
Automata for KAT Expressions

Sabine Broda António Machiavelo Nelma Moreira Rogério Reis
CMUP & DCC, Faculdade de Ciências da Universidade do Porto

Rua do Campo Alegre, 4169-007 Porto, Portugal

Technical Report Series: DCC-2014-01
Version 1.0 January 2014

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

Automata for KAT Expressions

Sabine Broda António Machiavelo Nelma Moreira Rogério Reis
CMUP & DCC, Faculdade de Ciências da Universidade do Porto

Rua do Campo Alegre, 4169-007 Porto, Portugal

January 21, 2014

Abstract

Kleene algebra with tests (KAT) is a decidable equational system for program verification,
that uses both Kleene and Boolean algebras. In spite of KAT ’s elegance and success in providing
theoretical solutions for several problems, not many efforts have been made towards obtaining
tractable decision procedures that could be used in practical software verification tools. The main
drawback of the existing methods relies on the explicit use of all possible assignments to boolean
variables. Recently, Silva introduced an automata model that extends Glushkov’s construction for
regular expressions. Broda et al. extended also Mirkin’s equation automata to KAT expressions
and studied the state complexity of both algorithms. Contrary to other automata constructions
from KAT expressions, these two constructions enjoy the same descriptional complexity behaviour
as their counterparts for regular expressions, both in the worst case as well as in the average case.
In this paper, we generalize, for these automata, the classical methods of subset construction for
nondeterministic finite automata, and the Hopcroft and Karp algorithm for testing deterministic
finite automata equivalence. As a result, we obtain a decision procedure for KAT equivalence
where the extra burden of dealing with boolean expressions avoids the explicit use of all possible
assignments to the boolean variables. Finally, we specialize the decision procedure for testing
KAT expressions equivalence without explicitly constructing the automata, by introducing a new
notion of derivative and a new method of constructing the equation automaton.

Keywords: Kleene algebra with tests, automata, equivalence, derivative.

1 Introduction

Kleene algebra with tests (KAT) [11] is an equational system that extends Kleene algebra (KA),
the algebra of regular expressions, and that is specially suited to capture and verify properties of
simple imperative programs. In particular, it subsumes the propositional Hoare logic which is a
formal system for the specification and verification of programs, and that is, currently, the base of
most of the tools for checking program correctness. The equational theory of KAT is PSPACE-
complete and can be reduced to the equational theory of KA, with an exponential cost [8, 14].
Regular sets of guarded strings are standard models for KAT (as regular languages are for KA).
The decidability, conciseness and expressiveness of KAT, motivated its recent automatization within
several theorem provers [16, 17, 4] and functional languages [3]. Those implementations use (variants
of) the coalgebraic automata on guarded strings developed by Kozen [13]. In this approach, derivatives
are considered over symbols of the from αp, where p is an alphabetic symbol (program) and α a
valuation of boolean variables (the guard, normally called atom). This induces an exponential blow-
up on the number of states or transitions of the automata and an accentuated exponential complexity
when testing the equivalence of two KAT expressions. Recently, Silva [18] introduced an automata
model for KAT expressions that extends Glushkov’s construction for regular expressions. In this
automata, transitions are labeled with KAT expressions of the form bp, where b is a boolean expression
(and not an atom) and p an alphabetic symbol. Using similar ideas, Broda et al. [6] extended the
Mirkin’s equation automata to KAT expressions and studied the state complexity of both algorithms.

2

Contrary to other automata constructions for KAT expressions, these two constructions enjoy the
same descriptional complexity behaviour as their counterparts for regular expressions, both in the
worst-case as well as in the average-case. In this paper, we generalize, for these automata, the
classical methods of subset construction for nondeterministic finite automata, and the Hopcroft and
Karp algorithm for testing deterministic finite automata equivalence. As a result, we obtain a decision
procedure for KAT equivalence where the extra burden of dealing with boolean expressions avoids the
explicit use of all possible assignments to the boolean variables. Finally, we specialize the decision
procedure for testing KAT expressions equivalence without explicitly constructing the automata, by
introducing a new notion of derivative and a new method of constructing the equation automaton.

2 KAT Expressions, Automata, and Guarded Strings

Let P = {p1, . . . , pk} be a non-empty set, usual referred to as the set of program symbols, and
T = {t0, . . . , tl−1} be a non-empty set of test symbols. The set of boolean expressions over T together
with negation, disjunction and conjunction, is denoted by BExp, and the set of KAT expressions with
disjunction, concatenation, and Kleene star, by Exp. The abstract syntax of KAT expressions, over
an alphabet P ∪ T, is given by the following grammar, where p ∈ P and t ∈ T,

BExp : b → 0 | 1 | t | ¬b | b+ b | b · b
Exp : e → p | b | e+ e | e · e | e?.

As usual, we will omit the operator · whenever it does not give rise to any ambiguity. For the negation
of test symbols we frequently use t instead of ¬t. The set At, of atoms over T, is the set of all boolean
assignments to all elements of T, At = {x0 · · ·xl−1 | xi ∈ {ti, ti}, ti ∈ T}. Each atom α ∈ At has
associated a binary word of l bits (w0 · · ·wl−1) where wi = 0 if ti ∈ α, and wi = 1, if ti ∈ α.

Now, the set of guarded strings over P and T is GS = (At · P)? · At. Regular sets of guarded
strings form the standard language-theoretic model for KAT [12]. For x = α1p1 · · · pm−1αm, y =
β1q1 · · · qn−1βn ∈ GS, where m,n ≥ 1, αi, βj ∈ At and pi, qj ∈ P, we define the fusion product
x�y = α1p1 · · · pm−1αmq1 · · · qn−1βn, if αm = β1, leaving it undefined, otherwise. For sets X,Y ⊆ GS,
X �Y is the set of all x � y such that x ∈ X and y ∈ Y . Let X0 = At and Xn+1 = X �Xn, for n ≥ 0.
Given a KAT expression e, we define GS(e) ⊆ GS inductively as follows:

GS(p) = {αpβ | α, β ∈ At }
GS(b) = {α | α ∈ At ∧ α ≤ b }

GS(e1 + e2) = GS(e1) ∪ GS(e2)
GS(e1 · e2) = GS(e1) � GS(e2)
GS(e?1) = ∪n≥0GS(e1)n,

where α ≤ b if α → b is a propositional tautology. For E ⊆ Exp, let GS(E) =
⋃
e∈E

GS(e). Given two

KAT expressions e1 and e2, we say that they are equivalent, and write e1 = e2, if GS(e1) = GS(e2).
A (nondeterministic) automaton with tests (NTA) over the alphabets P and T is a tuple A =

〈S, s0, o, δ〉, where S is a finite set of states, s0 ∈ S is the initial state, o : S → BExp is the output
function, and δ ⊆ 2S×(BExp×P)×S is the transition relation. We denote by PA and BExpA, respectively,
the set of program symbols and the set of boolean expressions that occur in δ. In general, we assume
that there are no transitions (s, (b, p), s′) ∈ δ such that b is not satisfiable.

A guarded string α1p1 . . . pn−1αn, with n ≥ 1, is accepted by the automaton A if and only if there
is a sequence of states s0, s1, . . . , sn−1 ∈ S, where s0 is the initial state, and, for i = 1, . . . , n − 1,
one has αi ≤ bi for some (si−1, (bi, pi), si) ∈ δ, and αn ≤ o(sn−1). The set of all guarded strings
accepted by A is denoted by GS(A). Formally, given an NTA A = 〈S, s0, o, δ〉, one can naturally
associate to the transition relation δ ⊆ 2S×(BExp×P)×S a function δ′ : S × (At · P) −→ 2S , defined by

δ′(s, αp) = { s′ | (s, (b, p), s′) ∈ δ, α ≤ b }. And, one can define a function δ̂ : S × GS −→ {0, 1} over
pairs of states and guarded strings as follows

δ̂(s, α) =

{
1 if α ≤ o(s),
0 otherwise,

δ̂(s, αpx) =
∑

s′∈δ′(s,αp)

δ̂(s′, x) .

3

Given a state s, GS(s) = { x ∈ GS | δ̂(s, x) = 1 } is the set of guarded strings accepted by s, and
GS(A) = GS(s0). We say that a KAT expression e ∈ Exp is equivalent to an automaton A, and write
e = A, if GS(A) = GS(e).

Example 1. Given the KAT expression e = t1p(pq
?t2 + t3q)

?, an equivalent NTA A, obtained by
the equation algorithm (see [6]), is the following, where e0 = e, e1 = (pq?t2 + t3q)

? and e2 =
q?t2(pq?t2 + t3q)

?. Both objects accept the guarded string t1t2t3pt1t2t3pt1t2t3qt1t2t3.

e0 e1 e2
(t1, p)

0

(t3, q)

(1, p)

1

(t2, p), (1, q)

(t2t3, q) t2

An NTA is called deterministic (DTA) if and only if for every pair (α, p) ∈ At×P and every state
s ∈ S, there is at most one transition (s, (b, p), s′) ∈ δ such that α ≤ b, i.e. δ′(s, αp) is either empty
or a singleton.

3 Determinization

The standard subset construction for converting a nondeterministic finite automaton (NFA) into an
equivalent deterministic finite automaton (DFA) may be adapted as follows. Given a set of states X ⊆
S, whenever there are transitions (s1, (b1, p), s

′
1), . . . , (sm, (bm, p), s

′
m), with s1, . . . , sm ∈ X, in the

NTA, in the equivalent DTA we consider “disjoint” transitions to subsets {s′i1 , . . . , s
′
ik
} ⊆ {s′1, . . . , s′m},

labeled by (bi1 · · · bik¬bik+1
· · · ¬bim)p, where {s′ik+1

, . . . , s′im} = {s′1, . . . , s′m} \ {s′i1 , . . . , s
′
ik
}.

Consider the set of atoms At = {α0, . . . , α2l−1}, with the natural order induced by their binary
representation. We define the function

V : BExp −→ 2{0,...,2
l−1}

b 7−→ Vb = { i | αi ≤ b, 0 ≤ i ≤ 2l − 1 }.

This representation of boolean expressions is such that Vb = Vb′ if and only if b and b′ are logically
equivalent expressions. We consider Vb as a canonical representation of b and write αi ≤ Vb if and
only if i ∈ Vb. Conversely, to each U ⊆ {0, . . . , 2l−1} we associate a unique boolean expression B(U),
where

B : 2{0,...,2
l−1} −→ BExp

U 7−→
∑
i∈U

αi.

For b, b′ ∈ BExp we have V¬b = Vb, Vb+b′ = Vb∪Vb′ and Vb·b′ = Vb∩Vb′ , where U = {0, . . . , 2l−1}\U
for any U ⊆ {0, . . . , 2l − 1}.

Example 2. For T = {t1, t2} and At = {t1t2, t1t2, t1t2, t1t2}, we have Vt2 = {1, 3} and Vt1+¬t2 =
{0, 1, 3}. Also, B({1, 3}) = t1t2 + t1t2.

We now describe the subset construction that, given an NTA, A = 〈S, s0, o, δ〉, over the alphabets
P and T, produces an DTA, Adet = 〈2S , {s0}, odet, δdet〉, over P and T, such that GS(A) = GS(Adet).
First, we define two functions

δ̃det : 2S × (2{0,...,2
l−1} × P) −→ 2S and õdet : 2S −→ 2{0,...,2

l−1}.

Then, we take δdet = { (X, (B(V), p), Y) | (X, (V, p), Y) ∈ δ̃det } as well as odet = B ◦ õdet. For X ⊆ S,

we define õdet(X) =
⋃
s∈X

Vo(s). To define δ̃det, we consider the following sets. Given X ⊆ S and p ∈ P,

let

Γ(X, p) = { (b, s′) | (s, (b, p), s′) ∈ δ, s ∈ X },
∆(X, p) = { s′ | (b, s′) ∈ Γ(X, p) }.

4

For s′ ∈ ∆(X, p), we define VX,p,s′ =
⋃
{ Vb | (b, s′) ∈ Γ(X, p) } , and for each Y ⊆ ∆(X, p) the set

VX,p,Y =
⋂(
{ VX,p,s′ | s′ ∈ Y } ∪

{
VX,p,s′ | s′ ∈ ∆(X, p) \ Y

})
.

Finally, we have

δ̃det = { (X, (VX,p,Y , p), Y) | X ⊆ S, Y ⊆ ∆(X, p), p ∈ P, VX,p,Y 6= ∅ }.

Proposition 3. For every NTA A = 〈S, s0, o, δ〉, the automaton Adet = 〈2S , {s0}, odet, δdet〉 is
deterministic.

Proof. For all X,Y ⊆ S and p ∈ P, the set VX,p,Y is uniquely defined (and equal to ∅, if X = ∅ or

Y = ∅). Thus, it remains to show that whenever (X, (VX,p,Y , p), Y), (X, (VX,p,Y ′ , p), Y ′) ∈ δ̃det, for
some non-empty sets X,Y, Y ′ ⊆ S, Y 6= Y ′ and p ∈ P, then VX,p,Y ∩ VX,p,Y ′ = ∅. Since Y 6= Y ′,
there is some s′ ∈ S such that s′ ∈ Y and s′ 6∈ Y ′ (or vice-versa). By the definition of VX,p,Y , we
conclude that VX,p,Y ⊆ VX,p,s′ and VX,p,Y ′ ⊆ VX,p,s′ . Thus, VX,p,Y ∩ VX,p,Y ′ = ∅.

Corollary 4. For every NTA A = 〈S, s0, o, δ〉, X ⊆ S, α ∈ At and p ∈ P, the set δ′det(X,αp) is either
∅ or a singleton {Y }, where Y = { s′ | (b, s′) ∈ Γ(X, p), α ≤ b }.

Proof. By definition, δ′det(X,αp) = { Y | (X, (VX,p,Y , p), Y) ∈ δ̃det, α ≤ VX,p,Y } and has to be either
∅ or a singleton since Adet is deterministic. Furthermore, it follows, by the construction of VX,p,Y ,

that one has (X, (VX,p,Y , p), Y) ∈ δ̃det and α ≤ VX,p,Y if and only if Y is exactly the set of states s′

such that for some b ∈ BExp there is (b, s′) ∈ Γ(X, p) with α ≤ b.

Proposition 5. For A = 〈S, s0, o, δ〉 one has GS(A) = GS(Adet).

Proof. We will prove that for every set of states X ⊆ S and every guarded string x ∈ GS, one has
δ̂det(X,x) =

∑
s∈X δ̂(s, x). Thus, in particular δ̂det({s0}, x) = δ̂(s0, x). The proof is by induction on

the number of action symbols in x.
For x = α we have

∑
s∈X δ̂(s, α) = 1 if and only if there is some s ∈ X such that α ≤ o(s), i.e.

α ≤ Vo(s). This is equivalent to α ≤ odet(X), hence to δ̂det(X,α) = 1. For x = αpy, we have∑
s∈X

δ̂(s, αpy) =
∑
s∈X

s′∈δ′(s,αp)

δ̂(s′, y) =
∑
s∈X

(s,(b,p),s′)∈δ
α≤b

δ̂(s′, y) =
∑
s′∈Y

δ̂(s′, y),

where Y = { s′ | (b, s′) ∈ Γ(X, p), α ≤ b }. By the induction hypothesis, we conclude that∑
s∈X δ̂(s, αpy) =

∑
s′∈Y δ̂(s

′, y) = δ̂det(Y, y). On the other hand, it follows from Corollary 4 that

δ̂det(X,αpy) = δ̂det(Y, y), with Y = { s′ | (b, s′) ∈ Γ(X, p), α ≤ b }.

Example 6. Applying the construction above to the NTA from Example 1, we obtain the following
DTA:

e0 e1 e2 e1, e2
(t1, p)

0

(t3, q)

(1, p)

1

(t2, p), (¬(t2t3), q)

(t2t3, q)

t2

(t3, q)

(1, p), (¬t3, q) 1

To illustrate the construction, we first consider the subset X = {e2} and program symbol q. We have

Γ({e2}, q) = {(t2t3, e1), (1, e2)} and ∆({e2}, q) = {e1, e2}.

5

Remember that for T = {t1, t2, t3} each element of At = {t1t2t3, . . . , t1t2t3} is represented by some
i ∈ {0, . . . , 7}. Furthermore,

V{e2},q,e1 = {0, 4} and V{e2},q,e2 = {0, . . . , 7}.

Hence, we conclude that

V{e2},q,{e1,e2} =
⋂
{{0, 4}, {0, . . . , 7}} = {0, 4} = Vt2t3

V{e2},q,{e1} =
⋂
{{0, 4}, {}} = {}

and V{e2},q,{e2} =
⋂
{{0, . . . , 7}, {1, 2, 3, 5, 6, 7}} = {1, 2, 3, 5, 6, 7} = V¬(t2t3).

Regarding X = {e1, e2}, we have

Γ({e1, e2}, q) = {(t3, e1), (t2t3, e1), (1, e2)} and ∆({e1, e2}, q) = {e1, e2}.

Furthermore,
V{e1,e2},q,e1 = {0, 2, 4, 6} and V{e1,e2},q,e2 = {0, . . . , 7}.

Finally,

V{e1,e2},q,{e1,e2} =
⋂
{{0, 2, 4, 6}, {0, . . . , 7}} = {0, 2, 4, 6} = Vt3

V{e1,e2},q,{e1} =
⋂
{{0, 2, 4, 6}, {}} = {}

and V{e1,e2},q,{e2} =
⋂
{{0, . . . , 7}, {1, 3, 5, 7}} = {1, 3, 5, 7} = V¬t3 .

3.1 Implementation and Complexity

It is important to notice that in the determinization algorithm, the construction of all the 2|S| subsets
X of the set of states S can be avoided by considering only reachable states from the initial state. In
order to, efficiently deal with boolean operations it is essential to have an adequate representation for
the boolean expressions b as well as the sets Vb. A possible choice is to use OBDDs (ordered binary
decision diagrams), for which there are several software packages available. The sets VX,p,Y may also
be constructed using a (variant) of the standard Quine-McCluskey algorithm.

In the worst case, the determinization algorithm exhibits an extra exponential complexity to
compute the sets VX,p,Y . The deterministic automaton Adet has at most 2n states and 2n2lk
transitions where n = |S|, l = |T|, and k = |P|. Contrary to what happens with the other KAT
automata where the set At is explicitly used, in practice and with adequate data structures, we can
expect that the number of sets X ⊆ S and of sets VX,p,Y is kept within tractable limits. It is an open
problem to theoretically obtain the average-case complexity of both the power set construction and
the sets VX,p,Y .

4 Equivalence of Deterministic Automata

Hopcroft and Karp [10] presented an almost linear algorithm (HK) for testing the equivalence of two
DFAs that avoids their minimization. Considering the merge of the two DFAs as a single one, the
algorithm computes the finest right-invariant relation, on the set of states, that makes the initial
states equivalent. Recently this algorithm was analyzed and extended to NFAs in [2, 5]. In this
section, we extend it, again, for testing equivalence of deterministic automata for guarded strings.
We will only consider DTAs, A = 〈S, s0, o, δ〉, where all states are useful, i.e. for every state s ∈ S,
GS(s) 6= ∅.

Given a DTA, A = 〈S, s0, o, δ〉, over the alphabets P and T, and s, t ∈ S, we say that s and t are
equivalent, and write s ≈ t, if GS(s) = GS(t). A binary relation R on S is right invariant if for all
s, t ∈ S if sRt then the following conditions hold:

• ∀α ∈ At, α ≤ o(s)⇔ α ≤ o(t);

• ∀αp ∈ At · P, (δ′(s, αp) = δ′(t, αp) = ∅) or (δ′(s, αp) = {s′}, δ′(t, αp) = {t′} and s′Rt′).

6

It is easy to see that the relation ≈ is right invariant. Furthermore, whenever R is a right-invariant
relation on S and sRt, for s, t ∈ S, one has s ≈ t.

Let A1 = 〈S1, s0, o1, δ1〉 and A2 = 〈S2, r0, o2, δ2〉 be two DTAs over the alphabets P and T, such
that S1 ∩ S2 = ∅. The algorithm HK, given below, decides if these two automata are equivalent,
i.e. if GS(A1) = GS(A2), by building a right-invariant relation that checks whether s0 ≈ r0. Consider
A = 〈S, s0, o, δ〉, where

S = S1 ∪ S2, o(s) =

{
o1(s) if s ∈ S1

o2(s) if s ∈ S2
and δ = δ1 ∪ δ2.

Lemma 7. Given two DTAs, A1 and A2, let A be defined as above. Then, s0 ≈ r0 (in A) if and
only if GS(A1) = GS(A2).

The algorithm uses an initially empty stack H and a set partition P of S, which are both updated
during the computation. The set partition P is built using the UNION-FIND data structure [9].
Within this structure, three functions are defined:

• MAKE(i): creates a new set (singleton) for one element i (the identifier);

• FIND(i): returns the identifier Si of the set which contains i;

• UNION(i, j, k): combines the sets identified by i and j into a new set Sk = Si ∪ Sj ; Si and Sj
are destroyed.

An arbitrary sequence of i operations MAKE, UNION, and FIND, j of which are MAKE operations,
necessary to create the required sets can, in worst-case, be performed O(iα(j)) time, where α(j) is
related to a functional inverse of the Ackermann function, and, as such, grows very slowly, and for
practical uses can be considered a constant. In the whole we assume that whenever FIND(i) fails,
MAKE(i) is called.

Algorithm 1: HK algorithm for deterministic automata.

1 def HK(A1, A2) :
2 MAKE(s0) ; MAKE(r0)
3 H = ∅
4 UNION(s0, r0, r0) ; PUSH(H, (s0, r0))
5 while (s, t) = POP(H) :
6 i f Vo(s) 6= Vo(t) : return False
7 for p ∈ P :
8 B1 = Γ({s}, p)
9 B2 = Γ({t}, p)

10 i f
⋃

(b1,)∈B1

Vb1 =
⋃

(b2,)∈B2

Vb2 :

11 for (b1, s′) ∈ B1 :
12 for (b2, t′) ∈ B2 :
13 i f Vb1 ∩ Vb2 6= ∅ :
14 s′ = FIND(s′)
15 t′ = FIND(t′)
16 i f s′ 6= t′ :
17 UNION(s′, t′, t′)
18 PUSH(H, (s′, t′))
19 else : return False
20 return True

The algorithm terminates because every time it pushes a pair onto the stack it performs a union
of two disjoint sets in the partition, and this can be done at most |S| − 1 times. Given that set
operations introduce what can be considered a constant time factor, the worst-case running time of
the algorithm HK is O(m2kn), where n = |S|, k = |PA|, and m = |BExpA|. The correctness of this
version of algorithm HK is given by the proposition below, whose proof follows closely the one for
DFAs.

7

Definition 8. We define a binary relation ∼HK ⊆ S × S by s ∼HK t if FIND(s) = FIND(t), when
the algorithm terminates and returns True.

This relation is obviously an equivalence relation.

Lemma 9. The relation ∼HK is right invariant.

Proof. If s ∼HK t and s 6= t, then there exists a sequence of states s = q1, q2, . . . , qn = t ∈ FIND(s),
with n ≥ 2, such that either (qi, qi+1) ∈ H or (qi+1, qi) ∈ H at some point of the computation,
for i = 1, . . . , n − 1. Since Vo(qi) = Vo(qi+1) (otherwise the algorithm would have failed in line 6),
we have ∀α ∈ At α ≤ o(qi) ⇔ α ≤ o(qi+1). Furthermore, it follows from the test in line 10 and
from the automaton being deterministic, that ∀αp ∈ At · P either δ′(qi, αp) = δ′(qi+1, αp) = ∅ or
δ′(qi, αp) = {s′}, δ′(qi+1, αp) = {t′}. In this last case, there exist (qi, (b1, p), s

′), (qi+1, (b2, p), t
′) ∈ δ

such that α ≤ b1 · b2. Consequently, either one has already FIND(qi) = FIND(qi+1), or (s′, t′)
enters H and one has FIND(qi) = FIND(qi+1) afterwards. Thus, s′ ∼HK t

′. Since these properties
are true for all i = 1, . . . , n − 1, we conclude that ∀α ∈ At α ≤ o(s) ⇔ α ≤ o(t). Furthermore,
∀αp ∈ At · P either δ′(s, αp) = δ′(t, αp) = ∅ or δ′(s, αp) = {s′}, δ′(t, αp) = {t′} and s ∼HK t.

Proposition 10. The algorithm returns True if and only if s0 ≈ r0.

Proof. If the algorithm returns True, then s0 ∼HK r0. Since ∼HK is right invariant, we conclude that
s0 ≈ r0.

If s0 6≈ r0, then there is some x = α1p1 . . . αnpnα ∈ GS, such that δ̂(s0, x) = 1 and δ̂(r0, x) = 0 (or

vice-versa). δ̂(s0, x) = 1 implies that there are s1, . . . , sn ∈ S such that α ≤ o(sn) and for i = 1, . . . , n,

there is (si−1, (bi, pi), si) ∈ δ with αi ≤ bi. One reason for δ̂(r0, x) = 0 is the existence of k ∈
{1, . . . , n−1} such that there are t1, . . . , tk ∈ S such that for i = 1, . . . , k, there is (ti−1, (b

′
i, pi), t

′
i) ∈ δ

with αi ≤ b′i, but there is no (tk, (b
′
k+1, pk+1), t′k+1) ∈ δ with αk+1 ≤ b′k+1. In this case, it is easy to

verify, by induction on k, that one has FIND(s1) = FIND(t1), . . . , F IND(sk) = FIND(tk), but
the algorithm will fail in step 10 after constructing B1 and B2 respectively for s = FIND(sk) and
t = FIND(tk) (this, in case it has not already failed before). The other possible reason is that there
are actually t1, . . . , tn ∈ S such that for i = 1, . . . , n, there is (ti−1, (b

′
i, pi), ti) ∈ δ with αi ≤ b′i, but

α 6≤ o(tn). In this case, the algorithm fails at step 6.

5 Equivalence of Nondeterministic Automata

We can embed the determinization process directly into the HK algorithm, extending it, so that it
can be used to test the equivalence of NTAs. As before, given two NTAs with disjoint sets of states,
A1 and A2, we consider them as a single NTA, A = 〈S, s0, o, δ〉. We denote the resulting algorithm
by HKN.

Algorithm 2: HKN algorithm for nondeterministic automata.

1 def HKN(A1, A2) :
2 MAKE({s0}) ; MAKE({r0})
3 H = ∅
4 UNION({s0}, {r0}, {r0}) ; PUSH(H, ({s0}, {r0}))
5 while (X,Y) = POP(H) :
6 i f õdet(X) 6= õdet(Y) : return False
7 for p ∈ P :
8 B1 = Γ(X, p)
9 B2 = Γ(Y, p)

10 i f
⋃

(b1,)∈B1

Vb1 =
⋃

(b2,)∈B2

Vb2 :

11 for X′ ⊆ ∆(X, p) :
12 for Y ′ ⊆ ∆(Y, p) :
13 i f VX,p,X′ ∩ VY,p,Y ′ 6= ∅ :
14 X′ = FIND(X′)
15 Y ′ = FIND(Y ′)

8

16 i f X′ 6= Y ′ :
17 UNION(X′, Y ′, Y ′)
18 PUSH(H, (X′, Y ′))
19 else : return False
20 return True

6 Equivalence of KAT Expressions

Given two KAT expressions, e1 and e2, their equivalence can be tested by first converting each
expression to an equivalent NTA and then, either by determinizing both and applying the HK
algorithm (Section 4), or by directly using the resulting NTAs in algorithm HKN (Section 5). In
particular, we could use the equation construction given in [6] to obtain NTAs equivalent to the given
KAT expressions and then apply the HKN algorithm. The equation automata for KAT expressions is
an adaptation of Mirkin’s construction [15] for regular expressions. Given e0 ≡ e ∈ Exp, a set of KAT
expressions π(e) = {e1, . . . , en} is defined inductively by π(p) = {1}, π(b) = ∅, π(e+f) = π(e)∪π(f),
π(e · f) = π(e)f ∪ π(f), and π(e?) = π(e)e?.. This set satisfy the following system of equations

ei =

n∑
j=1

bij1p1ej + · · ·+
n∑
j=1

bijkpkej + out(ei) (1)

for i = 0, . . . , n, pr ∈ P, k = |P|, some bijr ∈ BExp, and where function out is defined be-
low. The equation automaton is Aeq(e) = 〈{e} ∪ π(e), e, out, δeq〉 with δeq = { (ei, (bijr, pr), ej) |
if bijrprej is a component of the equation for ei }.

In this section, we will use this construction to define an algorithm for testing equivalence of KAT
expressions by a recursive computation of their derivatives without explicitly building any automaton.
However, the correctness of this procedure is justified by the correctness of the equation automaton.
We first present a slightly different formalization of this automaton construction, which is more
adequate for our purposes. The construction resembles the partial derivative automaton for regular
expressions (that is known to be identical to the Mirkin automaton [7]). The resulting decision
procedure for KAT equivalence is also similar to the ones recently presented for regular expressions
(see [1, 2]) and can be seen as a syntactic (and more compact) version of the one presented by
Kozen [13].

For e ∈ Exp and a program symbol p ∈ P, the set ∂p(e) of partial derivatives of e w.r.t. p is
inductively defined as follows:

∂p : Exp −→ BExp× Exp

∂p(p
′) =

{
{(1, 1)} if p′ ≡ p
∅ otherwise

∂p(b) = ∅

∂p(e+ e′) = ∂p(e) ∪ ∂p(e′)
∂p(ee

′) = ∂p(e)e
′ ∪ out(e)∂p(e

′)
∂p(e

?) = ∂p(e)e
?

where out : Exp −→ BExp is defined by
out(p) = 0
out(b) = b

out(e1 + e2) = out(e1) + out(e2)
out(e1 · e2) = out(e1) · out(e2)

out(e?) = 1.

and for R ⊆ BExp × Exp, e ∈ Exp, and b ∈ BExp, Re = { (b′, e′e) | (b′, e′) ∈ R } and bR =
{ (bb′, e′) | (b′, e′) ∈ R }. We also define ∆p(e) = { e′ | (b, e′) ∈ ∂p(e) }. The functions ∂p,
out, and ∆p are naturally extended to sets X ⊆ Exp. Moreover we define the KAT expression∑
∂p(e) ≡

∑
(bi,ei)∈∂p(e) bipei.

Example 11. The states of the equation automaton in Example 1 satisfy the following system of
equations:

e0 = t1pe1
e1 = 1pe2 + t3qe1 + 1
e2 = t2pe2 + t2t3qe1 + 1qe2 + t2

For instance, note that ∂p(e2) = {(t2, e2)}, ∂q(e2) = {(t2t3, e1), (1, e2)}, out(e2) = t2, and e2 =∑
∂p(e2) +

∑
∂q(e2) + out(e2).

9

Given e ∈ Exp, we define the partial derivative automaton Apd(e) = 〈{e} ∪ π(e), e, δpd, out(e)〉
where δ = { (e1, (b, p), e2) | p ∈ P, (b, e2) ∈ ∂p(e1) }.

Lemma 12. For e ∈ Exp, Apd(e) and Aeq(e) are identical.

Proof. The set π(e) = {e1, . . . , en} as defined for the equation automata Aeq(e) [6] satisfies equa-
tion (1) and has the following inductive definition: π(p) = {1}, π(b) = ∅, π(e + f) = π(e) ∪ π(f),
π(e · f) = π(e)f ∪ π(f), and π(e?) = π(e)e?. We have to show that for all i = 0, . . . , n and pr ∈ P,∑
∂pr (ei) ≡

∑n
j=1 bijrprej . These can be proved by induction on the structure of e.

Proposition 13. GS(Apd(e)) = GS(e).

Now, it is easy to see that we can define a procedure, HKK, that directly tests the equivalence of
any given two KAT expressions. For that, it is enough to modify HKN by taking ({e1}, {e2}) as the
initial pair and, for X ⊆ Exp, õdet(X) = out(X), Γ(X, p) = ∂p(X) and ∆(X, p) = ∆p(X).

Algorithm 3: HKK algorithm for KAT expressions.

1 def HKK(e1, e2) :
2 MAKE({e1}) ; MAKE({e2})
3 H = ∅
4 UNION({e1}, {e2}, {e1}) ; PUSH(H, ({e1}, {e2}))
5 while (X,Y) = POP(H) :
6 i f out(X) 6= out(Y) : return False
7 for p ∈ P :
8 B1 = ∂p(X)
9 B2 = ∂p(Y)

10 i f
⋃

(b1,)∈B1

Vb1 =
⋃

(b2,)∈B2

Vb2 :

11 for X′ ⊆ ∆p(X) :
12 for Y ′ ⊆ ∆p(Y) :
13 i f VX,p,X′ ∩ VY,p,Y ′ 6= ∅ :
14 X′ = FIND(X′)
15 Y ′ = FIND(Y ′)
16 i f X′ 6= Y ′ :
17 UNION(X′, Y ′, Y ′)
18 PUSH(H, (X′, Y ′))
19 else : return False
20 return True

7 Conclusions

We considered an automata model for KAT expressions where each transition is labeled by a program
symbol and, instead of an atom, a boolean expression. Each transition can, thus, be seen as labeled, in
a compact way, by a set of atoms, the ones that satisfy the appropriate boolean expression. Recently,
symbolic finite automata (SFA) where transitions are labeled with sets of alphabetic symbols were
introduced in order to deal with large alphabets [19]. Although the extension of classical finite
automata algorithms to SFAs bears similarities with the ones here presented, SFAs are interpreted
over sets of finite words and not over sets of guarded strings. Experiments with the algorithms
presented in this paper must be carried out in order to validate their practical applicability and also
to suggest goals for a theoretical study of their average-case complexity.

References

[1] Almeida, M., Moreira, N., Reis, R.: Antimirov and Mosses’s rewrite system revisited.
International Journal of Foundations of Computer Science 20(04), 669 – 684 (2009)

[2] Almeida, M., Moreira, N., Reis, R.: Testing regular languages equivalence. Journal of Automata,
Languages and Combinatorics 15(1/2), 7–25 (2010)

10

[3] Almeida, R., Broda, S., Moreira, N.: Deciding KAT and Hoare logic with derivatives. In: Faella,
M., Murano, A. (eds.) Proc. 3rd GANDALF. EPTCS, vol. 96, pp. 127–140 (2012)

[4] Armstrong, A., Struth, G., Weber, T.: Program analysis and verification based on Kleene algebra
in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) 4th Inter. Conference
ITP 2013, Rennes, France. Proceedings. LNCS, vol. 7998, pp. 197–212. Springer (2013)

[5] Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In:
Giacobazzi, R., Cousot, R. (eds.) The 40th Annual ACM SIGPLAN-SIGACT Symposium POPL
’13. pp. 457–468. ACM (2013)

[6] Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average size of Glushkov and equation
automata for KAT expressions. In: 19th Inter. Symposium on Fundamentals of Computation
Theory. pp. 72–83. No. 8070 in LNCS, Springer (2013)

[7] Champarnaud, J.M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s word partial derivatives.
Fundam. Inform. 45(3), 195–205 (2001)

[8] Cohen, E., Kozen, D., Smith, F.: The complexity of Kleene algebra with tests. Tech. Rep.
TR96-1598, Computer Science Department, Cornell University (07 1996)

[9] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT
Press, second edn. (2003)

[10] Hopcroft, J., Karp, R.M.: A linear algorithm for testing equivalence of finite automata. Tech.
Rep. TR 71 -114, University of California, Berkeley, California (1971)

[11] Kozen, D.: Kleene algebra with tests. Trans. on Prog. Lang. and Systems 19(3), 427–443 (05
1997)

[12] Kozen, D.: Automata on guarded strings and applications. Matématica Contemporânea 24,
117–139 (2003)

[13] Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. Tech. Rep. http://hdl.
handle.net/1813/10173, Cornell University (05 2008)

[14] Kozen, D., Smith, F.: Kleene algebra with tests: Completeness and decidability. In: van Dalen,
D., Bezem, M. (eds.) Proc. 10th CSL. LNCS, vol. 1258, pp. 244–259. Springer (1996)

[15] Mirkin, B.G.: An algorithm for constructing a base in a language of regular expressions.
Engineering Cybernetics 5, 51—57 (1966)

[16] Pereira, D.: Towards Certified Program Logics for the Verification of Imperative Programs.
Ph.D. thesis, University of Porto (2013), http://www.liacc.up.pt/~kat/pdcoq

[17] Pous, D.: Kleene algebra with tests and Coq tools for While programs. CoRR abs/1302.1737
(2013)

[18] Silva, A.: Position automata for Kleene algebra with tests. Sci. Ann. Comp. Sci. 22(2), 367–394
(2012)

[19] Veanes, M., de Halleux, P., Tillmann, N.: Rex: Symbolic regular expression explorer. In: 3rd
Inter. Conference on Software Testing, Verification and Validation, ICST 2010, Paris, France,
April 7-9. pp. 498–507. IEEE Computer Society (2010)

11

