, s′, h, (∅, L′, D′),Γ, Q,A) is
valid.

(LOCAL RESOURCE)

We have C = resource r in C̃ and Γ′ = Γ, r(X) : R is a well-formed resource context.
By induction on the inference rules, if s′, h′ |= P , then Safen(C̃, s′, h′, (∅, L′, D′),Γ′, Q,A) is valid,

where n ≥ 0 and L ∪D = res(Γ) ∪ {r}.
We prove by induction on n that, if s, h |= P ∗R, then Safen(resource r in C̃, s, h, ρ,Γ, Q∗R,A∪X)

is valid, where ρ = (∅, L,D) and L ∪D = res(Γ).
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From s, h |= P ∗R, there exists hR ⊆ h such that

s, hR |= R, s, h \ hR |= P.

Hence Safen(C̃, s, h \ hR, (∅, L,D ∪ {r}),Γ′, Q,A) is valid.
Note that r /∈ Locked(C̃), because Locked(C̃) = ∅.
By the proposition 23, we conclude that Safen(resource r in C̃, s, h, (∅, L,D),Γ, Q ∗ R,A ∪X) is

valid.

(RENAMING)

We have r′ /∈ Res(C) and r′ /∈ Res(Γ). And by induction hypothesis on the inference rules, if
s′, h′ |= P , then Safen(C[r′/r], s′, h′, (∅, L,D),Γ[r′/r], Q,A) is valid, where L∪D = res(Γ[r′/r]) and
n ≥ 0.

From s, h |= P , we know that Safen(C[r′/r], s′, h′, (∅, L,D)[r′/r],Γ[r′/r], Q,A) is valid for every
n ≥ 0 and L ∪D[r′/r] = res(Γ)[r′/r].

Note that

L ∪D[r′/r] = res(Γ)[r′/r] i� L ∪D = res(Γ).

By the proposition 26, we conclude that Safen(C, s, h, (∅, L,D),Γ, Q,A) is valid, for every n ≥ 0
and L ∪D = res(Γ).

(FRAME)

By induction on the inference rules, if s′, h′ |= P , then Safen(C, s′, h′, (∅, L,D),Γ, Q,A) is valid,
where L ∪D = res(Γ) and n ≥ 0.

Let s, h,R such that s, h |= P ∗ R and mod(C) ∩ FV (R) = ∅. There is a hR ⊆ h such that
s, hR |= R and s, h \ hR |= P .

By induction on the inference rules, we have that Safen(C, s, h \ hR, (∅, L,D),Γ, Q,A) is valid.
By proposition 24, we conclude that Safen(C, s, h ] hR, (∅, L,D),Γ, Q ∗R,A ∪ FV (R)) is valid.

(CONSEQUENCE)

We have A′ ⊆ A, |= P ⇒ P ′ and |= Q′ ⇒ Q.
By induction on the inference rules, if s′, h′ |= P ′, then Safen(C, s′, h′, (∅, L,D),Γ, Q′, A′) is valid,

where L ∪D = res(Γ) and n ≥ 0.
From s, h |= P and |= P ⇒ P ′, we know that s, h |= P ′.
Hence Safen(C, s, h, (∅, L,D),Γ, Q,A′) is valid.
First, we note that Safen(C, s, h, (∅, L,D),Γ, Q,A) is valid, because

A
!⊆ A′

! .

From |= Q′ ⇒ Q, it follows that Safen(C, s, h, (∅, L,D),Γ, Q′, A) is valid.

(AUXILIARY )

We have X is a auxiliary set for C, X ∩ FV (P,Q) = ∅ and X ∩ PV (Γ) = ∅.
By induction on the inference rules, if s′, h′ |= P , then Safen(C, s′, h′, (∅, L′, D′),Γ, Q,A ∪X) is

valid, where L′ ∪D′ = res(Γ) and n ≥ 0.
From s, h |= P , we know that Safe3n+2nl(C, s, h, (∅, res(Γ), ∅),Γ, Q,A ∪ X) is valid, for every

n ≥ 0, where l = l(C).
Applying the proposition 27, we get that Safen(C \ X, s, h, (∅, L,D),Γ, Q,A), for every n ≥ 0,

where L ∪D = res(Γ).

(CONJUNCTION)
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By induction on the inference rules, if s′, h′ |= Pi, then Safen(C, s′, h′, (∅, L′, D′),Γ, Qi, Ai) is
valid, where L′ ∪D′ = res(Γ) and n ≥ 0, for i = 1, 2.

From s, h |= P1 ∧ P2, we know that s, h |= P1 and s, h |= P2.
Hence Safen(C, s, h, (∅, L′, D′),Γ, Qi, Ai) is valid, where L

′ ∪D′ = res(Γ), n ≥ 0 and i = 1, 2.
Next, we prove by induction on the n that if Safen(C, s, h, (∅, L,D),Γ, Qi, Ai) is valid, for i = 1, 2,

then Safen(C, s, h, (∅, L,D),Γ, Q1 ∧Q2, A1 ∪A2) is valid.
For n = 0, it is trivial. Let n = k + 1.
If C = skip, then s, h |= Qi, for i = 1, 2. Hence s, h |= Q1 ∧Q2.
The property (i) of Safen(C, s, h, (∅, L,D),Γ, Q1 ∧Q2, A1 ∪A2) is veri�ed.
From Safen(C, s, h, (∅, L,D),Γ, Qi, Ai), i = 1, 2, we know that

C, (s, h, (∅, L,D)) 6→p abort.

Hence we have the property (ii) of Safen(C, s, h, (∅, L,D),Γ, Q1 ∧Q2, A1 ∪A2).
From Safen(C, s, h, (∅, L,D),Γ, Qi, Ai), i = 1, 2, we know that

chng(with r when B do C̃) ∩
⋃

r∈L∪D
PV (r) = ∅.

Then we have the property (iii) of Safen(C, s, h, (∅, L,D),Γ, Q1 ∧Q2, A1 ∪A2).
Let hG, C

′, s′, h′ and ρ′ such that hG⊥h, s, hG |= ~
r̂∈D

Γ′(r̂) and

C, (s, h ] hG, (∅, L,D))
A1∪A2,Γ−−−−−−→ C ′, (s′, h′, ρ′).

Next we consider the possible transitions.

If the transition is a transition of the program, i.e.
A1∪A2,Γ−−−−−−→=→p.

For i = 1, 2. By Safen(C, s, h, (∅, L,D),Γ, Qi, Ai), we know that there is h′Gi
⊆ h′ such that

Safek(C ′, s′, h′ \ h′Gi
, ρ′,Γ, Qi, Ai) is valid and

s′, h′Gi
|= ~

r∈D′
Γ(r).

Using that ~
r∈D′

Γ(r) is precise, we have that h′G1
= h′G2

. Consider h′G = h′G1
. We have that

s′, h′G |= ~
r∈D′

Γ(r).

From the induction hypothesis on n, we also have that Safek(C ′, s′, h′\h′G, ρ′,Γ, Q1∧Q2, A1∪A2)
is valid.

If the transition is given by (ENV ). Let A′ = A1 ∪ A2 ∪
⋃

r∈Locked(C) PV (r), A′1 = A1 ∪⋃
r∈Locked(C) PV (r) and A′2 = A2 ∪

⋃
r∈Locked(C) PV (r).

We have that C ′ = C,

(s, h, (∅, L,D))
A′

! (s′, h, (∅, L′, D′))

and there exists h′G ⊆ h′ such that h′ = h ] h′G and

s′, h′G |= ~
r∈D′

Γ(r).

It is su�cient to prove that Safek(C ′, s′, h, ρ′,Γ, Q1 ∧Q2, A1 ∪A2) is valid.

Having in mind that
A′

!⊆
A′

i!, for i = 1, 2. We have that Safek(C ′, s′, h′ \ h′Gi
, ρ′,Γ, Qi, Ai) is

valid, for i = 1, 2.
Therefore by induction hypothesis on n, we have that Safek(C ′, s′, h, ρ′,Γ, Q1 ∧ Q2, A1 ∪ A2) is

valid.
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5 Conclusion

In this work, we presented a structural operational semantics, which is widely understood, and
we prove the soundness of Concurrent Separation Logic with respect to this operational semantics.
Moreover, we showed that if a program is partially correct in Concurrent Separation Logic, then this
program can be safely integrated in any environment, which respects the variables protected by the
rely-set and resources.

We believe that the present text can be useful to prove the soundness of new extensions to
Concurrent Separation Logic. We predict that the comparison between the environment transition
used by Vafeiadis [16] and the environment transition introduced here can be relevant to understand
the di�erences between RGSep and Concurrent Separation Logic.

Brookes proved the equivalence between Concurrent Separation Logic and Syntactic Control
Interference Separation Logic [5]. The operational semantics presented here can be adapted to express
fractional permissions of variables. Furthermore, the soundness of Syntactic Control Interference
Separation Logic with respect to a structural operational semantics should follows by adapting the
environment transition and the results presented here.
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