
Mechanization of an Algorithm for
Deciding KAT Terms Equivalence1

Nelma Moreira David Pereira Simao Melo de Sousa

Technical Report Series: DCC-2012-04
Version 1.0 April 2012

Departamento de Ciência de Computadores
&

Laboratório de Inteligência Artificial e Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

Mechanization of an Algorithm for Deciding KAT Terms
Equivalence

Nelma Moreira David Pereira † Simao Melo de Sousa
{nam,dpereira}@ncc.up.pt,desousa@di.ubi.pt

Abstract

This work presents a mechanically verified implementation of an algorithm for decid-
ing the (in-)equivalence of Kleene algebra with tests (KAT) terms. This mechanization
was carried out in the Coq proof assistant. The algorithm decides KAT terms equivalence
through an iterated process of testing the equivalence of their partial derivatives. It is
a purely syntactical decision procedure and so, it does not construct the underlying
automata. The motivation for this work comes from the possibility of using KAT
encoding of propositional Hoare logic for reasoning about the partial correctness of
imperative programs.

1 Introduction

Kleene algebra with tests (KAT) [Koz97, KS96] is an algebraic system that extends Kleene
algebra (KA) [Kle], the algebra of regular expressions, with Boolean tests. KAT is specially
fitted to capture and verify properties of simple imperative programas and, in particular,
subsumes propositional Hoare logic (PHL) [Koz00, KT01] in the sense that PHL’s deductive
rules are KAT theorems, and that proving a program partially correct is tantamount to
checking if two KAT terms are equivalent.

Although KAT can be applied in several verification tasks, there are few support tools for
that purpose. Aboul-Hosn and Kozen developed KAT-ML [AHK06], an interactive theorem
prover for reasoning about KAT that also provides support for reasoning about simple im-
perative programs through SKAT [AK01], an extension of KAT with assignments. HÃşfner
and Struth [HS07] used the automated theorem prover Prover9/Mace4 [McC] to axiomatically
encode (variants of) Kleene algebras and to do proof experiments about Hoare logic, dynamic
logic, temporal logics, concurrency control, and termination analysis.

In this paper we present a mechanically verified implementation in the Coq proof assistant
[The] of a procedure to decide KAT terms equivalence using derivatives. Derivatives for KAT
were introduced by Kozen [Koz08], who also presented a coinductive decision procedure for
KAT terms equivalence. To the best of our knowledge, the work we present is the first
mechanically verified procedure for KAT term (in)equivalence, and is a inductive approach
rather than a coinductive one. Moreover, since we have implemented the decision procedure
∗This work was partially funded by the European Regional Development Fund through the programme

COMPETE and by the FundaÃğÃčo para a CiÃłncia e Tecnologia (FCT) under project CANTE-PTDC/EIA-
CCO/101904/2008.
†This work was partially funded by the European Regional Development Fund through the programme

COMPETE and by the FundaÃğÃčo para a CiÃłncia e Tecnologia (FCT) under project CANTE-PTDC/EIA-
CCO/101904/2008.

3

in the Coq proof assistant, we can extract the procedure as a functional program that is
correct by construction and that can be used in third party software. This work is the
continuation of a previous work that consisted on the mechanically verified implementation
of a decision procedure based on the same criteria, but applied to regular expressions (KA)
[MPdS11]. It is also a maturation of an abstract formalization of KAT in Coq [MP08] where
proofs of some simple properties of imperative programs could be interactively performed.

Recently, several formalizations of KA within proof assistants appear in the literature
[BP10, KN11, CS, Kom, MPdS11]. Although we can reduce KAT terms equivalence to
KA terms equivalence [KS96], such an approach does not seem to be feasible for practical
proposes. Thus here we propose a specialized procedure for KAT. However, since the method
we have used for KA does not involve the construction of any kind of automata and relies only
on comparison of expressions, its adaptation to KAT was greatly simplified. This is clearly
an advantage and suggests the possibility of other extensions. In this case, the adaptation
was non trivial and it also required an implementation of the underlying language theoretical
model of KAT, a new proof of the finiteness of the set of partial derivatives of KAT terms and
the development of a procedure to handle tests.

2 Kleene Algebra with Tests

A Kleene algebra (KA) is an algebraic structure (K,+, ·,? , 0, 1) with (K,+, ·, 0, 1) is an
idempotent semiring and where the operator ? is characterized by the following set of axioms

1 + pp? ≤ p? q + pr ≤ r → p?q ≤ r

1 + p?p ≤ p? q + rp ≤ r → pq? ≤ r,
(1)

where x ≤ y is defined by x+y = y. The standard models for KA include regular expressions
over a finite alphabet, binary relations and square matrices over another KA.

A Kleene algebra with tests (KAT) is an extension of a KA that contains an embedded
Boolean algebra. Therefore, a KAT is characterized by the same set of axioms of KA plus the
axioms of Boolean algebra. Formally KAT is a algebraic structure (K,T,+, ·,? ,− , 0, 1) such
that :

• (K,+, ·,? , 0, 1) is a KA;

• (T,+, ·,− , 0, 1) is a Boolean algebra ;

• (T,+, ·,− , 0, 1) is a subalgebra of (K,+, ·,? , 0, 1).

Let B = {b1, . . . , bn} be a finite set of primitive tests and let Σ = {p1, . . . , pm} be a finite
set of primitive actions. A test t is inductively defined by the following grammar:

t ∈ TExp ::= 0 | 1 | b ∈ B | t | t+ t | t · t2.

A KAT term e is a regular expression extended with tests, and it is inductively defined by
the following grammar:

e ∈ Exp ::= p ∈ Σ | t | e+ e | e · e | e?.

As usual we omit the concatenation operator · in both tests and KAT terms.

4

An important application of KAT is the verification of simple imperative programs. KAT
are expressive enough to encode the notions of sequence, conditional and iterative repetition
of instructions. These notions are captured by the following definitions:

e1;e2
def
= e1e2

if t then e1 else e2 fi
def
= (te1) + (te2)

while t do e end
def
= (te)?t

In particular KAT subsumes propositional Hoare logic (PHL), a fragment of standard Hoare
logic [Hoa69] that does not contain assignments. PHL Hoare triples of the standard form
{t1}e{t2} are encoded in KAT by the equality t1e = t1et2 or, equivalently, by the equality
t1et2 = 0, with e ∈ Exp. Moreover, PHL deductive rules are theorems of KAT [KT01] and
deductive reasoning in PHL is replaced by equational reasoning in KAT.

In the Coq development, tests and KAT terms are encoded by the inductive types test
and kat presented below. The sets B and Σ are specified by the abstract parameters sigmaB
and sigmaP, respectively, and the types of primitive programs and primitive tests correspond
to the types bv and sy, respectively.

Parameter sy bv : Type .
Parameter sigmaP : s e t sy .
Parameter sigmaB : s e t bv .

Inductive t e s t : Type :=
| ba0 : t e s t
| ba1 : t e s t
| baV : bv → t e s t
| baN : t e s t → t e s t
| baAnd : t e s t → t e s t → t e s t
| baOr : t e s t → t e s t → t e s t .

Inductive kat : Type :=
| kats : sy→ kat
| katb : t e s t → kat
| katu : kat → kat → kat
| katc : kat → kat → kat
| ka t s t : kat → kat .

3 Language Theoretical Model of KAT

Similarly to KA, the usual models for KAT include languages and relations. Here we consider
the language theoretical model of sets of guarded strings, as introduced by Kozen in [Koz01].

3.1 Literals and Atoms

Let B be the set of primitive tests and let B = {b | b ∈ B}. The elements l ∈ B ∪B are called
literals. An atom is a finite sequence of literals

α ∈ {l1l2 . . . ln | li ∈ B ∪ B},

where n = |B|, i.e., an atom can be seen as a truth assignment to the elements of B. The set
of all atoms, which we denote by At, corresponds to the set of all possible truth assignments

5

for the elements of B. Thus, there exists exactly 2|B| atoms. Let t be a test and let α be
an atom. We write α ≤ t if α → t is a propositional tautology. Thus we always have either
α ≤ b or α ≤ b.

In Coq we have defined an abstract specification of literals, of atoms, and of a function to
compute α ≤ b. We keep these definitions abstract in order to allow users to choose the best
way to represent and compute with atoms. Moreover, the actual structure of atoms does not
interfere with the implementation and correctness of the decision procedure.

3.2 Guarded Strings and Languages

The standard language theoretical model of KAT are sets of regular languages of guarded
strings [Koz01]. A guarded string is a sequence x = α0p0α1p1 . . . p(l−1)αl, represented by
the type gs below, and where l ≥ 0, αi ∈ At, and pi ∈ Σ. If x is a guarded string, we
define first(x) = α0 and last(x) = αl. Given two guarded strings x and y we say that x and
y are compatible if last(x) = first(y). If two guarded strings x and y are compatible, the
fusion product xy is the standard word concatenation but omitting the common atom. If the
guarded strings x and y are not compatible the fusion product is undefined.

The Coq function fusion_prod implements the fusion product of two guarded strings x
and y. Its arguments are the guarded strings x and y and a proof of their compatibility. Due
to dependent pattern matching, in the recursive branch where x = αpx′, the proof that x
and y are compatible must be transformed into a proof that x′ and y are also compatible so
that fusion_prod type-checks. This is the role of the lemma compatible_tl.
Inductive gs : Type :=
| gs_end : atom → gs
| gs_conc : atom → sy → gs → gs .

Definition l a s t (x : gs) : atom .
Definition f i r s t (x : gs) : atom .

Definition compatible (x y : gs) := l a s t x = f i r s t y .

Lemma compat ib le_tl :
∀ (x y x′ : gs) (α : atom) (p : sy) ,
∀ (h : compatible x y) (l :x = gs_conc x p x′) , compatible x′ y .

Fixpoint fusion_prod x y (h : compatible x y) : gs :=
match x as x′ re turn x = x′ → gs with
| gs_end _ ⇒ fun (_: (x = gs_end _)) ⇒ y
| gs_conc k s t ⇒ fun (h0 : (x = gs_conc k s t)) ⇒

l e t h′ := compat ib le_tl x y h k s t h0 in
gs_conc k s (fusion_prod t y h′)

end (r e f l_equa l x) .

A language is a set of guarded strings over the alphabets B and Σ. We denoted languages
by G,Gi, with i ∈ N. The set of all guarded strings is denoted by GS. Given two languages
G1 and G2 we define the set G1G2 as the set of all the fusion products xy such that x ∈ G1

and y ∈ G2. The power of a language G, denoted by Gn, is inductively defined by

G0 = At,
Gn+1 = GGn.

(2)

The Kleene star of a language G is, consequently, defined by

G? = ∪n≥0G
n. (3)

6

Languages are defined as Prop-type functions in Coq, that is, predicates over terms of type
gs. Below we provide the definition of the type of languages gl and the definitions of
concatenation, power and Kleene star of terms of type gl.

Definition g l := gs → Prop .

Inductive gl_conc (gl1 gl2 : g l) : g l :=
| mkg_gl_conc : ∀ (x y : g l) (T : compatible x y) ,

x ∈ gl1 → y ∈ gl2 → (fusion_prod x y T) ∈ (gl_conc gl1 gl2) .

Fixpoint conc_gln (l : g l) (n : nat) : g l :=
match n with
| 0 ⇒ gl_eps | S m ⇒ gl_conc l (conc_gln l m)
end .

Inductive g l_star (l : g l) : g l :=
| mk_gl_star : ∀ (n : nat) (g : gs) , g ∈ (conc_gln l n) → g ∈ (g l_star 1) .

Definition gl_eq (gl1 gl2 : g l) := Same_set _ gl1 gl2 .
Notation "x␣==␣y" := (gl_eq x y) .

The interpretation of KAT terms as languages is given by the function G that is inductively
defined by

G(p) = {αpβ |α, β ∈ At} , p ∈ Σ
G(t) = {α ∈ At |α ≤ t} , t ∈ T
G(e1 + e2) = G(e1) ∪ G(e2)
G(e1e2) = G(e1)G(e2)
G(e?) = ∪n≥0G(e)n.

(4)

It is straightforward to conclude that G(1) = At and that G(0) = ∅. Moreover, a guarded
strings x is itself a KAT term and its language is G(x) = {x}. We extend the function G to a
set S of KAT terms in the usual way by G(S) = ∪e∈SG(e). If e1 and e2 are two KAT terms,
we say that e1 and e2 are equivalent, and write e1 ∼ e2, if and only if G(e1) = G(e2). The
same applies to sets of KAT terms. If S1 and S2 are sets of KAT terms then S1 ∼ S2 if and
only if G(S1) = G(S2). Moreover, if e is a KAT term and S is a set of KAT terms then e ∼ S
if and only if G(e) = G(S).

The left-quotient of a language G ⊆ GS wrt. to elements αp ∈ (At · Σ) is defined by

(αp)−1(G) = {x |αpx ∈ G}. (5)

The notion of left-quotient is trivially extended to sequences w ∈ (At · Σ)? as follows

w−1(G) = {x |wx ∈ G}. (6)

In Coq we have the function kat2gl that implements the function G, and the inductive
predicates LQ and LQw that implement, respectively, the left-quotients of a language.

Fixpoint kat2g l (e : kat) : g l :=
match e with
| kats x ⇒ gl_sy x
| katb b ⇒ gl_atom b
| katu e1 e2 ⇒ gl_union (kat2g l e1) (kat2g l e2)
| katc e1 e2 ⇒ gl_conc (kat2g l e1) (kat2g l e2)
| ka t s t e′ ⇒ g l_star (kat2g l e′)
end .

7

Inductive LQ (l : g l) : atom → sy → g l :=
| in_quo : ∀ (a : atom) (p : sy) (y : gs) , (gs_conc a p y) ∈ l → y ∈ LQ l a p .

Inductive LQw (l : g l) : g s t r i n g → g l :=
| in_quow : ∀ (x w : gs) (T : compatible w x) , (fusion_prod w x T) ∈ l → x ∈ LQw l w .

3.3 Partial Derivatives of KAT Terms

The notion of derivative of a KAT term was introduced by Dexter Kozen and is an extension
of Brzozowski’s derivatives [Brz64].

Definition 1 Let α ∈ At and let t ∈ T . The function ε : At → Exp → {0, 1} is inductively
defined by

εα(p) = 0 εα(t) =

{
1, if α ≤ t
0, if α 6≤ t

εα(e1 + e2) = εα(e1) + εα(e2) εα(e1e2) = εα(e1) · εα(e2)

εα(e?) = 1

where + and · are interpreted as the Boolean operations of disjunction and conjunction,
respectively. The function ε is extended to the set of all atoms At by

E(e) = {α ∈ At | εα(e) = 1}. (7)

The next theorem shows the utility of the function ε.

Theorem 1 Let α ∈ At and let e be a KAT term. If εα(e) = 1 then α ∈ G(e). Otherwise,
α 6∈ G(e).

Let S be a set of KAT terms and let e be a KAT term. We define the concatenation of
S with e by Se = {e′e | e′ ∈ S} if e 6= 0 and e 6= 1, and S0 = ∅ and S1 = S, otherwise.
Similarly, we define eS. The former operation corresponds to the function dsr in the Coq
formalization.

Definition 2 (Partial derivative) Let αp ∈ (At · Σ) and let e be a KAT term. The set
∂αp(e) of partial derivatives of e wrt. to αp is inductively defined by

∂αp(t) = ∅ ∂αp(q) =

{
{1}, if p ≡ q
∅, if p 6≡ q

∂αp(e1 + e2) = ∂αp(e1) ∪ ∂αp(e2) ∂αp(e
?) = ∂αp(e)e

?

∂αp(e1e2) =

{
∂αp(e1)e2 ∪ ∂αp(e2), if εα(e1) = 1
∂αp(e1)e2, if εα(e2) = 0

Partial derivatives of KAT terms can be naturally extended to sequences w ∈ (At · Σ)? by
∂ε(e) = {e}, and by ∂w(αp)(e) = ∂αp(∂w(e)), where ε is the empty sequence. The set of all
partial derivatives of a KAT term e is the set

∂(At·Σ)?(e) =
⋃

w∈(At·Σ)?

{e′ | e′ ∈ ∂w(e)}. (8)

Partial derivatives are related to left-quotients as follows.

8

Theorem 2 Let e be a KAT term, and let be a word w ∈ (At · Σ). It holds that

G(∂w(e)) = w−1(G(e)).

The following excerpt of the Coq development shows the previous definitions and theorem.
The function SkatL gives the language of a finite set of KAT terms, and the function ewp_set
applies the function ε to a set of KAT terms.

Fixpoint ewp(t : kat) (a : atom) : bool :=
match t with
| kats x ⇒ f a l s e
| katb b ⇒ evalT a b
| katu t1 t2 ⇒ ewp t1 a | | ewp t2 a
| katc t1 t2 ⇒ ewp t1 a && ewp t2 a
| ka t s t t1 ⇒ t rue
end .

Definition ewp_set (s : s e t kat) (a : atom) := f o l d (fun x ⇒ orb (ewp x a)) s f a l s e .

Fixpoint pdrv (x : kat) (a : atom) (s : sy) : s e t kat :=
match x with
| kats y ⇒ match _cmpA y s with

| Eq ⇒ {katb ba1} | _ ⇒ ∅
end

| katb b ⇒ ∅
| katu x1 x2 ⇒ pdrv x1 a s ∪ pdrv x2 a s
| katc x1 x2 ⇒ i f ewp x1 a then

dsr (pdrv x1 a s) x2 ∪ pdrv x2 a s
else

dsr (pdrv x1 a s) x2
| ka t s t x1 ⇒ dsr (pdrv x1 a s) (ka t s t x1)
end .

Theorem pdrv_correct : ∀ a s r , SkatL (pdrv r a s) == LQ (kat2g l r) a s .

Theorem wpdrv_correct : ∀ w r , SkatL (wpdrv r w) == LQw (kat2g l r) w .

3.4 Finiteness of the Set of Partial Derivatives

Following Mirkin’s notion of pre-base [Mir66] of a regular expressions, we now present a new
way of determining the finiteness of the set of partial derivatives for any given KAT term.
Kozen has presented a different notion of closure to prove the finiteness of the set of partial
derivatives, but based on the sub-terms of a given KAT term.

Definition 3 Let e be a KAT term. The pre-base of e, π(e), is recursively defined by

π(t) = ∅ π(e1 + e2) = π(e1) ∪ π(e2)
π(e1e2) = π(e1)e2 ∪ π(e2)

π(p) = {1} π(e?) = π(e)e?.
(9)

The cardinality of π(e) is bounded by the alphabetic size of e, that is, π(e) ≤ |e|Σ, where
the alphabetic size |e|Σ is the number elements p ∈ Σ in e. Let χ(e) = {e} ∪ π(e). Thus,

9

the cardinality of χ(e) is bounded by |e|Σ + 1. The following theorem establishes that χ(e)
contains the set of all derivatives of e and therefore we conclude that the set of all partial
derivatives of any KAT term e is always finite.

Theorem 3 Let e be a KAT term, and let w ∈ (At · Σ)?. Thus,

∂(At·Σ)?(e) ⊆ χ(e).

In the Coq development, the function π is encoded by the recursive function PI and χ by PD.
The proof of Theorem 3 is given by theorem all_wpdrv_in_PD.
Fixpoint PI (e : kat) : s e t kat :=
match e with
| katb b ⇒ ∅
| kats _ ⇒ {katb ba1}
| katu x y ⇒ (PI x) ∪ (PI y)
| katc x y ⇒ (dsr (PI x) y) ∪ (PI y)
| ka t s t x ⇒ dsr (PI x) (ka t s t x)
end .

Definition PD(r : kat) := {r} ∪ (PI r) .

Fixpoint sy l en (e : kat) : nat :=
match e with
| kats _ ⇒ 1 | katb _ ⇒ 0
| katu x y ⇒ sy l en x + sy l en y
| katc x y ⇒ sy l en x + sy l en y
| ka t s t x ⇒ sy l en x
end .

Theorem PD_upper_bound : ∀ r , c a r d i na l (PD r) ≤ (sy l en r) + 1 .

Theorem all_wpdrv_in_PD : ∀ w x r , x ∈ (wpdrv e w) → x ∈ PD(r) .

4 A Procedure for Deciding KAT Term Equivalence

Given a KAT term e we know that

e ∼ E(e) ∪

(⋃
αp∈(At·Σ)?

αp∂αp(e)

)
, (10)

and so, checking if e1 ∼ e2 can be reformulated to checking the following two conditions:

∀α ∈ At, εα(e1) = εα(e2) (11)

∀αp ∈ (At · Σ), ∂αp(e1) ∼ ∂αp(e2) (12)

This leads to an iterative procedure for deciding KAT terms equivalence by recursively testing
the equivalence of sets of partial derivatives of e1 and e2.

Theorem 4 Given KAT terms e1 and e2 defined over B,Σ it holds that

e1 ∼ e2 ↔ ∀α ∈ At, ∀w ∈ (At · Σ)?, εα(∂w(e1)) = εα(∂w(e2)).

10

Corollary 1 Let e1 and e2 be two KAT terms. If there exists an atom α ∈ At and there
exists a sequence w ∈ (At · Σ)? such that

εα(∂w(e1)) 6= εα(∂w(e2))

then it holds that e1 6∼ e2.

The procedure equivKAT, presented in Algorithm 1, specifies a computational inter-
pretation of Theorem 4 and of Corollary 1. Given two KAT terms e1 and e2 this procedure
corresponds to the iterated process of deciding the equivalence of their partial derivatives.

Algorithm 1 The procedure equivKAT.
Require: s = {({e1}, {e2})}, h = ∅
Ensure: true or false

1: procedure EquivKAT(s, h)
2: while s 6= ∅ do
3: (Γ,∆)← POP (s)
4: for α ∈ At do
5: if εα(Γ) 6= εα(∆) then
6: return false

7: end if
8: end for
9: h← h ∪ {(Γ,∆)}

10: for αp ∈ (At · Σ) do
11: (Λ,Θ)← ∂αp(Γ,∆)
12: if (Λ,Θ) 6∈ h then
13: s← s ∪ {(Λ,Θ)}
14: end if
15: end for
16: end while
17: return true

18: end procedure

Two finite sets of derivatives are required to define equivKAT: a set h that serves as an
accumulator of derivatives already processed, and a set s that acts as a stack that gathers
new derivatives yet to be processed. The set h ensures the termination of equivKAT due to
the finiteness of the number of derivatives and by ensuring that no derivative is considered
in the algorithm more than once.

5 Implementation of equivKAT in Coq

In this section we provide the details of the implementation of equivKAT in the Coq proof
assistant. This implementation follows along the lines of the implementation of the decision
procedure for deciding regular expression equivalence presented in [MPdS11].

5.1 Pairs of KAT Derivatives

The pairs (Γ,∆) in equivKAT represent derivatives of the original KAT terms e1 and e2.
This notion is captured by the dependent record type Drv presented below and whose fields

11

are the actual pair of sets of KAT terms dp, a sequence w that is a member of (At ·Σ)?, and a
proof cw that witnesses that dp = (∂w(Γ), ∂w(∆)), where the operator === stands for finite
set equality.

Record Drv (e1 e2 : kat) := mkDrv {
dp :> s e t kat ∗ s e t kat ;
w : l i s t AtSy ;
cw : dp === (wpdrv w e1 ,wpdrv w e2)
} .

The definitions of derivation were extended to handle terms of type Drv, and are presented
in the code below. The type AtSy is the type of pairs (p, α), such that p ∈ Σ and α ∈ At.

Definition Drv_1st : Drv e1 e2 .
Proof .
r e f i n e (Build_Drv ({e1 } ,{e2 }) ε _) .
ab s t r a c t ((∗ Proof t h a t (∂ε({e1}), ∂ε({e2})) = ({e1}, {e2})∗)) .

Defined .

Definition Drv_pdrv (x : Drv e1 e2) (a : atom) (s : sy) : Drv e1 e2 .
Proof .
r e f i n e (match x with Build_ReW k w p ⇒ Build_Drv e1 e2 (pdrvp k a s) (w++((a ,s) : : ε)) _ end) .
ab s t r a c t ((∗ Proof t h a t (∂wαp({e1}), ∂ε({e2})) = ∂αp(∂w({e1}), ∂w({e2})) ∗)) .

Defined .

Definition Drv_wpdrv (w : l i s t AtSy) : ReW e1 e2 .
Proof .
r e f i n e (Build_Drv e1 e2 (wpdrvp ({e1 } ,{e2) w) w _) .
ab s t r a c t (r e f l e x i v i t y) .

Defined .

Definition Drv_pdrv_set (s : Drv e1 e2) (sig : s e t AtSy) : s e t (Drv e1 e2) :=
f o l d (fun x : AtSy ⇒ add (Drv_pdrv s (f s t x) (snd x))) sig ∅ .

5.2 Update of the Set of Derivatives

The body of the while-loop of equivKAT’s specification presented in Algorithm 1 is a
sequence of two tasks: the first task consists on picking a pair (Γ,∆) from the set s and
checking if for all atoms α ∈ At the equality εα(Γ) = εα(∆) holds. The second task, that is
executed only if the previous task succeeds, produces a new set of pairs s′ such that

s′ = (s\{(Γ,∆)}) ∪ {∂αp(Γ,∆) |αp ∈ (At · Σ)}\(h ∪ {(Γ,∆)}),

where ∂αp(Γ,∆) = (∂αp(Γ), ∂αp(∆)).The function step implements the previous two tasks.
It returns a term of type step_case whose constructors have the following reading: the
constructor proceed indicates that a new set of derivatives was computed with success; the
constructor termtrue indicates that there are no more pairs to be obtained from s and so h
contains all the derivatives; finally, the constructor termfalse indicates that a pair (Γ,∆) is a
proof of in-equivalence.

Definition ewp_p(x : s e t kat ∗ s e t kat) (a : atom) := eqb (ewp_set (f s t x) a) (ewp_set (snd x) a) .

Definition ewp_at_set (x : s e t kat ∗ s e t kat) (ats : s e t atom) := f o l d (fun p ⇒ andb (ewp_p x p)) ats t rue .

Definition ewpDrv(x : Drv e1 e2) (a : s e t atom) := ewp_at_set x a .

12

Definition newDrvSet (x : Drv e1 e2) (h : s e t (Drv e1 e2)) (sig : s e t AtSy) : s e t (Drv e1 e2) :=
f i l t e r (fun x ⇒ negb (x ∈ h)) (Drv_pdrv_set x sig) .

Inductive step_case (e1 e2 : kat) : Type :=
| proceed : step_case e1 e2

| termtrue : s e t (Drv e1 e2) → step_case e1 e2

| t e rm fa l s e : Drv e1 e2 → step_case e1 e2 .

Definition s tep (h s : s e t (Drv e1 e2)) (sig : s e t sy) (ats : s e t atom) :
((s e t (Drv e1 e2) ∗ s e t (Drv e1 e2)) ∗ step_case e1 e2) :=
match choose s with
| None ⇒ ((h ,s) , termtrue e2 e1 h)
| Some (de1 , de2) ⇒

i f ewpDrv e1 e2 (de1 , de2) ats then
l e t h′ := add (de1 , de2) h in
l e t rsd′ := in
l e t s′ := newDrvSet e1 e2 (de1 , de2) H ′ sig ats in

(h′ ,s′ ∪ (s \ {(de1 , de2)}) , proceed e1 e2)
else
((h ,s) , t e rm fa l s e e1 e2 (de1 , de2))

end .

5.3 Encoding of equivKAT

The function iterate implements the while loop of equivKAT, takes two finite sets of terms
of type Drv e1 e2, and returns a term of type term_cases whose constructors Equiv and
NotEquiv indicate, respectively, the equivalence or the in-equivalence of the terms e1 and e2.

Inductive term_cases e1 e2 : Type :=
| Equiv : s e t (Drv e1 e2) → term_cases e1 e2

| NotEquiv : Drv e1 e2 → term_cases e1 e2 .

Inductive DP (h s : s e t (Drv e1 e2)) (ats : s e t atom) : Prop :=
| is_dp : h ∩ s === ∅ → (∀ x : atom , x ∈ ats) → ewpDrv_set e1 e2 h ats = true →DP h s ats .

Function i t e r a t e (e1 e2 : kat) (h s : s e t (Drv e1 e2)) (sig : s e t A) (d :DP e1 e2 h s)
{wf (LLim e1 e2) h} : term_cases e1 e2 :=
l e t ((h′ ,s′) ,next) := step h s in
match next with
| t e rm fa l s e x ⇒ NotEquiv e1 e2 x
| termtrue h ⇒ Equiv e1 e2 h
| p r og r e s s ⇒ i t e r a t e e1 e2 h′ s′ sig (DP_upd e1 e2 h s sig D)

end .
Proof .
(∗ Proof o b l i g a t i o n 1 : proo f t h a t LLim i s a decreas ing measure f o r i t e r a t e ∗)
abs t r a c t (apply DP_wf) .
(∗ Proof o b l i g a t i o n 2 : proo f t h a t LLim i s a we l l founded r e l a t i o n . ∗)
exact (guard e1 e2 100 (LLim_wf e1 e2)) .

Defined .

We have used the Function command [BC02] that helps users in defining non structurally
decreasing recursive function within Coq’s type theory. The decoration {wf (LLim e1 e2) }
has the purpose of informing the inner mechanism of Function that the recursive definition
must follow the well-founded relation LLim. This relation relates two sets h and h′, such that

LLim e1 e2 (h, h′) = T − |h′| < T − |h|,

13

where T = (2(|e1|Σ+1)×2(|e2|Σ+1) +1), that is, the set containing all the possible combinations
of the derivatives of e1 and e2. The proof that LLim is well founded corresponds to a checkable
evidence of the termination of iterate and it is used as input to the guard function in order
to discharge the second proof obligation produced by the Function command. The purpose
of the function guard is to avoid that LLim_wf is explicitly computed by Coq’s reduction
mechanisms, which leads to highly inefficient computation times 1.

The last argument of iterate is a term d of the dependent type DP. This type contains
a proof that the sets s and h are always disjoint, a proof that all the pairs (Γ,∆) in h
represent equivalent languages, and a proof that all the atoms are members of the set ats.
Note also that s and h being always disjoint along the execution of iterate ensures that the
set h increases in each recursive call and thus satisfies the well founded relation LLim.

The function equivkat_aux lifts the result of iterate into its Boolean counterpart. The
function equivkat fully implements equivKAT and is simply a call to equivkat_aux with the
correct values of s and h as specified in Algorithm 1.

Definition equivkat_aux (e1 e2 : kat) (h s : s e t (Drv e1 e2)) (sig : s e t sy) (d :DP e1 e2 h s):=
l e t h′ := i t e r a t e e1 e2 h s sig D in
match h′ with
| Ok _ ⇒ t rue
| NotOk _ ⇒ f a l s e

end .

Definition mkDP_1st : DP e1 e2 ∅ {Drv_1st e1 e2 } .

Definition equivkat (e1 e2 : kat) := equivkat_aux e1 e2 ∅ {Drv_1st e1 e2} sigmaP (mkDP_1st e1 e2) .

5.4 Correctness of equivkat

The correctness of equivkat consists on proving that: (1) whenever equivkat e1 e2 returns
true then it implies Theorem 4, which directly leads to KAT term equivalence; (2) whenever
equivkat e1 e2 returns false then a derivative (Γ,∆) exists such that εα(Γ) 6= εα(∆), which in
turn implies e1 6∼ e2 since α ∈ G(Γ) and α 6∈ G(∆), as stated in Corollary 1.

In order to prove (1) we follow the approach described in [MPdS11], where an invariant
is defined over iterate which states that in each recursive call all the derivatives (Γ,∆) that
belong to the accumulator set h have all of their derivatives either in h already, or are
in the set s. This invariant is given by the inv_iterate predicate presented below. The
auxiliary lemma invP_iterate_ind_correct provides the evidence that if iterate terminates
and returns a term Equiv e1 e2 x, where x is the set of all derivatives of e1 and e2. Lemma
invP_iterate_eq_gl proves that iterate leads to language equivalence and is used to prove the
main lemma equivkat_true_correct.

Definition invP (h s : s e t (Drv e1 e2)) (ats : s e t atom) (sig : s e t sy) :=
∀ x , x ∈ h → ∀ a , a ∈ sig → ∀ b , b ∈ ats → (Drv_pdrv e1 e2 x b a) ∈ (h ∪ s) .

Definition invP_iterate (h s : s e t (Drv e1 e2)) (ats : s e t atom) (sig : s e t sy) :=
(Drv_1st e1 e2) ∈ (h ∪ s) ∧ (∀ x , x ∈ (h ∪ s) → ewp_Drv e1 e2 x ats = true) ∧ invP h s

ats sig .

Lemma invP_iterate_ind_correct ’ : ∀ h s ats sig d x ,

1The usage of guard was proposed by Bruno Barras and improved by Georges Gonthier in the Coq-club
mailing list and has been used in other works that require computation of functions defined in Coq that
involve well-founded relations.

14

invP h s ats sig → i t e r a t e e1 e2 h s ats sig d = Equiv e1 e2 x → invP x ∅ ats sig .

Lemma invP_iterate_eq_gl : ∀ x ats ,
i t e r a t e e1 e2 ∅ {Drv_1st e1 e2} ats sigmaP (mkDP_ini e1 e2 ats) = Equiv e1 e2 x →

invP_iterate e1 e2 x ∅ ats sigmaP → (kat2g l e1) == (kat2g l e2) .

Theorem equivkat_true_correct :
equivkat e1 e2 ats sigmaP = true → (kat2g l e1) == (kat2g l e2) .

The proof of (2) is also carried out by induction over iterate, but there is no need to establish
any sort of invariant. We obtain the desired results by performing case analysis over the
value returned by step: if it returns a the term NotEquiv e1 e2 x, where x = (Γ,∆) then the
inequality εα(Γ) 6= εα(∆) must hold. By Corollary 1 this leads to α ∈ G(Γ) and α 6∈ G(∆),
or vice versa, that is, e1 6∼ e2. This logical condition is given by the lemmas iterate_false and
iterate_false_correct, and by the theorem equivkat_false_correct presented below.

Lemma i t e r a t e_ f a l s e : ∀ h s ats sig d x ,
i t e r a t e e1 e2 h s ats sig d = NotEquiv e1 e2 x → ewp_Drv e1 e2 x ats = f a l s e .

Lemma correct_aux_2 : ∀ s ats sig ,
i t e r a t e e1 e2 ∅ {Drv_1st e1 e2} ats sig (mkDP_ini e1 e2 ats) = NotEquiv e1 e2 s →

equivkat e1 e2 = f a l s e .

Theorem equ ivkat_fa l s e_cor rec t : equivkat e1 e2 = f a l s e →¬((kat2g l r1) == (kat2g l r2)) .

6 Application to Program Verification

The main motivation behind the implementation of equivkat is to provide a certified decision
procedure that can be used to help on the construction of partial correctness proofs over
simple imperative programs. As an example let us consider the program Fact that computes
the factorial of a non-negative integer x. This example was obtained from [ABM12].

In order to transform to KAT we need Fact to be fully annotated, and we have to
eliminate the assignments. In the table below we present the encoding of the Hoare triple
{true}Fact{y = x!} in KAT, where we associate to each assertion a test ti, and to each
assignment a program pi.

Fact Encoding
{true} t0
y := 1 p1

{y = 0!} t1
z := 0 ; p2

{y = z!} t2
while ¬(z=x) do t3
{
{y = z!} t2
z := z + 1 ; p3

{y × z = z!} t4
y := y * z ; p4

}
{y = x!} t5

15

The final encoding in KAT is the equality

t0p1t1p2t2(t3t2p3t4p4)?t3t5 = 0. (13)

To prove (13) we need an extra set of hypoteses that can be obtained in a backward fashion
[ABM12]. These hypotheses are of the form ri = 0 and correspond to Hoare triples. Thus,
to prove equation (13) we need to prove a KAT implication of the form

r0 = 0 ∧ r1 = 0 ∧ . . . ∧ rk = 0→ e1 = e2

where e1 = e2 is equation (13). Kozen showed in [Koz00] that the validity of previous
implication is tantamount to the validity of the equality e1 + uru = e2 + uru, such that
u = (p0 + . . .+ pn)? with Σ = {p0, . . . , pn} and r = r0 + . . . rk. For the case of Fact we have:

• u = (p1 + p2 + p3 + p4)?

• r = t0p1t1 + t1p2t2 + t3t2p3t4 + t4p2t2 + t2t3t5

Our decision procedure proved the validity of the equation

t0p1t1p2t2(t3t2p3t4p4)?t3t5 + uru = 0 + uru

and so the program Fact is correct. The time needed to perform the proof was 22 seconds.
The procedure is not very efficient due to the cost of calculating the function ε and the cost of
the derivation for each pair (Γ,∆) considered during the execution of the decision procedure.
Nevertheless, the procedure can be extracted as a functional program that can be compiled
outside Coq in order to obtain faster computations.

7 Conclusions

In this paper we have presented the mechanization of a decision procedure for KAT terms.
The overall development includes the formalization of the language-theoretic model of sets
of guarded strings and a new proof of the finiteness of the set of partial derivatives. The Coq
code for the whole development is available in [MPM].

We have showed that our procedure can be used to automatically prove the partial
correctness of simple imperative programs, encoded in PHL. This encoding can be automated
by applying one of the standard Verification Condition Generator available and a translator
that associates assignments to primitive programs, and assertions to tests.

The procedure is not yet very efficient due to the way we handle the Boolean part of KAT.
Currently, we are investigating ways to use SAT solvers inside of Coq. Moreover, we feel that
it is important to investigate how to generate the set of all atoms At, possibly in a lazy way
and without resorting on the totality of the 2|B| elements of At.

References

[ABM12] Ricardo Almeida, Sabine Broda, and Nelma Moreira. Deciding KAT and Hoare
logic with derivatives. Submitted, 2012.

[AHK06] Kamal Aboul-Hosn and Dexter Kozen. KAT-ML: An interactive theorem prover
for Kleene algebra with tests. Journal of Applied Non-Classical Logics, 16(1–2):9–
33, 2006.

16

[AK01] Allegra Angus and Dexter Kozen. Kleene algebra with tests and program
schematology. Technical Report TR2001-1844, Cornell University, 2001.

[BC02] Gilles Barthe and Pierre Courtieu. Efficient reasoning about executable speci-
fications in Coq. In Victor Carreño, César Muñoz, and Sofiène Tahar, editors,
TPHOLs, volume 2410 of LNCS, pages 31–46. Springer, 2002.

[BP10] Thomas Braibant and Damien Pous. An efficient Coq tactic for deciding Kleene
algebras. In Proc. 1st ITP, volume 6172 of LNCS, pages 163–178. Springer, 2010.

[Brz64] J. A. Brzozowski. Derivatives of regular expressions. JACM, 11(4):481–494,
October 1964.

[CS] Thierry Coquand and Vincent Siles. A decision procedure for regular expression
equivalence in type theory. In Jean-Pierre Jouannaud and Zhong Shao, editors,
CPP 2011, Kenting, Taiwan, December 7-9, 2011., number 7086 in LNCS, pages
119–134. Springer-Verlag.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

[HS07] Peter Höfner and Georg Struth. Automated reasoning in Kleene algebra. In Frank
Pfenning, editor, CADE, volume 4603 of Lecture Notes in Computer Science, pages
279–294. Springer, 2007.

[Kle] S. Kleene. Representation of events in nerve nets and finite automata, pages 3–42.
Princeton University Press, shannon, C. and McCarthy, J. edition.

[KN11] Alexander Krauss and Tobias Nipkow. Proof pearl: Regular expression equivalence
and relation algebra. Journal of Automated Reasoning, 2011. Published online.

[Kom] Vladimir Komendantsky. Computable partial derivatives of regular expressions.
http://www.cs.st-andrews.ac.uk/~vk/papers.html.

[Koz97] Dexter Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst.,
19(3):427–443, 1997.

[Koz00] Dexter Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput.
Log., 1(1):60–76, 2000.

[Koz01] Dexter Kozen. Automata on guarded strings and applications. Technical report,
Cornell University, Ithaca, NY, USA, 2001.

[Koz08] Dexter Kozen. On the coalgebraic theory of Kleene algebra with tests. Tech-
nical Report http://hdl.handle.net/1813/10173, Computing and Information
Science, Cornell University, March 2008.

[KS96] Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness and
decidability. In CSL, pages 244–259, 1996.

[KT01] Dexter Kozen and Jerzy Tiuryn. On the completeness of propositional Hoare logic.
Inf. Sci., 139(3-4):187–195, 2001.

17

[McC] William McCune. Prover9 and Mace4. http://www.cs.unm.edu/smccune/mace4.
Access date: 1.10.2011.

[Mir66] B.G. Mirkin. An algorithm for constructing a base in a language of regular
expressions. Engineering Cybernetics, 5:110–116, 1966.

[MP08] Nelma Moreira and David Pereira. KAT and PHL in Coq. CSIS, 05(02), December
2008. ISSN: 1820-0214.

[MPdS11] Nelma Moreira, David Pereira, and Simao Melo de Sousa. Deciding regular
expression (in-)equivalence in Coq. Technical Report DCC-2011-06, DCC-FC &
LIACC, Universidade do Porto, 2011.

[MPM] Nelma Moreira, David Pereira, and Simão Melo de Sousa. Source code of the
formalization. http://www.liacc.up.pt/~kat/equivKAT.tgz.

[The] The Coq Development Team. http://coq.inria.fr.

18

