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Abstract

In the energy sector, there has been a transition from monopolistic to oligopolistic situ-
ations (pool markets); each time more companies’ optimization revenues depend on the
strategies of their competitors. The market rules vary from country to country. In this
work, we model the Iberian Day-Ahead Duopoly Market and find exactly which are the
outcomes (Nash equilibria) of this auction using game theory.
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1. Introduction

Over the last years the way electricity is produced and delivered has changed consid-
erably. Market mechanisms were implemented in several countries and electricity markets
are no longer vertically integrated. Nowadays, in many countries the electricity markets are
based on a pool auction to purchase and sell power. Producing companies offer electricity
in a market and the buyers submit acquisition proposals.

An electricity pool market is characterized by a single price (market clearing price) for
electricity paid to all the proposals accepted in the market. The way in which the market
clearing price is determined varies from one country to another: the last accepted offer, the
first rejected offer, multiple unit Vickey (see Anderson and Xu (2004), Son et al. (2004)
and Zimmerman et al. (1999)). The Iberian market uses the last accepted offer mechanism,
which seems to provide a competitive price and an appropriate incentive for investment
and new entry. Indeed, most pool markets use the last accepted block rule (see Son et al.
(2004)).

To analyze the companies’ behavior in the electricity market, game theory has been used
as a generalization of decision theory (see Singh (1999)). The concept of Nash equilibrium
(NE) for a game is used as a solution. The NE leads to the strategies that maximize the
companies’ profit (see for example Hasan and Galiana (2010), Hobbs et al. (2000) and Son
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and Baldick (2004)). This means that in a NE nobody has advantage in moving unilaterally
from it.

As stressed in Baldick (2006), for a model to be tractable it must abstract away from
at least some of the detail. Solvable electricity market models do not use, for example,
transition constraints. First it is necessary to understand the effect changes have on market
rules or structures. In Anderson and Xu (2004), the Australian power market is considered
in detail, as we will do here for the Iberian case. There are some crucial differences between
the formulation in Anderson and Xu (2004) and ours, such as the pool auction structure
and the demand shape. In this context, the authors of Son et al. (2004) analyze the market
equilibria with the first rejected mechanism and the pay-as-bid pricing. Here, the amount
supplied by each generator is a discrete value; this also differs from our model. In Lee and
Baldick (2003) an electricity market with three companies is formulated, and the space of
strategies is discretized in order to find a NE.

Recently, in an attempt to predict market prices and market outcomes, more complex
models have been used. However, many times that does not allow the use of analytical
studies. Thus, techniques from evolutionary programming (see Barforoushi et al. (2010)
and Son and Baldick (2004)) and mathematical programming (see Hobbs et al. (2000) and
Pereira et al. (2005)) have been used in these new models.

In our Iberian market duopoly model, we do not consider network constraints. We will
provide a detailed application of non cooperative game theory in our formulation of the
electricity market. To the best of our knowledge, such theoretical treatment has not been
considered before. In our formulation, demand elasticity will be a parameter as this is
a realistic approach that only has been considered in the simulation of markets, but not
in a theoretical way. Apart of being the first detailed approach of the Iberian market, it
points out the existence of NE in pure strategies in all the instances of this game, showing
how the NE are conditioned by capacity, production costs and elasticity parameters. Some
potential properties about the oligopoly case are also highlighted.

In Section 2, the Iberian duopoly market model will be presented and the concept of
NE will be formalized. In Section 3, some remarks will be made which allow us to find the
NE in a constructive way. Section 4 concludes this detailed NE classification.

2. Iberian Duopoly Market Model

In this section we will begin by explaining our model and fixing notation. Then, game
theory will be introduced with the aim of giving us tools to analyze this market. We set up
a model for a game with two producing firms, which will represent the players, labeled as
Firm 1 and Firm 2. It is assumed that each Firm i owns a generating unit with marginal
cost ci and capacity Ei > 0. Both firms submit simultaneously a bid to the market, using
a pair (qi, pi) ∈ Si = [0, Ei] × [0, b] for Firm i, where qi is the proposal quantity, pi is the
bid price and Si is the space of strategies. Firm i’s payoff Πi (q1, p1, q2, p2) is a function
that depends on the strategic choices of the rival firm and its own.

The demand is a segment P = mQ + b characterized by the real constants m < 0 and
b > 0. It is assumed that demand, the firms’ marginal costs and capacities are known
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2. Iberian Duopoly Market Model

In this section we will begin by explaining our model and fixing notation. Then, game
theory will be introduced with the aim of giving us tools to analyse this market. We set up
a model for a game with two producing firms, which will represent the players, labelled as
Firm 1 and Firm 2. It is assumed that each Firm i owns a generating unit with marginal
cost ci and capacity Ei > 0. Both firms submit simultaneously a bid in the market, through
a pair (qi, pi) ∈ Si = [0, Ei]× [0, b] for firm i, where qi is the proposal quantity, pi is the bid
price and Si is the space of strategies. Firm i’s payoff Πi (q1, p1, q2, p2) is a function that
depends on the strategic choices of the rival firm.

The demand is a segment P = mQ + b characterized by the real constants m < 0 and
b > 0. It is assumed that the demand and firms’ marginal costs and capacities are known
by all agents. These assumptions can be justified by the knowledge of information about
the technology available for each firm, fuel costs, and precise forecasts of demand. Without
loss of generality let c1 < c2 < b.

Once, the market operator has the firms’ proposals and the demand, it finds the inter-
section between the demand representation and the supply curve, which gives the market
clearing price Pd and quantity Qd. For example, suppose that m = −1

200
, b = 1.2 and Firm 1

bid (90, 0.4), Firm 2 bid (100, 0.2) and Firm 3 bid (60, 0.6). The Market Operator organizes
the proposals by ascending order of prices which gives the supply curve, see Figure 2.1.
Then, the Pd and Qd are found. The accepted bids are the ones in the left side of Qd.

Therefore the revenue of firm i is given by:

Figure 2.1: Economic Dispatch

by all agents. These assumptions can be justified by the knowledge of information on the
technology available for each firm, fuel costs, and precise demand forecasts. Without loss
of generality c1 < c2 < b.

Once, the market operator has the firms’ proposals and the demand, it finds the
intersection between the demand representation and the supply curve, which gives the
market clearing price Pd and quantity Qd. For example, suppose that m = −1

200
, b = 6

5
and

Firm 1 bid (90, 0.4), Firm 2 bid (100, 0.2) and Firm 3 bid (60, 0.6). The Market Operator
organizes the proposals by ascending order of prices which gives the supply curve, see
Figure 2.1. Then, Pd and Qd are found. The accepted bids are the ones in the left side of
Qd.

Therefore the revenue of Firm i is given by:

Πi = (Pd − ci) gi
where gi ≤ qi is the accepted quantity in the economic dispatch.

Note that with this structure (linear demand and linear production cost) the firms’
profit is concave and thefore the optimum strategies are an extreme point or a stationary
point.

As a tie breaking rule, we proportionally divide the quantities proposed by the firms
declaring the same price, in case the total quantity is not fully required. If the demand
segment intersects the supply curve in a discontinuity, all the proposals with prices below
the intersection are fully accepted and the market clearing price is given by the last accepted
proposal.

Now we are able to define a NE in pure strategies.

Definition 1. In a game with n players a point sNE =
(
sNE1 , sNE2 , . . . , sNEn

)
, where sNEi

specifies a strategy over the set of strategies of player i, is a Nash Equilibrium if ∀i ∈
{1, 2, . . . , n}:

Πi

(
sNE

)
≥ Πi

(
si, s

NE
−i
)
∀si ∈ Si

where Πi is the utility of player i, Si is his space of strategies and sNE−i is sNE except sNEi .
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Our task is to classify all the NE in this model when players choose their actions
deterministically. This is a hard task because the classical approach of reaction functions
is inadequate, since the payoff functions are non-continuous.

During this work, besides the NE, it was observed that ε-equilibria are also likely to be
market outcomes.

Definition 2. In a game with n players a point sNEε =
(
sNEε1 , sNEε2 , . . . , sNEεn

)
, where

sNEεi specifies a strategy over the set of strategies of player i, is an ε-equilibrium if ∀i ∈
{1, 2, . . . , n} and for a real non-negative parameter ε:

Πi

(
sNEε

)
≥ Πi

(
si, s

NEε
−i
)
− ε ∀si ∈ Si.

In our duopoly case, ε is infinitesimal and just one of the firms has an ε advantage in
changing its strategy. Thus, we also found ε-equilibria.

3. Nash Equilibria Classification

The goal of this section is to describe Nash equilibria that may arise in the duopoly
case, characterizing Nash equilibria in terms of the parameters: c1, c2, E1, E2, m and
b. For that purpose, we first eliminate some cases where there cannot be NE. Recall the
assumption c1 < c2 < b.

Lemma 3. In the duopoly market model no Nash equilibrium in pure strategies has a tie
in the proposals’ prices, which means that p1 = p2.

Proof. In the tied case both firms bid p1 = p2 = Pd which implies

Πtied
1 = (Pd − c1)

(
q1

Qd

q1 + q2

)
and Πtied

2 = (Pd − c2)

(
q2

Qd

q1 + q2

)

with q1 + q2 > Qd. (Note that if q1 + q2 = Qd, the firms’ proposals are totally accept.)
If Pd < c1, then Πtied

1 < 0 an thus, Firm 1 has incentive to change its strategy to p1 = c1,
since its payoff will increase to zero.

If Pd = c1 < c2, then Πtied
2 < 0, thus Firm 2 has incentive to change its behavior as

Firm 1 did in the previous case.
If Pd > c1, Firm 1 has stimulus to choose pnew1 < Pd = p2 and

qnew1 =

{
E1 if E1 <

Pd−b
m

Pd−b
m
− ε otherwise

with ε > 0 infinitesimal. The reason is that with this new choice Firm 1 has an accepted

quantity g1 = qnew1 > q1
Qd

q1+q2
= q1

Pd−b
m

q1+q2
and the market clearing price is maintained, up to

an infinitesimal quantity. Therefore, revenue of Firm 1 increased.
Since there is always at least one firm that benefits from changing its behavior unilat-

erally, this cannot be an equilibrium.
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Note that this lemma can be easily generalized for the oligopoly case, as long as the
marginal costs are different for all firms.

We have just eliminated from the possible set of NE the cases with a tie in prices.
Another particular situation occurs when the demand intersects the supply curve in a
discontinuity. This possibility can also be discarded from the potential NE.

Lemma 4. In the duopoly market model, a Nash equilibrium in pure strategies always
intersects the supply curve.

Proof. Let us prove the lemma by contradiction. In the duopoly market model, suppose
that there is an equilibrium such that the demand curve intersects the supply curve in a
discontinuity. It suffices to note that the firm with the last proposal being accepted takes
advantage increasing the price of this proposal unilaterally up to the intersection point,
because the market clearing price increases and the market clearing quantity is maintained.
Therefore, this leads to a contradiction, since it was assumed that there was an equilibrium.

Potential equilibria will have: Firm 1 monopolizing the market with Pd = p1 < p2 = c2,
Firm 1 deciding Pd = p1 > p2 or Firm 2 deciding Pd = p2 > p1. Firm 2 never monopolizes
the market since it is the less competitive company (c2 > c1).

The proposition below summarizes the interesting strategies in an equilibrium, that is,
the potential equilibria. In the following sections we will evaluate under which conditions
they are an equilibrium.

Proposition 5. In the duopoly market model the equilibria have

1. Firm 1 deciding the market clearing price and both firms producing; this means Pd =
p1 > p2, in which case Firm 2 plays the largest possible quantity, as long as p1 remains
greater than c2, and Firm 1 may play:

(a) the duopoly optimum
(
q1 ≥ c1−b−q2m

2m
, p1 = c1+b+q2m

2

)
– stationary point;

(b) the duopoly optimum (q1 = E1, p1 = (E1 + q2)m+ b) – extreme point;

2. Firm 1 monopolizing; which means Pd = p1 < p2 = c2 and in this case Firm 1 may
play:

(a) the monopoly optimum
(
q1 ≥ c1−b

2m
, p1 = c1+b

2

)
– stationary point;

(b) the monopoly optimum (q1 = E1, p1 = E1m+ b) – extreme point;

(c) a price close to Firm 2’s marginal cost
(
q1 ≥ c2−ε−b,

m
, p1 = c2 − ε

)
(or equiva-

lently
(
q1 = c2−b

m
− ε, p1 < c2

)
) for ε > 0 arbitrary small; ;

3. Firm 2 deciding the market clearing price and both firms producing; this means Pd =
p2 > p1, in which case Firm 1 plays the largest possible quantity, as long as Pd = p2,
and Firm 2 may play:

(a) the duopoly optimum
(
q2 ≥ c2−b−q1m

2m
, p2 = c2+b+q1m

2

)
– stationary point;

(b) the duopoly optimum (q2 = E2, p2 = (E2 + q1)m+ b) – extreme point.
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Proof. Let us start with the simplest case:
(2) Consider an equilibrium with Pd = p1 < p2 = c2. The optimal strategy in the

monopoly case is:

maximize Π1 (q1, p1) =

(
p1 − b
m

)
(p1 − c1)

subject to p1 ∈ [0, b]

A stationary point is at
∂Π1

∂p1

= 0⇔ p∗1 =
c1 + b

2

with ∂2Π1

∂p21
< 0, q∗1 ≥ p1−b

m
= c1−b

2m
≥ E1 and c1+c2

2
< c2. When E1 <

c1−b
2m

the monopoly

optimum is an extreme point: q1 = E1 and p1 = E1m + b. Therefore, Firm 1’s best
strategy is one of the just derived if c2 > E1m + b > c1+b

2
. Otherwise, for Firm 1 to

monopolize, it has to bid a price below c2. In this case, the strategy with the highest
payoff is

(
q1 ≥ c2−ε−b

m
, p1 = c2 − ε

)
, for ε arbitrarily small. To make this bid Firm 1’s

capacity must satisfy E1 ≥ c2−ε−b
m

. Equivalently, Firm 1 could bid
(
q1 ≥ c2−b

m
− ε, p1 < c2

)
,

allowing Firm 2 to decide Pd = c2, but Firm 2’s participation in the market would be as
small as ε.

(1) Considerer an equilibrium with Pd = p1 > p2. In this case, Firm 2 is playing a
quantity bid as high as possible, as long as p1 > c2. Now, we just have to see which is the
best strategy for Firm 1 when Pd = p1 > p2 (which implies q2 <

p1−b
m

):

maximize Π1 (q1, p1, q2, p2) =

(
p1 − b
m

− q2

)
(p1 − c1)

subject to p1 ∈ [0, b]

A stationary point is at
∂Π1

∂p1

= 0⇔ p∗1 =
c1 + b+ q2m

2

which implies q1 ≥ p∗1−b
m
− q2 = c1−b−q2m

2m
or if E1 < c1−b−q2m

2m
⇒ p∗1 = (E1 + q2)m + b

(extreme point). The bid quantity for Firm 2 makes sense since once Pd = p∗1 is fixed Firm
2’s profit increases with q2.

(3) Completely analogous to the above case.

In Figure 3.1, the above proposition is summarized.
Using this proposition, we will compute the conditions in which the above equilibria

exist; this means that neither of the firms will have advantage in unilaterally moving from
the chosen strategies. Note that g1 = c1−b

2m
and p1 = c1+b

2
is the monopoly optimum.

Therefore, we will use these two values to start our equilibria classification. Figure 3.2
represents the initial division of the space of parameters which will allow us to start a
classifying the equilibria that may occur in this market.

Before the computation of equilibria, we prove the following theorem.
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Potential equilibria

Firm 1 monopolizes

Case (a):

The monopoly

optimum is a

stationary point.

Case (b):

The monopoly

optimum is an

extreme point.

Both firms participate in the market

Firm 1

decides

Pd = p1 > p2

Case (c): The

duopoly optimum

is a stationary

point.

Case (d): The

duopoly optimum

is an extreme

point.

Firm 2

decides

Pd = p2 > p1

Case (d): The

duopoly optimum

is an extreme

point.

Case (e): The

duopoly optimum

is a stationary

point.

Figure 4.3: Potential equilibria.

which implies q1 ≥ p∗1−b
m
− q2 = c1−b−q2m

2m
or if E1 <

c1−b−q2m
2m

⇒ p∗1 = (E1 + q2)m + b

(extreme point). The bid quantity for Firm 2 makes sense since once Pd = p∗1 is fixed

Firm 2’s profit increases with q2.

(3) Completely analogous to the above case.

In Figure 4.3, the above proposition is summarized.

Using this proposition, we will compute the conditions in which the above equilibria

exist; this means that neither of the firms will have advantage in unilaterally moving

from the chosen strategies. Recall from the last section that g1 = c1−b
2m

and p1 = c1+b
2

was the monopoly optimum. Thus we will use these two values to start our equilibria

classification. Figure 4.4 represents the initial division of the space of parameters

which will allow us to start a classification of the equilibria that may occur in this

market.

Figure 3.1: Potential equilibria.
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Parameters

c1, c2, E1, E2,m, b

Both firms par-
ticipate in the
market

c1+b
2
≥ c2

Firm 1 produces
at full capacity

c1+b
2

< c2

E1 <
c1−b
2m

Firm 2 becomes
competitive

c1+b
2
≥ c2

Firm 1 monopo-
lizes

c1+b
2

< c2

E1 ≥ c1−b
2m

Figure 3.1. Decision tree

Strategies 3.4.

Firm 1: sNE1 =

(
q1 ∈

[
c1 − b

2m
,E1

]
,
c1 + b

2

)
(3.1)

Firm 2: sNE2 = (q2 ∈ [0, E2] , p2 ∈ [c2, b]) (3.2)

or
Firm 2: sNE2 = (0, p2 ∈ [0, b]) (3.3)

With these bids, the market clears with price Pd = c1+b
2

< c2 and quantity Qd = c1−b
2m

.
Firm 1 is at monopoly’s optimum, and Firm 2 has no influence in the market.

3.2. Firm 1 produces at full capacity: E1 <
c1−b
2m

and c1+b
2

< c2.

Let us start by considering E1m + b < c2, ie, Firm 2 cannot enter in the market with
positive profit. Note that c2−b

m
< E1 <

c1−b
2m

. In this case, Firm 1 will monopolize the elec-

tricity market, although its capacity is less than the optimum c1−b
2m

. The Nash equilibrium
is given by:

Strategies 3.5.
Firm 1: sNE1 = (E1, E1m+ b) (3.4)

Firm 2: see Equation 3.2 or 3.3

Figure 3.2: Decision tree.

Theorem 6. There is always an equilibrium in the Iberian duopoly market model. The
equilibrium is a Nash equilibrium or an ε-equilibrium with ε infinitesimal.

Proof. Suppose that there is an algorithm A which given the proposals’ firms (q1, p1, q2, p2),
is able to output the strictly best reaction for each of them. Therefore, A1 (q1, p1, q2, p2) =
(q′1, p

′
1) and A2 (q1, p1, q2, p2) = (q′2, p

′
2) are the bids that maximize the profit for Firm 1 and

Firm 2, respectively, given (q1, p1, q2, p2).
Our goal is to prove that if we iteratively apply algorithm A for some initial proposals,

it will find a fixed point of A. This is A1 (q1, p1, q2, p2) = (q1, p1) and A2 (q1, p1, q2, p2) =
(q2, p2), which is an equilibrium of the game.

Let the initial bids be (q1, p1, q2, p2) = (E1, p
′
1, E2, c2), where p′1 is the best bid price for

Firm 1 such that it is lower than c2. Remember, as mentioned in Proposition 5, that in an
equilibrium the firms bid their entire production capacity.

Applying A1 (E1, p
′
1, E2, c2), we can obtain:

1. A1 (E1, p
′
1, E2, c2) = (E1, p

′
1), meaning that Firm 1 is already making its best proposal

according to Firm 2’s strategy. Now, we apply A2 (E1, p
′
1, E2, c2) to see if Firm 2 has

advantage in increasing its price bid.

(a) If A2 (E1, p
′
1, E2, c2) = (E2, c2), then (E1, p

′
1, E2, c2) is a fixed point of A and

thus it is an equilibrium. Case 2 of Proposition 5 describes this situation.
(b) If A2 (E1, p

′
1, E2, c2) = (E2, p

∗
2), where p∗2 is equal to the one described in case 3

of Proposition 5, then (E1, p
′
1, E2, p

∗
2) is an equilibrium. Firm 1 does not have

advantage in changing from p′1 to the price of case 1 in Proposition 5, since if it
has, Firm 1 had done that in the previous step.

2. A1 (E1, p
′
1, E2, c2) = (E1, p

∗
1), where p∗1 is equal to the one of case 1 in Proposition 5.

Firm 1 had advantage in increasing its price bid to p∗1. Computing A2 (E1, p
∗
1, E2, c2)

we obtain:

8



(a) A2 (E1, p
∗
1, E2, c2) = (E2, c2). Firm 2 keeps its bid which implies that (E1, p

∗
1, E2, c2)

is an equilibrium.

(b) A2 (E1, p
∗
1, E2, c2) = (E2, p

∗
2), where p∗2 is equal to the one of case 3 in Proposi-

tion 5. Since A, and in particular A2, only changes to bids that strictly increase
profit, we can conclude for this case that p∗1 < p∗2. By Proposition 5, p∗1, is
the best strategy to Firm 1 when it decides on Pd and Firm 2 is biding a
price lower than p∗1. Therefore, A1 (E1, p

∗
1, E2, p

∗
2) = (E1, p

∗
1) which means that

(E1, p
∗
1, E2, p

∗
2) is an equilibrium.

In AppendixI the existence of equilibria is proven, but using a merge of the cases
presented in the following sections and algebraic arguments.

3.1. Firm 1 monopolizes: E1 ≥ c1−b
2m

and c1+b
2

< c2

Firm 1 monopolizes the market, which means that its capacity is high enough, and
its marginal cost low enough, to keep Firm 2 out of the market. This is the case (a) of
Figure 3.1. In this case, the Nash equilibrium is given by:

Strategies 7.

Firm 1: sNE1 =

(
q1 ∈

[
c1 − b

2m
,E1

]
,
c1 + b

2

)
(3.1)

Firm 2: sNE2 = (q2 ∈ [0, E2] , p2 ∈ [c2, b]) (3.2)

or

Firm 2: sNE2 = (0, p2 ∈ [0, b]) (3.3)

With these bids, the market clears with price Pd = c1+b
2

< c2 and quantity Qd = c1−b
2m

.
Firm 1 is at the monopoly’s optimum, and Firm 2 has no influence on the market.

3.2. Firm 1 produces at full capacity: E1 <
c1−b
2m

and c1+b
2

< c2

We are going to have cases (b), (e) and (d) of Figure 3.1 as equilibria.
Let us start by considering that E1m + b < c2, meaning that, Firm 2 cannot enter

the market with positive profit. Note that c2−b
m

< E1 <
c1−b
2m

. In this case, Firm 1 will

monopolize the electricity market, although its capacity is lower than the optimum c1−b
2m

.
The Nash equilibrium is given by:

Strategies 8.

Firm 1: sNE1 = (E1, E1m+ b) (3.4)

Firm 2: see Equations 3.2 or 3.3
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As before, Firm 1 does not have an incentive to change its strategy, as this will mean that
(q1, p1) = (E1, E1m+ b) is not an optimum.

Let us now consider E1m + b ≥ c2. Firm 1 cannot monopolize the market and, in
this case, the marginal cost of Firm 2 is lower than the monopoly price E1m + b, i.e.,
E1m + b ≥ c2. Moreover, in an equilibrium for this case, Firm 1 never decides the price,
that is., Pd = p2 > p1. Otherwise, by Proposition 5, if Pd = p1 > p2, Firm 1 would be
bidding the duopoly optimum price Pd = p∗1 = c1+b+q2m

2
requiring:

p∗1 =
c1 + b+ q2m

2
> c2

but this would imply a negative quantity for Firm 2, which is absurd:

q2 <
2c2 − c1 − b

m
< 0.

The inequality 2c2−c1−b
m

< 0 is equivalent to c2 >
c1+b

2
, which holds by assumption.

Therefore, we discarded the possibility of Firm 1 deciding Pd = p1 > p2 (case (c) of
Figure 3.1). The cases (d) and (e) in Figure 3.1 remain as potential NE, which we will
discuss below.

Suppose that Firm 1’s bidding price is p1 < c2 ≤ p2 = Pd. The best reaction for Firm
2 is the duopoly optimum in Proposition 5: p∗2 = c2+b+q1m

2
and the corresponding quantity

is q∗2 ≥ c2−b−q1m
2m

. Indeed p∗2 ≥ c2:

p∗2 =
c2 + b+ q1m

2
≥ c2 + b+ E1m

2
≥ c2 ⇔ E1m+ b ≥ c2

therefore, the bid price p∗2 makes sense, since p∗2 > c2. Furthermore, Firm 1 bids q∗1 = E1

(and p∗1 < c2), otherwise it would have advantage in increasing its quantity and this would
not be an equilibrium.

Firm 2 does not have incentive to change its move
(
q∗2 ≥ c2−b−E1m

2m
, p∗2 = c2+b+E1m

2

)
, as

this is the optimum (stationary point) when p1 < c2. In order to have an equilibrium,
neither of the firms can benefit from unilaterally changing their behavior.

When Firm 2 decides Pd = p2 > p1, this firm will not benefit from changing its behavior,
because that would mean decreasing the price p2, p1 > p2, and this does not increase Firm
2’s profit, since p1 is lower than c2.

May Firm 1 be encouraged to reconsider its strategy? In other words, would Firm 1
be interested in increasing price p1? The answer is no, because as we have seen at the
beginning: if Firm 1 picks the price Pd = p1 > p2 it will be p∗1 =

c1+b+q∗2m
2

but p∗1 < c2 ≤ p∗2.
Therefore, now we just have to distinguish the duopoly optimum as a stationary point and
the duopoly optimum as an extreme point:

• In the case E2 ≥ c2−b−E1m
2m

, Firm 2’s optimum is a stationary point. As we assume
E1m+ b > c2, Firm 1 is not monopolizing , and the Nash Equilibrium is given by

10



Strategies 9.

Firm 1: sNE1 = (E1, p1 ∈ [0, c2[) (3.5)

Firm 2: sNE2 =

(
q2 ∈

[
c2 − b− E1m

2m
,E2

]
,
c2 + b+ E1m

2

)
(3.6)

For E1m+ b = c2 and ε, ε′ > 0 arbitrary small, the equilibrium is given by

Strategies 10.

Firm 1: sNE1 = (E1 − ε, p1 ∈ [0, c2[) (3.7)

Firm 2: sNE2 = (q2 ∈ [ε′, E2] , c2) (3.8)

• In the case E2 <
c2−b−E1m

2m
both firms bid at full capacity. Here, Firm 2 does not

have enough capacity to produce the quantity c2−b−E1m
2m

required, so q∗2 = E2 and
p∗2 = (q1 + E2)m + b. The best reaction quantity for Firm 1 is q∗1 = E1 as before.
Firm 2 is playing (q2 = E2, p2 = (E1 + E2)m+ b) which, by construction, is the best
reaction when Firm 1 plays (q1, p1) = (E1, p1 < c2). These strategies are a Nash
equilibrium.

Strategies 11.

Firm 1: sNE1 = (E1, p1 ∈ [0, (E1 + E2)m+ b]) (3.9)

Firm 2: sNE2 = (E2, (E1 + E2)m+ b) (3.10)

Clearly, we can invert the prices of each firm, reaching the Nash equilibrium:

Strategies 12.

Firm 1: sNE1 = (E1, (E1 + E2)m+ b) (3.11)

Firm 2: sNE2 = (E2, p2 ∈ [0, (E1 + E2)m+ b]) (3.12)

The conclusions of this section are summarized in the decision tree of Figure 3.3.

3.3. Firm 2 becomes competitive: E1 ≥ c1−b
2m

and c1+b
2
≥ c2

In this case, we will have cases (c), (b) and (e) of Figure 3.1 as equilibria.

11



E1 <
c1−b
2m and c1+b

2 < c2

Firm 1 monopolizes the market

see the NE 3.2 to 3.4

E1m+ b < c2

Both Firms
participate in
the Market

see the NE
3.9, 3.10,
3.11 and 3.12

E2 <
c2−b−E1m

2m

see the NE
3.5 to 3.6

E1m+ b > c2

see the NE
3.7 to 3.8

E1m+ b = c2

E2 ≥ c2−b−E1m
2m

E1m+ b ≥ c2

Figure 3.3: Equilibria for Section 3.2.
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Figure 3.3: Equilibria for Section 3.2.

3.3.1. Firm 1 decides Pd = p1 > p2

We are interested in finding under which conditions case (c) in Figure 3.1 is a NE.
Clearly p1 > c2 and therefore, we assume p∗2 = c2. Under the results of Proposition 5, Firm
1 must be bidding the stationary point p∗1 = c1+b+q2m

2
and q∗1 ≥ c1−b−q2m

2m
. This requires

p∗1 = c1+b+q2m
2

≥ c2 and thus, we must have q2 ≤ 2c2−c1−b
m

. Similarly, the quantity produced

by Firm 1 ( c1−b−q2m
2m

) must be positive. This leads to the inequality q2 ≤ c1−b
m

, which is
weaker than the former one, since b > c2 > c1. The best strategy for Firm 2 is:

q∗2 =

{
2c2−c1−b

m
− ε if E2 ≥ 2c2−c1−b

m

E2 otherwise.
(3.13)

Note that the quantity q∗2 mentioned above is positive as long as c2 ≤ c1+b
2

, which holds.
Therefore, Firm 2 is playing the largest possible quantity, as stated in Proposition 5.

For the sake of simplicity, let us first consider the case of Firm 1 playing q∗1 =
c1−b−q∗2m

2m
,

rather than q∗1 >
c1−b−q∗2m

2m
. Hence, q∗1 ≤ c1−b

2m
which by assumption is lower than E1 and

therefore, it makes sense to bid this quantity at price p∗1.

For the profile of strategies s1 = (q∗1, p
∗
1) and s2 = (q∗2, c2) to be an equilibrium, it is

required that neither firm changes its strategy.

If Firm 2 has an incentive to choose another strategy it would be p̃2 > p∗1. The
question now is whether there is a strategy s̃2 = (q̃2, p̃2) such that Π2 (q̃2, p̃2, q

∗
1, p
∗
1) >

Π2 (q∗2, p
∗
2, q
∗
1, p
∗
1). When Firm 2 increases the price, the best strategy is to choose p̃2 =

12



c2+b+q∗1m
2

=
b+c1+2c2−q∗2m

4
. In order to have p̃2 > p∗1, the following inequality must hold

q∗2 >
2c2 − c1 − b

3m
. (3.14)

Inequality 3.14 depends on our instance of the problem. Notice that 2c2−c1−b
m

> 2c2−c1−b
3m

,

so Inequality 3.14 holds whenever E2 >
2c2−c1−b

3m
. Our goal is to see under which conditions

Firm 2 does not change the price to p̃2.
In this context, if E2 ≤ 2c2−c1−b

3m
then q∗2 = E2 and Firm 2 does not have advantage in

picking a strategy different from (E2, c2).

Suppose E2 >
2c2−c1−b

3m
; then p̃2 =

b+c1+2c2−q∗2m
4

> p∗1 =
c1+b+q∗2m

2
. Can this be the case

that

Π2 (q∗2, c2, q
∗
1, p
∗
1) =

(
c1 + b+ q∗2m

2
− c2

)
q∗2

is larger than

Π2

(
p̃2 − b
m

− q∗1, p̃2, q
∗
1, p
∗
1

)
=

=

(
b+ c1 + 2c2 − q∗2m

4
− c2

)(
b+ c1 + 2c2 − q∗2m− 4b

4m
− c1 − b− q∗2m

2m

)
?

The answer is no. This proof falls naturally, see in AppendixA. Consequently, we are only
interested in the case where q∗2 = E2 ≤ 2c2−c1−b

3m
.

Now, we have to study under which conditions Firm 1 does not have advantage in
picking p̃1 < p2 = c2.

If E1 <
c2−b
m

then Firm 1 bids p̃1 < c2 and q̃1 = E1. Otherwise, if E1 ≥ c2−b
m

, Firm 1

bids p̃1 < c2 and q̃1 = c2−b
m
− ε or p̃1 = c2 − ε and q̃1 ≥ c2−ε−b

m
. Obviously in the second

case (E1 ≥ c2−b
m

) the Firm 1’s profit is higher, so we use it to compare with its profit of
our possible NE:

Π1 (q∗1, p
∗
1, E2, c2) =

(
c1 + b+ E2m

2
− c1

)(
c1 − b− E2m

2m

)
=
− (b+ E2m− c1)2

4m
.

So
Π1 (q∗1, p

∗
1, E2, c2) ≥ lim

ε→0
Π1 (q̃1, p̃1, E2, c2)

when

E2 ∈
[

0,min

(
c1 − b+ 2

√
(c1 − c2) (c2 − b)
m

,
2c2 − c1 − b

3m

)]
(3.15)

see AppendixB.
Thus, when Equation 3.15 holds and E1 ≥ c2−b

m
we have the equilibrium:

Strategies 13.

Firm 1: sNE1 =

(
q1 ∈

[
c1 − b− E2m

2m
,E1

]
,
c1 + b+ E2m

2

)
(3.16)
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E1 ≥ c1−b
2m and c1+b

2 ≥ c2

Firm 1 decides Pd = p1 > p2

Firm 1 never
monopolizes
the market

A ≤ B

see the
NE 3.16 to
3.17

E2 ≤ A

No NE un-
der these
conditions

E2 > A

E1 ≥
(b+c2−2c1)2

9m(c1−c2)

B < A

No NE un-
der these
conditions

E2 > B

see the
NE 3.16 to
3.17

E2 ≤ B

E1 <
(b+c2−2c1)2

9m(c1−c2)

E1 <
c2−b
m

Firm 1 can
monopolize
the market

A′ ≤ B

see the
NE 3.16 to
3.17

E2 ≤ A′

No NE un-
der these
conditions

E2 > A′

c2 ≥
b+4c1

5

A′ > B

No NE un-
der these
conditions

E2 > B

see the
NE 3.16 to
3.17

E2 ≤ B

c2 <
b+4c1

5

E1 ≥
c2−b
m

Figure 3.4: Firm 1 decides Pd = p1 > p2.
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Figure 3.4: Firm 1 decides Pd = p1 > p2.

Firm 2: sNE2 = (E2, p2 ∈ [0, c2]) (3.17)

Note that we have relaxed Firm 2’s biding price. This is possible because the profits do
not depend on it.

When E1 <
c2−b
m

and Equation 3.18 holds and we also have the above equilibrium (see
Equations 3.16 and 3.17).

E2 ∈
[

0,min

(
c1 − b+ 2

√
E1m (c1 − c2)

m
,
2c2 − c1 − b

3m

)]
(3.18)

Let A =
c1−b+2

√
E1m(c1−c2)

m
, A′ =

c1−b+2
√

(c1−c2)(c2−b)
m

and B = 2c2−c1−b
3m

. We built the
decision tree in Figure 3.4. In order to verify that all the decisions in the tree make sense,
that is, that all the regions in its leafs are non-empty, let us observe the following:

• c1−b
2m
≤ (b+c2−2c1)2

9m(c1−c2)
when c2 ≤ c1+b

2
;

• (b+c2−2c1)2

9m(c1−c2)
< c2−b

m
when c2 ∈

]
4c1+b

5
, c1+b

2

[
.

This supports the fact that the decision tree makes sense or, in other words, that decisions
do not lead us to empty spaces.

Remember, that we used q∗1 =
c1−b−q∗2m

2m
. In this case, the capacity of Firm 2 had to be

lower than 2c2−c1−b
3m

, otherwise, Firm 2 would change its strategy with benefit.

14



It could be possible to find more general conditions for the Nash equilibrium with Firm
1 deciding Pd = p1 > p2.

We did not try the strategy q∗1 >
c1−b−q∗2m

2m
. Note that with bids (s1, s2) = (q∗1, p

∗
1, q
∗
2, p2) =(

q∗1 >
c1−b−q∗2m

2m
,
c1+b+q∗2m

2
, q∗2, c2

)
, Firm 1 only produces the quantity g1 =

c1−b−q∗2m
2m

. How-

ever Firm 1 may play a quantity q1 larger than g1, in order to reduce Firm 2’s incentive in
changing the price p2. So, our goal is to find a lower bound for q∗1 when E2 ≥ 2c2−c1−b

3m
.

Let us see how larger q∗1 has to be. If Firm 2 increases the price c2 to p̃2 = c2+b+q1m
2

this implies:

c2 + b+ q∗1m

2
> p∗1 =

c1 + b+ q∗2m

2
⇔ q∗1 <

c1 − c2

m
+ q∗2 <

c2 − b
m

and the new quantity dispatched should be positive:

c2+b+q∗1m
2

− b
m

− q∗1 > 0⇔ q∗1 <
c2 − b
m

therefore q∗1 <
c1−c2
m

+ q∗2 is the strongest condition until now.
We still have to add the condition that leads Firm 2 to a higher profit

Π2

(
q∗1, p

∗
1,
p̃2 − b
m

− q∗1, p̃2

)
=

(
c2 + b+ q∗1m

2
− c2

)(
c2 − b− q∗1m

2m

)

is larger than

Π2 (q∗1, p
∗
1, q
∗
2, c2) =

q∗2
2

(c1 + b+ q∗2m− 2c2)

when q∗1 <
c2−b+

√
K2

m
, see AppendixC. If q∗1 ≥ c2−b+

√
K2

m
Firm 2 does not have advantage in

changing its strategy.
Now, we merely need the conditions for Firm 1 to keep the strategy (q∗1, p

∗
1). Proceeding

as before:

1. Let E1 ≥ c2−b
m

. Firm 1 does not change its strategy (
(
q∗1 >

c2−b+
√
K2

m
, p∗1

)
) if

q∗2 ∈
[

0,
c1 − b+ 2

√
(c2 − b) (c1 − c2)

m

]
∪
[
c1 − b− 2

√
(c2 − b) (c1 − c2)

m
,∞
[
.

Note that
c1 − b− 2

√
(c2 − b) (c1 − c2)

m
>

2c2 − c1 − b
m

⇔ −2
√

(c2 − b) (c1 − c2)︸ ︷︷ ︸
<0

< 2 (c2 − c1)︸ ︷︷ ︸
>0

and
c1 − b+ 2

√
(c2 − b) (c1 − c2)

m
<

2c2 − c1 − b
m

15



⇔ −2c2
2 + c2 (3c1 + b)− c1b− c2

1 > 0

⇔ c2 ∈
]
c1,

c1 + b

2

[

thus

q∗2 = E2 ≤
c1 − b+ 2

√
(c2 − b) (c1 − c2)

m
.

The Nash equilibrium is given by:

Strategies 14.

Firm 1: sNE1 =

(
q1,

c1 + b+ E2m

2

)
with q1 ∈

[
c2 − b+

√
K2

m
,E1

]
(3.19)

Firm 2: see Equation 3.17

2. Let E1 <
c2−b
m

. Firm 1 does not change its strategy if

q∗2 ∈
[

0,
c1 − b+ 2

√
E1m (c1 − c2)

m

]
∪
[
c1 − b− 2

√
E1m (c1 − c2)

m
,∞
[
.

Note that:

c1 − b− 2
√
E1m (c1 − c2)

m
>

2c2 − c1 − b
m

and

c1 − b+ 2
√
E1m (c1 − c2)

m
<

2c2 − c1 − b
m

⇔ c2 ∈ [c1, c1 − E1m]

and

c1 − E1m > c1 −
c1 − b

2m
m =

c1 + b

2
⇒
[
c1,

c1 + b

2

]
⊂ [c1, c1 − E1m]

thus for

q∗2 = E2 <
c1 − b+ 2

√
E1m (c1 − c2)

m

we have the Nash equilibrium of 3.19 and 3.17.

The decision tree is in Figure 3.5.
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E1 ≥ c1−b
2m and c1+b

2 ≥ c2 and E2 ≥ 2c2−c1−b
3m

Firm 1 decides Pd = p1 > p2

See the NE
3.19 and 3.17

E2 ≤ A ∧ E1 ≥ c2−b+
√
K2

m

No NE under
these condi-
tions

E2 > A ∨ E1 <
c2−b+

√
K2

m

E1 <
c2−b
m

No NE under
these condi-
tions

E2 > A′

see the NE
3.19 and 3.17

E2 ≤ A′

E1 ≥ c2−b
m

Figure 3.5: Firm 1 decides Pd = p1 > p2.
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AppendixA. Firm 2 changes its strategy

Assume that E1 ≥ c1−b
2m , c1+b

2 ≥ c2 and E2 >
2c2−c1−b

3m , and that Firm 1 is playing
(
q∗1 =

c1−b−q∗2m
2m , p∗1 =

c1+b+q∗2m
2

)
.

By Equation 3.13, since E2 >
2c2−c1−b

3m then q∗2 >
2c2−c1−b

3m . Let us prove that Firm 2 will change

its strategy (q∗2 , p
∗
2 = c2) to

(
q̃2 = p̃2−b

m − q∗1 , p̃2 =
b+c1+2c2−q∗2m

4

)
:

Π2 (q∗2 , p
∗
2, q
∗
1 , p
∗
1) < Π2 (q̃2, p̃2, q

∗
1 , p
∗
1)

⇔ q∗2
2

(c1 + b+ q∗2m− 2c2) <
−1

16m
(b+ c1 − 2c2 − q∗2m)

2

⇔ 9

2
m (q∗2)

2
+ 3q∗2 (c1 + b− 2c2) +

1

2m
(c1 + b− 2c2)

2
< 0

⇔ q∗2 6=
2c2 − b− c1

3m

for this reason, Firm 2 has benefit in modifying its strategy.
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Figure 3.5: Firm 1 decides Pd = p1 > p2.

3.3.2. Firm 1 monopolizes

Now we are going to establish the conditions that make Firm 1 monopolize the market
as an equilibrium (case (b) in Figure 3.1). Here, the market outcome is an ε-equilibrium.

Notice that in this case, p1 < c2 (otherwise, Firm 2 would have advantage in partici-
pating in the market) and it is required E1 ≥ c2−b

m
( c1−b

2m
< c1−b

m
), otherwise the demand is

not intersected by Firm 1’s bid. Hence the best bid for Firm 1 is (q1, p1) =
(
c2−ε−b
m

, c2 − ε
)

with ε > 0. Firm 2 bids (q2, p2) = (E2, c2). Any other strategy from Firm 2 leads to the
same or less profit.

1. Consider E2 ≥ c2−b
m

. If Firm 1 chooses p̃1 > c2, the produced quantity is zero, and
therefore, Firm 1 will not choose to make a bid different from p1 = c2− ε. Hence the
equilibrium is:

Strategies 15.

Firm 1: sNE1 =

(
q1 ∈

[
c2 − ε− b

m
,E1

]
, c2 − ε

)
(3.20)

Firm 2: sNE2 = (E2, c2) (3.21)

or

Strategies 16.

Firm 1: sNE1 =

(
c2 − b
m
− ε, p1 ∈ [c1, c2 − ε]

)
(3.22)

Firm 2: see Equation 3.21
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2. Consider E2 <
c2−b
m

. Then Firm 1 can bid p̃1 > c2, producing a non zero quantity. If
Firm 1 has incentive to change its strategy it will be to:

(q̃1, p̃1) =

(
c1 − b− E2m

2m
,
c1 + b+ E2m

2

)
.

However, for this new bid to make sense, we need

p̃1 =
c1 + b+ E2m

2
> c2,

which depends on the instance of our problem.
Remark: 2c2−c1−b

m
< c2−b

m
⇔ c2 > c1. Using this the following cases are possible.

(a) Consider E2 <
2c2−c1−b

m
⇔ p1 = c1+b+E2m

2
> c2. Is

Π1

(
p̃1 − b
m

− E2, p̃1, E2, c2

)
=

(
c1 + b+ E2m

2
− c1

)(
c1 − b− E2m

2m

)

higher than

lim
ε→0

Π1

(
c2 − ε− b

m
, c2 − ε, E2, c2

)
= (c2 − c1)

(
c2 − b
m

)
?

Not when Equation 3.23 holds (see AppendixD for a proof).

E2 ∈
[
c1 − b+ 2

√
(c1 − c2) (c2 − b)
m

,
2c2 − c1 − b

m

]
. (3.23)

Hence, the equilibrium is given by:

Strategies 17.
Firm 1: see Equation 3.20

Firm 2: see Equation 3.21

or

Strategies 18.
Firm 1: see Equation 3.22

Firm 2: see Equation 3.21

(b) Consider E2 ≥ 2c2−c1−b
m

⇔ p1 = c1+b+E2m
2

≤ c2. In this case, Firm 1 does not
have stimulus to change its behavior and hence, the equilibrium is given by
Equations 3.20 to 3.22.

Let B′ = 2c2−c1−b
m

. We have the decision tree of Figure 3.6 corresponding to this case.

Since , with the assumptions of this section, c2−b
m
≥ 2c2−c1−b

m
≥ A′ yields, the decision

tree makes sense.
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E1 ≥ c1−b
2m and c1+b

2 ≥ c2

Firm 1 monopolizes

See the NE 3.20
to 3.22

E2 ≥ c2−b
m

See the NE 3.20
to 3.22

E2 ≥ 2c2−c1−b
m

See the NE 3.20
to 3.22

E2 ≥ A′

No NE under
these conditions

E2 < A′

E2 <
2c2−c1−b

m

E2 <
c2−b
m

E1 ≥ c2−b
m

No NE under
these condi-
tions

E1 <
c2−b
m

Figure 3.6: Firm 1 monopolizes.

AppendixB. Firm 1 does not change its strategy

Assume that E1 ≥ c1−b
2m , c1+b

2 ≥ c2, E2 ≤ 2c2−c1−b
3m and E1 ≥ c2−b

m , and that Firm 2 is
playing (q∗2 = E2, p

∗
2 = c2). Let us prove in which conditions Firm 1 does not change its strategy(

q∗1 = c1−b−E2m
2m , p∗1 = c1+b+E2m

2

)
to
(
q̃1 = c2−ε−b

m , p̃1 = c2 − ε
)
:

Π1 (q∗1 , p
∗
1, q
∗
2 , p
∗
2) ≥ lim

ε→0
Π1 (q̃1, p̃1, q

∗
2 , p
∗
2)

⇔ − (b+ E2m− c1)
2

4m
≥ lim

ε→0
(c2 − c1)

(
c2 − b
m

− ε
)

⇔ −1

4m

(
(b− c1)

2
+ 2E2m (b− c1) + E2

2m
2
)
− (c2 − c1)

(
c2 − b
m

)
> 0

⇒ E2
2m
−1

4
− E2

1

2
(b− c1)− 1

4m
(b− c1)

2 − (c2 − c1)

(
c2 − b
m

)
= 0

⇔ E2 =
c1 − b± 2

√
(c2 − b) (c1 − c2)

m

In what follows it is study this solution:

• c1−b−2
√

(c2−b)(c1−c2)

m >
c1−b+2

√
(c2−b)(c1−c2)

m ⇔ −2 < 2;

• c1−b+2
√

(c2−b)(c1−c2)

m < 0 ⇔
√

(c1 − c2) (c2 − b) > b−c1
2 ⇔ (c1 − c2) (c2 − b) > (b−c1)2

4 ⇔
−c22+c2 (c1 + b)−c1b− (b−c1)2

4 > 0, note that −c22+c2 (c1 + b)−c1b− (b−c1)2

4 = 0⇔ c2 = c1+b
2

thus, 0 ≤ c1−b+2
√

(c2−b)(c1−c2)

m ≤ c1−b−2
√

(c2−b)(c1−c2)

m ;

14

Figure 3.6: Firm 1 monopolizes.

3.3.3. Firm 2 decides Pd = p2 > p1

Finally, we will search for equilibria where Firm 2 decides the market clearing price, in
other words, p1 < p2 = Pd (case (d) and (e) of Figure 3.1).

Note that we have to impose E1 <
c2−b
m

, due to the fact that if E1 ≥ c2−b
m

, Firm 1 has
incentive to monopolize the market (since it has sufficient capacity for that purpose). So,
we consider c1−b

2m
≤ E1 <

c2−b
m

.

Let us assume p1 < c2. From Proposition 5, the best strategy for Firm 2 is p∗2 =
c2+b+q∗1m

2

and q∗2 ≥ c2−b−q∗1m
2m

, where q∗1 = E1.
For this strategy there are the following requirements (the price of the duopoly optimum

makes sense and Firm 2 has the production capacity of playing the stationary point of the
duopoly optimum):

1. p∗2 = c2+b+E1m
2

≥ c2 ⇔ E1 ≤ c2−b
m

, which holds by our assumption;

2. E2 ≥ c2−b−E1m
2m

which depends on the instance of our problem.

We have to study each of these cases.

1. Suppose E2 ≥ c2−b−E1m
2m

, then Firm 2 plays the stationary optimum
(
q∗2 ≥

c2 − b− E1m

2m
, p∗2 =

c2 + b+ E1m

2

)

and Firm 1 (E1, p1 < c2).
Obviously Firm 2 will not have incentive in reconsidering another proposal, but
Firm 1 may have advantage in choosing a higher price p̃1 =

c1+b+q∗2m
2

> p∗2, such

that Π1 (q∗1, p1 < c2, q
∗
2, p
∗
2) < Π1

(
p̃1−b
m
− q∗2, p̃1 > p∗2, q

∗
2, p
∗
2

)
. Is p̃1 =

c1+b+q∗2m
2

> p∗2 =
c2+b+E1m

2
?
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c1 + b+ q∗2m

2
>
c2 + b+ E1m

2
⇔ q∗2 <

c2 − c1 + E1m

m
which depends on the instance of our problem. Thus, these cases have to be consid-
ered separately:
(a) Suppose c2−b−E1m

2m
≥ c2−c1+E1m

m
⇔ E1 ≤ 2c1−c2−b

3m
. However, E1 ≥ c1−b

2m
≥

2c1−c2−b
3m

⇔ c2 ≥ c1+b
2

, which by assumption does not hold. So this case never
happens.

(b) Suppose E1 >
2c1−c2−b

3m
and q∗2 = c2−b−E1m

2m
, then Firm 1 has benefit in increasing

its proposal price since:

Π1

(
p1 − b
m

− q∗2,
c1 + b+ q∗2m

2
, q∗2, p

∗
2

)
> Π1 (E1, p1 < c2, q

∗
2, p
∗
1)

⇔ −1

16m
(2c1 − c2 − b+ E1m)2 > (c2 + b+ E1m− 2c1)

E2

2

⇔ E1 6=
2c1 − b− c2

3m
.

(c) Suppose E1 >
2c1−c2−b

3m
and q∗2 >

c2−b−E1m
2m

, then as we already did before, there is

an equilibrium if E2 ≥ c1−b+
√
K1

m
, whereK1 = −2m2E2

1+(−2mc2 − 2bm+ 4mc1)E1:
Strategies 19.

Firm 1: see Equation 3.5

Firm 2: sNE2 =

(
q2 ∈

[
c1 − b+

√
K1

m
,E2

]
,
c2 + b+ E1m

2

)
(3.24)

2. SupposeE2 <
c2−b−E1m

2m
. In this case (q∗1, p

∗
1) = (E1, p1 < c2) and (q∗2, p

∗
2) = (E2, (E1 + E2)m+ b)

.
Firm 2 will not change this behavior, so let us see when Firm 1 has advantage in
increasing p∗1 to p̃1. For the purpose we need

p̃1 =
c1 + b+ E2m

2
> p∗2 = (E1 + E2)m+ b⇔ E2 >

c1 − b
m
− 2E1

and E2 >
c1−b
m
− 2E1 is true, since E2 > 0 and

c1 − b
m
− 2E1 ≤ 0⇔ E1 ≥

c1 − b
2m

.

So, p̃1 = c1+b+E2m
2

> p∗2 = (E1 + E2)m+ b.
Is

Π1

(
p̃1 − b
m

− E2,
c1 + b+ E2m

2
, E2, p

∗
2

)
=
−1

4m
(−c1 + b+ E2m)2

higher than

Π1 (E1, p1 < c2, E2, p
∗
2) = E1 ((E1 + E2)m+ b− c1)?

Yes, see AppendixE. Therefore Firm 1 has stimulus in changing its strategy.

In short, we can summarize this Nash equilibria with the decision tree of Figure 3.7.
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E1 ≥ c1−b
2m and c1+b

2 ≥ c2

Firm 2 decides Pd = p2 > p1

See the NE
3.5 and
3.24

E2 ≥ c1−b+
√
K1

m

No NE under
these conditions

E2 <
c1−b+

√
K1

m

E2 ≥ c2−b−E1m
2m

No NE under these
conditions

E2 <
c2−b−E1m

2m

E1 <
c2−b
m

No NE under these condi-
tions

E1 ≥ c2−b
m

Figure 3.7: Firm 2 decides Pd = p2 > p1.

2. Suppose E2 <
c2−b−E1m

2m . In this case (q∗1 , p
∗
1) = (E1, p1 < c2) and (q∗2 , p

∗
2) = (E2, (E1 + E2)m+ b)

.
Firm 2 will not change this behavior, so let us see when Firm 1 has advantage in increasing
p∗1 to p̃1. For the purpose we need

p̃1 =
c1 + b+ E2m

2
> p∗2 = (E1 + E2)m+ b⇔ E2 >

c1 − b
m

− 2E1

and E2 >
c1−b
m − 2E1 is true, since E2 > 0 and

c1 − b
m

− 2E1 ≤ 0⇔ E1 ≥
c1 − b

2m
.

So, p̃1 = c1+b+E2m
2 > p∗2 = (E1 + E2)m+ b.

Is

Π1

(
p̃1 − b
m

− E2,
c1 + b+ E2m

2
, E2, p

∗
2

)
=
−1

4m
(−c1 + b+ E2m)

2

higher than
Π1 (E1, p1 < c2, E2, p

∗
2) = E1 ((E1 + E2)m+ b− c1)?

Yes, see Appendix AppendixE. Therefore Firm 1 has stimulus in changing its strategy.

In short, we can summarize this Nash equilibria with the decision tree of Figure 3.7.

4. Conclusions
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Figure 3.7: Firm 2 decides Pd = p2 > p1.

3.4. Both firms participate in the market: E1 <
c1−b
2m

and c1+b
2
≥ c2

The NE of this section are going to be the ones from cases (c), (d) and (e) of Figure 3.1.
Since E1 <

c1−b
2m

< c2−b
m

, Firm 1 does not have capacity to monopolize the market.

3.4.1. Firm 2 decides Pd = p2 > p1

We start with the case in which Pd = p2 > p1 (case (e) of Figure 3.1). As Proposition 5

states, Firm 2 plays the stationary duopoly optimum (q∗2, p
∗
2) =

(
c2−b−q∗1m

2m
,
c2+b+q∗1m

2

)
and

q∗1 will be as large as possible such that:

p∗2 =
c2 + b+ q∗1m

2
≥ c2 ⇔ q∗1 ≤

c2 − b
m

and

q∗2 =
c2 − b− q∗1m

2m
≥ 0⇔ q∗1 ≤

c2 − b
m

thus q∗1 = E1. Note that q∗2 > 0, since q∗2 = c2−b−E1m
2m

> c2−b
2m
− c1−b

4m
= 2c2−b−c1

4m
> 0⇔ c2 <

b+c1
2

. An important fact is that p∗2 =
c2+b+E∗

1m

2
> c2, since this is equivalent to E1 <

c2−b
m

which is true. On the other hand q∗2 = c2−b−E1m
2m

≤ E2 depends on the instance of our
problem, so Firm 2 may have to play the extreme point of the duopoly optimum.

1. SupposeE2 ≥ c2−b−E1m
2m

. Firm 1 plays (q∗1 = E1, p
∗
1 < c2) and Firm 2 plays

(
q∗2 = c2−b−E1m

2m
, p∗2 = c2+b+E1m

2

)
.

It is easy to see that Firm 2 does not have advantage in choosing other strategy. Let
us see if Firm 1 will change its behavior to p̃1 = 2c1+c2+b−E1m

4
. In that case, p̃1 must

be higher than p∗2:

p̃1 =
2c1 + c2 + b− E1m

4
>
c2 + b+ E1m

2
= p∗2 ⇔ E1 >

2c1 − c2 − b
3m

and 2c1−c2−b
3m

≤ c1−b
2m

, which depends on the instance of our problem.
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(a) Let E1 ≤ 2c1−c2−b
3m

. Then, Firm 1 does not have stimulus in changing its behavior
unilaterally. Here, the Nash equilibrium is given by:

Strategies 20.
Firm 1: see Equation 3.5

Firm 2: see Equation 3.6

(b) Let E1 >
2c1−c2−b

3m
⇔ p1 = 2c1+c2+b−E1m

4
> c2+b+E1m

2
= p∗2. We have:

Π1

(
p̃1 − b
m

− q∗2, p̃1, q
∗
2, p
∗
2

)
=
−1

16m
(c2 + b− 2c1 − E1m)2

which is larger than the profit

Π1 (E1, p1 < c2, q
∗
2, p
∗
2) =

E1

2
(c2 + b+ E1m− 2c1)

if E1 6= 2c1−b−c2
3m

. Therefore, Firm 1 has advantage in changing its strategy.

However, like we already did in the Section 3.3.3, Firm 2 can pick q∗2 >
c2−b−E1m

2m

sufficiently large such that Firm 1 does not have advantage in changing its
strategy. This case is completely analogous to the one treated in Section 3.3.3,
let K1 = −2E2

1m
2 + (−2c2m + 4c1m − 2bm)E1. If E2 ≥ c1−b+

√
K1

m
we have the

Nash equilibrium:

Strategies 21.
Firm 1: see Equation 3.5

Firm 2: see Equation 3.24

2. Suppose E2 < c2−b−E1m
2m

. Here Firm 2’s duopoly optimum is an extreme point,
q∗2 = E2, p∗2 = (E2 + E1)m+ b and q∗1 = E1. Notice that p∗2 = (E2 + E1)m+ b > c2,
since both firms are playing smaller quantities than the last case (the market clearing
price increases when the market clearing quantity decreases).
Clearly, Firm 2 will not change its strategy, but Firm 1 may have incentive in choosing
a higher price p̃1 > p∗2 and that requires:

p̃1 =
c1 + b+ E2m

2
> p∗2 = (E1 + E2)m+ b⇔ E1 >

c1 − b− E2m

2m

which depends on the instance of our problem.

(a) Let E1 ≤ c1−b−E2m
2m

. Then, Firm 1 will not change its behavior.
The Nash equilibrium is given by:

Strategies 22.
Firm 1: see Equation 3.9

Firm 2: see Equation 3.10
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E1 <
c1−b
2m and c1+b

2 ≥ c2

Firm 2 decides Pd = p2 > p1

See the NE
3.5 to 3.6

E1 ≤ 2c1−c2−b
3m

No NE under
these condi-
tions

E2 <
c1−b+

√
K1

m

See the NE
3.5 and 3.24

E2 ≥ c1−b+
√
K1

m

E1 >
2c1−c2−b

3m

E2 ≥ c2−b−E1m
2m

No NE under
these condi-
tions

E1 >
c1−b−E2m

2m

See the NE
3.9 to 3.10

E1 ≤ c1−b−E2m
2m

E2 <
c2−b−E1m

2m

Figure 3.8: Firm 2 decides Pd = p2 > p1.

Strategies 21.
Firm 1: see Equation 3.9

Firm 2: see Equation 3.10

(b) Let E1 >
c1−b−E2m

2m . Is

Π1

(
p1 − b
m

− E2,
c1 + b+ E2m

2
, E2, p

∗
2

)

higher than
Π1 (E1, p1 < c2, E2, (E1 + E2)m+ b)?

This is equivalent to solve:

−1

4m
(−c1 + b+ E2m)

2
< ((E1 + E2)m+ b− c1)E1

⇔ −mE2
1 + (c1 − b− E2m)E1 −

1

4m
(−c1 + b+ E2m)

2
< 0

⇔ E1 6=
c1 − b− E2m

2m
,

so Firm 1 has advantage in changing its strategy.

From the above we reach the decision tree of Figure 3.8.

4. Conclusions

5. Acknowledgments
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Figure 3.8: Firm 2 decides Pd = p2 > p1.

(b) Let E1 >
c1−b−E2m

2m
. Is

Π1

(
p1 − b
m

− E2,
c1 + b+ E2m

2
, E2, p

∗
2

)

higher than
Π1 (E1, p1 < c2, E2, (E1 + E2)m+ b)?

This is equivalent to solving:

−1

4m
(−c1 + b+ E2m)2 < ((E1 + E2)m+ b− c1)E1

⇔ −mE2
1 + (c1 − b− E2m)E1 −

1

4m
(−c1 + b+ E2m)2 < 0

⇔ E1 6=
c1 − b− E2m

2m
,

so Firm 1 has advantage in changing its strategy.

From the above we reach the decision tree of Figure 3.8.

3.4.2. Firm 1 decides Pd = p1 > p2

Firm 1 wants to play the stationary point (q∗1, p
∗
1) =

(
c1−b−q∗2m

2m
,
c1+b+q∗2m

2

)
, which

requires:

c1 + b+ q∗2m

2
> c2 ⇔ q∗2 <

2c2 − c1 − b
m

thus q∗2 =

{
2c2−c1−b

m
− ε E2 ≥ 2c2−c1−b

m

E2 otherwise
. Let us note that:

c1−b−q∗2m
2m

≤ E1 depends on

the instance of our problem.
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1. Suppose E2 ≥ 2c2−c1−b
m

, then q∗2 = 2c2−c1−b
m

− ε.
(a) Let E1 ≥ c1−b−q∗2m

2m
= c1−c2

m
− ε

2
. Hence, Firm 1 can play (q∗1, p

∗
1) and Firm 2 can

play
(

2c2−c1−b
m

− ε, c2

)
.

Will Firm 1 decrease the price p1 < c2? This means:

Π1 (E1, c1, q
∗
2, c2) = (c2 − c1)E1 ≥ lim

ε→0
Π1 (q∗1, p

∗
1, q
∗
2, c2)

⇔ (c2 − c1)E1 ≥
−1 (c1 − c2)2

m

⇔ E1 ≥
c1 − c2

m
.

Since E1 ≥ c1−b−q∗2m
2m

= c1−c2
m
− ε

2
, Firm 1 will change its behavior.

(b) Let E1 <
c1−c2
m

then q∗1 = E1, p∗1 = (E1 + q2)m+ b and

q2 =

{
c2−b
m
− E1 − ε E2 ≥ c2−b

m
− E1

E2 otherwise.

If E2 ≥ c2−b
m
− E1, Firm 2 will change its strategy as with the present one, its

profit is almost zero and increasing p2 from c2 to p̃2 = c2+b+E1m
2

(> c2 ⇔ E1 <
c2−b
m

which holds by assumption), Firm 2’s profit is higher: −1
4m

(−c2 + b+ E1m)2 >

0. Hence, let E2 <
c2−b
m
−E1 that implies q∗2 = E2. In this case, it is easy to see

that Firm 1 does not have advantage in changing its strategy:

Π1 (E1, (E1 + E2)m+ b, E2, c2) ≥ Π1 (E1, p1 < c2, E2, c2)

⇔ ((E1 + E2)m+ b− c1)E1 ≥ (c2 − c1)E1

⇔ E2 ≤
c2 − b
m
− E1

which holds.
Now, we are going to see under which conditions Firm 2 does not have incentive
to change its behavior. First of all, if Firm 2 changes its strategy, it will be with
p̃2 = c2+b+E1m

2
, requiring

p̃2 > p∗1 = (E1 + E2)m+ b⇔ E2 >
c2 − b− E1m

2m

which depends on our instance.
If E2 >

c2−b−E1m
2m

, Firm 2 chooses this new strategy, see AppendixF.

If E2 ≤ c2−b−E1m
2m

, we have the NE:
Strategies 23.

Firm 1: see Equation 3.11

Firm 2: see Equation 3.12
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2. Suppose E2 <
2c2−c1−b

m
, which implies q∗2 = E2.

(a) Let E1 ≥ c1−b−E2m
2m

. So, Firm 1 can play (q∗1, p
∗
1) =

(
q∗1 ≥ c1−b−E2m

2m
, c1+b+E2m

2

)
.

Firm 1 does not have advantage in decreasing the price to p̃1 < c2 when E2 <
c1−b+2

√
E1m(c1−c2)

m
, see AppendixG.

Finally, we have to check if Firm 2 has advantage in increasing the price p̃2 > p∗1.

In that case, p̃2 =
c2+b+q∗1m

2
which requires:

p̃2 =
c2 + b+ q∗1m

2
> p∗1 =

c1 + b+ E2m

2
⇔ q∗1 <

c1 − c2

m
+ E2.

Note that c1−c2
m

+ E2 ≤ c1−b−E2m
2m

⇔ E2 ≤ 2c2−c1−b
3m

. In this way, if E2 ≤
2c2−c1−b

3m
⇒ q∗1 ≥ c1−c2

m
+ E2 and we have the NE:

Strategies 24.
Firm 1: see Equation 3.16

Firm 2: see Equation 3.17

Let E2 >
2c2−c1−b

3m
⇔ c1−c2

m
+E2 >

c1−b−E2m
2m

, thus q∗1 need to be q∗1 <
c1−c2
m

+E2 ⇔
p2 =

c2+b+q∗1m
2

> p∗1 = c1+b+E2m
2

. Will this new proposal price for Firm 2 increases
its profit?
If E1 > c2−b+

√
K2

m
, the answer is no (see AppendixI) and thus we have the

following NE:

Strategies 25.

Firm 1: sNE1 =

(
q1 ∈

[
c2 − b+

√
K2

m
,E1

]
,
c1 + b+ E2m

2

)
(3.25)

Firm 2: see Equation 3.17

(b) Let E1 <
c1−b−mE2

2m
, then q∗1 = E1, p∗1 = (E1 + q2)m+ b and

q2 =

{
c2−b
m
− E1 − ε E2 ≥ c2−b

m
− E1

E2 otherwise.

If E2 ≥ c2−b
m
−E1 then E1 ≥ c2−b

m
−E2. Since E1 <

c1−b−mE2

2m
, then c2−b

m
−E2 <

c1−b−mE2

2m
⇔ E2 > 2c2−c1−b

m
and we previously assumed E2 < 2c2−c1−b

m
. Thus

E2 <
c2−b
m
− E1, implies q∗2 = E2. Firm 1 does not change its strategy, since:

Π1 (E1, (E1 + E2)m+ b, E2, c2) ≥ Π1 (E1, p1 < c2, E2, c2)

⇔ ((E2 + E1)m+ b− c1)E1 ≥ Π1 = (c2 − c1)E1

⇔ E2 ≤
c2 − b
m
− E1
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E1 <
c1−b
2m and c1+b

2 ≥ c2

Firm 1 decides Pd = p1 > p2

No NE

under these

conditions

E2 ≥ c2−b−E1m
2m

See the NE

3.11 and

3.12

E2 <
c2−b−E1m

2m

E2 <
c2−b
m

− E1

No NE

under these

conditions

E2 ≥ c2−b
m

− E1

E1 <
c1−c2
m

No NE under

these conditions

E1 ≥ c1−c2
m

E2 ≥ 2c2−c1−b
m

Figure 3.9: Firm 1 decides Pd = p1 > p2.
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AppendixA. Firm 2 changes its strategy

Assume that E1 ≥ c1−b
2m , c1+b

2 ≥ c2 and E2 >
2c2−c1−b

3m , and that Firm 1 is playing
(
q∗1 =

c1−b−q∗2m
2m , p∗1 =

c1+b+q∗2m
2

)
.

By Equation 3.13, since E2 >
2c2−c1−b

3m then q∗2 >
2c2−c1−b

3m . Let us prove that Firm 2 will change

its strategy (q∗2 , p
∗
2 = c2) to

(
q̃2 = p̃2−b

m − q∗1 , p̃2 =
b+c1+2c2−q∗2m

4

)
:

Π2 (q∗2 , p
∗
2, q
∗
1 , p
∗
1) < Π2 (q̃2, p̃2, q

∗
1 , p
∗
1)

⇔ q∗2
2

(c1 + b+ q∗2m− 2c2) <
−1

16m
(b+ c1 − 2c2 − q∗2m)

2

⇔ 9

2
m (q∗2)

2
+ 3q∗2 (c1 + b− 2c2) +

1

2m
(c1 + b− 2c2)

2
< 0

⇔ q∗2 6=
2c2 − b− c1

3m

for this reason, Firm 2 has benefit in modifying its strategy.

AppendixB. Firm 1 does not change its strategy

Assume that E1 ≥ c1−b
2m , c1+b

2 ≥ c2, E2 ≤ 2c2−c1−b
3m and E1 ≥ c2−b

m , and that Firm 2 is
playing (q∗2 = E2, p

∗
2 = c2). Let us prove in which conditions Firm 1 does not change its strategy(

q∗1 = c1−b−E2m
2m , p∗1 = c1+b+E2m

2

)
to
(
q̃1 = c2−ε−b

m , p̃1 = c2 − ε
)
:

Π1 (q∗1 , p
∗
1, q
∗
2 , p
∗
2) ≥ lim

ε→0
Π1 (q̃1, p̃1, q

∗
2 , p
∗
2)

20

Figure 3.9: Firm 1 decides Pd = p1 > p2.

and the last inequality holds.

Firm 2 does not change its strategy (note that c2+b+E1m
2

> (E1 + E2)m + b ⇔
E2 >

c2−b
2m
− E1

2
) when E2 = c2−b−E1m

2m
, since

Π2 (E1, (E1 + E2)m+ b, E2, c2) ≥

≥ Π2

(
E1, (E1 + E2)m+ b,

p2 − b
m

− E1,
c2 + b+ E1m

2

)

⇔ ((E2 + E1)m+ b− c2)E2 ≥
−1

4m
(E1m+ b− c2)2

⇔ E2 =
c2 − b− E1m

2m

Thus, for E2 ≤ c2−b
2m
− E1

2
, we have the NE:

Strategies 26.

Firm 1: see Equation 3.11

Firm 2: see Equation 3.12

Proceeding as before, we have the decision tree of Figures 3.9 and 3.10.

In AppendixI there are the trees with all the possible equilibria in pure strategies.
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E1 <
c1−b
2m and c1+b

2 ≥ c2

Firm 1 decides Pd = p1 > p2

No NE

under these

conditions

E2 ≥ c2−b−E1m
2m

See the NE

3.11 and

3.12

E2 <
c2−b−E1m

2m

E2 <
c2−b
m

− E1

No NE

under these

conditions

E2 ≥ c2−b
m

− E1

E1 <
c1−c2
m

No NE under

these conditions

E1 ≥ c1−c2
m

E2 ≥ 2c2−c1−b
m

Figure 3.9: Firm 1 decides Pd = p1 > p2.
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AppendixA. Firm 2 changes its strategy

Assume that E1 ≥ c1−b
2m , c1+b

2 ≥ c2 and E2 >
2c2−c1−b

3m , and that Firm 1 is playing
(
q∗1 =

c1−b−q∗2m
2m , p∗1 =

c1+b+q∗2m
2

)
.

By Equation 3.13, since E2 >
2c2−c1−b

3m then q∗2 >
2c2−c1−b

3m . Let us prove that Firm 2 will change

its strategy (q∗2 , p
∗
2 = c2) to

(
q̃2 = p̃2−b

m − q∗1 , p̃2 =
b+c1+2c2−q∗2m

4

)
:

Π2 (q∗2 , p
∗
2, q
∗
1 , p
∗
1) < Π2 (q̃2, p̃2, q

∗
1 , p
∗
1)

⇔ q∗2
2

(c1 + b+ q∗2m− 2c2) <
−1

16m
(b+ c1 − 2c2 − q∗2m)

2

⇔ 9

2
m (q∗2)

2
+ 3q∗2 (c1 + b− 2c2) +

1

2m
(c1 + b− 2c2)

2
< 0

⇔ q∗2 6=
2c2 − b− c1

3m

for this reason, Firm 2 has benefit in modifying its strategy.

AppendixB. Firm 1 does not change its strategy

Assume that E1 ≥ c1−b
2m , c1+b

2 ≥ c2, E2 ≤ 2c2−c1−b
3m and E1 ≥ c2−b

m , and that Firm 2 is
playing (q∗2 = E2, p

∗
2 = c2). Let us prove in which conditions Firm 1 does not change its strategy(

q∗1 = c1−b−E2m
2m , p∗1 = c1+b+E2m

2

)
to
(
q̃1 = c2−ε−b

m , p̃1 = c2 − ε
)
:

Π1 (q∗1 , p
∗
1, q
∗
2 , p
∗
2) ≥ lim

ε→0
Π1 (q̃1, p̃1, q

∗
2 , p
∗
2)

20

Figure 3.9: Firm 1 decides Pd = p1 > p2.

E1 <
c1−b
2m and c1+b

2 ≥ c2

Firm 1 decides Pd = p1 > p2

No NE

under these

conditions

E2 ≥ c2−b
2m

− E1
2

See the NE

3.11 and

3.12

E2 <
c2−b
2m

− E1
2

E1 <
c1−b
2m

− E2
2

No NE under

these conditions

E2 >
c1−b+2

√
E1m(c1−c2)
m

See the NE

3.16 to 3.17

E2 ≤ 2c2−c1−b
3m

No NE

under these

conditions

E1 <
c2−b+

√
K2

m

See the NE

3.25 and

3.17

E1 ≥ c2−b+
√
K2

m

E2 >
2c2−c1−b

3m

E2 ≤ c1−b+2
√
E1m(c1−c2)
m

E1 ≥ c1−b
2m

− E2
2

E2 <
2c2−c1−b

m

Figure 3.10: Firm 1 decides Pd = p1 > p2.

20

Figure 3.10: Firm 1 decides Pd = p1 > p2.

27



4. Discussion and conclusions

In the Iberian duopoly market model, the demand and the production costs are linear.
As Proposition 5 suggests, there are five types of Nash equilibria. Instances where Firm 2
participates in the market with infinitesimal quantity ε will be considered as a monopoly
for Firm 1.

When Firm 1 monopolizes the market in an equilibrium, the selected prices may be
c1+b

2
, E1m + b or c2 − ε, depending on the efficiency/competitiveness of Firm 2. For a

high marginal cost c2, Firm 1 bids the monopoly optimum: p1 = c1+b
2

or p1 = E1m + b.
Furthermore, for c2 closer to c1, if Firm 2’s capacity E2 is large enough, Firm 1 monopolizes
bidding p1 = c2−ε; otherwise, for a limited capacity E1, Firm 1 may prefer to bid a higher
price, sharing the market with Firm 2. For c2 even closer to c1, the market clearing price
in an equilibrium may be decided by either one of the firms. Firm 1 decides Pd, which
means Pd = p1 > p2, if the capacity of Firm 2 is limited. The case of Firm 2 deciding Pd,
meaning Pd = p2 > p1, is analogous.

In some competitive situations, there are two NE: one case with Pd = p1 > p2 and
another with Pd = p2 > p1. By simulating random instances it was observed that Firm 1
has a high profit in the equilibrium Pd = p2 > p1, while Firm 2 benefits when Pd = p1 > p2

and there is no rational way of deciding among them. We have discretized the space of
strategies S1 and S2 to compute NE in mixed strategies in these cases. It was observed
that a combination of these two equilibria leads to a new NE in mixed strategies. However,
the new equilibrium does not benefit either of the firms comparatively to the pure NE.

In conclusion, this work completely classified the NE that may occur in a duopoly
day-ahead market. This helps understand the sensitivity of the outcomes to the instances’
parameters and the diversity of equilibria that may arise. Furthermore, it illustrates the
rational strategies of each firm.
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AppendixA. Firm 2 changes its strategy

Assume that E1 ≥ c1−b
2m

, c1+b
2
≥ c2 and E2 > 2c2−c1−b

3m
, and that Firm 1 is playing(

q∗1 =
c1−b−q∗2m

2m
, p∗1 =

c1+b+q∗2m
2

)
. By Equation 3.13, since E2 >

2c2−c1−b
3m

then q∗2 >
2c2−c1−b

3m
.

Let us prove that Firm 2 will change its strategy (q∗2, p
∗
2 = c2) to

(
q̃2 = p̃2−b

m
− q∗1, p̃2 =

b+c1+2c2−q∗2m
4

)
:

Π2 (q∗2, p
∗
2, q
∗
1, p
∗
1) < Π2 (q̃2, p̃2, q

∗
1, p
∗
1)

⇔ q∗2
2

(c1 + b+ q∗2m− 2c2) <
−1

16m
(b+ c1 − 2c2 − q∗2m)2

⇔ 9

2
m (q∗2)2 + 3q∗2 (c1 + b− 2c2) +

1

2m
(c1 + b− 2c2)2 < 0

⇔ q∗2 6=
2c2 − b− c1

3m

for this reason, Firm 2 benefits from changing its strategy.

AppendixB. Firm 1 does not change its strategy

Assume that E1 ≥ c1−b
2m

, c1+b
2
≥ c2, E2 ≤ 2c2−c1−b

3m
and E1 ≥ c2−b

m
, and that Firm 2 is

playing (q∗2 = E2, p
∗
2 = c2). Let us prove in which conditions Firm 1 does not change its

strategy
(
q∗1 = c1−b−E2m

2m
, p∗1 = c1+b+E2m

2

)
to
(
q̃1 = c2−ε−b

m
, p̃1 = c2 − ε

)
:

Π1 (q∗1, p
∗
1, q
∗
2, p
∗
2) ≥ lim

ε→0
Π1 (q̃1, p̃1, q

∗
2, p
∗
2)

⇔ − (b+ E2m− c1)2

4m
≥ lim

ε→0
(c2 − c1)

(
c2 − b
m
− ε
)

⇔ −1

4m

(
(b− c1)2 + 2E2m (b− c1) + E2

2m
2
)
− (c2 − c1)

(
c2 − b
m

)
> 0

⇒ E2
2m
−1

4
− E2

1

2
(b− c1)− 1

4m
(b− c1)2 − (c2 − c1)

(
c2 − b
m

)
= 0

⇔ E2 =
c1 − b± 2

√
(c2 − b) (c1 − c2)

m

Nextm this solution is studied:

• c1−b−2
√

(c2−b)(c1−c2)

m
>

c1−b+2
√

(c2−b)(c1−c2)

m
⇔ −2 < 2;

• c1−b+2
√

(c2−b)(c1−c2)

m
< 0⇔

√
(c1 − c2) (c2 − b) > b−c1

2
⇔ (c1 − c2) (c2 − b) > (b−c1)2

4
⇔

−c2
2 + c2 (c1 + b)− c1b− (b−c1)2

4
> 0, note that −c2

2 + c2 (c1 + b)− c1b− (b−c1)2

4
= 0⇔

c2 = c1+b
2

thus, 0 ≤ c1−b+2
√

(c2−b)(c1−c2)

m
≤ c1−b−2

√
(c2−b)(c1−c2)

m
;
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• c1−b−2
√

(c2−b)(c1−c2)

m
> 2c2−c1−b

3m
⇔ 4c1 − 2b − 2c2 − 6

√
(c1 − c2) (c2 − b) < 0 ⇔

−3
√

(c1 − c2) (c2 − b)︸ ︷︷ ︸
<0

< b+ c2 − 2c1︸ ︷︷ ︸
>0

;

• c1−b+2
√

(c1−c2)(c2−b)
m

< 2c2−c1−b
3m

⇔ 3
√

(c1 − c2) (c2 − b) > c2 + b − 2c1 ⇔ −10c2
2 +

c2 (7b+ 13c1)− 5c1b− b2 − 4c2
1 > 0⇒ c2 ∈

[
b+4c1

5
, b+c1

2

]
.

Therefore, Firm 1 does not change its strategy when

E2 ∈
[

0,min

(
c1 − b+ 2

√
(c1 − c2) (c2 − b)
m

,
2c2 − c1 − b

3m

)]
.

AppendixC. Firm 2 changes its strategy

Assume that E1 ≥ c1−b
2m

, c1+b
2
≥ c2 and E2 ≥ 2c2−c1−b

3m
, and that Firm 1 is playing(

q∗1 >
c1−b−q∗2m

2m
, p∗1 =

c1+b+q∗2m
2

)
, where q∗2 is given by Equation 3.13. Let us prove in which

conditions Firm 2 changes its strategy (q∗2, p
∗
2 = c2) to

(
q̃2 = p̃2−b

m
− q∗1, p̃2 =

c2−b−q∗1m
2m

)
:

Π2 (q∗1, p
∗
1, q̃2, p̃2) =

(
c2 + b+ q∗1m

2
− c2

)(
c2 − b− q∗1m

2m

)

is higher than

Π2 (q∗1, p
∗
1, q
∗
2, p
∗
2) =

q∗2
2

(c1 + b+ q∗2m− 2c2)

⇔ −1

4m
(−c2 + b+ q∗1m)2 >

q∗2
2

(c1 + b+ q∗2m− 2c2)

⇔ −m
4

(q∗1)2 + q∗1
c2 − b

2
− 1

4

(
b− c2

m

)2

− 1

2
q∗2 (c1 + b+ q∗2m− 2c2) > 0

let K2 = −2 (q∗2m)2 + q∗2 (−2mc1 − 2bm+ 4c2m)

⇔ q∗1 ∈
[
0,
c2 − b+

√
K2

m

[
∪
]
c2 − b−

√
K2

m
,∞
[

Note that for q∗2 ≤ 2c2−b−c1
m

, K2 is non negative and :

c2 − b+
√
K2

m
>
c1 − c2

m
+ q∗2

⇔ −3 (mq∗2)2 + q∗2 (−2bm+ 4c2m− 2mc1 − 2m (c1 − 2c2 + b))− (c1 − 2c2 + b)2 < 0

⇔ q∗2 ∈
[
0,

2c2 − b− c1

3m

[
∪
]

2c2 − b− c1

m
,∞
[

but clearly
2c2 − b− c1

3m
≤ q∗2 ≤

2c2 − b− c1

m

so q∗1 <
c2−b+

√
K2

m
is the condition for Firm 2 to change its strategy.
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AppendixD. Firm 1 does not change its strategy

Assume that E1 ≥ c2−b
m

, c1+b
2
≥ c2, E1 ≥ c2−b

m
, E2 <

c2−b
m

and E2 <
2c2−c1−b

m
, and that

Firm 2 is playing (q∗2 = E2, p
∗
2 = c2). Let us prove in which conditions Firm 1 does not

change its strategy
(
q∗1 = c2−ε−b

m
, p∗1 = c2 − ε

)
to
(
q̃1 = p̃1−b

m
− E2, p̃1 = c1+b+E2m

2

)
:

Π1 (q̃1, p̃1, q
∗
2, p
∗
2) =

(
c1 + b+ E2m

2
− c1

)(
c1 − b− E2m

2m

)

higher than

lim
ε→0

Π1

(
c2 − ε− b

m
, c2 − ε, q∗2, p∗2

)
= (c2 − c1)

(
c2 − b
m

)

is equivalent to:
−1

4m
(b+ E2m− c1)2 > (c2 − c1)

(
c2 − b
m

)

⇔ (E2m)2 + 2E2m (b− c1) + (b− c1)2 − 4m (c1 − c2)

(
c2 − b
m

)
> 0

⇒ E2 ∈
[

0,
c1 − b+ 2

√
(c1 − c2) (c2 − b)
m

]
∪
[
c1 − b− 2

√
(c1 − c2) (c2 − b)
m

,∞
]

(D.1)

Let us study this solution:

1.
c1−b−2

√
(c1−c2)(c2−b)
m

> 2c2−c1−b
m

⇔ c2 − c1︸ ︷︷ ︸
>0

> −
√

(c1 − c2) (c2 − b)︸ ︷︷ ︸
<0

2.
c1−b+2

√
(c1−c2)(c2−b)
m

< 2c2−c1−b
m

⇔
√

(c1 − c2) (c2 − b) > c2−c1 ⇔ −2c2
2+c2 (3c1 + b)−

bc1 − c2
1 > 0⇒ c2 ∈

[
c1,

c1+b
2

]

If

E2 ∈
[
c1 − b+ 2

√
(c1 − c2) (c2 − b)
m

,
2c2 − c1 − b

m

]

holds then Firm 1 does not change its bid.

AppendixE. Firm 1 changes its strategy

Assume that c1−b
2m
≤ E1 < c2−b

m
, c1+b

2
≥ c2 and E2 < c2−b−E1m

2m
, and that Firm 2 is

playing (q∗2 = E2, p
∗
2 = (E2 + E1)m+ b). Let us prove that Firm 1 will change its strategy

(q∗1 = E1, p
∗
1 < c2) to

(
q̃1 = p̃1−b

m
− E2, p̃1 = c1+b+E2m

2

)
:

Π1 (q̃1, p̃1, q
∗
2, p
∗
2) =

−1

4m
(−c1 + b+ E2m)2

higher than
Π1 (q∗1, p

∗
1, q
∗
2, p
∗
2) = E1 ((E1 + E2)m+ b− c1)
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is equivalent to
−1

4m
(−c1 + b+ E2m)2 ≤ E1 ((E1 + E2)m+ b)

⇔ −mE2
1 + E1 (c1 − b− E2m)− 1

4m
(−c1 + b+ E2m)2 ≤ 0

⇒ E1 =
c1 − b− E2m

2m
=
c1 − b

2m
− E2

2

which never occurs since E1 ≥ c1−b
2m

.

AppendixF. Firm 2 changes its strategy

Assume that E1 <
c1−c2
m

, c1+b
2
≥ c2, E2 ≥ 2c2−c1−b

m
and c2−b−E1m

2m
< E2 <

c2−b
m
−E1, and

that Firm 1 is playing (q∗1 = E1, p
∗
1 = (E1 + E2)m+ b). Let us prove that Firm 2 changes

its strategy (q∗2 = E2, p
∗
2 = c2) to

(
q̃2 = p̃2−b

m
− E1, p̃2 = c2+b+E1m

2

)
:

Π2 (q∗1, p
∗
1, q
∗
2, p
∗
2) ≥ Π2 (q∗1, p

∗
1, q̃2, p̃2)

⇔ (mE1 + E2m+ b− c2)E2 ≥
−1

4m
(−c2 + b+ E1m)2

⇔ E2
2m+ (E1m+ b− c2)E2 +

1

4

(
E1m+ b− c2

m

)2

≥ 0

⇔ E2 =
c2 − b− E1m

2m

thus Firm 2 will choose this new strategy.

AppendixG. Firm 1 does not change its strategy

Assume that c1−b−E2m
2m

≤ E1 <
c1−b
2m

, c1+b
2
≥ c2 and E2 <

2c2−c1−b
m

, and that Firm 2
is playing (q∗2 = E2, p

∗
2 = c2). Let us see in which conditions Firm 1 does not change its

strategy
(
q∗1 ≥ c1−b−E2m

2m
, p∗1 = c1+b+E2m

2

)
to (q̃1 = E1, p̃1 < c2):

Π1 (q∗1, p
∗
1, q
∗
2, p
∗
2) ≤ Π1 (q̃1, p̃1, q

∗
2, p
∗
2)

⇔ −1

4m
(−c1 + b+ q∗2m)2 ≤ (c2 − c1)E1

q∗2 ∈
[
c1 − b+ 2

√
E1m (c1 − c2)

m
,
c1 − b− 2

√
E1m (c1 − c2)

m

]

Note:

• c1−b−2
√
E1m(c1−c2)

m
> 2c2−c1−b

m
⇔ −2

√
E1m (c1 − c2)︸ ︷︷ ︸

<0

< 2 (c2 − c2)︸ ︷︷ ︸
>0

;

33



• c1−b+2
√
E1m(c1−c2)

m
> 2c2−c1−b

m
⇔ E1 <

c1−c2
m

which never happens because by assump-

tion E1 ≥ c1−b
2m
− E2

2
≥ c1−b

2m
− 2c2−c1−b

2m
= c1−c2

m
.

So if E2 <
c1−b+2

√
E1m(c1−c2)

m
, Firm 1 does not change its strategy.

AppendixH. Firm 2 does not change its strategy

Assume that c1−b−E2m
2m

≤ E1 <
c1−b
2m

, c1+b
2
≥ c2 and 2c2−c1−b

3m
< E2 <

2c2−c1−b
m

, and that

Firm 1 is playing
(
q∗1 ≥ c1−b−E2m

2m
, p∗1 = c1+b+E2m

2

)
with q∗1 <

c1−c2
m

+E2. Let us see in which
conditions Firm 2 does not change its (q∗2 = E2, p

∗
2 = c2) to

(
q̃2 =

p̃2 − b
m

− q∗1, p̃2 =
c2 + b+ q∗1m

2

)
,

so:
Π2 (q∗1, p

∗
1, q̃2, p̃2) ≥ Π2 (q∗1, p

∗
1, q
∗
2, p
∗
2)

⇔ −1

4m
(−c2 + b+ q∗1m)2 ≥

(
c1 + b+ E2m

2
− c2

)
E2

let K2 = −2E2
2m

2 + (−2mc1 − 2bm+ 4mc2)E2

⇔ q∗1 ∈
[
0,
c2 − b+

√
K2

m

]
∪
[
c2 − b−

√
K2

m
,∞
[

Some facts about this solution:

• c1−c2
m

+ E2 <
c2−b−

√
K2

m
⇔ b+ c1 − 2c2 + E2m︸ ︷︷ ︸

>0

> −√K2 which holds since b + c1 −

2c2 + E2m > 0⇔ E2 <
2c2−c1−b

m
;

• c1−c2
m

+E2 <
c2−b+

√
K2

m
⇔ 3E2

2m
2 + (2 (−2c2 + c1 + b)m+ 2mc1 + 2bm− 4mc2)E2 +

(−2c2 + c1 + b)2 > 0⇔ E2 ∈
[
0, 2c2−c1−b

3m

[
∪
]

2c2−c1−b
m

,∞
[
.

Then, q∗1 <
c2−b+

√
K2

m
is the strongest condition. If E1 >

c2−b+
√
K2

m
Firm 2 does not change

its strategy.

AppendixI. There is always an equilibrium

First of all, we made a complete study of the Nash equilibria under the following
conditions: E1 ≥ c1−b

2m
∧ c1+b

2
< c2 (Section 3.1) and E1 <

c1−b
2m
∧ c1+b

2
< c2 (Section 3.2 ).

In the two remaining cases, E1 ≥ c1−b
2m
∧ c1+b

2
≥ c2 (Section 3.3) and E1 <

c1−b
2m
∧ c1+b

2
≥ c2

(Section 3.4), we still have to intersect the conditions of the equilibria found.
In order to achieve the purpose of summarizing all the classification made so far, the

leafs of the decision trees in Figures 3.4, 3.9 and 3.10 will be analyzed using the information
of the remaining trees:
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1. Let E1 ≥ c1−b
2m

, c1+b
2
≥ c2, E1 <

c2−b
m

, E1 ≥ (b+c2−2c1)2

9m(c1−c2)
, E2 ≤ A. The decision tree in

Figure 3.4 already provides an equilibrium in this case. Neither of the decision trees
in Figures 3.5 and 3.6 have an equilibrium under these conditions. However, tree 3.7
adds the equilibrium of Equations 3.5 and 3.24 to this case. Note that:

A ≤ c1 − b+
√
K1

m

⇔ E1 ∈ {0} ∪
[
c2 − b
m

,∞
[

thus A > c1−b+
√
K1

m
. So, E2 ≥ c1−b+

√
K1

m
depends on the instance;

2. Let E1 ≥ c1−b
2m

, c1+b
2
≥ c2, E1 <

c2−b
m

, E1 ≥ (b+c2−2c1)2

9m(c1−c2)
, E2 > A. Neither of the trees

in Figures 3.4, 3.5 and 3.6 have an equilibrium in this case. So, it is expected that
the decision tree of Figure 3.7 has an equilibrium under these conditions. Remember
that E2 > A > c1−b+

√
K1

m
, so the Equations 3.5 and 3.24 give us a NE;

3. Let E1 ≥ c1−b
2m

, c1+b
2
≥ c2, E1 <

c2−b
m

, E1 <
(b+c2−2c1)2

9m(c1−c2)
, E2 > B, E2 > A. As before,

there is only the NE of Equations 3.5 and 3.24;

4. Let E1 ≥ c1−b
2m

, c1+b
2
≥ c2, E1 < c2−b

m
, E1 < (b+c2−2c1)2

9m(c1−c2)
, E2 > B, E2 ≤ A, E2 ≥

c1−b+
√
K1

m
, E1 ≥ c2−b+

√
K2

m
. It is obviously that in this case we have the NE of

Equations 3.19 and 3.17 and of Equations 3.5 and 3.24. It should be stressed that
there are instances with this conditions;

5. Let E1 ≥ c1−b
2m

, c1+b
2
≥ c2, E1 < c2−b

m
, E1 < (b+c2−2c1)2

9m(c1−c2)
, E2 > B, E2 ≤ A, E2 ≥

c1−b+
√
K1

m
, E1 <

c2−b+
√
K2

m
. Clearly the only NE in pure strategies is the one given by

Equations 3.5 and 3.24. Again, there is instances in this conditions.

6. Let E1 ≥ c1−b
2m

, c1+b
2
≥ c2, E1 < c2−b

m
, E1 < (b+c2−2c1)2

9m(c1−c2)
, E2 > B, E2 ≤ A, E2 <

c1−b+
√
K1

m
. We will prove that this conditions imply E1 ≥ c2−b+

√
K2

m
, and thus,

Equations 3.19 and 3.17, give us an equilibrium.
First, E2 <

c1−b+
√
K1

m
≤ c2−c1+E1m

m
since:

c1 − b+
√
K1

m
≤ c2 − c1 + E1m

m

⇔ E1 ∈
[

2c1 − c2 − b
3m

,
2c1 − c2 − b

m

]

which holds. Note that:

c2 − c1 + E1m

m
≥ c2 − b+

√
K2

m

⇔ E2 ∈
[
B,

2c2 − c1 − b
m

]
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which holds, since E2 > B and E2 ≤ A < 2c2−c1−b
m

:

A <
2c2 − c1 − b

m
⇔ E1 >

c1 − c2

m

and E1 ≥ c1−b
2m

> c1−c2
m

.

Second, E1 ≥ c1−c2+E2m
m

≥ c2−b+
√
K2

m
since:

E1 ≥
c1 − c2 + E2m

m

⇔ E2 ≤
c2 − c1 + E1m

m
which holds;

7. Let E1 ≥ c1−b
2m

, c1+b
2
≥ c2, E1 < c2−b

m
, E1 < (b+c2−2c1)2

9m(c1−c2)
, E2 ≤ B < A. In this

case, E2 ≥ c1−b+
√
K2

m
depends on the instance, and thus we can have the NE of

Equations 3.5 and 3.24, beyond the equilibrium of Equations 3.16 and 3.17;

8. Let E1 ≥ c1−b
2m

, c1+b
2
≥ c2, E1 ≥ c2−b

m
, c2 ≥ b+4c1

5
, E2 ≤ A′ ≤ B. In this case,

Equations 3.16 and 3.17 give an equilibrium. If E2 = A′, there is also the NE of
Equations 3.20 to 3.22;

9. Let E1 ≥ c1−b
2m

, c1+b
2
≥ c2, E1 ≥ c2−b

m
, c2 ≥ b+4c1

5
, E2 > A′. Here, there is a single NE

given by the Equations 3.20 to 3.22;

10. Let E1 ≥ c1−b
2m

, c1+b
2
≥ c2, E1 ≥ c2−b

m
, c2 <

b+4c1
5

, E2 > B. Since A′ > B depends on
the value of E2, we can have at least one of the NE given by Equations 3.19 and 3.17
or 3.20 and 3.22;

11. Let E1 ≥ c1−b
2m

, c1+b
2
≥ c2, E1 ≥ c2−b

m
, c2 <

b+4c1
5

, E2 ≤ B. In this case just one NE in
pure strategies exists and it is given by Equations 3.16 and 3.17;

12. Let E1 <
c1−b
2m

, c1+b
2
≥ c2, E2 <

2c2−c1−b
m

, E1 <
c1−b
2m
− E2

2
and E2 ≥ c2−b

2m
− E1

2
. In the

decision tree of Figure 3.10 there is no NE. So, the decision tree of Figure 3.8 must
have an equilibrium for this case. In this way we need to prove that this conditions
imply E1 ≤ 2c1−c2−b

3m
.

Note that:

E2 ≥
c2 − b

2m
− E1

2
⇔ E1 ≥

c2 − b
m
− 2E2

in this way
c2 − b
m
− 2E2 <

c1 − b
2m

− E2

2
⇔ E2 >

2c2 − c1 − b
3m

thus

E1 <
c1 − b

2m
− E2

2
<
c1 − b

2m
− 2c2 − c1 − b

6m
=

2c1 − b− c2

3m
hence, we are in the conditions of the NE 3.5 to 3.6;

13. Let E1 <
c1−b
2m

, c1+b
2
≥ c2, E2 <

2c2−c1−b
m

, E1 <
c1−b
2m
− E2

2
and E2 <

c2−b
2m
− E1

2
. Apart

from the NE of Equations 3.11 and 3.12, there is also the equilibrium of Equations 3.9
and 3.10;
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14. Let E1 <
c1−b
2m

, c1+b
2
≥ c2, E2 <

2c2−c1−b
m

, E1 ≥ c1−b
2m
− E2

2
and E2 > A.

First of all, it will be proved that A =
c1−b+2

√
E1m(c1−c2)

m
> c2−b−E1m

2m
, which implies

E2 >
c2−b−E1m

2m
:

c1 − b+ 2
√
E1m (c1 − c2)

m
>
c2 − b− E1m

2m

⇔ 4
√
E1m (c1 − c2) < c2 − 2c1 + b− E1m︸ ︷︷ ︸

>0

let γ = 2c2
1 − 5c2c1 + b+ c1 + 3c2

2 − c2b

⇔ E1 ∈
[
0,

6c1 − 7c2 + b+ 4
√
γ

m

[
∪
]

6c1 − 7c2 + b− 4
√
γ

m
,∞
[

note that γ < 0 ⇔ c2 ∈
]
c1,

2c1+b
3

[
, so if c2 <

2c1+b
3

our proof is over, on the other

hand, if c2 ≥ 2c1+b
3

:

c1 − b
2m

≤ 6c1 − 7c2 + b+ 4
√
γ

m

⇔ 14c2 − 11c1 − 3b︸ ︷︷ ︸
>0

≥ 8
√
γ

⇔ c2 ∈
[
0,
c1 + b

2

]
∪
[

9b− 7c1

2
,∞
[

therefore, E1 <
c1−b
2m
≤ 6c1−7c2+b+4

√
γ

m
which ends our proof.

If E1 ≤ 2c1−c2−b
3m

we are in the conditions of the NE 3.5 to 3.6.

If E1 >
2c1−c2−b

3m
, note that:

E2 >
c1 − b+ 2

√
E1m (c1 − c2)

m
≥ c1 − b+

√
K1

m

since,

c1 − b+ 2
√
E1m (c1 − c2)

m
≥ c1 − b+

√
K1

m

⇔ 2E2
1m

2 + (4m (c1 − c2) + 2mcc + 2bm− 4mc1)E1 ≤ 0

⇔ E1 ∈
[
0,
c2 − b
m

]

which holds. Thus, we are in the conditions of the NE 3.5 and 3.24;

15. Let E1 <
c1−b
2m

, c1+b
2
≥ c2, E2 <

2c2−c1−b
m

, E1 ≥ c1−b
2m
− E2

2
and E2 ≤ A, E2 ≤ 2c2−c1−b

3m
.

The decision tree of Figure 3.10 already provides the equilibrium of Equations 3.16
and 3.17. Depending on our instance, the Decision Tree 3.8 can give a new equilib-
rium;
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16. Let E1 <
c1−b
2m

, c1+b
2
≥ c2, E2 <

2c2−c1−b
m

, E1 ≥ c1−b
2m
− E2

2
and E2 ≤ A, E2 >

2c2−c1−b
3m

,

E1 <
c2−b+

√
K2

m
.

As before, it will be proved that E2 ≥ c2−b−E1m
2m

.

If E1 ≤ 2c1−c2−b
3m

, then E2 ≥ c1−b
m
− 2E1 ≥ c2−b

m
− E1

2
since:

c1 − b
m
− 2E1 ≥

c2 − b
m
− E1

2

⇔ 2c1 − c2 − b
3m

≥ E1

thus, we are in the conditions of the NE 3.5 to 3.6.
If E1 >

2c1−c2−b
3m

, then E2 >
2c2−c1−b

3m
> c2−b

2m
− E1

2
since

2c2 − c1 − b
3m

>
c2 − b

2m
− E1

2

⇔ E1 >
2c1 − c2 − b

3m

as we intended to prove. We also have E2 ≥ c1−b+
√
K1

m
, since

c1 − b+
√
K1

m
<

2c2 − c1 − b
3m

⇔ 9K1 > (2c2 − 4c1 + 2b)2

⇔ E1 ∈
]

2c1 − c2 − b
3m

, 2

(
2c1 − c2 − b

3m

)[
,

which holds since:

2

(
2c1 − c2 − b

3m

)
>
c1 − b

2m

⇔ 5c1 < 4c2 + b

So, we are in the conditions of the NE 3.5 and 3.24.

17. Let E1 <
c1−b
2m

, c1+b
2
≥ c2, E2 <

2c2−c1−b
m

, E1 ≥ c1−b
2m
− E2

2
and E2 ≤ A, E2 >

2c2−c1−b
3m

,

E1 ≥ c2−b+
√
K2

m
. The decision tree of Figure 3.10 has an equilibrium under this

conditions. Similarly to the last case, E2 ≥ c2−b−E1m
2m

, and thus, depending on the
value of E1, there is an equilibrium in Equations 3.5 and 3.6 or 3.5 and 3.24;

18. Let E1 <
c1−b
2m

, c1+b
2
≥ c2, E2 ≥ 2c2−c1−b

m
, E1 ≥ c1−c2

m
.

Note that:
2c2 − c1 − b

m
>
c2 − b− E1m

2m
⇔ E1 >

2c1 − 3c2 + b

m
,

which holds, since 2c1−3c2+b
m

≤ c1−c2
m
⇔ c1+b

2
≥ c2 and E1 > c1−c2

m
. Thus E2 ≥

2c2−c1−b
m

> c2−b−E1m
2m

.

If E1 ≤ 2c1−c2−b
3m

, we are in the conditions of the NE 3.5 to 3.6.
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If E1 >
2c1−c2−b

3m
, since

E2 ≥
2c2 − c1 − b

m
≥ c2 − c1

m
+ E1 ⇔

c2 − b
m

≥ E1

which holds, and

E2 ≥
2c2 − c1 − b

m
≥ c2 − c1

m
+ E1 ≥

c1 − b+
√
K1

m
,

we are in the conditions of the NE 3.5 and 3.24;

19. Let E1 <
c1−b
2m

, c1+b
2
≥ c2, E2 ≥ 2c2−c1−b

m
, E1 <

c1−c2
m

, E2 ≥ c2−b
m
− E1. Note that:

E1 <
c1 − c2

m
≤ 2c1 − c2 − b

3m

and

E2 ≥
c2 − b− E1m

m
≥ c2 − b− E1m

2m

so, we are in the conditions of the NE 3.5 to 3.6.

20. Let E1 <
c1−b
2m

, c1+b
2
≥ c2, E2 ≥ 2c2−c1−b

m
, E1 <

c1−c2
m

, E2 <
c2−b
m
− E1, E2 <

c2−b−E1m
2m

.
Apart from the NE of Equations 3.11 and 3.12, the decision tree of Figure 3.8 also
adds the NE of Equations 3.9 and 3.10. In order to demonstrate this we need to
prove that this conditions imply E1 ≤ c1−b−E2m

2m
.

Note that E2 <
c2−b−E1m

2m
⇔ E1 <

c2−b−2mE2

m
and:

c2 − b− 2mE2

m
<
c1 − b− E2m

2m

⇔ E2 >
2c2 − c1 − b

3m

which holds, since E2 ≥ 2c2−c1−b
m

;

21. Let E1 <
c1−b
2m

, c1+b
2
≥ c2, E2 ≥ 2c2−c1−b

m
, E1 <

c1−c2
m

, E2 <
c2−b
m
− E1, E2 ≥ c2−b−E1m

2m
.

Note that:
c1 − c2

m
≤ 2c1 − c2 − b

3m
⇔ c1 + b

2
≥ c2

thus, E1 <
c1−c2
m
≤ 2c1−c2−b

3m
. Since, by assumption E2 ≥ c2−b−E1m

2m
, we are in the

conditions of the NE 3.5 to 3.6.

In conclusion, the Nash equilibria were completely classified for this small sized example.
The resulting Global decision trees are in Figures I.1, I.2, I.3 and I.4.
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Parameters

c1, c2, E1, E2,m, b

See decision
tree I.3

c1+b
2 ≥ c2

See the NE
3.2 to 3.4

E1m+ b < c2

See the NE 3.9 to
3.12

E2 <
c2−b−E1m

2m

See the NE
3.5 and 3.6

E1m+ b 6= c2

See the NE
3.7 and 3.8

E1m+ b = c2

E2 ≥ c2−b−E1m
2m

E1m+ b ≥ c2

c1+b
2 < c2

E1 <
c1−b
2m

See decision
tree I.2

c1+b
2 ≥ c2

See the NE
3.1 to 3.3

c1+b
2 < c2

E1 ≥ c1−b
2m

Figure I.1: Global Decision Tree.

31

Figure I.1: Global Decision Tree.
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Figure I.2: Global Decision Tree - Part A.



E1 <
c1−b
2m and c1+b

2 ≥ c2

See the NE

3.5 and 3.6

E2 ≥ c2−b−E1m
2m

See the NE 3.11

and 3.12;See the

NE 3.9 and 3.10

E2 <
c2−b−E1m

2m

E1 <
c1−b−E2m

2m

See the NE

3.5 and 3.6

E1 ≤ 2c1−b−c2
3m

See the NE

3.5 and 3.24

E1 >
2c1−b−c2

3m

E2 > A

See decision

tree I.4

E2 ≤ A

E1 ≥ c1−b−E2m
2m

E2 <
2c2−c1−b

m

See the NE

3.5 and 3.6

E2 ≥ c2−b−E1m
2m

See the NE 3.11 and

3.12;See the NE 3.9 and

3.10

E2 <
c2−b−E1m

2m

E2 <
c2−b−E1m

m

See the NE 3.5

and 3.6

E2 ≥ c2−b−E1m
2m

E1 <
c1−c2
m

See the NE 3.5

and 3.24

E1 >
2c1−c2−b

3m

See the NE 3.5

and 3.6

E1 ≤ 2c1−c2−b
3m

E1 ≥ c1−c2
m

E2 ≥ 2c2−c1−b
m

Figure I.3: Global Decision Tree - Part B.
Figure I.3: Global Decision Tree - Part B.



E1 < c1−b
2m , c1+b

2 ≥ c2, E2 < 2c2−c1−b
m , E1 ≥ c1−b−E2m

2m ,
E2 ≤ A

See the NE 3.16

and 3.17

E2 <
c2−b−E1m

2m

See the NE 3.16 and

3.17; See the NE 3.5 and

3.6

E1 = 2c1−b−c2
3m

See the NE 3.16 and

3.17; See the NE 3.5 and

3.24

E2 ≥ c1−b+
√
K1

m

See the NE 3.16

and 3.17

E2 <
c1−b+

√
K1

m

E1 6= 2c1−b−c2
3m

E2 ≥ c2−b−E1m
2m

E2 ≤ 2c2−c1−b
3m

See the NE

3.5 and 3.6

E1 ≤ 2c1−c2−b
3m

See the 3.5

and 3.24

E1 >
2c1−c2−b

3m

E1 <
c2−b+

√
K2

m

See the NE 3.5

and 3.6; See the

NE 3.19 and 3.17

E1 ≤ 2c1−c2−b
3m

See the NE 3.5

and 3.24; See the

NE 3.19 and 3.17

E1 >
2c1−c2−b

3m

E1 ≥ c2−b+
√
K2

m

E2 >
2c2−c1−b

3m

Figure I.4: Global Decision Tree - Part C.Figure I.4: Global Decision Tree - Part C.


