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Rogério Reis, Emanuele Rodaro
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Abstract. We introduce the notion of reset left regular decomposition of an ideal regular lan-
guage and we prove that the category formed by these decompositions with certain morphisms
is equivalent to the category of strongly connected synchronizing automata. We show that
each ideal regular language has at least a reset left regular decomposition. As a consequence,
each ideal regular language is the set of synchronizing words of some strongly connected
synchronizing automaton. Furthermore, this one-to-one correspondence allows us to introduce
the notion of reset decomposition complexity of an ideal. This notion allows the reformulation
of Černý’s conjecture in pure language theoretic terms.

1 Introduction

Since, in the context of this paper, we do not study automata as languages recognizer, but we are just
interest on the action of its transition function δ on the set of states Q, we consider a deterministic
finite automaton (DFA) as a tuple A = 〈Q,Σ, δ〉, where the initial and final states are deliberately
omitted from the definition. These automata are also referred in literature as semiautomata. But,
because in some point of this work we also refer to an automaton as a language recognizer, we still
call a DFA a tuple B = 〈Q′, Σ′, δ′, q0, F 〉, and the language recognized by B is the set L[B] = {u ∈
Σ∗ : δ′(q0, u) ∈ F}. A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exists a word w ∈ Σ∗

“sending” all the states into a single one, i.e. δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any such word is said
to be synchronizing (or reset) for the DFA A . This notion has been widely studied since the work
of Černý in 1964 [11] and his well known conjecture regarding the length of the shortest reset word.
This conjecture states that any synchronizing automata A with n states admits at least a reset word
w with |w| ≤ (n − 1)2. For more information on synchronizing automata we refer the reader to the
survey by Volkov [12]. In what follows, when there is no ambiguity on the choice of the action δ of
the automaton, we use the notation q · u instead of δ(q, u). We extend this action to a subset H ⊆ Q
in the obvious way H · u = {q · u : q ∈ H} with the convention ∅ · u = ∅, and for a language L ⊆ Σ∗

we use the notation H · L = {q · u : q ∈ H,u ∈ L}. We say that A is strongly connected whenever
for any q, q′ ∈ Q there is a word u ∈ Σ∗ such that q · u = q′. In the realm of synchronizing automata
this notion is crucial since it is well known that Černý’s conjecture is true if and only if it is true for
the class of strongly connected synchronizing automata.

In this paper we study the relationship between ideal regular languages and synchronizing au-
tomata. A language I ⊆ Σ∗ is called a two-sided ideal (or simply an ideal) if Σ∗IΣ∗ ⊆ I. In
this work we will consider only ideal languages which are regular. Denote by IΣ the class of ideal
languages on an alphabet Σ. For a given synchronizing automaton A , Syn(A ) denotes the language
of all the words synchronizing A . It is a well known fact that Syn(A ) = Σ∗ Syn(A )Σ∗ is a regular
language which is also an ideal. This ideal is generated by the set of minimal synchronizing words
G = Syn(A )\(Σ+ Syn(A )∪Syn(A )Σ+) or equivalently using the bifix or infix operators introduced
in [6, 8] we get G = Iι = Ib. In case the set of generators G is finite, I is called finitely generated
ideal and the synchronizing automata whose set of synchronizing words is finitely generated are
called finitely generated synchronizing automata (see [5, 7, 9]). It is observed in [3] that the minimal
deterministic automaton AI = 〈Q′, Σ, δ′, q0, {s}〉 recognizing an ideal language I is synchronizing
with a unique final state s which is fixed by all the elements of Σ. We will refer to such state as
the sink state for AI . Furthermore Syn(AI) = I. Thus, each ideal language is endowed with at least



a synchronizing automaton for which I serves as the set of reset words. Therefore, for each ideal I
there is a non-empty set SA(I) of all the synchronizing automata B with Syn(B) = I. This simple
observation led Maslennikova to introduce in [3] the notion of reset complexity of an ideal I as the
number of states of the smallest automata in SA(I). In the same paper it is shown that the reset
complexity can be exponentially smaller than the state complexity of the language. In the subsequent
paper [1], the authors consider the special case of finitely generated synchronizing automata with
the set of the reset words which is a principal ideal P = Σ∗wΣ∗ generated by a word w ∈ Σ∗,
and it is presented an algorithm to generate a strongly connected synchronizing automaton Bw with
Syn(Bw) = P with the same number of states of AP . In the same paper the author address the
question whether or not, for any ideal language I, there is always a strongly connected synchronizing
automaton in SA(I). In Section 3 we answer affirmatively to this question. However, to study and
characterize languages which are the reset words of strongly connected synchronizing automata we
need to introduce the following provisional class of strongly connected ideal language:

Definition 1 An ideal language I is called strongly connected whenever I = Syn(A ) for some
strongly connected synchronizing automaton A .

The paper is organized as follows. In Section 2 we introduce the notion of a (reset) left regular
decomposition of an ideal, and we prove that strongly connected ideal languages are exactly the ideals
having a reset left regular decomposition. We also exhibit an equivalence between the category of reset
left regular decompositions and the category of the the strongly connected synchronizing automaton
on the same alphabet. Using this equivalence we prove in Section 3 that each ideal language is a
strongly connected ideal language. Thus, we can introduce the concept of reset regular decomposition
complexity of an ideal and give an equivalent formulation of Černý’s conjecture using this notion. We
give some upper bound to this parameter for a subclass of the ideal languages and finally we state
some open problems and direction of future research.

2 Strongly connected ideal languages

In this section we develop a connection between strongly connected synchronizing automata and
strongly connected ideal languages. First we need some definitions. A homomorphism ϕ : A →B

between the two DFA’s A = 〈Q,Σ, δ〉, B = 〈T,Σ, ξ〉 is a map ϕ : Q→T preserving the actions
of the two automata, i.e. ϕ(δ(q, a)) = ξ(ϕ(q), a) for all a ∈ Σ. We temporarily denote the class of
strongly connected ideals on some finite alphabet Σ by SCIΣ . We denote SCSAΣ the category of
strongly connected synchronizing automata where ϕ : A → B is an arrow if ϕ is a homomorphism.
Note that any homomorphism between strongly connected automata is necessarily surjective. For
L ⊆ Σ∗ and u ∈ Σ∗, we put Lu = {xu : x ∈ L}, uL = {ux : x ∈ L}. We recall that the reverse
operator ·R is a bijective map on Σ∗ such that given a word u = u1u2 . . . uk, u

R = uk . . . u2u1. This
operator extends naturaly to languages. To characterize the class SCIΣ we use the following concept
of reset left regular decomposition.

Definition 2 A left regular decomposition is a collection {Ii}i∈F of disjoint left ideals Ii of Σ∗ for
some finite set F such that:

i) For any a ∈ Σ and i ∈ F , there is a j ∈ F such that Iia ⊆ Ij

The decomposition {Ii}i∈F is called a reset left regular decomposition if it also satisfies the following
extra condition:

ii) Let I = ⊎i∈F Ii, for any u ∈ Σ∗ if there is an i ∈ F such that Iu ⊆ Ii, then u ∈ I.

Note that if {Ii}i∈F is a reset left regular decomposition, then the condition Iu ⊆ Ii implies u ∈ Ii.
Since u ∈ I, then u ∈ Ij for some j ∈ F , hence Iu ⊆ Ij . If j 6= i we have both Iu ⊆ Ii and Iu ⊆ Ij and
thus Ii∩Ij 6= ∅, which is a contradiction. We say that an ideal I has a (reset) left regular decomposition
if there is a (reset) left regular decomposition {Ii}i∈F such that I = ⊎i∈F Ii. The order of {Ii}i∈F is
the cardinality of the family, and we assume that the set F of indices of the family is minimal, and



so the order of {Ii}i∈F is also equal to |F |. The notion of right regular decomposition is symmetric:
exchange left ideals with right ideals and Iia, Iu with aIi, uI, respectively. Denote byRLDΣ (RRDΣ)
the category of the reset left regular decompositions, where an arrow f : {Ii}i∈F → {Ji}i∈H is any
function f : F →H such that for any i ∈ F , there is an index f(i) ∈ H with Ii ⊆ Jf(i). Note that,
given a left regular decomposition (reset left regular decomposition) {Ii}i∈F , then {IRi }i∈F is a right
regular decomposition (reset right regular decomposition). Thus ·R is a bijection between the objects
of RLDΣ → RRDΣ . We have the following characterization.

Theorem 3. An ideal language I is strongly connected if and only if it has a reset left regular
decomposition. Moreover RLDΣ and SCSAΣ are equivalent categories via the two functors A, I
defined by:

– A : RLDΣ →SCSAΣ which sends

A : {Ii}i∈F 7→ A({Ii}i∈F ) = 〈{Ii}i∈F , Σ, η〉

with η(Ii, a) = Ij for a ∈ Σ if and only if Iia ⊆ Ij, and if f : {Ii}i∈F → {Ji}i∈H then A(f) is
the homomorphism ϕ : A({Ii}i∈F ) → A({Ji}i∈H) defined by ϕ(Ii) = Jm where Ii ⊆ Jm;

– I : SCSAΣ →RLDΣ sending

I : A = 〈Q,Σ, δ〉 7→ I(A ) = {I(A )q}q∈Q

where I(A )q = {u ∈ Σ∗ : δ(Q, u) = q}, and if ϕ : A →B is an arrow between A = 〈Q,Σ, δ〉
and B = 〈T,Σ, ξ〉, then I(ϕ) is the arrow defined by f : Q→T which sends q 7→ ϕ(q).

Proof. Let us prove the first claim of the theorem. Let A = 〈Q,Σ, δ〉 be a strongly connected
synchronizing automata with Syn(A ) = I. For each q ∈ Q, let:

Iq = {u ∈ I : Q · u = q}

We claim that {Iq}q∈Q is a reset left regular decomposition for I. It is obvious that Iq are left ideals
since for any u ∈ Iq and v ∈ Σ∗, we get Q · vu ⊆ Q · u = {q}, i.e. Q · vu = {q}. Let q, q′ ∈ Q with
q 6= q′ and assume Iq ∩ Iq′ 6= ∅ and let u ∈ Iq ∩ Iq′ . By definition, we have q = Qu = q′, which is a
contradiction. Hence Iq ∩ Iq′ = ∅. Clearly ⊎q∈QIq ⊆ I. Conversely if u ∈ I, since it is a reset word,
then Qu = q′ for some q′ ∈ Q, i.e. u ∈ Iq′ and so we have the decomposition ⊎q∈QIq = I. Moreover
for any a ∈ Σ, if u ∈ Iq, then Q · ua = q · a, thus Iqa ⊆ Iq·a and so condition i) of the Definition
2 is fulfilled. Thus it remains to prove that condition ii) is also satisfied. Suppose that Iw ⊆ Iq for
some q ∈ Q. Take any q ∈ Q, we claim that qw = q and so w ∈ Syn(A ) = I. Take any u′ ∈ I, thus
Q · u′ = q′ for some q′ ∈ Q. Since A is strongly connected, there is u′′ ∈ Σ∗ such that q′ · u′′ = q.
Thus u = u′u′′ ∈ I satisfies Q · u = q. Since Iw ⊆ Iq we get q = Q · (uw) = q · w, i.e. q · w = q.

Conversely suppose that I has a reset left regular decomposition {Ii}i∈F . We associate a DFA
A({Ii}i∈F ) = 〈{Ii}i∈F , Σ, η〉 in the following way. By condition i) of Definition 2 for any Ii and a ∈ Σ
there is a j ∈ F with Ii ·a ⊆ Ij . Thus we define η(Ii, a) = Ij . This function is well defined. Let j, k ∈ F
with j 6= i, such that Ii · a ⊆ Ij , Ik, then Ii · a ⊆ Ij ∩ Ik, hence Ij ∩ Ik 6= ∅, which is a contradiction.
Hence A({Ii}i∈F ) is a well defined DFA. It is straightforward to check that η(Ii, u) = Ik for u ∈ Σ∗ if
and only if Iiu ⊆ Ik. We prove that A({Ii}i∈F ) is strongly connected. Indeed take any i, j ∈ F and let
w ∈ Ij . Since Ij is a left ideal, then Iiw ⊆ Ij . Hence Iiw ⊆ Ij implies η(Ii, w) = Ij and so A({Ii}i∈F )
is strongly connected. We need to prove that I ⊆ Syn(A({Ii}i∈F )). Let u ∈ I, since {Ii}i∈F is a
decomposition, u ∈ Ij for some j ∈ F . Since Ij is a left ideal, we get Iiu ⊆ Ij for any i ∈ F . Hence
η(Ii, u) = Ij for all i ∈ F , i.e. u ∈ Syn(A({Ii}i∈F )). Conversely, let u ∈ Syn(A({Ii}i∈F )). By the
definition η(Ii, u) = Ij for some j ∈ F and for all i ∈ F . Therefore Iiu ⊆ Ij which implies Iu ⊆ Ij
and so by ii) of Definition 2 we get u ∈ I.

Let us now prove the equivalence of the two categories. Let us prove that if f : {Ii}i∈F →{Ji}i∈H ,
then A(f) = ϕ is a homomorphism between A({Ii}i∈F ) = 〈Q,Σ, δ〉 and A({Ji}i∈H) = 〈T,Σ, η〉.
Indeed, by the definitions for any Ii and a ∈ Σ, δ(Ii, a) = Ij where Iia ⊆ Ij . Since ϕ(Ii) = Jh and
ϕ(Ij) = Jm with Ii ⊆ Jh and Ij ⊆ Jm, then Iia ⊆ Jha and Iia ⊆ Ij ⊆ Jm which yields Jha ⊆ Jm,
hence

ϕ(δ(Ii, a)) = ϕ(Ij) = Jm = η(Jh, a) = η(ϕ(Ii), a)



which shows that A(f) = ϕ is a homomorphism. Let g : {Ji}i∈H →{Si}i∈T be another arrow, then it
is easy to check that g◦f implies A(g◦f) = A(g)◦A(f). Therefore A : RLDΣ →SCSAΣ is a functor.
Let us prove that I : SCSAΣ →RLDΣ is also a functor. Indeed if ϕ : A →B is a homomorphism of
the DFA’s A = 〈Q,Σ, δ〉 and B = 〈T,Σ, η〉, then for any q ∈ Q and u ∈ Σ∗ such that δ(Q, u) = {q},
since ϕ is surjective, we get {ϕ(q)} = ϕ(δ(Q, u)) = δ(T, u). Thus I(A )q ⊆ I(B)ϕ(q), whence I(ϕ) :
I(A )→I(B) is the arrow defined by the map ϕ : Q→T . Furthermore, if ψ : B →C is another
arrow, using the previous fact it is easy to see that I(ψ ◦ϕ) = I(ψ)◦I(ϕ), which completes the proof
that I is a functor. By the previous construction it is straightforward to check that A(I(A )) ≃ A

and I(A({Ii}i∈F )) ≃ {Ii}i∈F . Moreover, it is straightforward to check that IA = idRLDΣ
while the

function, which associates to each object A the arrow given by the isomorphism A(I(A )) ≃ A , is a
natural isomorphism between the functors idSCSAΣ

and AI, whence RLDΣ ,SCSAΣ are equivalent
categories. ⊓⊔

The following corollary characterizes the case of ideals on a unary alphabet.

Corollary 1. Let I be an ideal over a unary alphabet Σ = {a}. Then I is strongly connected if and
only if I = Σ∗.

Proof. Since the alphabet is unary we have I = a∗ama∗ for some m ≥ 0. Suppose that I is strongly
connected, then by Theorem 3 there is a reset left regular decomposition {Ii}i∈F of I. Assume
am ∈ Ij for some j ∈ F . We claim |F | = 1. Indeed, since Ij is a left ideal we have a∗am ⊆ Ij ,
hence I = a∗ama∗ = a∗am ⊆ Ij , i.e. I = Ij . Therefore, by Theorem 3 the only strongly connected
synchronizing automaton having I as set of reset words is the automaton with one state and a loop
labelled by a. Hence I = a∗. On the other hand, if I = a∗ then I is the set of reset words of the
synchronizing automaton with one state and a loop labelled by a, which is strongly connected, i.e. I
is strongly connected. ⊓⊔

From this Corollary we can assume henceforth that the ideals considered are taken over an
alphabet Σ with |Σ| > 1.

Given a strongly connected ideal language I with Syn(B) = I for some strongly connected
synchronizing automaton B = 〈Q,Σ, δ〉, there is an obvious way to calculate the associated reset
left regular decomposition I(B). It is well known that I is recognized by the power automaton of B

defined by P(B) = 〈2Q, Σ, δ,Q, {{q} : q ∈ Q}〉, where 2Q denotes the set of subsets of Q, the initial
state is the set Q and the final set of states is formed by all the singletons. Thus, for each q ∈ Q we can
associate the DFA P(B)q = 〈2Q, Σ, δ,Q, {q}〉 and so we can calculate the associated reset left regular
decomposition by I(B) = {L[P(B)q]}q∈Q. A first and quite natural issue is to calculate the reset
left regular decompositions of the of the reset words of the Černý series Cn = 〈{1, . . . , n}, {a, b}, δn〉,
where a acts like a cyclic permutation δn(i, a) = i + 1 for i = 1, . . . , n− 1 and δn(n, a) = 1, while b
fixes all the states except the last one: δn(i, b) = i for i = 1, . . . , n− 1 and δn(n, b) = 1 (see Fig. 1).

n− 1

n 1

2

· · ·

b a

a, b

b

a

b

aa

Fig. 1. The Černý automaton Cn.



For example, in the case of C4 the associated reset left regular decomposition is the one given by

L[P(C)1] = (((a∗b)(b+ ab+ a4)∗(a3b+ (a2b(b+ a2)∗ab)))((b + ab∗a3) +

+((ab∗ab)(b+ a2)∗)ab))∗(ab∗a2b)(b+ ((ab∗ab∗)(a(a+ b))))∗

L[P(C)2] = L[P(C)1]ab
∗

L[P(C)3] = L[P(C)1]ab
∗ab∗

L[P(C)4] = L[P(C)1]ab
∗ab∗a.

In general, for Cn it is not difficult to see that |δn({1, . . . , n}, ux)| = 1 and |δn({1, . . . , n}, u)| > 1 for
some word u ∈ {a, b}∗ and a letter x ∈ {a, b} if and only if δn({1, . . . , n}, u) = {n, 1} and x = b.
Thus, if |δn(Q,w)| = 1, then there is a prefix w′b of w with δn(Q,w

′) = {n, 1}. Therefore, it is
straightforward to check that in this case the decompositions are given by

L[P(C)1] = {w ∈ Σ∗ : δn({1, . . . , n}, w) = {1}}

L[P(C)ℓ] = L[P(C)1](ab
∗)ℓ−1 for ℓ = 2, . . . , n− 1

L[P(C)n] = L[P(C)1](ab
∗)n−1a.

By Theorem 3 if I is strongly connected, we can associate the non-empty set R(I) of all the reset
left regular decompositions of I. We have the following lemma.

Lemma 1. Let {Ii}i∈F be a reset left regular decompositions of I and let {Jk}k∈H be a left regular
decomposition of an ideal J . If I ⊆ J , then the non-empty elements of {Ii ∩ Jk}i∈F,k∈H form a reset
left regular decomposition of I.

Proof. Let T ⊆ F × H be the set of pair of indices (i, j) for which Ii ∩ Jj 6= ∅ and rename the set
{Ii ∩ Jk}(i,k)∈T by {Sj}j∈T . It is clear each Sj is a left ideal and Sj ∩ St = ∅ for j 6= t. Furthermore
⊎j∈TSj = I. Condition i) is also verified. Take any Sj and suppose that Sj = Ii ∩ Jk for some
(i, k) ∈ T , and let a ∈ Σ. Then Iia ⊆ Is, Jka ⊆ Jt for some s ∈ F, t ∈ H . Hence (Ii ∩ Jk)a =
Iia ∩ Jka ⊆ Is ∩ Jt = Sh for some h ∈ T , i.e. Sja ⊆ Sh. Let us prove that reset condition ii) is also
fulfilled. Assume Iu ⊆ St for some t ∈ T and u ∈ Σ∗. Thus St = Ii ∩ Jk, for some i ∈ F, k ∈ H ,
hence St ⊆ Ii which implies Iu ⊆ Ii. Hence u ∈ I since {Ii}i∈F is a reset left regular decompositions
of I. ⊓⊔

Given I,J ∈ R(I) with I = {Ii}i∈F and J = {Jk}k∈H by Lemma 1 the family I ∧ J =
{Ii ∩ Jk}i∈F,k∈H is still a reset left regular decomposition. Thus we have the following immediate
result.

Corollary 2. The family of the reset left regular decompositions of a strongly connected ideal I is a
∧-semilattice.

Let ‖I‖ = min{|u| : u ∈ I}. It is a well known fact that Černý conjecture holds if and only if it
holds for strongly connected synchronizing automata. The following proposition reformulates Černý
conjecture in a purely language theoretic context.

Proposition 4 Černý’s conjecture is true for strongly connected synchronizing automata if and only
if for any strongly connected ideal I and any reset left regular decomposition {Ii}i∈F of I we have:

|F | ≥
√

‖I‖+ 1

Proof. Suppose that Černý’s conjecture is true for strongly connected synchronizing automata. Let
I be a strongly connected ideal and let {Ii}i∈F be a reset left regular decomposition of I. Let
A({Ii}i∈F ) be the standard synchronizing automata associated to this decomposition as in Theorem
3. This automaton has |F | states, hence there is a synchronizing word u ∈ Syn(A({I}∈F )) = I with
|u| ≤ (|F | − 1)2. Thus |F | ≥

√

|u|+ 1 ≥
√

‖I‖+ 1.
Conversely, take any strongly connected synchronizing automata A with n states and let I(A )

be the associated reset left regular decomposition of I = Syn(A ) as in Theorem 3. Since the order
of this decomposition is n, then n ≥

√

‖I‖ + 1. Thus we have that there is a u ∈ Syn(A ) with
|u| ≤ (n− 1)2 and so Černý’s conjecture holds for A . ⊓⊔



3 Ideal languages are strongly connected ideal languages

The notion of strongly connected ideal languages (SCIΣ) has been temporarily introduced in Section
2 to study the relationship between strongly connected synchronizing automata and ideal languages.
In this section we actually show that SCIΣ = IΣ . This is done by indirectly showing, through
Theorem 3 and the concept of reset left regular decomposition, that each ideal language I has at
least a strongly connected synchronizing automata with set of reset words I. However the number of
states of such automaton is in general a double exponential. Therefore, a quite natural issue is finding
results that show the existence of smaller automata even for proper classes on IΣ . Before we prove
the main result of this section we introduce some notions which are crucial for the sequel.

Let C = 〈Q,Σ, δ〉 be an automaton with n states and a sink state s. Note that for such an
automaton |Q · u| = 1 if and only if Q · u = {s}. Fix a word u ∈ Σ∗ and a subset H ⊆ Q. Assume
u = u1 . . . ur for u1, . . . , ur ∈ Σ and r = |u|. For 0 ≤ i < j ≤ r we use the standard notation u[i, j]
to indicate the factor uiui+1 . . . uj if i > 0, otherwise u[0, j] = u1 . . . uj with the convention that
u[0, 0] = ǫ and u[i, i] = ui if i > 0. There is a unique tuple 0 ≤ i1 < i2 < . . . < ik = r of indices such
that:

|H | = |H · u[0, i1]| > |H · u[0, i2]| > . . . > |H · u[0, ik]|

and for any is < j ≤ is+1 with 1 ≤ s ≤ k − 1, we have |H · u[0, j]| = |H · u[0, is+1]|. In other words
this indices show the longest prefixes u[0, j] such that |H · u[0, j]| > |H · u[0, j + 1]|. We call such
tuple the ladder decomposition of the pair (H,u). The ladder map with respect to the word u is the

function λu : 2Q → 22
Q

defined by

λu(H) = {H · u[0, i1], H · u[0, i2], . . . , H · u[0, ik]}

where i1 < i2 < . . . < ik is the ladder decomposition of (H,u). Note that the range λu is contained
in the set L(Q) formed by families {H1, . . . , Hs} with |H1| > |H2| > . . . > |Hs|. Note that we have
the following upper bounds

|L(Q)| ≤

|Q|
∏

i=1

(

|Q|

i

)

≤ 2n
2

(1)

We now introduce a partial internal operation ⋆ on L. Let V1 = {T1, . . . , Tm} and V2 = {H1, . . . , Hs}
with |T1| > |T2| > . . . > |Tm| ≥ |H1| > |H2| > . . . > |Hs|, then:

V1 ⋆ V2 =

{

{T1, . . . , Tm−1, H1, . . . , Hs} if |Tm| = |H1|
{T1, . . . , Tm, H1, . . . , Hs} otherwise

We have the following lemma.

Lemma 2. With the above notation for any u, v ∈ Σ∗ we have:

λvu(T ) = λv(T ) ⋆ λu(T · v)

Proof. It follows from the definitions. ⊓⊔

The gap function of u ∈ Σ∗ is the map defined by γu(H) = |λu(H)|. Using Lemma 2 and the
definition of ⋆ it is straightforward to check that the following equality holds:

γvu(H) = γv(H) + γu(H · v)− 1, ∀u, v ∈ Σ∗ (2)

We introduce a function which is fundamental in the sequel. Let m = n2+n
2 + 1 and let Zm be

the ring of the integers modulo m. For an integer t ≥ 1, [2Q]t denotes the set of subsets of Q of
cardinality t. Let Tt = Zm([2Q]t ⊎Σ) be the free Zm-module on [2Q]t ⊎Σ. Let H ∈ [2Q]t, a ∈ Σ and
p ∈ Zm([2Q]t⊎Σ). We denote by p(H), p(a) the coefficients in Zm of p with terms H , a, respectively.
Note that p can be decomposed as the sum of the two following terms

p〈Q〉 =
∑

H⊆Q

p(H), p〈Σ〉 =
∑

a∈Σ

p(a)



Fix an element u ∈ Σ∗ and H ⊆ Q with |H | > 1. The last set of (H,u) is the smallest set S ∈ λu(H)
different from {s}. There is a maximal factor u[i, j] such that |S| = |H · u[0, k]| for all i ≤ k ≤ j. The
tail of (H,u) is the element of Zm([2Q]t ⊎Σ) with t = |S| ≥ 2 defined by

T (H,u) =

{
∑j−1

k=i (H · u[0, k] + u[k + 1, k + 1]) , if u[0, j] = u
∑j

k=i (H · u[0, k] + u[k + 1, k + 1]) , otherwise.

Consider the set T = ⊎n
t=2Tt and for an element T ∈ Tt the integer t ≥ 2 is called the index of T

and it is denoted by Ind(T ). We give to T a structure of semigroup by introducing an internal binary
operation ⋄ defined in the following way. Let T1 ∈ Ti, T2 ∈ Tj , then

T1 ⋄ T2 =

{

Tmin{i,j} if i 6= j
T1 + T2 otherwise

Note that (T, ⋄) has a graded structure with respect to the semilattice ([2, n],min), i.e. Ti ⋄ Tj ⊆
Tmin{i,j}. Let u ∈ Σ∗, the tail map is the function τu : 2Q → T defined by

τu(H) =

{

T (H,u) if |H | > 1
0n otherwise

where 0n is the zero of Tn. We have the following lemma.

Lemma 3. With the above notation for any u, v ∈ Σ∗ we have:

τvu(T ) = τv(T ) ⋄ τu(T · v)

Proof. It follows from the definitions. ⊓⊔

We denote by Hom(A,B) the set of the maps f : A → B. The following lemma shows a nice
property shared by these functions introduced.

Lemma 4. Consider the following maps

1. µ : Σ∗ → Hom(2Q,T) defined by µ(u) = τu,
2. ξ : Σ∗ → Hom(2Q, [1, |Q|]) defined by ξ(u) = γu,
3. ψ : Σ∗ → Hom(2Q,L(Q)) defined by ψ(u) = λu.

Then Ker(µ),Ker(ξ),Ker(ψ) are left congruences on Σ∗.

Proof. We prove that Ker(µ) is a left congruence. Let a ∈ Σ and u, v ∈ Σ∗ with µ(u) = µ(v). Hence
τu = τv and so by Lemma 3 we have

τau(T ) = τa(T ) ⋄ τu(T · a) = τa(T ) ⋄ τv(T · a) = τav(T )

for any T ⊆ Q, whence τau = τav, i.e. µ(au) = µ(av). Similarly the other cases follows from Lemma
2 and Equation (2). ⊓⊔

We are now ready to prove the main theorem of this section.

Theorem 5. Let I ⊆ Σ∗ be an ideal language, then I is a strongly connected ideal language.

Proof. Put J = IR. Let AJ = 〈Q,Σ, δ, q0, {s}〉 be the minimal DFA recognizing J and let µ be the
map of Lemma 4 defined with respect to AJ . We claim that the equivalence classes of the relation
∼= (J ×J)∩Ker(µ) form a reset right regular decomposition of J . From Lemma 4, Ker(µ) has finite
index, thus ∼ has also finite index. Since J = Syn(AJ ), for any H ⊆ Q and u ∈ J we have H ·u = {s}.
Hence it is straightforward to check that τu = τuv for any v ∈ Σ∗. Therefore the ∼-classes are right
ideals and form a finite partition {Ji}i∈F of J . Furthermore, by Lemma 4, Ker(µ) is a left congruences
of Σ∗, and so, since J is an ideal, it is also a congruence on J , hence for any Ji and a ∈ Σ, we get
aJi ⊆ Jj for some j ∈ F . Thus condition i) of Definition 2 is satisfied and so {Ji}i∈F is a right regular



decomposition. We claim that also condition ii) is satisfied. Assume, contrary to our claim, that there
are i ∈ F and v ∈ Σ∗ \ J such that vJ ⊆ Ji. Write H = Q · v. Since Syn(AJ) = J we get |H | > 1.
Thus let t = min{|H · r| : r ∈ Σ∗ and H · r 6= {s}} and let S ∈ {H · r : r ∈ Σ∗ and |H · r| = t}. Let
x ∈ Σ∗ such that H ·x = S and let u = vx. Note that u ∈ Σ∗ \J , uJ ⊆ Ji and Q ·u = S with |S| = t.
Since Syn(AJ) = J and AJ is a synchronizing automaton with zero, then there is a synchronizing

word w ∈ J with |w| < n2+n
2 + 1 where n = |Q| (see [10]). Let T ′ be the last set of (S,w) and let w′

be the maximal prefix of w such that S · w′ = T ′. Thus, there is a letter a ∈ Σ such that w′a is a
prefix of w and |T ′a| = 1. We consider two mutually exclusive cases.

i) Suppose |T ′ · b| = 1 for any b ∈ Σ. It is not difficult to check that T (Q, uw) = T (Q, uw′a). Since
|Σ| > 1 consider a letter b ∈ Σ with b 6= a. Since Q · uw′ = T ′ and |T ′ · b| = 1, we also have
T (Q, uw′bw) = T (Q, uw′b). Since uJ ⊆ Ji we have uw, uw′bw ∈ Ji (being w

′bw ∈ J). Hence we
get

T (Q, uw′a) = T (Q, uw) = T (Q, uw′bw) = T (Q, uw′b)

In particular we get T (Q, uw′a)〈Σ〉 = T (Q, uw′b)〈Σ〉, from which it follows a = b, a contradiction.
ii) Thus, we can assume that there is a letter b ∈ Σ, such that |T ′ · b| > 1. Since uw, uw′bw ∈ Ji

(being w,w′bw ∈ J), we have T (Q, uw′bw) = T (Q, uw). Hence, by Lemma 3 we have

T (Q, uw) = T (Q, uw′bw) = T (Q, uw′b) ⋄ T (T,w)

with T = T ′ · b. Since |T ′| = t is minimal and |T | > 1 we have |T | = |T ′| = t, hence
Ind(T (Q, uw′b)) = Ind(T (T,w)) = t. Therefore, by the previous equality and the definition
of ⋄ we get

T (Q, uw) = T (Q, uw′bw) = T (Q, uw′b) + T (T,w)

In particular we have

T (Q, uw)〈Q〉 = T (Q, uw′bw)〈Q〉 = T (Q, uw′b)〈Q〉+ T (T,w)〈Q〉 (3)

Furthermore, T ′ is the last set of (Q, uw′a) and uw′ is the maximal prefix of uw′a such that T ′ =
Q·uw′, since |T ′| = |T | we have that T is the last set of (Q, uw′b) and uw′b is the maximal prefix of
uw′b with T = Q ·uw′b. Thus, by the definition of tail we have T (Q, uw′a)〈Q〉 = T (Q, uw′b)〈Q〉.
We have already observed that T (Q, uw) = T (Q, uw′a), hence by (3)

T (T,w)〈Q〉 = 0 (4)

Let 0 = i1 < i2 < . . . < iℓ ≤ |w| be the maximal set of indices such that T = T · w[0, ij] for all
1 ≤ j ≤ ℓ. Therefore, by the definition of tail and (4) we have in particular

0 = T (T,w)(T ) = ℓ mod
n2 + n

2
+ 1

Since ℓ ≥ 1 we have that ℓ is a multiple of n2+n
2 + 1. However ℓ ≤ |w| < n2+n

2 + 1, which is a
contradiction.

Therefore v ∈ J and this concludes the proof of the fact that {Ji}i∈F is a reset right regular
decomposition. Hence {JR

i }i∈F is a reset left regular decomposition and so by Theorem 3 I is a
strongly connected ideal language. ⊓⊔

Corollary 3. Let I be an ideal language such that IR has state complexity n. Then there is a strongly
connected synchronizing automata B with N states and Syn(B) = I such that:

N ≤ mk2n

(

n
∑

t=2

m(nt)

)2n

where k = |Σ| and m =
(

n2+n
2 + 1

)

.



Proof. By Theorem 5 I has a reset left regular decomposition {Ii}i∈F with |F | ≤ |Hom(2Q,T)| where

T =
n
⊎

t=2

Zm([2Q]t ⊎Σ)

Hence we get the bound

|F | ≤

(

n
∑

t=2

m(nt)+k

)2n

≤ mk2n

(

n
∑

t=2

m(nt)

)2n

Take B = A({Ii}i∈F ) where A(·) is the correspondence in Theorem ??. Then B has |F | states and
Syn(B) = I. ⊓⊔

This Corollary shows a double exponential upper bound for the number of states of the associated
strongly connected automaton with respect to the state complexity of the reverse of the ideal language.
This bound seems far from been tight, indeed at the cost of a slight complication to the proof it is

possible to prove that it is enough to consider m = k
2 + n2+n

4 + 1. This is a better bound that the

one presented in Corollary 3 for k ≤ n2+n
2 . We outline this strategy in the following remark.

Remark 1 In the proof of Theorem 5 we take as w = a1 . . . akw
′, where w′ is a synchronizing word

of lenght less or equal to n2+n
2 and Σ = {a1, . . . , ak}. Thanks to the prefix a1 . . . ak of w, in point ii)

it is easy to see that in T (T,w)〈Q〉 it appears at least onother element T ′ 6= T . Therefore at least one
between T (T,w)(T ), T (T,w)(T ′), say the first one, satisfies

1 ≤ T (T,w)(T ) ≤
|w|

2
<
k

2
+
n2 + n

4
+ 1

Since T (T,w)(T ) = 0 mod m we obtain again a contradiction.

Therefore it is quite natural to look for better general constructions than the one given in Theorem 5
or to to consider the same task in particular classes of ideal languages. For instance in [1] it is shown
an algorithm that given a principal ideal I = Σ∗wΣ∗ with |w| = n in inputs, it returns a strongly
connected synchronizing automaton with n+1 states. Therefore in this case the bound is linear with
respect to the state complexity of IR although it is not known whether or not it is tight. Even more
recently in [2] the authors prove that in the case I is finitely generated, there is always a strongly
connected synchronizing automaton with at most 2‖I‖ states and this bound is tight for ideals of the
form Σ≥n = {u ∈ Σ∗ : |u| ≥ n} for any n > 0.

Similarly to [3], where the author has introduced the notion of reset complexity of an ideal I (rc(I))
as the number of states of the smallest synchronizing automaton A with Syn(A ) = I, we can also
give a similar notion in the realm of strongly connected synchronizing automata/reset left regular
decomposition. By Theorem 5 for any ideal languages I, the set R(I) of all the reset left regular
decomposition of I is non-empty. Thus we can define the reset regular decomposition complexity of I
as the integer

rdc(I) = min{|F | : {Ii}i∈F ∈ R(I)}

By the correspondence introduced in Theorem 3, rdc(I) is also the number of states of the smallest
strongly connected synchronizing automaton with the set of reset words equal to I. Furthermore we
have rc(I) ≤ rdc(I). In the context of left regular decompositions we can give an analogous notion.
However, since for a given ideal I the minimal left (right) regular decomposition is always the trivial
one {I}, in this case we define the regular decomposition complexity of I as

dc(I) = min{|F | > 1 : {Ii}i∈F is a left regular decomposition of I}

Note that dc(I) ≤ rdc(I) holds. The importance of the index rdc(I) can be also understood by the
following theorem where we present a purely language theoretic restatement of Černý’s conjecture.



Theorem 6. Černý’s conjecture holds if and only if for any ideal language I we have:

rdc(I) ≥
√

‖I‖+ 1

where ‖I‖ = min{|w| : w ∈ I}.

Proof. This a consequence of the fact that Černý’s conjecture holds if and only if it holds for strongly
connected automata and Proposition 4. ⊓⊔

Note that using the well known upper bound (n3 − n)/6 (see [4]) for the shortest reset word of a
synchronizing automaton, we have the lower bound rdc(I) ≥ 3

√

6‖I‖. In general, a natural issue would
be to study bounds for rdc(I), dc(I) depending on the state complexity of I or IR. In particular the
study of both upper and lower bounds of rdc(I) can be an interesting topic that can (maybe) shed
some light on the Černý’s conjecture. For instance, even a lower bound rdc(I) ≥

√

‖I‖/c for some
constant c > 0 would be a major breakthrough for this conjecture and all the theory of synchronizing
automata.

As we have already observed, Corollary 3 gives an upper bound to rdc(I) with respect to the state
complexity of IR . In case we consider dc(I) we obtain a better bound as it is shown in the following
theorem.

Theorem 7. Let I be an ideal language such that IR has state complexity n. Then I has a left regular
decomposition {Ii}i∈F with |F | ≤ n2n . In particular, there is a strongly connected automata B with
I ⊆ Syn(B) and with a number of states ≤ n2n .

Proof. Consider the above definitions with respect to the minimal DFA AJ = 〈Q,Σ, δ, q0, {s}〉
recognizing J = IR. With the notation of Lemma 4 let ξJ : J → Hom(2Q, [1, |Q|]) be the restriction
of ξ to the ideal J . Since J is an ideal and by Lemma 4 we have that Ker(ξJ ) is a left congruence
on J . Moreover, since J = Syn(AI) it is straightforward checking that γu = γuv for any v ∈ Σ∗.
Therefore the Ker(ξJ)-classes form a finite partition (being Hom(2Q, [1, |Q|]) finite) of right ideals.
More precisely we have J = ⊎i∈F Ji where F = ξJ (J) and Ji = {u ∈ J : ξJ (u) = i} for i ∈ F is a right
ideal of Σ∗. Furthermore, since Ker(ξJ ) is a left congruence, for any Ji we have aJi ⊆ Jj for some
j ∈ F . Hence condition i) of Definition 2 is satisfied and so {Ji}i∈F is a right regular decomposition.
Therefore {JR

i }i∈F is a left regular decomposition of I with:

|F | ≤ |Hom(2Q, [1, |Q|])| = n2n

since |Q| = n. The last statement is a consequence of Theorem 3. ⊓⊔

We now show that for a subclass of the class of ideal languages we can improve the bound of
Corollary 3. First we need some definitions. Given a DFA B = 〈Q′, Σ, δ′〉 with a sink state s, we say
that B has a funnel q ∈ Q′ \ {s} if δ′(q, a) = s for some q 6= q, s and a ∈ Σ implies q = q. In other
words, every path going to the sink state passes from the state q. We say that D is free from funnels
whenever for any DFA B which is a sub-automaton1 of D , B has no funnel. We have the following
theorem.

Theorem 8. Let I ⊆ Σ∗ be an ideal language such that the minimal DFA AIR = 〈Q,Σ, δ, q0, {s}〉
recognizing IR is free from funnels. Let |Q| = n be the state complexity of IR, then I has a reset

left regular decomposition {Ii}i∈F with |F | ≤ 2n
22n . In particular, there is a strongly connected

synchronizing automaton B with I = Syn(B) and with a number of states ≤ 2n
22n .

Proof. Consider the above definitions with respect to the minimal DFA AJ = 〈Q,Σ, δ, q0, {s}〉
recognizing J = IR. With the notation of Lemma 4 let ψJ : J → Hom(2Q,L(Q)) be the restriction
of ψ to the ideal J = IR. Similarly to the proof of Theorem 7 it is possible to prove that the
Ker(ψJ )-classes Ji = {u ∈ J : ψJ(u) = i} for i ∈ F are right ideals and form a finite partition of J
(since Hom(2Q,L(Q)) is finite). Furthermore, since Ker(ψJ) is a left congruence, also condition i) of

1 A DFA sub-automaton.



Definition 2 is satisfied and so {Ji}i∈F is a right regular decomposition. We claim that also condition
ii) is satisfied. Assume, by absurd, that there are i ∈ F and u ∈ Σ∗ \ J such that uJ ⊆ Ji. From
Lemma 2 we have λuv(Q) = λu(Q) ⋆ λv(Q · u), ∀v ∈ J and with |Q · u| > 1. Write H = Q · u. Since
ψ(uJ) = ψ(Ji) = i, it is easy to see that

λv(H) = λv′ (H), ∀v, v′ ∈ J (5)

Fix a v ∈ J , note that {s} ∈ λv(H) and let S ∈ λv(H) be the last set of (H, v). Let x be a prefix of v
such that H · x = S. We claim that |S| = 2. Suppose, by absurd, that |S| > 2. Since s ∈ S, there are
at least two different elements q, q′ ∈ S different from s. We show that the right languages of q and q′

with respect to AJ coincide. Suppose that there is a w ∈ Σ∗ such that q ·w = s but q′ ·w 6= s. Thus by
definition of λ, λxwv(H) contains an element S′ with 1 < |S′| < |S|. Hence λxwv(H) 6= λv(H) which
contradicts (5) (xwv ∈ J since J is an ideal). Therefore q, q′ are equal in the minimal DFA AJ , which
is a contradiction. Hence S = {q, s}. Consider the sub-automaton B = 〈Q′, Σ, δ〉 of AJ induced by S,
i.e. Q′ = S ·Σ∗. It is obvious that B is a DFA, we claim that q ∈ S is a funnel for B. Indeed, suppose
that there is a q′ 6= q, s and a ∈ Σ such that q′ · a = s. By definition of B there is a word r ∈ Σ∗

such that q · r = q′. Consider the word v′ = xrav (recall H · x = S). Clearly v′ ∈ J . It is not difficult
to check that λv′(H) contains the set {q′, s} 6= S. However this contradicts (5). Thus q′ = q, and so q
is a funnel of B, contradicting the statement of the theorem. Hence u ∈ J and so {JR

i }i∈F is a reset

right regular decomposition for I. By the upper bound (1) we obtain |F | ≤ |Hom(2Q,L(Q))| = 2n
22n .

The last statement is a consequence of Theorem 3. ⊓⊔

We now characterize the ideals such that the minimal DFA recognizing them are free from funnels.
We say that J ⊆ Σ∗ is a free funnel ideal whenever there is no word u ∈ Σ∗ with u /∈ J and a
maximal subset Σ′ ⊆ Σ such that uΣ′ ⊆ J and the following closure property holds:

if uv /∈ J and uvΣ′′ ⊆ J , then Σ′′ = Σ′ (6)

Theorem 9. J ⊆ Σ∗ is a free funnel ideal if and only if AJ is free from funnels.

Proof. Assume J is not a free funnel ideal, hence there is a regular language L and Σ′ ⊆ Σ such that
LΣ′ ⊆ J and condition (6) holds. We prove that the minimal DFA AJ = 〈Q,Σ, δ, q0, {s}〉 recognizing
J is not free from funnels. Let u ∈ L and consider the sub-automaton D = 〈q0 ·uΣ∗, Σ, δ〉 of AJ . We
claim q = q0 · u is a funnel for D . Let q ∈ q0 · uΣ

∗ with q 6= q, s such that q · a = s for some a ∈ Σ,
and let v ∈ Σ∗ such that q = q0 · uv. By the maximality of Σ′ we have q · Σ′′ = {s} if and only if
Σ′′ = Σ′, we claim that the same holds for q. Since AJ recognizes J , we get uv /∈ J , and q ·Σ′′ = {s}
if and only if uvΣ′′ ⊆ J , hence, by condition (6), we have Σ′′ = Σ′. Therefore, q, q have the same
right language with respect to AJ . Hence, by the minimality of AJ , we get q = q, i.e. q is a funnel
for D .

Conversely, assume AJ = 〈Q,Σ, δ, q0, {s}〉 is not free from funnels, and let D = 〈Q′, Σ, δ, {s}〉 be
a sub-automaton of AJ with a funnel q. Since AJ is minimal, there is a v ∈ Σ∗ with q0 · v = q. Thus
the set

S = min{Q · vw : q0 · vw 6= s, w ∈ Σ∗}

is non-empty, and let v′ ∈ Σ∗ such that S = Q · vv′ ∈ S with |S| minimal. We claim |S| = 2. Indeed,
suppose that there are two different states q, q′ ∈ S \ {s} with q = q0vv

′. We prove that the right
languages of q, q′ with respect to AJ are equal. Assume that there is a word w such that q′ · w = s,
but q ·w 6= s. Then 1 < |S ·w| < |S| and q0 · vv′w 6= s, which contradicts the choice of S. Conversely,
suppose that there is a word w such that q ·w = s, but q′ ·w 6= s. Thus, q0 · vv

′w = s, hence we have

vv′w ∈ L[AJ ] = J = Syn(AJ)

Thus q′ · w ∈ S · w = Q · vv′w = {s}, a contradiction. Therefore, by the minimality of AJ , we get
q′ = q. Hence |S| = 2 and so S = {q, s} where q = q0vv

′. Since q ∈ Q′ and q is a funnel for D , it is
easy to see that there is a word w such that q = q0vv

′w. Write u = vv′w, and let

Σ′ = {a ∈ Σ : q · a = s}



Clearly u /∈ J and it is straightforward to check then uΣ′ ⊆ J and Σ′ is maximal with respect to
the property uΣ′′ ⊆ J . We prove that condition (6) holds for u. Assume ur /∈ J , urΣ′′ ⊆ J for some
r ∈ Σ∗. Since q is a funnel we have q0 · ur = q, moreover ura ∈ J if and only if q · a = s if and only
if a ∈ Σ′, i.e. Σ′′ = Σ′. Therefore, condition (6) holds and so J is not a free funnel ideal. ⊓⊔

Open Problems

We list some open problems originated by the previous results, I stands for an ideal language.

1. Give a tight upper bound of rdc(I) (dc(I)) with respect to the state complexity of IR or I.
2. In case I is finitely generated is true that rdc(I) ≥ ‖I‖ + 1? The same problem in case I is a

principal ideal language has been raised in [1]. This would give a better bound for the shortest
synchronizing word for the class of finitely generated synchronizing automata with respect to the
bound obtained in [9].

3. The proof of Theorem 5 uses the minimal DFA recognizing IR. Is there a proof using another
automaton associated to I?

4. Recall that R(I) is the set of all the reset left regular decompositions of I and the order of a
decomposition I ∈ R(I) is just the cardinality |I|. We denote byRk(I) the set of reset left regular
decompositions of I of order k ≥ 1.
A quite natural question is whether sup{k ≥ 1 : Rk(I) 6= ∅} = ∞ or not? In particular, what
is the case if we consider I in the class of finitely generated ideals or in the even smaller class
of principal ideals? This would answer to the question whether or not, given a principal ideal
P , there are arbitrary big strongly connected synchronizing automata having a P as set of reset
words.

5. By Theorem 3, a naive way to calculate Rk(I) can be accomplished by building all the strongly
connected synchronizing automata with k states and checking if their set of reset words coincides
with I. Thus, it is natural to ask whether there is a more “efficient” way to perform this task
without passing from the construction of all the automata with k states.
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