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Abstract

Kidney exchange programs have been set in several countries within national, regional or
hospital frameworks, to increase the possibility of kidney patients being transplanted. For the case
of hospital programs, it has been claimed that hospitals would benefit if they collaborated with
each other, sharing their internal pools and allowing transplants involving patients of different
hospitals. This claim led to the study of multi-hospital exchange markets. We propose a novel
direction in this setting by modeling the exchange market as an integer programming game.
The analysis of the strategic behavior of the entities participating in the kidney exchange game
allowed us to prove that the most rational game outcome maximizes the social welfare and that
it can be computed in polynomial time.

1 Introduction

The Kidney Exchange Problem can be described as follows. A patient suffering from renal failure can
see her life quality improved through the transplantation of a healthy kidney. Typically, a patient
receives a kidney transplant from a deceased donor, or from a living donor that is a patient’s relative
or friend. Unfortunately, these two possibilities of transplantation can only satisfy a tiny fraction of
the demand, since deceased donors are scarce and patient-donor incompatibilities may occur.

To potentially increase the number of kidney transplants, some countries’ recent legislation (e.g.,
United Kingdom [13], Netherlands [9]) allows an exchange of kidneys between pairs: e.g., for two
patient-donor pairs P1 and P2 the patient of pair P1 receives a kidney from the donor of pair P2 and
vice versa. The idea can be extended to allow more than two pairs to be involved in an exchange, and
to include undirected (altruistic) donors, as well as pairs with other characteristics [8]. The general
aim is to define a match that maximizes the number of transplants in a pool. Because in most cases
the operations must take place at the same time, the number of pairs that can be involved in an
exchange is limited to a maximum value, say L.

Abraham et al. [1] formulated the kidney exchange problem (KEP) as an integer program with
an exponential number of variables, which maximizes the number of nodes covered in a digraph by
disjoint cycles of size at most L. In this model the nodes of the digraph represent patient-donor pairs
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and the arcs represent the compatibilities between pairs. A compact model, where the number of
variables and constraints increases polynomially with the problem size, is proposed by Constantino
et al. [8].

Multi-Agent Kidney Exchange. Although some countries have a national kidney exchange pool
with the matches being done by a central authority, other countries have regional (or hospital) pools,
where the matches are performed internally with no collaboration between the different entities.
Since it is expected that as the size of a patient-donor pool increases more exchanges can take place,
it became relevant to study kidney exchange programs involving several hospitals or even several
countries. In such cases each entity is a self-interested agent that aims at maximizing the number of
its patients receiving a kidney [3].

To the extent of knowledge of the authors, work in this area concentrates on the search of a
strategyproof mechanism that decides all exchanges to be performed in a multi-hospital setting. A
mechanism is strategyproof if the participating hospitals do not have incentive to hide information
from a central authority that decides through that mechanism the exchanges that are to be executed.
For the 2-hospital kidney exchange program with pairwise exchanges, the deterministic strategyproof
mechanism in [2] provides a 2-approximation ratio on the maximum number of exchanges, while the
randomized strategyproof mechanism in [7] guarantees a 3

2 -approximation ratio. Additionally, Ashlagi
et al. [2] built a randomized strategyproof mechanism for the multi-hospital case with approximation
ratio 2, again only for pairwise exchanges. In these mechanisms, in order to encourage the hospitals
to report all their incompatible pairs, the social welfare is sacrificed. In fact, the best lower bound
for a strategyproof (randomized) mechanism is 2 ( 8

7 ), which means that no mechanism returning
the maximum number of exchanges is strategyproof [2]. In this context, the question is whether,
analyzing the hospitals interaction from a standpoint of a game, Nash equilibria would improve the
program’s social welfare.

We can generalize KEP to a non-cooperative N -player kidney exchange game (N–KEG) with
two stages: first, simultaneously, each player n, for n = 1, . . . , N , decides the internal exchanges to
be performed; second, an independent agent (IA) takes the first-stage unused pairs and decides the
external exchanges to be done such that the number of pairs participating on it is maximized. Let
us define V n as the vertex set of player n, V =

⋃N
n=1 V

n and C as the set of cycles with length at
most L. Let Cn = {c ∈ C : c ∩ V n = c} be the subset involving only player n’s patient-donor pairs,

and I = C \
⋃N

n=1 C
n be the subset of cycles, involving at least two patient-donor pairs of distinct

players. Each player solves the following parametric programming problem:

maximize
xn∈{0,1}|Cn|

∑
c∈Cn

wn
c x

n
c +

∑
c∈I

wn
c yc (1.1a)

subject to
∑

c∈Cn:i∈c
xnc ≤ 1 ∀i ∈ V n (1.1b)

where y solves the problem

maximize
y∈{0,1}|I|

∑
c∈I

N∑
n=1

wn
c yc (1.1c)

s.t.
∑

c∈I:i∈c
yc ≤ 1−

N∑
n=1

∑
c∈Cn:i∈c

xnc ∀i ∈ V (1.1d)

Player n controls a binary decision vector xn with size equal to the cardinality of Cn. An element xnc
of xn is 1 if cycle c ∈ Cn is selected, 0 otherwise. Similarly, the IA controls the binary decision vector
y with size equal to the cardinality of I. The objective function (1.1a) translates on the maximization
of player n’s patients receiving a kidney: wn

c the number of player’s n patient-donor pairs in cycle c
(which is the length of c if it is an internal). Constraints (1.1b) ensure that every pair is in at most
one exchange. The IA objective function (1.1c) represents the maximization of patient-donor pairs
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receiving a kidney in the second-stage. Constraints (1.1d) are analogous to (1.1b), but also ensure
that pairs participating in the first-stage exchanges are not selected by the IA.

In the way that we defined N–KEG, it is implicit that it is a complete information game, i.e.,
initially every player decides the pairs to reveal and only those will be considered in their utilities as
well as in the second stage. Note that there is no incentive for hiding information as each player has
complete control over its internal exchanges and if there are hidden pairs, they will not be considered
in the IA decision. Consequently, this is intrinsically a complete information game.

The formulation above brings up the following research question: is the generalization of KEP to
N–KEG relevant? In particular, it is worth noting that the special case of KEP with L = 2 can be
formulated as a maximum matching problem and consequently, solved in polynomial time. Moreover,
the multi-agent kidney exchange literature focuses mainly in exchanges with size 2. Thus, the most
natural and relevant extension to look at is 2–KEG with pairwise exchanges.

Our Contributions. In this paper we concentrate on the non-cooperative 2-player kidney exchange
game (2–KEG) with pairwise exchanges. A player can be a hospital, a region or even a country. Under
this setting it is inefficient to follow the classical normal-form game approach [11] by specifying all
the players’ strategies. Note also that in our formulation of N–KEG, players’ strategies are lattice
points inside polytopes described by systems of linear inequalities. Thus, according to [12], N–KEG
and, in particular, 2–KEG belongs to the class of integer programming games.

We show that 2–KEG has always a pure Nash equilibrium (NE) and that it can be computed in
polynomial time. Furthermore, we prove the existence of a NE that is also a social optimum, i.e., the
existence of an equilibrium where the maximum number of exchanges is performed. Finally, we show
how to determine a NE that is a social optimum, is always the preferred outcome of both players,
and can be computed in polynomial time.

Our work indicates that studying the players interaction through 2–KEG turns the exchange
program efficient both from the social welfare and players’ point of view. In contrast, as mentioned
before, there is no centralized mechanism that is strategyproof and at the same time guarantees
a social optimum. Although we provide strong evidence that under 2–KEG the the players’ most
rational strategy is a social optimum, we note the possibility of multiple equilibria. We show that the
worst case Nash equilibrium in terms of social welfare is at least 1

2 of the social optimum. Thus, the
worst case outcome for our game is comparable with the one for the best deterministic strategyproof
mechanism (recall that it guarantees a 2-approximation of the social optimum). Therefore, the 2–
KEG opens a new research direction in this field that is worth being explored.

Organization of the Paper. Section 2 formulates 2–KEG in mathematical terms. Section 3
proves the existence of a Nash equilibrium that maximizes the social welfare and measures the Nash
equilibria quality enabling the comparison of our game with strategyproof mechanisms. Section 4
proves that the players have incentive to choose Nash equilibrium that are social optimal. Section
5 refines the concept of social welfare equilibria motivating for an unique rational outcome for the
game. Section 6 presents conclusions and future research directions.

2 Definitions and preliminaries

Let the players on 2–KEG be labeled player A and player B. For representing a 2–KEG as a graph,
let V be a set of nodes representing the incompatible patient-donor pairs of players A and B, and
E be the set of possible exchanges, i.e., the set of edges (i, j) such that the patient of i ∈ V is
compatible with the donor of j ∈ V and vice versa. For each player n, V n ⊆ V and En ⊆ E are her
patient-donor pairs and internal compatibilities, respectively. A subset Mn of En is called a matching
of graph Gn = (V n, En) if no two edges of it share the same node. A player n’s strategy set is the
set of matchings in graph Gn = (V n, En). A profile of strategies is the specification of a matching
for all players. The independent agent controls the external exchanges EI ⊆ E, i.e., (a, b) ∈ EI if
a ∈ V A and b ∈ V B . Let EI(MA,MB) be a subset of EI such that no edge of it shares a node with
a player’s matching MA or MB . For a player B’s matching MB define the player A’s reaction graph
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GA(MB) = (V,EA ∪ EI(∅,MB)) and for a player A’s matching MA define the player B’s reaction
graph GB(MA) = (V,EB ∪ EI(∅,MA)). We will represent nodes that belong to V A as gray circles
and nodes that belong to V B as white diamonds.

On the first stage of 2–KEG, each player n decides simultaneously a matching Mn of graph Gn to
be executed. On the second stage of the game, given player A’s first-stage decision MA and player B’s
first-stage decision MB , the IA decides the external exchanges to be performed such that the number
of pairs covered by its decision is maximized. In other words, the IA finds a maximum matching
M I(MA,MB) of EI(MA,MB), i.e., a matching of maximum cardinality. In the end of the game,
player A’s utility is 2|MA|+ |M I(MA,MB)| and player B’s utility is 2|MB |+ |M I(MA,MB)|.

An important factor for a game is that its rules are executed efficiently. For 2–KEG this means
that the IA optimization problem must be easy to solve. Edmonds [10] proved that the problem of
computing a maximum matching can be solved in polynomial time for any graph. Therefore, given
the players’ decisions, the IA optimization problem is solved in polynomial time.

A legitimate question that must be answered is if the game is well defined in the sense that the
rules are unambiguous. Note that the utility of each player depends on the IA decision rule. In
the general N–KEG case, there might be situations where there are multiple optimal IA’s decisions
that benefit the players differently. However, for 2–KEG that is not possible, because only pairwise
exchanges are considered. That is, any IA matching leads to equal benefits for both players.

Proposition 2.1 2–KEG is well defined.

One apparent difficulty in the treatment of the game has to do with the bilevel optimization
problem (1.1) of each player. However, computing a player’s optimal strategy to a fixed matching
of the other player can be simplified. From the standpoint of player A, the best reaction MA to a
player B’s fixed strategy MB can be computed by dropping the IA objective function (1.1c) (game
rule) and solving the single level matching problem in the reaction graph GA(MB). Basically, we are
claiming that player A best reaction predicts the appropriate IA decision given MA and MB . This
holds because IA’s edges have a positive impact on the utility of player A.

Lemma 2.2 Let MB be a matching of player B in 2–KEG. Player A’s best reaction to MB can be
achieved by solving a weighted matching problem on the graph GA(MB), where the edges of GA in
EA weight 2 and those in EI(∅,MB) weight 1. The equivalent for player B also holds.

3 Nash equilibria and social welfare

Normal form games are a class of finite games for which the players’ strategies are explicitly specified.
Unlike these games, the literature on integer programming games is almost nonexistent and the
intuition is that they are more difficult to treat, since players’ set of feasible strategies can have
exponential size.

A Nash equilibrium is a widely accepted solution for a game. Nash [14] proved, in a non-
constructive way, that any finite game has a NE. General algorithms to compute NE for normal
form games were devised, but they fail to be polynomial [15]. In particular, these algorithms are
inappropriate for integer programming games.

We will concentrate on pure equilibria. A player A’s matching MA of GA and a player B’s
matching MB of GB is a pure Nash equilibrium for 2–KEG if

2|MA|+ |M I(MA,MB)| ≥ 2|RA|+ |M I(RA,MB)| ∀ matching RA of GA

2|MB |+ |M I(MA,MB)| ≥ 2|RB |+ |M I(MA, RB)| ∀ matching RB of GB .

Along the paper we use NE to refer to pure Nash equilibria. Under 2–KEG, each player seeks to
choose an internal matching that leads to the maximization of the number of its patients receiving a
transplant in the end of the game. Hence, a rational profile of strategies is one that simultaneously
maximizes each players’ utility. The NE satisfies this goal.
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A mixed-strategy Nash equilibrium attributes a probability distribution over the players’ feasible
decisions; therefore, its description may involve an exponential number of players’ strategies, which
is computationally unsuitable.

In Section 3.1, we prove the existence of NE for 2–KEG and that it can be computed in polynomial
time. Through these results, in Section 3.2 we prove the existence of a NE that maximizes the social
welfare (sum of the players’ utilities or, equivalently, number of nodes matched). In Section 3.3, we
measure the quality of the NE in terms of social welfare. This analysis allow us to conclude that the
Nash equilibrium with minimum social welfare value under 2–KEG is equal to the best deterministic
strategyproof mechanism. In other words, the worst case Nash equilibrium to 2–KEG and the best
deterministic strategyproof mechanism guarantee that at least 1

2 of the number of nodes matched in
a social optimum is achieved.

3.1 Existence of a pure Nash equilibrium

In order to prove the existence of a NE we will use the concept of potential function to games, as
defined in [6]. For 2–KEG, a potential function Φ is a real-valued function over the set of player A’s
matchings in GA and player B’s matchings in GB such that the value of Φ increases strictly when a
player switches to a new matching that improves its utility.

Observe that a player A’s decision does not interfere in the set of player B’s matchings in GB . In
particular, player A cannot influence the part of player B’s utility related with a matching in GB .
The symmetric observation holds for player B’s decision. With this in mind, it is not difficult to find
a potential function to 2–KEG.

Proposition 3.1 Function Φ(MA,MB) = 2|MA|+ 2|MB |+ |M I(MA,MB)| is a potential function
of 2–KEG.

A profile of strategies for which the potential function maximum is attained is a NE. Otherwise, at
least one of the players would have advantage in switching to a new strategy, which would imply that
the potential function would strictly increase its value in this new profile. However, that contradicts
the fact that the previous profile was a potential function optimum.

Theorem 3.2 There exists at least one pure Nash equilibrium to 2–KEG and it can be computed in
polynomial time.

Proof. A matching corresponding to the maximum of the function Φ of Proposition 3.1 is a NE of
2–KEG. Computing a maximum to Φ is equivalent to solving a weighted matching problem, which
can be done in polynomial time (see, e.g., [16]). �

Consider the 2–KEG instance represented in Figure 3.1. In this case, the NE achieved by comput-
ing the potential function maximum is MA = {(4, 5)}, MB = {(2, 3)} (and thus, M I(MA,MB) = ∅).
There is another NE that does not correspond to a potential function maximum: RA = ∅, RB = ∅
and consequently M I(RA, RB) = {(1, 2), (4, 3), (5, 6)}. The latter helps all the patient-donor pairs,
and thus is more appealing to the players. This observation, motivates the need of studying efficient
Nash equilibria that are possibly not achieved through the potential function maximum.

1 2 3 4 5 6

Figure 3.1: Example of a N–KEG instance with two distinct Nash equilibria.

3.2 Social welfare equilibrium

In what follows, we introduce a refinement of the NE concept in 2–KEG: the social welfare equilibrium.
A social optimum of 2–KEG is a maximum matching of the overall graph game G = (V,E),

corresponding to an exchange program that maximizes the number of patients receiving a kidney. A
social welfare equilibrium (SWE) is a NE that is also a social optimum.
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Next, some concepts of graph theory in matching are defined (see Chapter 5 of [5] for details).
For a matching M in graph G = (V,E), an M -alternating path is a path whose edges are alternately
in E \M and M . An M -augmenting path is an M -alternating path whose origin and destination are
M -unmatched nodes. The next property will be used often in what we will develop.

Property 3.3 Let M be a maximum matching of a graph G = (V,E). Consider an arbitrary R ⊂M
and the subgraph H of G induced by removing the R-matched nodes. The union of any maximum
matching of H with R is a maximum matching of G.

Next, we recall Berge’s theorem [4].

Theorem 3.4 (Berge [4]) A matching M of a graph G is maximum if and only if it has no
augmenting path.

Berge’s theorem is constructive, leading to an algorithm to find a maximum matching: start with an
arbitrary matching M of G; while there is an M -augmenting path p, switch the edges along the path p
from in to out of M and vice versa: update M to M⊕p, where ⊕ represents the symmetric difference
of two sets. The updated M is a matching with one more edge, where the previously matched nodes
are maintained matched.

We have now the tools to prove the existence of a SWE.

Theorem 3.5 There is always a social welfare equilibrium to 2–KEG.

Proof. Let M be a maximum matching (and thus, a social optimum) of the graph G representing a
2–KEG, where EA∩M and EB∩M are players’ A and B strategies, respectively. If M is not a NE, let
us assume, without loss of generality, that player A has incentive to deviate from EA∩M , given player
B’s strategy EB ∩M . Let MA be player A’s best reaction to EB ∩M . Observe that we can assume
that MA∪M I(MA, EB∩M) is a maximum matching of A in the reaction graph GA(EB∩M). If it is
not, by Berge’s theorem, there is a maximum matching such that it does not decrease the number of
player A’s matched nodes. Therefore, by Property 3.3, |MA|+ |M I(MA, EB∩M)|+ |EB∩M | = |M |.

Given that A has incentive to deviate, it holds by definition of potential function that Φ(EA ∩
M,EB ∩M) < Φ(MA, EB ∩M). If MA together with EB ∩M is not a NE, then we can repeat the
procedure above (alternating the player) until a NE is obtained. Note that the value of the potential
function increases strictly, which means that no feasible profile of strategies is visited more than once.
In addition, players have a finite number of feasible matchings, which implies that this process will
terminate in an equilibrium. �

Besides the fact that a SWE is an appealing NE to the players, it also has the advantage of being
computable in polynomial time through the algorithm of the last proof (translated to pseudo-code
in Algorithm 3.2.1). It is a well-known result that weighed matching problems can be solved in
polynomial time (see, e.g., [16]). Therefore, it remains to prove that the number of iterations is
polynomially bounded in the size of the instance. The next trivial result can be used to this end.

Lemma 3.6 An upper bound to the maximum value of the 2–KEG potential function Φ(MA,MB) =
2|MA|+ 2|MB |+ |M I(MA,MB)| is |V A|+ |V B |.

As noted before, the potential function Φ strictly increases whenever a player has incentive to
unilaterally change her strategy. Therefore, our algorithm will in the worst case stop once the
maximum value to Φ is reached, which is bounded by |V A| + |V B |. Taking into account that the
value of Φ is always an integer number, the number of evaluations of Φ through the process is also
bounded by |V A|+ |V B |.

Theorem 3.7 The computation of a social welfare equilibrium to 2–KEG can be done in polynomial
time.
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Algorithm 3.2.1 Computation of a social welfare Nash equilibrium

Input: a 2–KEG instance G
Output: equilibrium matchings
1: M ← maximum matching of G
2: MA ←M ∩ EA, MB ←M ∩ EB , M I ←M ∩ EI initial matchings

3: ∆A ← true, ∆B ← true whether players have incentive to change

4: loop
5: RA ← player A’s best reaction to MB such that it is also a maximum matching of GA(MB)
6: if 2|RA|+ |M I(RA,MB)| = 2|MA|+ |M I | then
7: ∆A ← false
8: if ∆B = false then
9: return MA,MB

10: end if
11: else
12: MA ← RA, M I ←M I(RA,MB), ∆B ← true update solution

13: end if
14: RB ← player B’s best reaction to MA such that it is also a maximum matching of GB(MA)
15: if 2|RB |+ |M I(MA, RB)| = 2|MB |+ |M I | then
16: ∆B ← false
17: if ∆A = false then
18: return MA,MB

19: end if
20: else
21: MB ← RB , M I ←M I(MA, RB), ∆A ← true update solution

22: end if
23: end loop

3.3 Price of stability and price of anarchy

In order to measure the quality of the Nash equilibria of a given game, we use the standard measures:
price of stability and price of anarchy (see Chapter 17 of [15]). The price of stability (PoS) is the
ratio between the highest total utilities value of one of its equilibria and that of a social optimum;
the price of anarchy (PoA) is the ratio between the lowest total utilities value within its equilibria
and that of a social optimum.

The following two results set PoS and PoA for 2–KEG.

Corollary 3.8 The price of stability of the 2–KEG is 1.

Proof. Since we proved existence of a social welfare equilibrium:

PoS =
highest total utilities value among all Nash equilibria

social optimum
= 1.

�

Theorem 3.9 The price of anarchy is 1
2 for the 2–KEG.

Proof. By the definition of price of anarchy

PoA =
lowest total utilities value among all Nash equilibria

social optimum
.

Let MA, MB and M I(MA,MB) be the matchings of player A, B and the IA, respectively, that
lead to the Nash equilibrium with lowest total utilities value, that is

z∗ = 2|MA|+ 2|MB |+ 2|M I(MA,MB)|.
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Let M be a maximum matching of the game graph G. Therefore, the social optimum is equal to

z = 2|M ∩ EA|+ 2|M ∩ EB |+ 2|M ∩ EI |.

By the definition of NE, we know that under MA and MB , none of the players has incentive to
deviate, thus

z∗ ≥ 2|M ∩ EA|+ |M I(M ∩ EA,MB)|+ 2|M ∩ EB |+ |M I(MA,M ∩ EB)|
⇔z∗ ≥ 2|M ∩ EA|+ 2|M ∩ EB |+ 2|M ∩ EI | − 2|M ∩ EI |+ |M I(M ∩ EA,MB)|+ |M I(MA,M ∩ EB)|
⇔z∗ ≥ z −

(
2|M ∩ EI | − |M I(MA,M ∩ EB)| − |M I(M ∩ EA,MB)|

)
. (3.1a)

The set M ∩ EI may include matchings of nodes also matched under MA or MB , therefore

2|M ∩ EI | ≤ 2|MA|+ 2|MB |+ |RA|+ |RB |

where Rn is a subset of E considering all the edges in M ∩EI but not in Mn and incident with a node
of V n, for n = A,B. See Figure 3.2. The number of player B’s nodes matched in M I

(
M ∩ EA,MB

)

M ∩ EA ∩MA M ∩ EB ∩MBMA

M ∩ EA

EA EB

M ∩ EB

RA M ∩ EI RB

MB

Figure 3.2: Illustration of the solutions associated with the worst Nash equilibrium and the social
optimum.

is equal or greater than RB , because this external matching has available the nodes incident with the
edges of RB and can match them with any node not in M ∩ EA, thus

|RB | − |M I(MA,M ∩ EB)| ≤ 0.

In a completely analogous way, it can be shown that

|RA| − |M I(M ∩ EA,MB)| ≤ 0.

The inequalities above imply

2|M ∩ EI | − |M I(MA,M ∩ EB)| − |M I(M ∩ EA,MB)| ≤ 2|MA|+ 2|MB | ≤ z∗,

which together with inequality (3.1a) results in

z∗ ≥ z − z∗ ⇔ z∗

z
=

1

2
.

Now, we will use an instance to prove that the bound 1
2 is tight.

Consider a 2–KEG represented by the graph of Figure 3.3. It is easy to see that the worst Nash
equilibrium in terms of total utilities is MA = {(1, 2)}, MB = ∅ and M I

(
MA,MB

)
= ∅ with a total

of z∗ = 2. On the other hand, the social optimum is M = {(1, 3) , (2, 4)} with a value of z = 4. In
this instance the price of anarchy is z∗

z = 2
4 = 1

2 . �
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1

2

3

4

Figure 3.3

4 Rational outcome: social welfare equilibrium

A profile of strategies is dominated if there is another profile in which all the players are equal or
better, with at least one of them strictly better. A profile of strategies is said to be Pareto efficient
if it is not dominated [17]. In this section, we will prove that the social welfare equilibria are Pareto
efficient and any NE that is not social optimal is dominated by a SWE. Consequently, from both the
social welfare and the players’ point of view, these equilibria are the most desirable game outcomes.
Moreover, recall that in Section 3.2, we presented an algorithm that computes a SWE in polynomial
time emphasizing its practicality.

Below we show that no SWE is dominated, i.e., all SWE are Pareto efficient.

Lemma 4.1 In 2–KEG any social welfare equilibrium is Pareto efficient.

Proof. Let MA and MB be players’ A and B strategies, respectively, in a SWE. Assume that this
SWE is not Pareto efficient, that is, there is a player A’s feasible strategy RA and a player B’s feasible
strategy RB that dominate this equilibrium. Without loss of generality, these assumptions translate
into

2|MA|+ |M I(MA,MB)| ≤ 2|RA|+ |M I(RA, RB)|

2|MB |+ |M I(MA,MB)| < 2|RB |+ |M I(RA, RB)|.

Summing the two inequalities above and simplifying, we obtain

|MA|+ |M I(MA,MB)|+ |MB | < |RA|+ |M I(RA, RB)|+ |RB |,

which contradicts the assumption that the equilibrium given by MA and MB is a social optimum
(maximum matching). �

In the next section, we prove any NE that is not a social optimum is dominated by a SWE.
In order to achieve this result we need the following theorem, which fully characterizes an optimal
reaction of a player.

Theorem 4.2 In 2–KEG, let MB be a player B’s matching. A player A’s matching MA can be
improved if and only if there is a MA ∪M I(MA,MB)-alternating path in GA(MB) whose origin is
a node in V A, unmatched in this path, and the destination is a

i. MA ∪M I(MA,MB)-unmatched node belonging to V A, or

ii. M I(MA,MB)-matched node in V B, or

iii. M I(MA,MB)-unmatched node in V B.

The symmetric result for player B also holds.

Proof. Consider a fixed match MB of GB .
(Proof of “if”). Let MA be a player A’s strategy. Recall Lemma 2.2 in which we state that

given MB , we can assume that player A controls the IA decision. If there is a path p in GA(MA)

10



1 2 3 4 5 6
MA MI(MA,MB)

Case i. - The matching {(2, 3), (4, 5)} ⊕ {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)} increases player A’s utility by two
units.

1 2 3 4 5 6 7
MI(MA,MB) MA MI(MA,MB)

Case ii. - The matching {(2, 3), (4, 5), (6, 7)} ⊕ {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)} increases player A’s
utility by one unit.

1 2 3 4 5 6
MA MI(MA,MB)

Case iii. - The matching {(2, 3), (4, 5)}⊕{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)} increases player A’s utility by one
unit.

Figure 4.1: Possibilities for player A’s to have an incentive to deviate from strategy MA, given the
opponent strategy MB .

satisfying i., ii. or iii., then, (MA∪M I(MA,MB))⊕p improves player A’s profit in comparison with
MA ∪M I(MA,MB); see Figure 4.1 for an illustration.

(Proof of “only if”). Let MA be player A’s best reaction to MB and consider a feasible player
A’s strategy RA that is not her best reaction to MB . We will show that assuming that there is no
RA ∪M I(RA,MB)-alternating path of GA(MB) as stated in the theorem leads to a contradiction.

Note that given any two matchings M1 and M2 of a graph, in the induced subgraph with edges
M1 ⊕ M2, each node can be incident to at most two edges; hence, any connected component of
M1 ⊕ M2 is either an even cycle with edges alternately in M1 and M2, or a path with edges
alternately in M1 and M2. Let us define HA as the subgraph of GA that results from considering
the edges in MA ⊕ RA, and H as the subgraph of GA(MB) that results from considering the edges
in (MA ∪M I(MA,MB))⊕ (RA ∪M I(RA,MB)). Connected components of HA and of H are either
even cycles or paths.

If |MA| > |RA|, HA has more edges of MA than of RA, and therefore there exists a path p of
HA that starts and ends with edges of MA. If the origin and destination of p are M I(RA,MB)-
unmatched, then p is an RA ∪M I(RA,MB)-alternating path as stated in i., which contradicts our
assumption. Thus, for all paths of HA starting and ending with edges of MA, it holds that all
their nodes are both MA-matched and RA ∪M I(RA,MB)-matched (see Figure 4.2). Therefore, the

MA RA MA

MI(RA,MB)MI(RA,MB)

p

Figure 4.2: The path p is not an RA ∪M I(RA,MB)-alternating path of type i.

advantage of MA ∪M I(MA,MB) over RA ∪M I(RA,MB) must be outside HA. Analogously, if
|MA| ≤ |RA|, we also conclude that the advantage of MA ∪M I(MA,MB) over RA ∪M I(RA,MB)
must be outside HA.
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In this way, there is a ∈ V A and b ∈ V B such that (a, b) ∈ M I(MA,MB), but a is RA ∪
M I(RA,MB)-unmatched. Then, since we assumed that there is no RA ∪M I(RA,MB)-alternating
path as stated in the theorem (and the IA does not violate the game rules), the path of H starting in a
must end in a node a′ ∈ V A that is RA∪M I(RA,MB)-matched and MA∪M I(MA,MB)-unmatched.
Therefore, the number of V A nodes covered by MA ∪ M I(MA,MB) and RA ∪ M I(RA,MB) on
this component is the same (see Figure 4.3). In conclusion, any path of H starting in a node of

a

b

a′

MI(MA,MB)

RA ∪MI(RA,MB)

Figure 4.3: Path component of H. The white circle is a node for which it is not important to specify
the player to which it belongs.

V A that is RA ∪M I(RA,MB)-unmatched and M I(MA,MB)-matched does not give advantage to
MA ∪M I(MA,MB) over RA ∪M I(RA,MB). This contradicts the fact that strategy RA is not a
player A’s best reaction to MB . �

4.1 Computation of a dominant SWE

We present in Algorithm 4.1.1 a method that, given a 2–KEG graph and a socially suboptimal Nash
equilibrium, computes a SWE that we claim dominates the given equilibrium.

In what follows we provide a proof of the correctness of this algorithm. For sake of clarity, first
of all, we provide an illustration of how the algorithm works by applying it to a 2–KEG instance.

Example 4.3 Consider the 2–KEG instance represented in Figure 4.4.

1 2 3

4

5

6789

10

1112131415

16 17 18 19

20 21 22 23

24 25

26 27 28 29

30 31 32 33

Figure 4.4: A 2–KEG instance.

A Nash equilibrium M that is not a maximum matching is represented by bold edges in the top-left
graph of Figure 4.5. The matching M is a Nash equilibrium, since there is no M -alternating path as
stated in Theorem 4.2; and it is not a maximum matching because there are M -augmenting paths,
e.g., (25, 24, 5, 6, 20, 21, 22, 23). We will apply Algorithm 4.1.1 to this NE in order to achieve one that
is a SWE and dominates it.

The algorithm starts by computing an arbitrary maximum matching S, represented in the top-right
graph of Figure 4.5; the symmetric difference between M and S is represented in the center-left graph
of that figure. There are 4 connected components in S ⊕M , three of which include M -augmenting

12



Algorithm 4.1.1 Computation of a dominant SWE

Input: a 2–KEG instance G, a NE M of G
Output: M if it is a SWE, else a SWE dominating it
1: S ← a maximum matching of G
2: if |M | = |S| then
3: return M
4: end if
5: t← 1
6: Pt ← paths from M ⊕ S with both extreme edges in S M -augmenting paths

7: M t ←M ⊕ p1 ⊕ . . .⊕ pr where {p1, p2, . . . , pr} = Pt

8: I ← {e : e ∈ EI ∩M t}
9: while I 6= ∅ do

10: select an edge (v0, v1) ∈ I assume v0 ∈ V B and v1 ∈ V A

11: x←M t-alternating path of type ii. in GA(M t ∩ EB) starting in (v0, v1)
12: while path x = (v0, v1, . . . , v2m) is found do
13: j ← maxi=0,...,2m−1{i : (vi, vi+1) ∈ q for some q ∈ Pt}
14: y ← (u0, u1, . . . , uk, uk+1, . . . , uf ) ∈ Pt used to determine j with (uk, uk+1) = (vj , vj+1)
15: z ← (v2m, v2m−1, . . . , vj+1, uk+2, . . . , uf )
16: M t+1 ←M t ⊕ y ⊕ z
17: Pt+1 ← (Pt − {y}) ∪ {z}
18: t← t+ 1
19: I ← {e : e ∈ EI ∩M t}
20: G′ ← subgraph of GA(M t ∩EB) induced by considering only edges of x from v0 to vj = uk

and of y from u0 to uk = vj
21: x←M t-alternating path of type ii. in G′ starting in (v0, v1)
22: end while
23: repeat steps 10 to 21 inverting the roles of players A and B
24: I = I − {(v0, v1)}
25: end while
26: return M t.
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Initial Nash equilibrium M Initial maximum matching S
1 2 3

4

5

6789

10

1112131415

16 17 18 19

20 21 22 23

24 25

26 27 28 29

30 31 32 33 1 2 3

4

5

6789

10

1112131415

16 17 18 19

20 21 22 23

24 25

26 27 28 29

30 31 32 33

M ⊕ S Matching M1

1 2 3

4

5

6789

10

1112131415

16 17 18 19

20 21 22 23

24 25

26 27 28 29

30 31 32 33 1 2 3
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1112131415

16 17 18 19

20 21 22 23

24 25

26 27 28 29

30 31 32 33

Matching M2 Matching M3

1 2 3

4

5

6789

10

1112131415

16 17 18 19

20 21 22 23

24 25

26 27 28 29

30 31 32 33 1 2 3

4

5

6789
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1112131415

16 17 18 19

20 21 22 23

24 25

26 27 28 29

30 31 32 33

Figure 4.5: Computation of a dominant SWE in the 2–KEG instance of Figure 4.4 starting from the
initial equilibrium in the top-left graph, and the initial maximum matching of top-right graph.

paths:

P1 = {(33, 32, 31, 30, 3, 4, 26, 27, 28, 29), (25, 24, 5, 6, 20, 21, 22, 23),

(15, 14, 13, 12, 11, 10, 19, 18, 17, 16)}.

Therefore, at the end of step 7 we obtain a maximum matching M1, represented at the center-right
of Figure 4.5, and the set

I = {(1, 2), (30, 31), (32, 33), (26, 27), (28, 29), (20, 21),

(22, 23), (19, 18), (17, 16), (12, 13), (14, 15)}.

The algorithm proceeds searching for an M1-alternating path of type ii. in GA(M1 ∩ EB) initiating
in (1, 2), i.e., the algorithm will check if M1 is a SWE. In this step, path x = (1, 2, 3, 4, 5, 6, 7, 8, 9) is
found. The M -augmenting path y = (25, 24, 5, 6, 20, 21, 22, 23) is replaced by z = (9, 8, 7, 6, 20, 21, 22, 23),
leading to matching M2 represented at the bottom-left graph of Figure 4.5. Next, step 21 is used to ver-
ify if there is an M2-alternating path of type ii. considering only the edges (1, 2), (2, 3), (3, 4), (4, 5), (5, 24), (24, 25).
There is: path (1, 2, 3, 4, 5, 24, 25). The M -augmenting path (33, 32, 31, 30, 3, 4, 26, 27, 28, 29) is modi-
fied into (25, 24, 5, 4, 26, 27, 28, 29), obtaining M3 represented in the lower-right graph of Figure 4.5. In
the next iteration no M3-alternating path of type ii. can be found, and thus the algorithm terminates.
M3 is a SWE that dominates M .

Next we will prove that for any socially suboptimal NE, the Algorithm 4.1.1 returns a dominant
SWE.

The algorithm starts by computing a maximum matching S. If the Nash equilibrium from the
input is a maximum matching, the algorithm returns it and stops. Otherwise, it proceeds. At iteration
t, Pt is the set of M -augmenting paths used to compute the maximum matching M t. In this way,
step 7 augments M in order to obtain a maximum matching M1. Note that |P1| augmenting paths
of M are used in order to get M1 and that the symmetric difference of a matching with an associated
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augmenting path only adds additional covered nodes. Therefore, none of the M -matched nodes is
M1-unmatched, which shows that the players’ utilities associated with M1 are equal to or greater
than the ones achieved through M .

Note that if there is an M1-alternating path of type i. or iii., then it is also an augmenting path of
M1 contradicting the fact that M1 is a maximum matching. Therefore, by Theorem 4.2, if M1 is not
a Nash equilibrium then there is an M1-alternating path of type ii. in GA(M1∩EB) or GB(M1∩EA).
In this case, the algorithm will remove the M1-alternating path of type ii. through steps 12 to 19.
In these steps an M -augmenting path y ∈ P1 is replaced by a new M -augmenting path z. Thus, it
is obvious that the new maximum matching M2 dominates the utilities achieved through M .

Suppose that in step 12 an M t-alternating path x of type ii. is found. Since M is a NE, the
path x cannot be M -alternating. Thus, x intersects at least one M t-matched edge of a y ∈ Pt. The
algorithm picks such y accordingly with the one closest to v2m, since this rule ensures that y never
intersects x from vj+1 = uk+1 to v2m. Then, through step 16, v2m is made M t+1-matched, which
eliminates the M t-alternating path x of type ii.. See Figure 4.6 for illustration.

v0 v1 . . . vj = uk vj+1 = uk+1 . . . v2m

u0 uk

M t M t

x

y z

Figure 4.6: Modification of y to z through x. White circle nodes mean that there is no need to specify
the player to which the nodes belong.

So far, we proved that at any iteration t of Algorithm 4.1.1, the current maximum matching M t

dominates M and that if there is an M t-alternating path of type ii., we eliminate it in the next
maximum matching M t+1. It remains to show that the elimination of paths of type ii. will stop,
leading to a SWE.

By construction, the size of the augmenting path sets is maintained during the algorithm execution.
Indeed, in each iteration, an M -augmenting path is replaced by a new one.

Lemma 4.4 |Pt| = |Pk| ∀t, k ≥ 1.

For an M -augmenting path y = (u0, u1, . . . , uf ), define σ(y) as the number of times that y switches
the player’s graph plus one unit if the first internal edge that follows the extreme u0 ∈ V i is in Ej ,
with i 6= j, and plus one unit if the first internal edge that follows the extreme uf ∈ V k is in El, with
k 6= l. For instance, the path

1 2 3 4 5 6 7 8

has σ-value equal to 3: count two unities because, the first extreme node, 1, is in V B while the
following internal edge, (2, 3), is in EA and add 1 unit because the rest of the path is in EB . Indeed,
the σ-value of M -augmenting paths has to be greater or equal to two, otherwise it is not a Nash
Equilibrium (i.e., there is an M -alternating path as described in Theorem 4.2, or the independent
agent is not choosing a maximum matching as obliged by the game rule). The following lemma states
that the σ-value of the paths in Pt is non-increasing.

Lemma 4.5 In an iteration t of Algorithm 4.1.1 σ(y) ≥ σ(z).
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Proof. Consider an arbitrary iteration t of Algorithm 4.1.1. Without loss of generality, assume that
the M t-alternating path x of type ii. found is in GA(M t ∩ EB).

In step 14, y = (u0, u1, . . . , uf ) is the selected augmenting path in Pt. In order to get z, the
part of y from u0 to uk is replaced by a path that has all the edges in EA ∪ EI . Note that
there must be an internal edge in y after uk+1, otherwise M is not an equilibrium: the path
(uf , uf−1, . . . , uk+1, vj+2, vj+3, . . . , v2m) would be an M -alternating path in GA(M ∩ EB) satisfying
one of the conditions of Theorem 4.2. Thus, we continue the proof by distinguishing two possible
cases: the first internal edge in y after uk+1 is in EB or EA.

Case 1: The first internal edge in y after uk+1 is in EB . Then, σ(z) is equal to one plus the number
of times that the path y from uk+1 to uf switches the player’s graph plus one unit if the last
internal edge before uf ∈ V i is in Ej with i 6= j. Observe that σ(y) is greater or equal to the
number of times that the path y from uk+1 to uf switches the player’s graph plus one unit if
the last internal edge before uf ∈ V i is in Ej with i 6= j. In order to get equal, the part of y
from u0 to uk+1 must have the edges in EB ∪ EI and u0 ∈ EB . However, this contradicts the
fact that M is a Nash equilibrium: one of the nodes uk or uk+1 has to be in V A, otherwise y
is not in player A’s graph. If uk+1 ∈ V A, then uk+2 ∈ V B , which means that the part of x
from v2m to (uk+1, uk+2) is an M -alternating path of type ii. in GA(M ∩ EB). Otherwise, if
uk ∈ V A, then uk−1 ∈ V B and the part of y from u0 to uk is an M -alternating path of type ii.
in GB(M ∩ EA). In conclusion, σ(y) ≥ σ(z).

Case 2: The first internal edge in y after uk+1 is in EA. Then, σ(z) is equal to the number of times
that the path y from uk+1 to uf switches the player’s graph plus one unit if the last internal
edge before uf ∈ V i is in Ej with i 6= j. Note that σ(y) is greater or equal to the number
of times that the path y from uk+1 to uf switches the player’s graph plus one unit if the last
internal edge before uf ∈ V i is in Ej with i 6= j. In conclusion, σ(y) ≥ σ(z).

�
An immediate consequence it the following corollary.

Corollary 4.6 If σ(y) > σ(z) holds in iteration t, then z will never evolve during the rest of the
algorithm to be equal to y.

Proof. Assume that σ(y) > σ(z) in iteration t. By Lemma 4.5, if z is selected in a forthcoming
iteration then the resulting (modified) path has a σ-value less or equal to σ(z) and, in particular,
less than σ(y). Therefore, it is impossible that from iteration z this path evolves to y, since that
contradicts Lemma 4.5. �

Whenever Algorithm 4.1.1 at iteration t modifies y such that σ(y) > σ(z), we get that the
maximum matching M t will never be computed again in later iterations.

Corollary 4.7 Algorithm 4.1.1 can only cycle after iteration t if σ(y) = σ(z).

Now, we will prove that when a modification of an augmenting path y to z has σ(y) = σ(z), then
the algorithm finds an M t+1-alternating path of type ii. in step 21. This particular search for such
a path is the important ingredient for the algorithm to stop after a finite number of iterations. If we
remove this step from Algorithm 4.1.1 and we simply arbitrarily search for the elimination of paths
of type ii. then the algorithm can cycle. For instance, in Example 4.3, when we are in iteration 2 and
we do not perform the search as stated in step 21, then we can compute the M2-alternating path
(1, 2, 11, 10, 7, 6, 5, 24, 25) that would lead us to M3 = M1, making the algorithm to cycle.

Lemma 4.8 If σ(y) = σ(z) at the end of step 19 of Algorithm 4.1.1, then a path of type ii. is found
in step 21.

Proof. Suppose that the algorithm is in the end of step 19. Without loss of generality, the proof
concentrates only on the case for which x is in GA(M t−1 ∩ EB), since for x in GB(M t−1 ∩ EA) the
proof is analogous.
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We will make use of Lemma 4.5 proof in order to conclude that under the lemma hypothesis,
σ(y) = σ(z), the edges of y from u0 to uk are in EA ∪EI . Case 1 of that proof implies that in order
to get σ(y) = σ(z), the edges of the path y from u0 to uk should be in EA ∪ EI and u0 ∈ V A. In
order to get σ(y) = σ(z) in case 2, we also get that the edges of the path y from u0 to uk should be
in EA ∪ EI and u0 ∈ V A.

Next, we will show that there is an M t-alternating path of type ii. from (v0, v1) to u0 that only
uses the edges of x from v0 to vj and y from u0 to uk. Therefore, for sake of clarity, consider
y′ = (u0, u1, . . . , uk) and x′ = (v0, v1, v2, . . . , vj). Recall that uk = vj .

In step 21, the new M t-alternating path of type ii. x can be built as follows. Start to follow x′

from v0 until it intersects a node uj1 in y′ (note that y′ intersects x′ at least in uk = vj). Consider
the following possibilities.

Case 1 If (uj1 , uj1−1) ∈ M t, then x = (v0, v1, . . . , uj1 , uj1−1, . . . , u0) is an M t-alternating path of type
ii..

Case 2 If (uj1 , uj1+1) ∈ M t, then (uj1 , uj1−1) ∈ M t−1 and (uj1 , uj1−1) ∈ x′, which implies uj1+1 /∈ x′.
Follow y′ by index increasing order starting in uj1+1 until it is reached a node uj2 = vi1 of x′

(note that such node exists since at least uk = vj ∈ x′, with k > j1 + 1). The node uj2−1 /∈ x′,
otherwise, we would have stopped in uj2−1. Thus, (uj2 , uj2−1) /∈ M t−1. Otherwise, x′ would
not be an M t−1-alternating path. In conclusion, (uj2 , uj2−1) ∈M t.

Next, we follow x′ by index decreasing order starting in uj2 = vi1 until we intersect a node uj3 of
y′ (which has to occur, since we noted before that at least uj1−1 is in x′). If (uj3 , uj3−1) ∈M t,
then the rest of the M t-alternating is found as in case 1. Otherwise, (uj3 , uj3+1) ∈M t and we
proceed as in the beginning of case 2. This process will terminate in u0 since we are always
adding new nodes to our M t-alternating path and the number of nodes is finite.

�

Corollary 4.9 The algorithm can only cycle if it remains in steps 19 to 21.

Theorem 4.10 After a finite number of executations of steps 19 to 21, the algorithm fails to find
such a path in step 21.

Proof. The length of the path (v0, v1, v2, . . . , vj) considered in step 21 strictly decreases in each
consecutive executation of steps 19 to 21. �

As a corollary of the above Theorem we can now state the desired result.

Corollary 4.11 After a finite number of iterations, the Algorithm 4.1.1 stops and finds a SWE that
dominates the NE given in the input.

5 Refinement of SWE

In the previous section we discussed the advantage of SWE among the set of NE for 2–KEG. However,
this refinement is still not sufficient to get uniqueness, i.e., there are 2–KEG instances for which there
is more than one SWE.

Example 5.1 Consider the 2–KEG instance represented in Figure 5.1. There are four maximum
matchings M1 to M4, of which matchings M1 and M2 are NE (SWE). Under M1 player A has
utility 4 and player B has utility 2; in contrast, under M2 both players have utility 3.

This instance has two distinct SWE, and by repeating the relevant pattern we can create instances
with multiple distinct SWE. For example, the game of Figure 5.2 has eight SWE.

In this context it seems rational to search for the social welfare equilibrium that minimizes the
number of external exchanges, since that decreases the dependency of the players on each other; in
practice, this seems to be a more desirable solution. Therefore, in what follows, we will show how to
find such an equilibrium in polynomial time.
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Instance M1 M2 M3 M4
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Figure 5.1: Example of a 2–KEG instance with four maximum matchings, and two SWE M1 and
M2.
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Figure 5.2: Example of a 2–KEG instance with eight SWE.

Consider Algorithm 5.0.2. This algorithm based on the number of nodes, |V |, it associates weight
2 + 2|V | for internal edges and weight 1 + 2|V | for external edges. Then, a maximum weighted
matching is returned. We will prove that this algorithm can be executed in polynomial time and that
it computes a social welfare equilibrium that minimizes the number of external exchanges.

Algorithm 5.0.2 Computation of the social welfare equilibrium that minimizes the number of
external exchanges.

Input: a 2–KEG instance G = (V,E)
Output: a SWE that minimizes the number of external exchanges
1: for e in EA ∪ EB do
2: we ← 2 + 2|V |
3: end for
4: for e in EI do
5: we ← 1 + 2|V |
6: end for
7: M ← maximum weighted matching in G given edge weights we, ∀e ∈ E
8: return M

Lemma 5.2 Algorithm 5.0.2 can be executed in polynomial time.
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Proof. It is a well-known result that weighed matching problems can be solved in polynomial time
(see, e.g., [16]). Therefore, step 7 can be executed in polynomial time. Additionally, the attribution
of weights for the graph edges is linear in the number of edges. Therefore, the algorithm can run in
polynomial time. �

In order to prove that Algorithm 5.0.2 outputs a SWE we need to prove that M is a maximum
matching and a NE.

Lemma 5.3 Algorithm 5.0.2 returns a maximum matching.

Proof. In step 7 of the algorithm, the maximum weight on an edge in the maximum weighted
matching problem considered is 2 + 2|V |. Thus, any matching of size k has a total weight not greater
than k(2+2|V |). If that is not a maximum matching, i.e., if k < |S|, where S is a maximum matching
for G, the total weight is bounded above by

k(2 + 2|V |) = 2k(1 + |V |) ≤ 2(|S| − 1)(1 + |V |) = 2|S||V |+ 2(|S| − |V | − 1) < 2|S||V |,

where the last inequality comes from the fact that |S| < |V |.
A maximum matching on the graph game has a total weight at least equal to |S|(1 + 2|V |) =

|S| + 2|S||V |. Therefore, a maximum matching has always a total weight greater than any non
maximum matching. In conclusion, a maximum weighted matching with the proposed edge weights
is also a matching with maximum cardinality. �

Lemma 5.4 Algorithm 5.0.2 returns a NE.

Proof. Let M be the output of Algorithm 5.0.2.
By Lemma 5.3 we know that M is a maximum matching. If M is not a NE, then some player must

have incentive to deviate; without loss of generality, assume that player A has incentive to deviate
from M ∩ EA. Then, there must be an M -alternating path p of type ii. in GA(M ∩ EB) such that
M ⊕ p increases player A’s utility

2|(M ⊕ p) ∩ EA|+ |(M ⊕ p) ∩ EI | > 2|M ∩ EA|+ |M ∩ EI |.

On the other hand, the matching |M ⊕ p| must have a total weight not greater than the one
associated with M , i.e.,

(2 + 2|V |)|M ∩ EA|+ (2 + 2|V |)|M ∩ EB |+ (1 + 2|V |)|M ∩ EI | ≥
(2 + 2|V |)|(M ⊕ p) ∩ EA|+ (2 + 2|V |)|(M ⊕ p) ∩ EB |+ (1 + 2|V |)|(M ⊕ p) ∩ EI |.

Since the path p only uses the edges in EA ∪ EI , the set M ∩ EB is equal to (M ⊕ p) ∩ EB . Hence,
in this inequality, we can remove the second term of both sides and rewrite as

<0︷ ︸︸ ︷
2|M ∩ EA|+ |M ∩ EI | − 2|(M ⊕ p) ∩ EA| − |(M ⊕ p) ∩ EI |+
2|V |

(
|M ∩ EA|+ |M ∩ EI | − |(M ⊕ p) ∩ EA| − |(M ⊕ p) ∩ EI |

)
≥ 0.

Player A’s utility is bigger with M ⊕ p than with M . Thus, in this inequality the first four terms
lead to a negative number. This implies that

|M ∩ EA|+ |M ∩ EI | > |(M ⊕ p) ∩ EA|+ |(M ⊕ p) ∩ EI | ≥ 0,

which is impossible since, M and M⊕p have the same cardinality and, in particular, |M∩(EA∪EI)| =
|(M ⊕ p) ∩ (EA ∪ EI)|. �

Finally, it remains to prove that Algorithm 5.0.2 returns a matching that minimizes the number
of external edges on it among the set of SWE.

Lemma 5.5 Algorithm 5.0.2 outputs a matching that minimizes the number of external edges among
the set of social welfare equilibria.
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Proof. Let M be the matching returned by Algorithm 5.0.2. We will prove by showing that assuming
another SWE M ′ contains more internal exchanges than M leads to a contradiction. Since both M
and M ′ are maximum matchings, M ′ has a total weight greater than M ; but this contradicts the
fact that the algorithm returns a maximum weighted matching (where the internal edges weight more
than the external ones). �

The next theorem concludes this section.

Theorem 5.6 Algorithm 5.0.2 computes a SWE that minimizes the number of external exchanges
in polynomial time.

Unfortunately, for some 2–KEG instances this refinement of the SWE still does not lead to an
unique solution.

Example 5.7 Consider the 2–KEG instance of Figure 5.3. There are two SWE that minimize the
number of external exchanges, M1 and M2. These matchings lead both players to an utility of 3.

1 2 3 4

56

M1

M2

M2 M1

M2

M1

Figure 5.3: Example of a 2–KEG instance with two distinct SWE that lead both players to same
profit.

However, the players utilities under social welfare equilibria that minimize the number of external
exchanges are unique as we will prove next.

Lemma 5.8 In any output of Algorithm 5.0.2, for a fixed instance, the players’ utilities are always
the same.

Proof. Consider an instance of 2–KEG for which there are two different possible outputs, say M1

and M2, of Algorithm 5.0.2. The proof is by contradiction, by assuming that player A’s utilities with
M1 and M2 are different. Without loss of generality,

2|M1 ∩ EA|+ |M1 ∩ EI | > 2|M2 ∩ EA|+ |M2 ∩ EI |.

Build the subgraph H of G induced by the edges in the set (M1 ⊕M2) ∩ (EA ∪ EI). As player A
covers more of her nodes through M1 than through M2, there must be at least one node a ∈ V A

such that a is M1-matched and M2-unmatched. Consider each distinct component p of H; p is a
path starting in, say, node a. There are three possible cases. Namely,

Case 1: path p terminates in an M2-matched node of V A. Then, it is not this component that gives
advantage to M1.

Case 2: path p terminates in an M2-matched node of V B . Then, p is an M2-alternating path of
type ii.; by Lemma 5.4, this contradicts the fact that M2 is a NE.

Case 3: path p terminates in an M1-matched node. Then, p is an augmenting path to M2; by
Lemma 5.4, this contradicts the fact that M2 is a maximum matching. �

We finish this section by noting that another desirable SWE is that in which the difference of
players’ utilities is minimized, i.e., the discrepancy of the players’ utilities is minimized traducing
in a more “fair” outcome. It is easy to show that the social welfare equilibrium introduced in this
section, i.e., that minimizing the number of external matchings achieves simultaneously the goal of
minimizing the difference of players’ utilities.
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Theorem 5.9 If M is the SWE with minimum number of external matchings then, it is also the
SWE that minimizes the difference of players’ utilities.

Proof. Let MA, MB and M I(MA,MB) be the social welfare equilibrium that minimizes the
number of external matchings. Let RA, RB and M I(RA, RB) be the social welfare equilibrium that
minimizes the difference in the players utilities, i.e., the value of |2|RA| + |M I(RA, RB)| − 2|RB | −
|M I(RA, RB)|| = ||RA| − |RB || is the minimum among all social welfare equilibria.

If |M I(MA,MB)| = |M I(RA, RB)|, then the matching RA ∪ RB ∪M I(RA, RB) is also a SWE
that minimizes the number of external matchings. Thus, by the uniqueness of the players’ utilities
under this refinement of the SWE, MA∪MB∪M I(MA,MB) also minimizes the difference of players’
utilities.

If |M I(MA,MB)| 6= |M I(RA, RB)| then, |MA| + |MB | > |RA| + |RB | since, by hypothesis
|M I(MA,MB)| < |M I(RA, RB)| and both matchings have maximum cardinality. Without loss of
generality, there must be a path p that starts and ends in MA-matched nodes and alternates between
edges in MA and edges in RA. Matching RA∪RB∪M I(RA, RB) is a NE which implies that p cannot
be a path as described in Theorem 4.2. Therefore, the extreme nodes of p must be M I(RA, RB)-
matched which does not show any advantage of MA ∪M I(MA,MB) and RA ∪M I(RA, RB) over
each other in terms of player A’s utility. In this way, it follows that both matchings lead to the same
profit for both players. �

In conclusion, one may argue that the players will converge to social welfare equilibria since, given
any Nash equilibrium, both players can improve their utilities through a SWE. Additionally, choosing
a SWE that minimizes the number of external exchanges is a desirable propriety for both players,
and we demonstrated that such equilibrium can be found in polynomial time. Moreover, players are
indifferent among such equilibria, because utilities remain the same for any of them. Thus, it seems
reasonable to consider that the players will agree in the SWE to be played.

6 Conclusions

In this paper, we have shown that 2–KEG has always a pure Nash equilibrium and that it can be
computed in polynomial time. Furthermore, we have proven the existence of a NE which is also a
social optimum. Finally, and more importantly, we have shown that for any NE there is always a
social welfare Nash equilibrium that is a preferred outcome for both players.

There is no uniqueness result for social welfare equilibria. In order to find rational guidelines for
the players’ strategies, we add to the social welfare equilibrium the requirement that it must be the
one that minimizes the number of external exchanges. For this type of solution, we were able to
prove uniqueness in terms of the players’ utilities and to show that it can be efficiently computed,
thus strengthening the fact that this is a realistic outcome for the game.

Although we show that a social welfare equilibrium can be computed in polynomial time, a full
characterization of the Pareto frontier of social welfare equilibria (with respect to pure Nash equilibria)
remains to be done. This is an interesting subject for future research.

Our work indicates that studying the players interaction through 2–KEG turns the exchange
program efficient both from the social welfare and the players’ point of view. This motivates further
research in the generalization of the game to more than two players and/or exchanges including more
than two patient-donor pairs.
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