
On the Bisilimarity of the Position
Automata

Eva Maia Nelma Moreira Rogério Reis
e-mail:{emaia,nam,rvr}@dcc.fc.up.pt

DCC-FC & CMUP, Universidade do Porto

Rua do Campo Alegre 1021, 4169-007 Porto, Portugal

Technical Report Series: DCC-2014-02

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/



On the Bisilimarity of the Position Automata

Eva Maia, Nelma Moreira, Rogério Reis
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Abstract

Minimization of nondeterministic finite automata (NFA) is a hard problem (PSPACE-
complete). Bisimulations are then an attractive alternative for reducing the size of
NFAs, as even bisimilarity (the largest bisimulation) is almost linear using the Paige and
Tarjan algorithm. NFAs obtained from regular expressions (REs) can have the number
of states linear with respect to the size of the REs and conversion methods from REs to
equivalent NFAs can produce NFAs without or with transitions labelled with the empty
word (ε-NFA). The standard conversion without ε-transitions is the position automaton,
Apos. Other conversions, such as partial derivative automata (Apd) or follow automata
(Af ), were proven to be quotients of the position automata (by some bisimulations).
Recent experimental results suggested that for REs in (normalized) star normal form
the position bisimilarity almost coincide with the Apd automaton. Our goal is to have
a better characterization of Apd automata and their relation with the bisimilarity of
the position automata. In this paper, we consider Apd automata for regular expressions
without Kleene star and establish under which conditions they are isomorphic to the
bisimilarity of Apos.

1 Introduction

Regular expressions (REs), because of their succinctness and clear syntax, are the common
choice to represent regular languages. The minimal deterministic finite automaton (DFA)
equivalent to a RE can be exponentially larger than the RE. However, nondeterministic
finite automata (NFAs) equivalent to REs can have the number of states linear with respect
to (w.r.t) the size of the REs. But, minimization of NFAs is a hard problem (PSPACE-
complete). Bisimulations are then an attractive alternative for reducing the size of NFAs, as
even bisimilarity (the largest bisimulation) can be computed in almost linear time using the
Paige and Tarjan algorithm [20].

Conversion methods from REs to equivalent NFAs can produce NFAs without or with
transitions labelled with the empty word (ε-NFA). The standard conversion without ε-
transitions is the position automaton (Apos) [12, 17]. Other conversions such as partial
derivative automata (Apd) [1, 18], follow automata (Af ) [14], or the construction by Garcia
et al. (Au) [11] were proved to be quotients of the position automata, by specific bisimula-
tions1 [10, 14]. When REs are in (normalized) star normal form, i.e. when subexpressions
of the star operator do not accept ε, the Apd automaton is a quotient of the Af [8].

1Also called right-invariant equivalence relations.
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The Apos bisimilarity was studied in [15], and of course it is always not larger than all
other quotients. Nevertheless, some experimental results on uniform random generated REs
suggested that for REs in (normalized) star normal form the Apos bisimilarity automata
almost coincide with the Apd automata [13].

Our goal is to have a better characterization of Apd automata and their relation with
the Apos bisimilarity. All the above mentioned automata (Apos, Apd, Af , and Au) can
be obtained from a given RE by specific algorithms (without considering the correspondent
bisimulation of Apos) in quadratic time. We aim to obtain a similar algorithm that computes,
directly from a regular expression, the position bisimilarity automaton.

In this paper, we review the construction of Apd as a quotient of Apos and study several of
its properties. For regular expressions without Kleene star we characterize the Apd automata
and we prove that the Apd automaton is isomorphic to the position bisimilarity automaton,
under certain conditions. Thus, for these special regular expressions, we conclude that the
Apd is an optimal conversion method. We close considering the difficulties of relating the
two automata for general regular expressions.

2 Regular Expressions and Automata

Given an alphabet Σ = {σ1, σ2, . . . , σk} of size k, the set RE of regular expressions α over Σ
is defined by the following grammar:

α := ∅ | ε | σ1 | · · · | σk | (α+ α) | (α · α) | (α)?, (1)

where the symbol · is often omitted. If two regular expressions α and β are syntactically
equal, we write α ≡ β. The size of a regular expression α, |α|, is its number of symbols,
disregarding parenthesis; its alphabetic size, |α|Σ, is the number of occurrences of letters from
Σ; and |α|ε denotes the number of occurrences of ε in α. A regular expression α is linear if
all its letters are distinct.

The language represented by a RE α is denoted by L(α). Two REs α and β are equivalent
if L(α) = L(β), and one writes α = β. We define ε(α) = ε if ε ∈ L(α) and ε(α) = ∅,
otherwise. We can inductively define ε(α) as follows:

ε(σ) = ε(∅) = ∅
ε(ε) = ε
ε(α∗) = ε

ε(α+ β) =

{
ε if (ε(α) = ε) ∨ (ε(β) = ε)

∅ otherwise

ε(αβ) =

{
ε if (ε(α) = ε) ∧ (ε(β) = ε)

∅ otherwise

The algebraic structure (RE,+, ., ∅, ε) constitutes an idempotent semiring, and with the
Kleene star operator ?, a Kleene algebra. The axioms for the star operator can be defined
by the following rules [16]:

ε+ αα? = α? and ε+ α?α = α?,

β + αγ ≤ γ =⇒ α?β ≤ γ and β + γα ≤ γ =⇒ βα? ≤ γ,

where α ≤ β means α+β = β. Given a language L ⊆ Σ? and a word w ∈ Σ?, the left-quotient
of L w.r.t. w is the language w−1L = {x | wx ∈ L}. Brzozowski [6] defined the syntactic
notion of derivative of a RE α w.r.t. a word w, dw(α), such that L(dw(α)) = w−1L(α), and
showed that the set of derivatives of a regular expression w.r.t. all words is finite, modulo
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associativity (A), commutativity (C), and idempotence (I) of + (which we denote by modulo
ACI).

In this paper, we only consider REs α normalized under the following conditions:

• The expression α is reduced according to:

– the equations ∅+ α = α+ ∅ = α, ε.α = α.ε = α, ∅.α = α.∅ = ∅;
– and the rule, for all subexpressions β of α, β = γ + ε =⇒ ε(γ) = ∅.

• The expression α is in star normal form (snf) [5], i.e. for all subexpressions β? of α,
ε(β) = ∅.

Every regular expression can be converted into an equivalent normalized RE in linear time.
A nondeterministic finite automaton (NFA) is a five-tuple A = (Q,Σ, δ, q0, F ) where

Q is a finite set of states, Σ is a finite alphabet, q0 in Q is the initial state, F ⊆ Q is
the set of final states, and δ : Q × Σ → 2Q is the transition function. This transition
function can be extended to words in the natural way. The language accepted by A is
L(A) = {w ∈ Σ? | δ(q, w) ∩ F 6= ∅}. Two NFAs are equivalent if they accept the same
language. If two NFAs A and B are isomorphic, we write A ' B. An NFA is deterministic
(DFA) if for all (q, σ) ∈ Q × Σ, |δ(q, σ)| ≤ 1. A DFA is minimal if there is no equivalent
DFA with fewer states. Minimal DFAs are unique up to isomorphism.

A binary symmetric and reflexive relation R on Q is a bisimulation if ∀p, q ∈ Q and
∀σ ∈ Σ if pRq then

• p ∈ F if and only if q ∈ F ;

• ∀p′ ∈ δ(p, σ) ∃q′ ∈ δ(q, σ) such that p′Rq′.

The sets of bisimulations onQ are closed under finite union. The largest bisimulation, i.e., the
union of all bisimulation relations on Q, is called bisimilarity (≡b), and it is an equivalence
relation. Bisimilarity can be computed in almost linear time using the Paige and Tarjan
algorithm [20]. If R is a equivalence bisimulation on Q the quotient automaton A�R can

be constructed by A�R = (Q�R,Σ,
δ�R, [q0], F�R), where [q] is the equivalence class that

contains q ∈ Q; S�R = {[q] | q ∈ S}, with S ⊆ Q; and δ�R = {([p], σ, [q]) | (p, σ, q) ∈ δ}. It is

easy to see that L(A�R) = L(A). The quotient automaton A�≡b is the minimal automaton

among all quotient automata A�R, where R is a bisimulation on Q, and it is unique up to

isomorphism. By language abuse, we will call A�≡b the bisimilarity of automaton A. If A is

a DFA, A�≡b is the minimal DFA equivalent to A.

2.1 Position Automaton

The position automaton was introduced independently by Glushkov [12] and McNaughton
and Yamada [17]. The states in the position automaton, equivalent to a regular expression
α, correspond to the positions of letters in α plus an additional initial state. Let α denote
the linear regular expression obtained by marking each letter with its position in α, i.e.,
L(α) ∈ Σ

?
where Σ = {σi | σ ∈ Σ, 1 ≤ i ≤ |α|Σ}. For example, the marked version of the

regular expression τ = (ab?+b)?a is τ = (a1b
?
2 +b3)?a4. The same notation is used to remove

the markings, i.e., α = α. Let Pos(α) = {1, 2, . . . , |α|Σ}, and Pos0(α) = Pos(α) ∪ {0}.
We can define the following three sets, where i, j ∈ Pos(α): First(α) = {i|aiw ∈ L(α)},

Last(α) = {i|wai ∈ L(α))}, Follow(α, i) = {j|uaiajv ∈ L(α))}. It is necessary to extend
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Figure 1: Ac(τ).

Follow(α, 0) = First(α) and define that Last0(α) is Last(α) if ε(α) = ∅, or Last(α) ∪ {0}
otherwise.

The position automaton for α is

Apos(α) = (Pos0(α), A, δpos, 0, Last0(α))

where δpos(i, a) = {j|j ∈ Follow(α, i), a = aj}. The position automata can be computed in
quadratic time.

2.2 c-Continuation Automaton

Berry and Sethi [3] and Champarnaud and Ziadi [10] define the c-continuation automaton
which is isomorphic to the Apos and it is useful to obtains the Apd automata in an efficient
way.

If α is linear, for every symbol σ ∈ Σ and every word w ∈ Σ
?
, dwσ(α) is either ∅ or unique

modulo ACI [3]. If dwσ(α) is different from ∅, it is named c-continuation of α w.r.t. σ ∈ Σ,
denoted by cσ(α) and it is defined as follows:

cσ(∅) = cσ(ε) = ∅

cσ(σ′) =

{
{ε}, if σ′ = σ

∅, otherwise

cσ(α?) = cσ(α)α?

cσ(α+ β) =

{
cσ(α), if cσ(α) 6= ∅
cσ(β), otherwise

cσ(αβ) =

{
cσ(α)β, if cσ(α) 6= ∅
cσ(β), otherwise

(2)

We also define c0(α) = dε(α) = α. This means that we can associate to each position
i ∈ Pos0(α), a unique c-continuation. For example, given τ = (a1b

?
2 + b3)?a4 we have

ca1(τ) = b?2τ , cb2(τ) = b?2τ , cb3(τ) = τ , and ca4(τ) = ε. The c-continuation automaton for
α is Ac(α) = (Qc,Σ, δc, q0, Fc) where Qc = {q0} ∪ {(i, cσi(α)) | i ∈ Pos(α)}, q0 = (0, c0(α)),
Fc = {(i, cσi(α)) | ε(cσi(α)) = ε}, δc = {((i, cσi(α)), b, (j, cσj (α))) | σj = b ∧ dσj (cσi(α)) 6= ∅}.
The Ac(τ) is represented in Figure 1.

If we ignore the c-continuations in the label of each state, we obtain the position automa-
ton.

Proposition 1 (Champarnaud & Ziadi). ∀α ∈ RE, Apos(α) ' Ac(α).

We can establish a relation between the sets First, Follow and Last and the c-continuations:
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Figure 2: Apd(τ).

Proposition 2 (Champarnnaud & Ziadi). For all α ∈ RE, the following equalities hold

First(α) = {σ ∈ Σ|da(α) 6= ∅}
Last(α) = {σ ∈ Σ|ε(cσ(α)) 6= ∅}

Follow(α, i) = {σj ∈ Σ|dσj (cσi(α)) 6= ∅}

2.3 Partial Derivative Automaton

The partial derivative automaton of a regular expression was introduced independently by
Mirkin [18] and Antimirov [1]. Champarnaud and Ziadi [9] proved that the two formulations
are equivalent. For a RE α and a symbol σ ∈ Σ, the set of partial derivatives of α w.r.t. σ
is defined inductively as follows:

∂σ(∅) = ∂σ(ε) = ∅

∂σ(σ′) =

{
{ε}, if σ′ = σ

∅, otherwise

∂σ(α+ β) = ∂σ(α) ∪ ∂σ(β)

∂σ(αβ) = ∂σ(α)β ∪ ε(α)∂σ(β)

∂σ(α?) = ∂σ(α)α?

(3)
where for any S ⊆ RE, β ∈ RE, S∅ = ∅S = ∅, Sε = εS = S, and Sβ = {αβ|α ∈ S} if β 6= ∅,
and β 6= ε.

The definition of partial derivative can be extended to sets of regular expressions, words,
and languages. Given α ∈ RE and σ ∈ Σ, ∂σ(S) =

⋃
α∈S ∂σ(α) for S ⊆ RE, ∂ε(α) = α

and ∂wσ(α) = ∂σ(∂w(α)), for any w ∈ Σ?, σ ∈ Σ, and ∂L(α) =
⋃
w∈L ∂w(α) for L ⊆ Σ?. We

know that
⋃
τ∈∂w(α) L(τ) = w−1L(α). The set of all partial derivatives of α w.r.t. words is

denoted by PD(α) =
⋃
w∈Σ? ∂w(α). Note that the set PD(α) is always finite [1], as opposed

to what happens for the Brzozowski derivatives set which is only finite modulo ACI.

The partial derivative automaton is defined by Apd(α) = (PD(α),Σ, δpd, α, Fpd), where
δpd = {(τ, σ, τ ′) | τ ∈ PD(α) and τ ′ ∈ ∂σ(τ)} and Fpd = {τ ∈ PD(α) | ε(τ) = ε}. Considering
τ = (ab? + b)?a, the Figure 2 shows Apd(τ).

Note that if α is a linear regular expression, for every word w, |∂w(α)| ≤ 1 and the partial
derivative coincide with dw(α) modulo ACI. Given the c-continuation automaton Ac(α), let
≡c be the bisimulation on Qc defined by (i, cσi(α)) ≡c (j, cσj (α)) if cσi(α) ≡ cσj (α). That the
Apd is isomorphic to the resulting quotient automaton, follows from the proposition below.
For our running example, we have (0, cε) ≡c (3, cb3) and (1, ca1) ≡c (2, cb2). In Figure 2, we
can see the merged states, and that the corresponding REs are unmarked.

Proposition 3 (Champarnaud & Ziadi). ∀α ∈ RE, Apd(α) ' Ac(α)�≡c.
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2.3.1 Inductive Characterization of Apd

Mirkin’s construction of the Apd(α) is based on solving a system of equations αi = σ1αi1 +
. . .+ σkαik + ε(αi), with α0 ≡ α and αij , 1 ≤ j ≤ k, linear combinations the αi, 0 ≤ i ≤ n,
n ≥ 0. A solution π(α) = {α1, . . . , αn} can be obtained inductively on the structure of α as
follows:

π(∅) = ∅
π(ε) = ∅
π(σ) = {ε}

π(α ∪ β) = π(α) ∪ π(β)

π(αβ) = π(α)β ∪ π(β)

π(α?) = π(α)α?.
(4)

Champarnaud and Ziadi [9] proved that PD(α) = π(α)∪{α} and that the two construc-
tions led to the same automaton.

As noted by Broda et. al [4], Mirkin’s algorithm to compute π(α) also provides an
inductive definition of the set of transitions of Apd(α). Let ϕ(α) = {(σ, γ) | γ ∈ ∂σ(α), σ ∈ Σ}
and λ(α) = {α′ | α′ ∈ π(α), ε(α′) = ε}, where both sets can be inductively defined using (3)
and (4). We have, δpd = {α} × ϕ(α) ∪ F (α) where the result of the × operation is seen as a
set of triples and the set F is defined inductively by:

F (∅) = F (ε) = F (σ) = ∅, σ ∈ Σ
F (α+ β) = F (α) ∪ F (β)
F (αβ) = F (α)β ∪ F (β) ∪ λ(α)β × ϕ(β)
F (α?) = F (α)α? ∪ (λ(α)× ϕ(α))α?.

(5)

Then, we can inductively construct the partial derivative automaton of α using the
following result.

Proposition 4. For all α ∈ RE, and λ′(α) = λ(α) ∪ ε(α){α},

Apd(α) = (π(α) ∪ {α},Σ, {α} × ϕ(α) ∪ F (α), α, λ′(α)),

Proof. Note that the sets F , λ and ϕ correspond, respectively, to the sets Follow, Last,
and First, modulo the equivalence relation that defines Apd as a quotient of Apos. We
can define inductively Apd(α) on the structure of α. Thus if α is ε, π(α) = ∅ and δpd =
{ε} × ϕ(α) ∪ F (α) = ∅, where ϕ(α) = {(σ, γ) | γ ∈ ∂σ(α), σ ∈ Σ} = ∅. Therefore,
Apd(ε) = ({ε}, ∅, ∅, ε, {ε}). If α is ∅, it is easy to see that Apd(∅) = ({∅}, ∅, ∅, ∅, ∅).
If α is σ, then π(σ) = ε and δpd = {σ}×ϕ(α)∪F (α) = {(σ, σ, ε)}, because ϕ(α) = {(σ, γ) |
γ ∈ ∂σ(α), σ ∈ Σ} = {(σ, ε)}. Therefore, Apd(σ) = ({σ, ε}, {σ}, {(σ, σ, ε)}, σ, {ε}).
If α is γ + β then π(γ + β) = π(γ) ∪ π(β) and

δpd = {γ + β} × ϕ(γ + β) ∪ F (γ + β)

= {γ + β} × ϕ(γ) ∪ {γ + β} × ϕ(β) ∪ F (γ) ∪ F (β),

because ϕ(γ + β) = {(σ, θ) | θ ∈ ∂σ(γ), σ ∈ Σ} ∪ {(σ, θ) | θ ∈ ∂σ(β), σ ∈ Σ}. Thus

Apd(γ + β) =({γ + β} ∪ π(γ) ∪ π(β),Σ, {γ + β} × ϕ(γ) ∪ {γ + β} × ϕ(β) ∪ F (γ) ∪ F (β),

γ + β, λ(γ) ∪ λ(β) ∪ ε(γ + β){γ + β}).
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Apd(∅) :
∅

Apd(ε) :
ε

Apd(σ) :
σ ε

σ

Apd(α+ β) :

α + β

∂σ(β)

∂σ(α)

λ(β)

λ(α)
σ

σ

F (α)

F (β)

Apd(αβ) :

αβ ∂σ(α)β λ(α)β ∂σ′ (β) λ(β)
σ σ′F (α)β F (β)

σ′

Apd(α?) :

α? ∂σ(α)α
? λ(α)α?

σ

σ′

F (α)α?

Figure 3: Inductive construction of Apd. The initial states are final if ε belongs to its
language. Note that only if ε(β) = ε the dotted arrow in Apd(αβ) exists and the state λ(α)β
is final.

If α is γβ, then π(γβ) = π(γ)β ∪ π(β) and

δpd = {γβ} × ϕ(γβ) ∪ F (γβ)

= {γβ} × ϕ(γ)β ∪ ε(γ)({γβ} × ϕ(β)) ∪ F (γ)β ∪ F (β) ∪ λ(γ)β × ϕ(β)

because, ϕ(γβ) = {(σ, θβ) | θ ∈ ∂σ(γ), σ ∈ Σ} ∪ ε(γ)({(σ, θ) | θ ∈ ∂σ(β), σ ∈ Σ}). Thus

Apd(γβ) = ({γβ} ∪ π(γ)β ∪ π(β),Σ,

{γβ} × ϕ(γ)β ∪ ε(γ)({γβ} × ϕ(β)) ∪ F (γ)β ∪ F (β) ∪ λ(γ)β × ϕ(β),

γβ, λ(β) ∪ ε(β)λ(γ)β ∪ ε(γβ){γβ}).

If α = β? then π(β?) = π(β)β? and δpd = {β?}×ϕ(β)β?∪F (β)β?∪ (λ(β)×ϕ(β))β? because
ϕ(β?) = {(σ, θβ?) | θ ∈ ∂σ(β), σ ∈ Σ}. Thus,

Apd(β?) = ({β?} ∪ π(β)β?,Σ, {β?} × ϕ(β)β? ∪ F (β)β? ∪ (λ(β)× ϕ(β))β?, β?, λ(β)β?).

Figure 3 illustrates this inductive construction, where we assume that states are merged
whenever they correspond to syntactically equal REs.

A new proof of Proposition 3 can also be given using the function π. Let π′ be a function
that coincides with π except that π′(σ) = {(σ, ε)} and in the two last rules the regular
expression, either β or α?, is concatenated to the second component of each pair in π′, i.e.,

π′(∅) = ∅
π′(ε) = ∅
π′(σ) = {(σ, ε)}

π′(α ∪ β) = π′(α) ∪ π′(β)

π′(αβ) = π′(α)β ∪ π′(β)

π′(α?) = π′(α)α?.
(6)
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Proposition 5. Let α ∈ RE, π′(α) = {(i, cσi(α))|i ∈ Pos(α)}.

Proof. First of all note that α+ β = α + β, αβ = αβ, and α? = α?. Let us prove by
induction on α. For the base cases it is easy to prove that the proposition holds. Suppose
that the proposition holds for γ and β. If α is γ + β, then

π′(α) = {(i, cσi(α)) | i ∈ Pos(α)}
= {(i, cσi(γ + β)) | i ∈ Pos(γ + β)}
= {(i, cσi(γ + β)) | i ∈ Pos(γ + β)}
= {(i, cσi(γ)) | i ∈ Pos(γ))} ∪ {(i, cσi(β)) | i ∈ Pos(β)} by the rules in (2)

= π′(γ + β) = π′(γ + β)

If α is γβ, then

π′(α) = {(i, cσi(α)) | i ∈ Pos(α)}
= {(i, cσi(γβ)) | i ∈ Pos(γβ)}
= {(i, cσi(γβ)) | i ∈ Pos(γβ)}
= {(i, cσi(γ)β) | i ∈ Pos(γ)} ∪ {(i, cσi(β)) | i ∈ Pos(β)} by the rules in (2)

= {(i, cσi(γ)) | i ∈ Pos(γ)}β ∪ {(i, cσi(β)) | i ∈ Pos(β)}
= π′(γ)β ∪ π′(β) = π′(γβ) = π′(γβ)

If α is γ?, then

π′(α) = {(i, cσi(α)) | i ∈ Pos(α)}
= {(i, cσi(γ?)) | i ∈ Pos(γ?)}
= {(i, cσi(γ)γ?) | i ∈ Pos(γ?)} by the rules in (2)

= {(i, cσi(γ)) | i ∈ Pos(γ?)}γ?

= π′(γ)γ? = π′(γ?)

Thus, the proposition holds.

By Proposition 5, we can conclude that if we compute π′(α) we obtain exactly2 the
set of states Qc \ {(0, cε)} of the c-continuation automaton Ac(α). Then it is easy to see
that π(α) is obtained by unmarking the c-continuations and removing the first component

of each pair, and thus Qc�≡c = π(α) ∪ {α}. Considering τ = (a1b
?
2 + b3)?a4, π′(τ) =

{(a1, b
?
2τ), (b2, b

?
2τ), (b3, τ), (b4, ε)}, which corresponds exactly to the set of states (excluding

the initial) of Ac(τ), presented in Figure 1. The set π(τ) is {b?τ, τ, ε}. That the other
components are quotients, also follows.

2.4 Follow Automaton

In [14], Ilie and Yu proposed a new method to construct NFAs from regular expressions.
First, the authors construct and NFA with ε-transitions – Aεf (α). Then they use an ε-
elimination method to build the follow automaton – Af (α). The authors also proved that
the follow automaton is a quotient of the position automaton.

Proposition 6 (Ilie & Yu). For all α ∈ RE, Af (α) ' Apos(α)�≡f , where i ≡f j iff both i, j

or none belong to last(α) and follow(α, i) = follow(α, j).

2Considering, for each position i, the marked letter σi.
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2.5 Garcia et.al Automaton

In [11], the authors also proposed a new method to construct NFAs from regular expressions.
The resulting automaton size is bounded above by the size of the smallest automata obtained
by the follow and partial derivatives methods.

Let the equivalence ≡∨ be the join of the relations ≡c and ≡f , where the join relation
between two equivalence relations E1 and E2 is the smallest equivalence relation that contains
E1 and E2. The Garcia et. al automaton is a quotient of the position automaton – Au(α) '
Apos(α)�∨.

3 Apd Characterizations and Bisimilarity

We aim to obtain some characterizations of Apd automaton and to determine when it

coincides with the bisimilarity of the position automaton, i.e. Apos�≡b. We assume that
all regular expressions are normalized. This ensures that the Apd is a quotient of Af , so
the smaller known direct ε-free automaton construction from a regular expression. As we
discuss in Subsection 3.4, to solve the problem in the general case it is difficult, mainly
because the lack of unique normal forms. Here, we give some partial solutions. First, we
consider linear regular expressions and, in Subsection 3.2, we solve the problem for regular
expressions representing finite languages.

3.1 Linear Regular Expressions

Given a linear regular expression α, it is obvious that the position automaton Apos(α) is a
DFA. In this case, all positions correspond to distinct letters and transitions from a same
state are all distinct. Thus, Apd(α) is also a DFA.

The following result is proved by Champarnaud and Ziadi in [8].

Proposition 7. Let x and y be two positions of a normalized regular expression α. Then
the following equivalence holds:

cσx(α) ≡ cσy(α)⇔ ∀a ∈ Pos0(α)da(cσx(α)) ≡ da(cσy(α))

Proof. (⇒) It is obvious.
(⇐) Let us suppose that cσx(α) 6≡ cσy(α). As x 6= y, there exists a subexpression of
E, Ex

⊗
Ey, with

⊗
∈ {+, .} such that x ∈ PosE(Ex) and y ∈ PosE(Ey). If we look

to the syntactic tree of E is not difficult to see that the reason for cσx(E) 6≡ cσy(E) is
cσx(Ex) 6≡ cσy(Ey). Note that ∀z ∈ Ex, z 6∈ Ey because E is marked. Thus, we have
cσx(E) = A1 . . . AαC1 . . . Cm and cσy(E) = B1 . . . BβC1 . . . Cm. Note that Ai, Bi and Ci are
subexpressions of E. By hypothesis we know that:

dσz(cσx(E)) = dσz(cσy(E))

⇔ dσz(A1 . . . AαC1 . . . Cm) = dσz(B1 . . . BβC1 . . . Cm)

If σz /∈ Ai and z /∈ Bi it is easy to see that the equality holds. If σz ∈ Ai and σz /∈ Bi
then

dσz(cσx(E)) = dσz(A1 . . . AαC1 . . . Cm)
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and

dσz(cσy(E)) = dσz(B1 . . . BβC1 . . . Cm)

= dσz(C1 . . . Cm) λ(B1 . . . Bβ) = 1

because σz /∈ Bi. Note that if λ(B1 . . . Bβ) 6= 1 the equality in the hypothesis does not
hold. Thus we have

dσz(A1 . . . AαC1 . . . Cm) = dσz(C1 . . . Cm) (7)

Suppose that dσz(A1) 6= ∅. Then dσz(A1 . . . AαC1 . . . Cm) 6= ∅. And by the equality
7 we know that dσz(C1 . . . Cm) 6= ∅. But this means that we have σz ∈ A1 . . . Aα and
σz ∈ C1 . . . Cm:

cσx(E) = A1 . . . Aα︸ ︷︷ ︸
σz∈

C1 . . . Cm︸ ︷︷ ︸
σz∈

Thus, there exists k, 1 ≤ k ≤ m such that Ck = F ?, and by the definition of d we also
conclude that λ(C1 . . . Ck) = 1. As σz ∈ F we also conclude that dσz(F ) 6= ∅. As σy ∈ Ey,
we know that dσy(Ey) 6= ∅. We also know that Ey ⊆ F ? and λ(C1 . . . Ck) = 1. Thus, we
conclude that dσy(F ) 6= ∅. By the hypothesis we know that dσy(cσx(E)) 6= ∅. As σy /∈ Ex
and dσy(A1 . . . AαC1 . . . Cm) 6= ∅ we conclude that λ(A1 . . . AαC1 . . . F

?) = 1. But cσx(F ) is
in A1 . . . AαC1 . . . F

?, because cσx(F ?) = cσx(F )F ?. Thus λ(cσx(F )) = 1. Since we have A1

in cσx(E), there exists a subexpression in E with one of these two forms:

• SxA1, and in this case cσx(E) = cσx(Sx)A1,

• S?x, cσx(E) = cσx(S?x) = cσx(Sx)S?x and A1 = S?x,

such that σx ∈ Sx, Sx contains no occurrence of ”.” or ”?” and cσx(Sx) = ε. Thus Sx is
equal to σx or σx + γ or γ + σx. Thus λ(cσx(Sx)) = 1. We know that Sx is subexpression of
F ?. Thus,

dσz(cσx(F ?)) = dσz(F )F ? = . . . = dσz(A1) 6= ∅.

Therefore exists an σz and σx such that λ(cσx(F )) = 1, dσz(cσx(F )) 6= ∅ and dσz(F ) 6= ∅,
which is a contradiction with E is in SNF.

Proposition 8. If α is a normalized linear regular expression, Apd(α) is minimal.

Proof. By [8, Theorem 2] we know that

cσx(α) 6≡ cσy(α)⇔ {σ | ∂σ(cσx(α)) 6= ∅} 6= {σ | ∂σ(cσy(α)) 6= ∅}

where α is a normalized linear regular expression and σx and σy are two distinct letters.
We want to prove that any two states cσx(α) and cσy(α) of Apd(α) are distinguishable.
Consider σ′ ∈ Σ such that σ′ ∈ {σ | ∂σ(cσx(α)) 6= ∅} but σ′ /∈ {σ | ∂σ(cσy(α)) 6= ∅}. Then
δpd(cσx(α), σ′) = cσ′(α). By construction, we know that ∃w ∈ Σ? such that δpd(cσ′(α), w) ∈
Fpd. Let w′ = σ′w. Therefore δpd(cσx(α), w′) = δpd(cσ′(α), w) ∈ Fpd and either δpd is not
defined for (cσy(α), w′) or δpd(cσy(α), w′) is a non final dead state. Thus, the two states are
distinguishable.
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It follows, from this, that for any linear regular expressions α,

Apd(α) ' Apos(α)�≡b.

The two following results are proved by Champarnaud and Ziadi in [10].

Proposition 9. Let α be a regular expression and α′ a subexpression of α. For all α′, σi ∈ Σ
and σ ∈ Σ, ⋃

σi=σ

dσi(α) = ∂σ(α)

Proposition 10. The relation ≡c is right invariant.

Proof. Let us consider the following equivalence:

(x, cσx(α)) ∼ (y, cσy(α))⇔ x ≡c y ⇔ cσx(α) ≡ cσy(α)

We want to prove that

∀a ∈ Σ(x, cσx(α)) ∼ (y, cσy(α))⇒{
(1) ∀(z, cσz(α)) ∈ δ((x, cσx(α)), a)∃(w, cσw(α)) ∈ δ((y, cσy(α)), a) such that z ∼ w
(2) ∀(w, cσw(α)) ∈ δ((y, cσy(α)), a)∃(z, cσz(α)) ∈ δ((x, cσx(α)), a) such that z ∼ w

Let us consider the case (1). As (z, cσz(α)) ∈ δ((x, cσx(α)), a), by definition of δ we
know that z = a and dz(cσx(α)) = cσz(α). By Proposition 9 we can conclude that cσz(α) ∈
∂a(cσx(α)). By hypothesis, we know that cσx(α) ≡ cσy(α), thus cσz(α) ∈ ∂a(cσy(α)). But by
Proposition 9 there exists a w such that the following is true:

• w = a, which implies dw(cσy(α)) = cσw(α) and

• dw(cσy(α)) ≡ dz(cσz(α)) which implies cσw(α) ≡ cσz(α)

The proof for (2) is similar. We also need to prove that ∀a ∈ Σ(x, cσx(α)) ∼ (y, cσy(α)) =⇒
λ((x, cσx(α))) = λ((y, cσy(α))), which is obvious.

3.2 Finite Languages

In this section, we consider normalized regular expressions without the Kleene star operator,
i.e. that represent finite languages. The set of these regular expressions α over Σ can be
defined by the grammar below:

α := ∅ | ε | β | γ | σ ∈ Σ
β := β1 + ε | β0 + γ | β0 + σ
β0 := γ | σ ∈ Σ | β0 + β0

γ := γ0γ0 | γ0γ

γ0 := (β) | σ ∈ Σ
β1 := γ2 | σ ∈ Σ | β1 + β1

γ2 := γ0β1 | β1γ0

To know that this grammar is correct, we must prove that L(α) = Lr, where Lr is the set
of normalized regular expressions. To prove this equivalence, we must consider the relation
in both directions. First, the grammar must produce only regular repressions found in Lr.
Second, every regular expression in Lr must be produced by the grammar.

12



Let us prove that L(α) ⊂ Lr. The first grammar rule α produce the basic regular
expressions ∅, ε and σ, which are obviously normalized regular expressions. This rule also
produce disjunctions (rule β) and conjunctions (rule γ). The conjunctions are defined in the
usual way, thus the rule γ is obvious. However the disjunctions, can only be defined in the
usual way if none of the terms is ε. If one of the terms of the disjunction is ε) then ε can
not belong to the language of the other disjunction term. Therefore, the rule β1 produces
regular expressions for which ε does not belong to its language. These regular expressions
can be σ, disjunctions of other regular expressions without ε in its language (β1 + β1), or
conjunctions in which at least one term has not ε in its language (rule γ2). It is not difficult
to see that γ2 → γ0β1 → γ0γ0β1 → γ0γ0β1γ0 → . . ., i.e. γ2 ⇒? γ?0β1γ

+
0 or γ2 ⇒? γ+

0 β1γ
?
0 .

As γ0 represents a σ or a disjunction with or without ε is not difficult to conclude that γ2

represents a conjunction with at least one term which has not ε in its language. Therefore,
every regular expression generated by the grammar is in Lr.

Considering L1 as the set of regular expressions for which ε does not belong to its
language, let us prove that L1 ⊂ L(β1). We will proceed by induction on the structure of
r ∈ Lr. If r = σ it is obvious that β1 produces r. Let us suppose that for any subexpressions
ri of r, if ε ∈ ri then β1 ⇒? ri, and if ri ∈ Lr \ {∅, ε} then γ+

0 ⇒? ri. Thus, if r = r1 + r2,
we know that ε 6∈ L(r1) and ε 6∈ r2 because r ∈ L1. So β1 → β1 + β1 ⇒? r1 + r2. If r = r1r2,
we know that either ε 6∈ L(r1) or ε 6∈ r2. Therefore, if ε 6∈ L(r1) then β1 → β1γ

+
0 ⇒? r1r2;

and if ε 6∈ L(r2) then β1 → γ+
0 β1 ⇒? r1r2. So any regular expression in L1 is also in L(β1).

From this, it is obvious that Lr ⊂ L(α).
The regular expressions represented by this grammar are named finite regular expressions.

The following results characterize NFAs that are Apd automaton.

Proposition 11. The Apd(α) = (PD(α),Σ, δα, α, Fα) automaton of any finite regular ex-
pression α 6≡ ∅ has the following properties:

1. The state ε always exists and it is a final state;

2. The state ε is reachable from any other state;

3. All other final states, q ∈ Fα \ {ε}, are of the form (α1 + ε) . . . (αn + ε);

4. |Fα| ≤ |α|ε + 1;

5. The size of each element of PD(α) is not greater than |α|.

Proof. We use the inductive construction of Apd(α).

1. For the base cases this is obviously true. If α is γ + β, then π(α) = π(γ) ∪ π(β).
As ε ∈ π(γ) and ε ∈ π(β), by inductive hypothesis, then ε ∈ π(α). If α is γβ, then
π(α) = π(γ)β ∪ π(β). As ε ∈ π(β), ε ∈ π(α).

2. If α is ε or σ it is obviously true. Let α be γ+β. The states of Apd(α) are {α}∪π(γ)∪
π(β). By construction, there exists at least a transition from the state α to a (distinct)
state in π(γ) ∪ π(β). Let α be γβ. The states of Apd(α) are {α} ∪ π(γ)β ∪ π(β). For
β′ ∈ {β}∪π(β), ∃wβ ε ∈ ∂wβ (β′). In the same way, for γ′ ∈ {γ}∪π(γ), ∃wγ ε ∈ ∂wγ (γ′).
Thus, for α′ = γ′β ∈ π(γ)β, we can conclude that ε ∈ ∂wγwβ (α′). From the state α
we can reach the state ε because the transitions leaving it go to states which reach the
state ε.

3. It is obvious, because final states must accept ε.
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4. For the base cases it is obviously true. Let α be γ+β. We know that |α|ε = |γ|ε+ |β|ε,
|Fα| ≤ |Fγ | + |Fβ| − 1, and that ε(α) = ε if either ε(γ) or ε(β) are ε. Then |Fα| ≤
|γ|ε + |β|ε + 1 ≤ |α|ε + 1. If α is γβ we know also that |α|ε = |γ|ε + |β|ε and that
ε(α) = ε if ε(γ) and ε(β) are ε. If ε(β) = ε, then |Fα| ≤ |Fγ | + |Fβ| − 1. Otherwise,
|Fα| = |Fβ|. We have, in the both cases, |Fα| ≤ |γ|ε + |β|ε + 1 ≤ |α|ε + 1.

5. If α is ε or σ it is obvious that the proposition is true. Let α be γ + β. For all
αi ∈ π(α) = π(γ) ∪ π(β), |αi| ≤ |γ| or |αi| ≤ |β|, and thus |αi| ≤ |α|. If α is γβ,
then π(α) = π(γ)β ∪ π(β). For γi ∈ π(γ), |γi| ≤ γ. If αi ∈ π(γ)β, αi = γiβ and
|αi| ≤ |γ|+ |β| ≤ |α|. If αi ∈ π(β), |αi| ≤ |β| ≤ |α|.

Caron and Ziadi [7] characterized the position automaton in terms of the properties
of the underlying digraph. We consider a similar approach to characterize the Apd for
finite languages. We restrict the analysis to acyclic NFAs. We first observe that Apos are
series-parallel automata [19] which is not the case for all Apd as can be seen considering
Apd(a(ac+ b) + bc).

Let A = (Q,Σ, δ, q0, F ) be an acyclic NFA. A is an hammock if it has the following
properties. If |Q| = 1, A has no transitions. Otherwise, there exists an unique f ∈ F such
that for any state q ∈ Q one can find a path from q0 to f going through q. The state q0 is
called the root and f the anti-root. The rank of a state q ∈ Q, named rk(q), is the length of
the longest word w ∈ Σ? such that δ(q, w) ∈ F . In an hammock, the anti-root has rank 0.
Each state q of rank r ≥ 1, has only transitions for states in smaller ranks and at least one
transition for a state in rank r − 1.

Proposition 12. For every finite regular expression α, Apd(α) is an hammock.

Proof. If the partial derivative automaton has a unique state then it is the Apd(ε) or Apd(∅)
which has no transitions. Otherwise, for all q ∈ PD(α) there exists at least one path from
q0 = α to q because Apd(α) is initially connected; also there exists at least one path from q
to ε, the anti-root, by Proposition 11, item 2.

Proposition 13. An acyclic NFA A = (Q,Σ, δ, q0, F ) is a partial derivative automaton of
some finite regular expression α, if the following conditions holds:

1. A is an hammock;

2. ∀q, q′ ∈ Q rk(q) = rk(q′) =⇒ ∃σ ∈ Σ δ(q, σ) 6= δ(q′, σ).

Proof. First we give an algorithm that allows to associate to each state of an hammock A a
regular expression. Then, we show that if the second condition holds, A is the Apd(α) where
α is the RE associated to the initial state.

We label each state q with a regular expressionRE(q), considering the states by increasing
rank order. We define for the anti-root f , RE(f) = ε. Suppose that all states of ranks less
then n are already labelled. Let q ∈ Q with rk(q) = n. For σ ∈ Σ, with δ(q, σ) = {q1, . . . , qm}
and RE(qi) = βi we construct the regular expression σ(β1 + · · ·+ βm). Then,

RE(q) =
∑
σ∈Σ

σ(β1 + · · ·+ βm)

where we omit all σ ∈ Σ such that δ(q, σ) = ∅. We have, RE(q0) = α
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To show that if A satisfies condition 2. then A ' Apd(α), we need to prove that RE(q) 6≡
RE(q′) for all q, q′ ∈ Q with q 6= q′. We prove by induction on the rank. For rank 0,
it is obvious. Suppose that all states with rank m < n are labelled by different regular
expressions. Let q ∈ Q, with rk(q) = n. We must prove that RE(q) 6≡ RE(q′) for all q′ with
rk(q′) ≤ n. Suppose that rk(q) = rk(q′), RE(q) = σ1(α1 + · · ·+αn)+ · · ·+σi(β1 + · · ·+βm),
and RE(q′) = σ′1(α′1 + · · ·+α′n′)+ · · ·+σ′j(β

′
1 + · · ·+β′m′). We know that ∃σδ(q, σ) 6= δ(q′, σ).

Suppose that σ = σ1 = σ′1. Then we know that ∃t, t′ αt 6= α′t′ , thus RE(q) 6≡ RE(q′). If
rk(q) > rk(q′), then there exists a w ∈ Σ? with |w| = n such that δ(q, w) ∩ F 6= ∅ and
δ(q′, w) ∩ F = ∅. Thus RE(q) 6≡ RE(q′).

3.3 Comparing Apd and Apos�≡b
As we already mentioned, there are many (normalized) regular expressions α for which

Apd(α) ' Apos(α)�≡b. But, even for REs representing finite languages that is not always
true. Taking, for example, τ1 = a(a + b)c + b(ac + bc) + a(c + c), we have PD(τ1) =
{τ1, ac+bc, (a+b)c, c+c, c, ε}, Fpd = {ε}, δpd(τ1, a) = {(a+b)c, c+c}, δpd(τ1, b) = {ac+bc},
δpd(ac+ bc, a) = δpd(ac+ bc, b) = δpd((a+ b)c, a) = δpd((a+ b)c, b) = {c} and δpd(c+ c, c) =

δpd(c, c) = {ε}. One can see that c ≡b (c + c) and (ac + bc) ≡b (a + b)c. Thus, Apos(τ1)�≡b
has two states less than Apd(τ1). The states that are bisimilar are equivalent modulo the +
idempotence and left-distributivity. It is also easy to see that two states are bisimilar if they
are equivalent modulo + associativity or + commutativity.

Considering an order < on Σ and that · < +, we can extend < to REs. Then, the
following rewriting system is confluent and terminating:

α+ (β + γ)→ (α+ β) + γ (+ Associativity)

α+ β → β + α if β < α (+ Commutativity)

α+ α→ α (+ Idempotence)

(αβ)γ → α(βγ) (. Associativity)

(α+ γ)β → αβ + γβ (Left distributivity).

A (normalized) regular expression α that can not be rewritten anymore by this system is
called an irreducible regular expression modulo ACIAL.

Remark 1. An irreducible regular expression modulo ACIAL α is of the form:

w1 + . . .+ wn + w′1α1 + . . .+ w′mαm (8)

where wi, w
′
j are words for 1 ≤ i ≤ n, 1 ≤ j ≤ m, and αj are expressions of the same form

of α, for 1 ≤ j ≤ m. For for each normalized RE without the Kleene star operator, there
exits a unique normal form.

For example, considering a < b < c, the normal form for the RE τ1 given above is

τ2 = ac+ a(ac+ bc) + b(ac+ bc) and Apd(τ2) ' Apos(τ2)�≡b. As we will see next, for normal
forms this isomorphism always holds.

The following lemmas are needed to prove the main result.

Lemma 14. For σ ∈ Σ, the function ∂σ is closed modulo ACIAL.
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Proof. We know that α has the form w1+. . .+wn+w′1α1+. . .+w′iαm, where wi = σvi, vi ∈ Σ?,
w′j = σv′j , v

′
j ∈ Σ?, i ∈ {1, · · · , n}, j ∈ {1, · · · ,m}. Thus, ∀σ ∈ Σ ∂σ(α) = ∂σ(w1) ∪ · · · ∪

∂σ(wn) ∪ ∂σ(w′1)α1 ∪ · · · ∪ ∂σ(w′i)αm, where ∂σ(wi) = vi and ∂σ(w′j)αj = v′jαj . Then it is
obvious that the both possible results are irreducible modulo ACIAL. Thus the proposition
holds.

Lemma 15. For w,w′ ∈ Σ?,

1. (∀σ ∈ Σ) |∂σ(w)| ≤ 1.

2. w 6= w′ =⇒ (∀σ ∈ Σ) ∂σ(w) 6= ∂σ(w′) ∨ ∂σ(w) = ∂σ(w′) = ∅.

3. (∀σ ∈ Σ)∂σ(wα) = ∂σ(w)α = {w′α}, if w = σw′.

Proof. 1. Let w = σw′. Then ∂σ(w) = ∂σ(σw′) = {w′}. For σ 6= σ′, ∂σ′(w) = ∅.

2. We need to consider three cases:

(a) if σ 6∈ First(w) and σ 6∈ First(w′) then ∂σ(w) = ∅ and ∂σ(w′) = ∅.
(b) if σ ∈ First(w) and σ 6∈ First(w′) then ∂σ(w) 6= ∅ and ∂σ(w′) = ∅.
(c) if σ ∈ First(w), σ ∈ First(w′) and w = σv , w′ = σv′ then v 6= v′. As ∂σ(w) = v

and ∂σ(w′) = v′ then ∂σ(w) 6= ∂σ(w′).

3. Let w = σw′. Then ∂σ(wα) = ∂σ(w)α = ∂σ(σw′)α = {w′α}. For σ 6= σ′, ∂σ′(wα) = ∅.

Proposition 16. Given α and β irreducible finite regular expressions modulo ACIAL,

α 6≡ β =⇒ ∃σ ∈ Σ ∂σ(α) 6= ∂σ(β).

Proof. Let α 6≡ β. We know that α = w1 + · · · + wn + w′1α1 + · · · + w′mαm and β =
x1 + · · · + xn′ + x′1β1 + · · · + x′m′βm′ . As we know that (∀σ ∈ Σ) |∂σ(w)| ≤ 1, we denote
∂σ(w) by (w)−1

σ
. The sets of partial derivatives of α and β w.r.t a σ ∈ Σ can be written as:

(α)−1
σ = A ∪ (wi1)−1

σ ∪ · · · ∪ (wij )
−1
σ ∪ (w′l1)−1

σ αl1 ∪ · · · ∪ (w′lt)
−1
σ αlt ,

(β)−1
σ = A ∪ (xi′1)−1

σ ∪ · · · ∪ (xi′
j′

)−1
σ ∪ (x′l′1

)−1
σ βl′1 ∪ · · · ∪ (x′l′

t′
)−1
σ βl′

t′
,

where the set A contains all partial derivatives ϕ such that ϕ ∈ (γ)−1
σ if, and only if, γ is a

common summand of α and β, i.e. if γ ≡ wi ≡ xj or γ ≡ w′lαl ≡ x′kβk for some i, j, l, and
k. Without loss of generality, consider the following three cases:

1. If i1 6= 0 and i′1 6= 0, we know that for k ∈ {i′1, . . . , i′j′}, wi1 6= xk and, by Lemma 15,

(wi1)−1
σ 6= (xk)

−1
σ . And also, by Lemma 15, (wi1)−1

σ 6= (x′k)
−1
σ βk, for k ∈ {l′1, . . . , l′t′}.

Thus, (wi)
−1
σ ∩ (β)−1

σ = ∅.

2. If i1 6= 0 and i′j = 0, this case corresponds to the second part of the previous one.

3. If ij = i′j′ = 0, for k ∈ {l′1, . . . , l′t′}, we have w′l1αl1 6= x′kαk and then either w′l1 6= x′k
or αl1 6= βk. If w′l1 6= x′k then (w′l1)−1

σ 6= (x′k)
−1
σ and thus (w′l1)−1

σ αl1 6= (x′k)
−1
σ αk. If

αl1 6= βk it is obvious that (w′l)
−1
σ αl 6= (x′k)

−1
σ αk. Thus, (w′l1)−1

σ αl1 ∩ (β)−1
σ = ∅.
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Figure 4: Apd((a+ b+ ε)(a+ b+ ε)(a+ b+ ε)(a+ b)?)

Theorem 1. Let α be a irreducible finite regular expression modulo ACIAL. Then, Apd(α) '
Apos(α)�≡b.

Proof. Let Apd(α) = (PD(α),Σ, δpd, α, Fpd). We want to prove that no pair of states of
Apd(α) is bisimilar. As in Proposition 13, we proceed by induction on the rank of the states.
The only state in rank 0 is ε, for which the proposition is obvious. Suppose that all pair
of states with rank m < n are not bisimilar. Let γ, β ∈ PD(α) with n = rk(γ) ≥ rk(β).
Then, there exists γ′ ∈ ∂σ(γ) that is distinct of every β′ ∈ ∂σ(β), by Proposition 16. Because
rk(β′) < n and rk(γ′) < n, by inductive hypothesis, γ′ 6≡b β′. Thus γ 6≡b β.

Despite Apd(α) ' Apos(α)�≡b, for irreducible REs modulo ACIAL, these NFAs are not
necessarily minimal. For example, if τ3 = ba(a + b) + c(aa + ab), both NFAs have seven
states, as can be seen in figure below, and a minimal equivalent NFA has four states.

ba(a + b) + c(aa + ab)

(aa) + (ab)

a(a + b)

b

a

a + b

ε

c

b

a

a

a

b

a

a, b

Finally, note that for general regular expressions representing finite languages, Apos(α)�≡b
can be arbitrarily more succinct than Apd. For example, considering the family of REs

αn = aa1 + a(a1 + a2) + a(a1 + a2 + a3) + . . .+ a(a1 + a2 + . . .+ an)

the Apd(αn) has n+ 2 states and Apos(α)�≡b has three states independently of n.

3.4 General Regular Languages

If we consider general regular expressions with the Kleene star operator, it is easy to find

REs α such that Apd(α) 6' Apos(α)�≡b. This is true even if Apos(α) is a DFA, i.e. if α is
one-unambiguous [5]. For example, for α = aa? + b(ε+ aa?) the Apd(α) has one more state

than Apos(α)�≡b. Ilie and Yu [15] presented a family of REs

αn = (a+ b+ ε)(a+ b+ ε) . . . (a+ b+ ε)(a+ b)?,

where (a+b+ε) is repeated n times, for which Apd(αn) has n+1 states and Apos(αn)�≡b has
one state independently of n. Considering n = 3 the Apd(α3) are represented in Figure 4.

In concurrency theory, the characterization of regular expressions for which equivalent
NFAs are bisimilar has been extensively studied. Baeten et. al [2] defined a normal form that
corresponds to the normal form (8), in the finite case. For regular expressions with Kleene
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q0 q1
a

a, b

Figure 5: Apos(τ)�≡b.

star operator the normal form defined by those authors is neither irreducible nor unique. In

that case, we can find regular expressions α in normal form such that Apd(α) 6' Apos(α)�≡b.
For example, for τ = (ab? + b)? the Apd(τ) has three states, as seen before in Figure 2, and
Apos(τ)�≡b has two states, as shown in Figure 5. Other example is τ4 = a(ε + aa?) + ba?,

where |PD(τ4)| = 3, and in Apos(τ4)�≡b a state is saved because (ε + aa?) ≡b a?. This
corresponds to an instance of one of the axioms of Kleene algebra (for the star operator).

As no confluent or even terminating rewrite system modulo these axioms is known, for
general REs it will be difficult to obtain a characterization similar to the one of Theorem 1.
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