
Learning generalized semi-Markov
processes: From stochastic discrete

event systems to testing and
verification

André de Matos Pedro, Maria João Frade and Simão Melo de Sousa

Technical Report Series: DCC-2012-01
Version 1.1

Laboratório de Inteligência Artificial e Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 1021/1055,

4169-007 PORTO,
PORTUGAL

Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

Learning generalized semi-Markov processes: From stochastic
discrete event systems to testing and verification

André de Matos Pedro1, Maria João Frade1 and Simão Melo de Sousa3?

1 University of Minho, Braga, Portugal,
pg15753@alunos.uminho.pt, mjf@di.uminho.pt,

2 LIACC, University of Beira Interior, Covilhã, Portugal,
desousa@ubi.pt

Abstract. Discrete event systems (DES) are widely used to model a set of practical systems,

such as: industrial systems, computer systems, and also traffic systems. This report explores an

extension of discrete event systems with an emphasis on stochastic processes, commonly called

stochastic discrete event systems (SDES). There is a need to establish a stochastic abstraction

and a model for SDES through a generalized semi-Markov processes (GSMPs) and respectively

a stochastic timed automaton. In this report we propose a novel algorithm to learn GSMPs from

sample executions that can be used for quantitative analysis and verification in the context of

model checking. We demonstrate that the proposed learning algorithm can correctly identify the

GSMPs given sufficient samples. This report also presents a Matlab toolbox for our algorithm

and a case study of the stochastic analysis for a multiprocessor system scheduler.

1 Introduction

Stochastic processes are commonly used as an approach to describe and make a quantitative evalua-

tion of more abstract models which may be described by a high-level specification. Stochastic discrete

event systems (SDES) are models with a wide practical application [2], where the evolution of states

are guided by events that are triggered by a stochastic process. The canonical example is a simple

queuing system with a single server where the enqueue and the dequeue events are controlled by a

stochastic process [17]. For instance, consider a post office with only one employer, and therefore

one queue for letters, packages, etc. The customers arrive at the post office, deposit the goods in the

queue, are attended by the postal worker and then leave the post office. We can think of the arrival

and departure of a customer as two separate events with associated ratings, without synchronization

between these events. This is clearly an example of SDES, where coping with asynchronous events

and stochastic processes are their major advantage. When a model is evaluated we can use it for the

design phase and subsequently make an implementation. However, even if a model is validated this

does not imply that the implementation is in conformity with the model. This is normally due to

bugs in the implementation, wrong interpretation of the model, or possibly, wrong approximations in

the construction of the stochastic model. Unfortunately techniques like testing for discovering these

errors are unlikely to be sufficient due to the difficulty of achieving a complete or total coverage.

This report is concerned with how these models can be derived from sample executions provided

by an implementation in order to verify them. There are several learning algorithms for learning

stochastic languages [1,11,18], including a learning algorithm for continuous-time Markov processes

[16], but there is no algorithm in the case of processes that do not hold the Markov property such

as generalized semi-Markov processes (GSMPs). Although the continuous-time Markov processes

could in some way be adapted for these cases, the coverage of SDES would in fact be small. The

use of GSMPs may cover a wider set of problems, but they could become more complex and quasi

analytically intractable. However, establishing the generalized semi-Markov process (GSMP) as the

?
This work was supported in part by the FCT CANTE project (RefaPTPC/EIA-CCO/101904/2008).

abstraction process to model the behavior of SDES for learning is statistically an ambitious goal due

to its expressiveness.

In this report, we address the problem of learning GSMPs that are the most known extensive

stochastic processes when lifetimes can be governed by any continuous probabilistic distributions

[5]. From classical Markov processes, the exponential distributions are not enough to model the

lifetime of a product (e.g., a electronic component life) [14] or even a computer process [10]. The

learning algorithm we shall present infers a GSMP from a given set of trajectories and therefore

must be capable of inferring the model by running the deployed system in a test phase and of

learning trajectories according to the observed distributions. The learned stochastic automaton that

is generated by a GSMP is a model that can be used by existing statistical model-checkers [13,21,20,3]

and by the existing performance evaluation tools for further analysis and thereby ultimately helping

to find bugs in the post-implementation phase. Learning algorithm for GSMPs may also potentially

be used to perform automatic verification for stochastic systems.

In addition we also establish the correctness of our algorithm. We ensure that, in the limit, when

the samples grow infinitely the learned model converges to the original model. Thus, a set of conditions

like the definition of inclusion of a prefix tree in a GSMP have to be ensured as well as the definition

of probability measure of paths.

This report is organized as follows. In section 2 some preliminary definitions are given in order

to establish the learning algorithm in section 3. In section 4 we demonstrate the correction of our

algorithm. In section 5, the tool and a practical case study are presented. In the final section 6 we

give our conclusions and discuss directions for further work.

2 Preliminaries

SDES are discrete event systems with a casual relationships between events and states. Their dynamic

behavior can be described by a stochastic process, more precisely a Markov or a semi-Markov process.

We shall present the GSMP as an abstraction of SDES. GSMP allow a wide coverage of treatable

stochastic processes and therefore SDES. The semi-Markov property of GSMP is due to the fact that

at the state transition instant, the next state is determined not only by the current state but also by

the event that just occurred.

Definition 1. A generalized semi-Markov process is a stochastic process {X(t)} with state space X,

generated by a stochastic timed automaton (X , E ,Γ , p, p0 ,G), where

X is a finite state space,

E is a finite event set,

Γ (x) is a set of feasible or enabled events, defined for every x ∈ X , with Γ (x) ⊆ E,

p(x′;x, e′) is a state transition probability, defined for every x, x′ ∈ X and e′ ∈ E, and

such that p(x′;x, e′) = 0, ∀e′ /∈ Γ (x),

p0(x) is the pmf (probability mass function) Pr[X0 = x], x ∈ X , of the initial state

X0, and

G = {Gi : i ∈ E} is a stochastic clock structure where Gi is a cdf (cumulative distribution

function) for each event i ∈ E.

The stochastic clock structure has k random variables associated for each event i with distribution

function Gi and is denoted by Vi,k ∼ Gi (i.e., the random sequences {Vi,k} generated through Gi),

where k = 1, 2, ..., i ∈ E, and the tilde (∼) notation denotes ”with distribution”. More precisely Gi is

defined by cdf FVi,k(t) = Pr[Vi,k ≤ t].

We begin with the notation of random variables in order to describe how SDES evolves. The

random variables are as follows: X is the current state; E is the most recent event (causing the

2

transition into state X); T is the most recent event time (the time of the event E); Ni is the current

score of event i; and Yi is the current clock value of event i. We also use the (’) notation to denote

the next state X ′; triggering event E′; next event time T ′; next score of i, N ′i ; and next clock of i, Y ′i .

Given a stochastic process with a state sequence {X0, X1, X2, ...} generated by a STA there is

a transition mechanism that depends on two observations, X = x and E′ = e′ (note that X, E′

are random variables and x, e′ the produced samples). Thus, a GSMP is governed by the transition

function p(x′;x, e′) that represents the probability that given a state x and an event e′ there is a

transition to state x′. However e′ is driven by a stochastic event sequence {E1, E2, E3, ...} that is

generated by

E′ = arg min
i∈Γ(X)

{Yi} (1)

with the stochastic clock values Yi, i ∈ E , defined by

Y ′i =

{
Yi − Y ∗ if i 6= E′ and i ∈ Γ (X)

Vi,Ni+1 if i = E′ or i /∈ Γ (X)
i ∈ Γ (X ′) (2)

where the interevent time Y ∗ is defined as

Y ∗ = min
i∈Γ(X)

{Yi} (3)

the event scores Ni, i ∈ E , are defined through

N ′i =

{
Ni + 1 if i = E′ or i 6= Γ (X ′)

Ni otherwise
i ∈ Γ (X ′) (4)

and

Vi,k ∼ Gi (5)

where Vi,k is a random variable with distribution Gi. The initial conditions of the STA are defined

as follows:

. X0 ∼ p0(x),

. Yi = Vi,1, Ni = 1 if i ∈ Γ (X0), and

. Yi is undefined and Ni = 0 if i /∈ Γ (X0).

To avoid having two events simultaneously trigger a transition, we focus our attention on equation 1

that by formulation describes that only one event can be triggered at each time. Our definition of E′

thus yields a unique triggering event, and event times are updated through T ′ = T + Y ∗.

2.1 Trajectories and probability measure

An execution of a stochastic discrete event system produces samples as output values which we denote

by a sample execution. In other words a sample execution is a path obtained from an execution,

i.e., the evolution of SDES over time is captured by a path. Typically, the executions of SDES

are infinite, therefore in order to achieve finite trajectories a methodological approach must be

devised (as we see later). An infinite path of a GSMP (X , E ,Γ , p, p0 ,G) is composed of a set

of segments that we call piecewise constant and can therefore be represented as a sequence σ =

{s0, 〈e1, t1〉 , s1, 〈e2, t2〉 , s2, 〈e3, t3〉 , · · · } where si ∈ X is a state, ei ∈ E is an event occurring at

time
∑i
x=1 tx = τ , and ti ∈ R≥0 is the holding time of each event, for all i ∈ N. The initial

state of the sequence is s = s0. A finite path of length n of a GSMP is defined by the sequence

σ = {s0, 〈e1, t1〉 , s1, 〈e2, t2〉 , s2, 〈e3, t3〉 , · · · , sn, 〈·,∞〉}, where sn is an absorbing state, meaning that

no events can occur in sn. An infinite path can be convergent, however, an infinite sequence of events

would have to occur in a finite amount of time, which is unrealistic for any physical system.

3

The probability measure from a set of paths need the establishment of a prefix

σ≤τ = {s0, 〈e1, t1〉 , s1, 〈e2, t2〉 , ..., sk, 〈ek+1, tk+1〉} based on the infinite sequence

σ = {s0, 〈e1, t1〉 , s1, 〈e2, t2〉 , · · · }. A set of paths with prefix p is denoted by Path(p), where p shall

be σ≤τ . Therefore, the sets of trajectories must be measurable. From the definition (1) a GSMP

has associated with each event e ∈ E a positive trigger time distribution Ge, and a state transition

probability matrix p(x′;x, e). The pdf for Ge, he(·;σ≤τ), can depend on the entire execution history

that is characterized by σ≤τ . Thus, the holding time distribution, for each event e ∈ E , defined

as He(t;σ≤τ) is subdivided in two clock types, termed the new clock and the old clock. The first is

characterized by the probability that e triggers within t time units (i.e., a new clock) which is denoted

by Pr[Ye < t | σ≤τ]. The second characterizes the probability that event e triggering in the next t

time units when e has already been enabled for ue time units (i.e., an old clock) which is denoted by

Pr[Ye < ue + t | Ye > ue, σ≤τ]. A sample execution of a GSMP can be measured using the holding

time distribution,

He(t;ue, σ≤τ) =


∫ t
0
he(x;σ≤τ) dx if ue = 0

1− 1−He(ue+t; 0,σ≤τ)
1−He(ue; 0,σ≤τ)

if ue > 0
(6)

and a next-state probability matrix Pe(s
′;σ≤τ) that is equal to p(s′; s, e′) due to time homogeneity of

GSMPs under consideration [8]. The probability measure µ for a cylinder set

C(σ≤τ , 〈Ek, Y ∗k 〉 , Xk, ..., Xn−1, 〈En, Y ∗n 〉 , Xn), accordingly to [21], can be defined recursively as

µ(C(σ≤τ , 〈Ek, Y ∗k 〉 , Xk, ..., Xn−1, 〈En, Y ∗n 〉 , Xn)) =

Pe(s
′;σ≤τ) ·He(t; ·, σ≤τ) · µ(C(σ≤τ ⊕ (〈e, t〉 , s′) , (7)〈
Ek+1, Y

∗
k+1

〉
, Xk+1, ..., Xn−1, 〈En, Y ∗n 〉 , Xn))

where the recursive base case is µ(C(s0, 〈E1, Y
∗
1 〉 , X1, ..., Xn−1, 〈En, Y ∗n 〉 , Xn)) = 1. The enabled

events in a state race to be the first to trigger, the event that triggers causes a transition to a

state s′ ∈ X according to the next-state probability matrix for the triggering event. The GSMP is

considered as analytically intractable and the probability measure formulation is not at all intuitive

due to the execution history.

2.2 Exemplification of simulation procedure

The following example is now given in order to illustrate the concept of simulation of a GSMP in

terms of the scheduling of events and the competition between events. Let M = (X , E ,Γ , p, p0 ,G)

be a model of a M/M/1/n queue (Kendall notation), where

. X = {0, 1, 2, 3, ..., n},

. E = {λ, µ},

. Γ (0) = {λ}, Γ (1) = {λ, µ}, ..., Γ (n − 1) = {λ, µ}, Γ (n) = {µ},

. pλ(s′; s) = 1 if s′ = i and s′ = i+ 1 otherwise, pλ(s′; s) = 0

. pµ(s′; s) = 1 if s′ = i and s′ = i− 1 otherwise, pµ(s′; s) = 0, with 0 ≤ i ≤ n,

. p0(0) = 1 otherwise, p0(j) = 0, for all 0 < j ≤ n, and

. Gλ(x) = 1− e−0.1x, Gµ(x) = 1− e−(x
0.5)

0.1

.

The simulation of SDES is informally described with the simple four steps as follows:

1. Generate clock samples for feasible events i according to clock structure Gi, Vi,k.

2. Compare the current clock values for feasible events i and determine the triggering event E′ = e∗,

i.e., the event with minor lifetime.

3. Update the process for next state s′ according to the triggered event e∗, p(s’; s, e*).

4. Update the clock values Yi and scores Ni respectively.

4

Thus, the presented example has the following possible executions. First, the system can only start in

state 0 accordingly to p0. There is a single event λ (accordingly with Γ (0)) that denoted the enqueue.

A sample clock would be generated accordingly with Gλ. Supposing that the value 0.76 is generated

then the execution path begins with σ≤0.76 = {〈1, λ, 0.76〉}. Next, there are two feasible events, λ

enqueue and µ dequeue. These events compete with each other to trigger the event with minor lifetime

that in this case is λ with new value 0.45 versus µ with new value 0.68. The current execution path

is σ≤0.76+0.45 = {〈1, λ, 0.76〉 〈2, λ, 0.45〉}. Then, assuming that the event µ is triggered with value

0.68− 0.45 = 0.23, λ shall have a new value 0.41. Lastly, after these three execution traces the path

shall be σ≤1.44 = {〈1, λ, 0.76〉 〈2, λ, 0.45〉 , 〈1, µ, 0.23〉}.3 We can, however, calculate the probability of

path σ≤1.44 which can be measured as µ(C(σ≤1.44, 〈Ek, Y ∗k 〉 , Xk, ..., Xn−1, 〈En, Y ∗n 〉 , Xn)).

3 Learning stochastic automaton

The learning of stochastic automata covered in this report falls in the category of stochastic language

identification [1,11,18,16]. For most of the methods in this category, the identified stochastic lan-

guages have some particularities: the inference of a stochastic language is normally based on sample

executions, i.e., these samples are a particular multi-set of the original language to identify, and the

inference has as target the identification of the language in the limit, i.e., if the number of samples

tends towards infinity then the learned language will converge to the same as the language that

generated the sample [9]. Thus, the learning of stochastic languages essentially follows a common

method. First, establishing an equivalent relation between the states, then constructing a prefix tree

from samples provided by the original stochastic language, and lastly describing an algorithm for the

merge of equivalent states which is called state merge.

We shall now present an algorithm for learning GSMPs, which is a particular case of stochastic

automata (addressed in the master thesis [4]). We begin with the formulation of prefix tree stochastic

automata (PSA) in order to establish the inclusion of a prefix tree in a stochastic automaton. We

next present some definitions that will be used in the algorithm. After this, we describe in detail the

learning algorithm.

3.1 Inclusion of prefix tree in stochastic automaton and the state equivalency

In order to establish the correction of the learning algorithm, a relation between the language accepted

by the prefix tree and the event language accepted by the GSMP must be defined. Thus, we need to

establish that a set of finite paths acquired by a GSMP is equivalent to a set of finite paths accepted

by the prefix tree. Based on the definition (2) of the prefix tree stochastic automata it is shown by

definition that a prefix tree constructed from a set of finite paths is a base case of a GSMP. However,

only the relation between the data structures is ensured with this definition. Therefore, we also need

to establish a correction of the state merge algorithm (as shall be shown in the next section).

We introduce some notations in order to describe and establish the definitions (prefix tree,

trajectories, prefix tree stochastic automata, and the stable equivalence relation) and the structure

of the algorithms. The definitions are based on symbol (’‖’) that represents a path with respect to

an element of a particular set (X ; E ;G) and brackets (’[’;’]’) a sequential identification, as follows:

. σ‖X [s, i] is the ith state of the state sequence that begins in state s,

. σ‖E [s, i] is the ith event of the event sequence that begins in state s,

. σ‖G[s, i] is the ith holding time of the event sequence (σ‖E [s, i]) that begin in s state,

. η(σ‖E [s, i]) = σ‖X [s, i− 1] is a function that returns the state associated to an event ei,

3 The execution of those systems is typically infinite, therefore, given a finite execution time we cannot make

a infinite event sequence, which turns impossible to have finite executions in physical systems.

5

. ε(σ‖X [s, i]) = σ‖E [s, i+ 1] is a function that given a state of a path returns its associated event,

and

. δ(σ‖E [s, i]) = σ‖G[s, i] is a function that given an event σ‖E [s, i] returns its holding time σ‖G[s, i].

A sequence of events 〈e1, e2, e3, . . . , ek〉 produced by the prefix tree that accepts the prefix

σ≤τ = {s0, 〈e1, t1〉 , s1, 〈e2, t2〉 , ..., 〈ek, tk〉 , sk} is denoted by σ≤τ‖E . A prefix tree that has an acceptor

Path(σ≤τ) (a set of paths with prefix σ≤τ) is a tree Pr(Path(σ≤τ)) = (F ,Q, ρ, %, δ), where F is a

set of leaf nodes of the prefix tree (i.e., F = Path(σ≤τ‖E)), Q is the set of nodes of the prefix tree

composed by the sequence of events from Path(σ≤τ‖E) (i.e., Q represents all accepted sequences in

the prefix tree), ρ : Q → [0, 1] is the function that associate the expectation value for each node

n ∈ Q, % : Q → R>0 × ... × R>0 is the function that associate each node with a n-tuple of clock

values, and δ : Q → Q ∪ ⊥ is the transition function which have the following definition,

δ(s, λ) = s where λ is the empty string,

δ(s, e) = ⊥ if δ(s, e) is not defined, and

δ(s, xe) = δ(δ(s, x), e), where x ∈ Q and e ∈ E ,
δ(s, xe) = ⊥ if δ(s, x) =⊥ or δ(δ(s, x), e) is undefined.

We describe some definitions to simplify the notations of the relation between paths and the prefix

tree, as follows:

. τ(s, xei) is a function that gives the set of feasible or enabled events

{s, x ∈ Q, ei ∈ E | ∀y : δ(δ(s, x ei), y) 6=⊥} of a given event sequence x ei from a prefix tree

Pr(Path(σ≤τ)), for instance from a set of sequences {x e1 e2, x e1 e3, ...} we get {e2, e3, ...},
. a map function ν(σ‖X [s, i]) = u, where u ∈ Q is a sequence of events accepted by the prefix tree

Pr(Path(σ≤τ)), and

. %(s, xei) is a function that gives the holding times associated at each word xei in a prefix tree

Pr(Path(σ≤τ)).

Now, we present the definition (2), an inclusion of a prefix tree in a GSMP. One says that a prefix tree

Pr(Path(σ≤τ)) is a particular case of a GSMP, or in other words a stochastic automaton. However,

we also need to ensure by definition that after the state merge, the original model remains a GSMP

(as we will see later).

Definition 2. The prefix tree Pr(Path(σ≤τ)) = (F ,Q, ρ, %, δ) for a set of multiple paths Path(σ≤τ)

is a particular stochastic automaton, i.e., PSA(Path(σ≤τ)) = (X , E ,Γ , p, p0 ,G), where

. X = Q,

. E is the set of single and unique events in the F set,

. Γ (si) = τ(s, ν(si)),

. p(s′; s, e∗) =

{
1 if δ(ν(s), e∗) 6=⊥ and ν(s′) 6=⊥
0 otherwise

,

. p0(s) = 1, and

. G is a set of distributions estimated by sample clocks associated on each event, given by function
%.

The PSA(Path(σ≤τ)) is a GSMP consistent with the sample in Path(σ≤τ). For all paths with prefix

σ≤τ there exists a corresponding execution in the GSMP that produces the same path. Now, we

introduce the definition (3) of stable equivalence relation that establish the similarity between states.

This relation that is applied statistically allows the creation of a more abstract model from a set of

paths Path(σ≤τ).4

4 The size of model at each equivalence iteration between states is reduced.

6

Definition 3. Let M = (X , E ,Γ ,p, p0 ,G) be a stochastic automaton, a relation R ⊆ X ×X is said

to be a stable relation if and only if any s, s′ have the following three properties,

|Γ (s)| = |Γ (s ′)| (8)

there is a one to one correspondence f between Γ (s) and Γ (s ′),

if ∃e ∈ E and ∃n ∈ X such that p(n; s, e) > 0, then

∃n′ ∈ X such that p(n′; s′, f(e)) > 0, (9)

G(s, e) ∼ G(s′, f(e)), and (n, n′) ∈ R

and

if ∃e ∈ E and ∃n, n′ ∈ X such that n 6= n′ ,

p(n; s, e) > 0 and p(n′; s, e) > 0 then (10)

p(n; s, e) ∼ p(n; s′, e) and p(n′; s, e) ∼ p(n′; s′, e)

where |Γ (s)| is the number of feasible events in the state s, p is a probabilistic transition function,

and G is a probability distribution function. Two states s and s′ of M are said equivalent s ≡ s′ if

and only if there is a stable relation R such that (s, s′) ∈ R.

With the application of the definition (2), a loop transition can be produced when two states are

merged in a GSMP. We need to ensure also the correctness of the state merge algorithm in order to

know that the merged states are the same, otherwise we run the risk that the established equalities

between states produce the model of an erroneous manner. So, a convergence analysis of our method

is crucial as we will see in the next section.

We show now a concrete example for the application of the definition (3). For instance, assuming

that have |Γ (s)| = |Γ (s ′)| = 2, Γ (s) = {a, b}, and Γ (s ′) = {c, d}. The equation (8) is trivially

satisfied, i.e., the feasible event set have the same size. However, the equation (9) and (10) is not

trivially satisfied. To be satisfied we need to conclude that G(s, a) ∼ G(s′, c) and G(s, b) ∼ G(s′, d),

or G(s, a) ∼ G(s′, d) and G(s, b) ∼ G(s′, c) is true, if G(s, a) ∼ G(s, b), G(s, a) ∼ G(s′, c) or

G(s, a) ∼ G(s′, d) then p(n; s, a) ∼ p(n′; s′, b), p(n; s, a) ∼ p(n′; s′, c), p(n′′′; s, a) ∼ p(n′′′; s′, d)

respectively, otherwise a Bernoulli test5 is not necessary, and all states reachable by s and all states

reachable by s′ must also be a stable relation, i.e., the next states of (s, s′) also have to satisfy these

three properties.6

An existence of equal feasible event sets (Γ (s) = Γ (s ′)) created a non deterministic choice when

merged. This problem can be solved applying a deterministic merge function, as follows:

While ∃s, x ∈ Q and ∃e ∈ E such as s′, s′′ ∈ σ(s, x e), merge(s′, s′′) (11)

The merge shall be made recursively until no more non-deterministic event transitions occur. We

describe with a brief example the application of the equation 11. Let τ(s, x ν(s0)) = {e} and

τ(s, x ν(s′0)) = {e} be two non-deterministic transitions from s1 and s2 labeled with same event

e, respectively. Assuming that s0 is merged in s′0, we get a new non-deterministic choice between s1
and s′1 until to the end of the paths. Therefore, we need to apply the merge recursively until there

are only deterministic choices. If the remaining paths are equal then one of them is removed.

5 To test if two distributions have the same probability or follows the same Bernoulli distribution.
6 In the definition (3), the real event identifiers are not necessary but we need to know that the sets of

feasible events have associated for each event the same clock distribution.

7

Algorithm 1: Scheduler estimator (SE)

input : A Path(σ≤τ) and a Pt(Path(σ≤τ)) = (F ,Q, ρ, %, δ).
output: The Pt(Path(σ≤τ)) with replaced old clocks by original values of clocks.

for n← 1 to |Path(σ≤τ)| do // For all paths n

for l← 2 to |σn| do // For all nodes l of path n

for p← l to 1 do // Decrement p
if ¬ (σn‖E [s, l] ∈ τ(ν(σn‖X [s, p])) ∧ |τ(ν(σn‖X [s, p]))| > 1 ∧
σn‖E [s, p] 6= σn‖E [s, l]) then

p← p + 1;

break;

if σn‖X [s, p] 6= σn‖X [s, l] then

Val← 0;

for t← p to l do // Estimating

Val← Val + σn‖G[s, t];

if σn‖X [s, t] = σn‖X [s, l then break;

replace(Pr(Path(σ≤τ)), ν(σn‖X [s, l]),Val);

3.2 Inferring the state age structure

The considered stochastic process, the GSMP, requires a state age memory structure. This state

age memory, normally identified as a scheduler, allows the use of different continuous distributions

to govern the inter-event times, i.e., the inter-event times between events of a GSMP might not be

distributed with same distribution. It is not true in continuous-time Markov processes where the

inter-event times follow always an exponential distribution. Nevertheless, the event scheduler is a

data structure that allows to simulate the next event to be triggered at each step.

We introduce the notion of scheduler estimation in order to calculate the historic clock values for

each event. Thus, we reconstruct values sampled from new clocks to estimate the events distribution

of the model that produces those executions. For instance, supposing that have two events a and b

that can be triggered in a state s0, where s0 is the initial state of the model, and there are two random

variables Xa ∼ E(0.2) and Xb ∼W (1, 0.1) associated to each event. The events a and b begin labeled

as new clock and therefore two samples are given by random variables, respectively, Xa and Xb. Given

the samples xa = 1.2 and xb = 0.5 from their respective distributions, the event b wins automatically.

Next, the clock value of event b is subtracted and is stored with the value 1.2− 0.5 = 0.7 and a new

clock is sampled to b. Then, the event a wins with value 0.7 versus the event b with new clock 1.4.

We may calculate, therefore, the original value of the event a from the produced sample execution

{s0, (b, 0.5), s1, (a, 0.7), ·} summing inter-event times between a and b, such that 0.5+0.7 = 1.2. Thus,

we may say that the value sampled in state s0 for the event a has the value 1.2, what is true.

Although the above presented scheme can be extended recursively to any finite sample execution,

we need to clearly identify the new clocks and old clocks for any path. Suitable for that, we present the

scheduler estimator algorithm which reconstructs the clock history structure. However, only the new

clock samples are suitable to predict the distributions associated to each event in order to check the

definition (9) as we will see later. The estimation process happens due to the existence of a relationship

(i.e., a map function ν) between sample executions Path(σ≤τ) and the prefix tree Pt(Path(σ≤τ))

that is constructed from the same sample executions. Informally, we say that the map function ν

associates a piecewise-path and a prefix tree node. The algorithm 1 has a particular order notation

upon a set of paths Path(σ≤τ) with prefix σ≤τ that is described as follows:

. σn is the nth path Path(σ≤τ), where 0 < n ≤ |Path(σ≤τ)|, and

. σn,l is the lth piecewise of path n, where 0 < l ≤ |σn|,

8

Algorithm 2: Probabilistic similarity of states (PSS)

input : A Pt(Path(σ≤τ)) = (F ,Q, ρ, %, δ), and a type I error α between [0; 1].

output: A stochastic timed automaton M.

M = PSA(Pt(Path(σ≤τ))) ; // See definition (2)

attempt← 1;

while attempt > 0 do

attempt← 0;

C ← clusterize(M);

for n← 1 to |C| do
for k← 1 to |Cn| do

x← k + 1;

while Cn,x 6= Cn,|Cn| do

if is active(Cn,x) then

if similar(Cn,k, Cn,x, α) then

dmerge(M, Cn,k, Cn,x, ·, ·);
inactivate(Cn,x);

attempt← attempt + 1;

x← x+ 1;

where a variable between two symbols (’|’) denotes its size. We explain, in the following, how the

algorithm 1 estimates the original sampled clock values. First, the algorithm begins by traversing

each path of sample executions set in a bottom-up order to know if the current event can be triggered

by a clock with a label new clock or an old clock. In this step, we know that an old clock is valid when

the successor nodes have this event activated, otherwise it is labeled as inactive clock. The algorithm

goes to the predecessor node of the current node recursively, always in one sample execution, until

we have encountered a possible inactive clock. When an inactive clock is encountered for the current

event, in state s., this implies that this event e cannot in τ(s.), which is an active event set for a

state s.. Therefore, in the worst case the first state (s0) of the sample execution may be encountered.

Given this element we can reconstruct the original clock value by the sum of the values between the

found state (s. or s0) and the current state. Lastly, we replace the old clock value by the estimated

original clock value.

3.3 Testing the similarity of states statistically

A prefix tree is given with reconstructed samples from the previous SE algorithm. Thus, a test to

know that two distinct states in a GSMP are similar is needed. If there are, we need to merge them in

only one state (a state merge paradigm). The state similarity estimation allows to test if both states

are equal, merge them, and construct a deterministic stochastic timed automaton. The algorithm 2

allied with dependent functions represented by algorithms 3, 4 and 5 establishes a new methodology to

learn GSMPs, which are processes that hold a semi-Markov property. We call the presented solution,

in a more abstract manner, as model identification.

The probabilistic similarity of states algorithm. The algorithm 2 have notations associated to the

ordered set of clusters and also between these cluster elements, as follows:

. the set of n ordered clusters C, classified by events, are denoted by Cn, and

. Cn,k is the kth element of cluster Cn, for each 1 ≤ n ≤ |C| and 1 ≤ k ≤ |Cn|.

9

Algorithm 3: similar function

input : Two states s1 and s2, and a type I error α.

output: Boolean, true if it is similar, or otherwise false.

Γ1 ← τ(s1); Γ2 ← τ(s2);

if |Γ1 | 6= |Γ2 | then return false;

for each e1 in Γ1 do

while |Γ2 | > 0 do

e2 ← get(Γ2);

Fn1 = T (%(s1e1)); Fn2 = T (%(s2e2));

if
√

n1n2

n1+n2
sup
x
|Fn1

(x)− Fn2
(x)| > Kα then

if similar(δ(s1e1), δ(s2e2), α) 6= true then

return false;

continue;

put(Γ2 , e2);

for each e1, e2 in Γ1 such that s1 e1 ∼ s1 e2 do

if |%(s1 e1)− %(s1 e2)| >
√

1
2

log 2
α

(
1√
n1

+ 1√
n2

)
then

return false;

if |Γ2 | < 1 then return true; else return false;

The clustering function clusterize produces groups of elements C with a selection based on the fea-

sible event set τ(s.) for each state s. ofM, whereM at first attempt is equal to PSA(Pt(Path(σ≤τ))).

The is active and inactivate functions allow that only the prefix tree nodes that were not merged

are used, and the function similar test the similarity between two feasible event sets τ(Cn,k) and

τ(Cn,x).

The PSS algorithm shall be subdivided in three blocks. The first block collects the clusters of

states with same feasible event set (given by the equation 8) until there is no more equivalent states

(i.e., while attempt > 0) in an iterative process, thereby implies that the feasible event set of prefix

tree nodes may change along the execution (change made by the dmerge function).7 The second block

tests the similarity of two states applying the third block if the states are both similar. Thus, we use

the similar function defined in algorithm 3 that uses the Kolmogorov-Smirnov test [6, p. 552] to

decide if two empirical probabilistic distributions are equal or not. In general, it verifies through a

statistical equivalence whether there are a one to one correspondence of events between two feasible

event sets satisfying thereby the equation 9. The third block consists in a merge process, where

our algorithm 2 merges the equal states by the function dmerge. It allows the construction of the

stochastic timed automaton as well as the solution to the problem of non-deterministic state merge,

i.e., when two states have the same set of events.

The function similar (algorithm 3). The similarity between two feasible event sets Γ1 and Γ2 within

the type I error α is solved by the algorithm 3. Thus, the Kolmogorov-Smirnov test (K-S test) [6,

p. 552] is applied to test if two distributions are or are not the same (i.e., compare two empirical

cumulative distribution functions). Let {Xn}n≥1 and {Yn}n≥1 be two independent successions of

7 A performance comparison between our algorithm and the others cited in the state of the art [1,11] may be

made. We conclude that their computational structure is quite similar, but the performance of our method

is better due to a selection method based in clusters, which reduces drastically the number of comparisons.

Our method can be implemented as a parallel algorithm to increase the performance and to support more

complex systems.

10

independent real random variables with common distribution functions, respectively F1 and F2. The

K-S test allows testing two hypothesis,

H0 : F1(x) = F2(x), for all x ∈ R against (12)

H1 : F1(x) 6= F2(x), for some x ∈ R

using the statistic test,

Tn1,n2 =

√
n1n2
n1 + n2

sup
x∈R
|Fn1(x)− Fn2(x)| (13)

where Fn1
and Fn2

denotes respectively the empirical distribution functions associated to the samples

(X1, ..., Xn1
) and (Y1, ..., Yn2

). The random variable Tn1,n2
converges to the Kolmogorov distribution

whose values are tabled in [6, p. 555]. For a significance level α, we reject H0 when the observed

value T̂n1,n2 of the test statistic for the particular samples (x1, ..., xn1) and (y1, ..., yn2) exceeds the

value Kα, with G(kα) = 1−α. The two empirical cumulative distributions Fn1
and Fn2

are estimated

using the function T . This function estimates the empirical distribution from a set of sample clocks

as follows:

Tn (x) =
clock value of z1, z2, ..., zn that are ≤ x

N
(14)

where x is the threshold of the cumulative function, and zi for all events i ∈ D and D ⊆ E are the

sample clock values.

We now describe the algorithm 3. This algorithm begins by the comparison of two feasible event

sets Γ1 and Γ2 . The comparison shall be established by a one to one relation between events in

feasible sets. If the relationship between events is complete then the states are similar and so it

allows the check of equation 9. However, there is another particularity in this algorithm that is when

two events have the same ’id’ in the feasible event set, for two states respectively. For instance, this

indicate that the event is triggered as e but there are different probabilities in transition probability

matrix. To solve this, we construct a hypothesis test for two Bernoulli distributions using Hoeffding

bounds in order to know if the occurrence probabilities are the same (i.e., verifies the equation 10).

This method is the same to that in [11]. The method checks if the means %(s1 e1) and %(s1 e2) of two

Bernoulli distributions are statistically different or not.8

The function dmerge (algorithm 4). The non-deterministic choices caused by the state merge tech-

nique (as produced by the algorithm 2) shall be solved with the function dmerge, described in the

algorithm 4. This means that two paths starting at the same event are merged recursively to only

one path. The recursivity of function dmerge is defined by three stop clauses or base cases, as follows:

1. two states s1 and s2 are equal,

2. the state s2 does not have any active event in their feasible event set, and

3. the state s1 or state s2 is merged in previous steps of recursion.

Otherwise, a recursive call is always made, characterized by a set of rules which reduce all other cases

toward the base case.

The data structures tree and heap are used in algorithm 4 as auxiliaries data structures. The

pt get, pt find, pt add, and pt remove are functions that describe the classical operations in a

auxiliary prefix tree, as name indicates to get the equivalent state that was merged, find, add event

sequences (states) and remove event sequences (states). The heap put and heap get also are functions

that describes a classical heap operations.

A heuristic shall be applied in the function dmerge. This allows that the state merge converges

into the pretended model more quickly. The heuristic is based on the degree of the states, therefore,

8 Note that the get and set functions are both known functions in set theory. get retrieve a element from

a set, and set put an element in a set.

11

Algorithm 4: d merge function

input : A stochastic timed automaton M, two states s1 and s2, a heap h, and a prefix tree t.

output: A deterministic stochastic timed automaton M.

if degree[s1] > degree[s2] then state swap(M, s1, s2);

if s1 = s2 then return; // The recursive stop condition;

if pt find(t, s1) or pt find(t, s2) then

heap put(h, (s1, s2));

return;

removed[s2] = True; // Set the state s2 as removed in M;

pt add(t, s1); pt add(t, s2); // Add s1 and s2 states to the prefix tree t;

Update states from M that have a transition pointing to state s2 for state s1;

if |τ(s, s2)| > 0 then // There exists at least one active event from s2;

for each event e in τ(s, s2) do

if e ∈ τ(s, s1) then
d merge(M, s1 e, s2 e, h, t);

else
psa insert(M, s1, e);

pt remove(t, s1); pt remove(t, s2); // Remove s1 and s2 states from t;

while count[h] > 0 do

tuple← heap get(h);

if pt find(t, s1) or pt find(t, s2) then break;

if removed[first[tuple]] then

tuple = (pt get merged(first[tuple]), second[tuple]);

if removed[first[tuple]] = False and removed[second[tuple]] = False then

d merge(M, first[tuple], second[tuple], h, t);

the states with lower degree are merged in state with higher degree, which indicates that the state

with lower degree is removed. Then, every state that is removed from the deterministic stochastic

timed automatonM is labeled as removed, and s1 and s2 are added to another prefix tree t in order to

avoid merge them more than once time in the recursion path. The pt remove indicates that the states

can be merged in the following recursion paths. This allows to block the state merge when occurs a

state that depends of the previous state that is merging, i.e., occurs normally when there is a loop

transition between the previous state s1 and the new state s2 which depends of s1. In addiction, an

updating for the states inM that point to removed state s1 are needed. The function pt get merged

allows their update by returning the new pointers of similar states (i.e., that were merged) at the

current recursivity step. Lastly, if there is at least one element in the heap h then merge the pair of

states which cannot be merged in the previous steps. This solves the recursive merge dependence.

3.4 Inferring event distributions using maximum likelihood

To conclude the presentation of the learning method, we need to introduce the concept of distribu-

tion discriminant and its selection criteria. Given a prefix tree without similar states, we need to

estimate the parameters for each event distribution (i.e., an empirical distribution) that better fits

the sample data. It should therefore be used the maximum likelihood estimator (MLE) to estimate

the distribution parameters and a selection criteria as the maximum log likelihood to select the better

distribution with properly estimated parameters [7].

We describe the algorithm 5 that estimates the distribution parameters using the maximum

likelihood estimator (MLE) for continuous distributions such as: Exponential, Weibull and Log-

12

Algorithm 5: Estimation function

input : A deterministic stochastic timed automaton M.

output: A deterministic stochastic timed automaton M with associated random variables and those

distributions.

for each n in Q such that removed[n] = 0 do

for each e in τ(s, n) do

Ge ←
∫∞
0
arg max

fd∈D
{ln [Ld(%[n e])]};

Normal. However, there are other continuous distributions, like Rayleigh, Normal (without negative

part), that we are not described in detail in this report, but that can be applied upon this algorithm.

The MLE from a distribution d is defined by the maximization of the likelihood function defined by∏n
i=0 fd (xi | θ) regarding the set of parameters θ. The selection criteria (described in detail in [7]) is

based in log likelihood which may be calculated by the expression,

ln [Ld (θ | x1, ..., xn)] =

n∑
i=0

ln [fd (xi | θ)] (15)

where Ld is the maximized likelihood function, θ is the set of estimated parameters for a distribution

fd where Ld is maximized, and x1, ..., xn are samples to be estimated (in this case, they are values

of clocks associated to an event that follows a specific distribution to be estimated). This selection

criteria is defined by the maximum value of the calculated log likelihood, i.e.,

ln [Ldm] > max {∀d ∈ D s.t. d 6= dm then ln [Ld]} (16)

where D is a set of distributions in analysis, and ln [Ld] the log likelihood of distribution d. The

distribution with maximum likelihood is denoted by dm ∈ D. Thus, two or more distributions are

needed to make a decision with this criteria.9 In addition, this method estimates the distribution

that, in the limit, will be equal to the distribution that produces these samples to learning.

4 Model identification in the limit

In order to guarantee the correct model identification, we have to show that the GSMP that our

learning algorithm produces is similar to the model that was used to generate the samples. We

describe the mandatory requirements to the correct model identification, composed by the following

three clauses:

1. the prefix tree constructed by sample executions provided by a GSMP, Pt(Path(σ≤τ)), is also a

GSMP,

2. the sample executions to learn have the minimum information to form the model, and

3. the application of a state merge upon Pt(Path(σ≤τ)), in the limit, converges to one similar model

that identifies the Path(σ≤τ).

Indeed, the correctness of the learning algorithm depends essentially of the correctness of the state

merge procedure, since that the definition 2 is correct by construction and a structurally complete

sample to learn is assumed. This means that with the definition 2 we guarantee the first clause, and

that we should focus attention in the other two remaining clauses. For the second clause, we need to

9 The distributions of set D are distributions with a parameter or a set of parameters estimated by the MLE

method previously.

13

ensure that the sample executions to learn forms a structurally complete sample (SCS). This is known

as the problem of insufficient data training and when this occurs is obviously impossible to learn the

model that produces incomplete sample executions. For the third clause, we need to ensure that, in

the limit, the error of merge two non equivalent states tends to zero.10 Assuming these three clauses

satisfied, we prove that the model that is learned by our learning algorithm, in the limit, behaves as

the original stochastic system.

4.1 Ensure a structurally complete sample

The common methods to achieve a structurally complete sample like reachability analysis are not

enough when the model is not known. In this case acquire a SCS is really a great challenge and it

is not trivial. It turn, the selection of termination probability for a sample execution that allows to

achieve a SCS upon unknown models. Moreover, the probability measure of a path from a unknown

model is not trivially ensured.

A SCS is a sample composed by a set of paths that explores every feasible transition and every

reachable state. This structure solves a common problem known as insufficient data training to learn

a model, i.e., only with paths of infinite size is guaranteed that for any model, the learned model

eventually converges to an equivalent. With a SCS, we ensure that the minimum information needed

to learn a model from sample executions is achieved. In order to ensure that a set of paths relying on

SCS, we introduce a termination probability pt as a solution. The simulation technique is described,

as follows:

1. simulate the SDES M ,

2. terminate when probability measure of a path σ≤τ of execution is less than pt, i.e.,

µ(C(σ≤τ , 〈Ek, Y ∗k 〉 , Xk, ..., 〈En, Y ∗n 〉 , Xn)) < pt, and

3. apply recursively the steps 1. and 2. to generate more sample executions.

We simply note that the solution method based on termination probability has weaker correctness

guarantees than reachability analysis. It also places a greater responsibility on the user, who has to

choose a good value for pt. The automatic achievement of pt is not trivial, and it is out of the scope

of this report.

4.2 The state merge error, in the limit, converges to zero

Assuming the checking of the two first clauses, our learning algorithm can only make errors when

testing the similarity between two states. In addiction, the errors α and β between two event

distributions of the K-S test are defined, as follows:

. α is the type I error of H0 be rejected, where in fact H0 should not be rejected, and

. β is the type II error of H1 be accepted, where in fact H1 should be rejected.

This means that the state merging errors αs and βs are defined by the multiplication of the errors

made by the distribution comparison of each event αs =
∏k
i=1 αi and βs =

∏k
i=1 βi, where k is the

number of similar events. Moreover, the model errors α∗ and β∗ are equal to the multiplication of

the error αs and βs used for each state merged α∗ =
∏n
i=1 αs[i] and β∗ =

∏n
i=1 βs[i], where n is the

number of merged states.

We present, in the following, two propositions about the bounds of type II error.

Proposition 1. Suppose the Kolmogorov-Smirnov test for two samples with size n1 e n2 respectively,

and a significance level α. For sufficiently large samples, i.e., when n1 → ∞ and n2 → ∞, β tends

to zero.
10 The error that does not merge two equivalent states is guaranteed by the Kolmogorov-Smirnov test.

14

In the following we present a sketch of the proof. The proof of this proposition is based on the

following facts: by the theorem of Glivenko-Cantelli when H0 is true and n1 and n2 tend to infinity,

sup
x∈R
|Fn1(x) − Fn2(x)| converges certainly to zero. So, from the uniqueness of the limit, when H0 is

true and n1 →∞, n2 →∞, we have that√
n1n2
n1 + n2

sup
x∈R
|Fn1

(x)− Fn2
(x)| (17)

tends certainly to +∞. Therefore, in the validity of H1, the probability of rejecting H0 tends to 1,

which was to be demonstrated.

We know that the convergence of k-S test is exponential. Moreover, more details about the

proposition that we present here and also β error boundaries can be seen in [22] and [12].

Proposition 2. Supposing that we assume the type II error β, in the limit, for the K-S test convergent

to zero, a multiplication of the type II error
∏k
i=1 βi, in the limit, also tends to zero.

This proposition is trivially satisfied. Given the limit law of multiplication, we know that the

limx→a f(x)·g(x) = limx→a f(x)·limx→a g(x). Thus, due to f(x) = g(x), then the limit is maintained.

5 Tool and proof of concept

The presented learning algorithm was implemented in a tool that allows the learning and the analysis

of a set of case studies, such as: task schedulers, land mobile satellite communication systems, and

network traffic model estimation. The practical example that is showed in this report is the learning

and analysis of a scheduler for a multi-processor.

5.1 SDES toolbox for Matlab

We have developed a SDES toolbox11 that applies the presented learning algorithm. The toolbox was

developed to analyze and learning GSMPs. It also supports the model description by a event-driven

language that can be directly used as input model language to a GSMP model checker [19]. We also

developed a graphical user interface in order to simplify and make a user friendly interface. The SDES

toolbox also have command line interface.

The framework was developed in C and C++ language. These languages are interconnected with

the Matlab engine and the interface functions are called in the Matlab console using the known

Matlab language. The GUI is created with Qt toolkit for binding C++ language.

5.2 Stochastic analysis of a scheduler for a multi-processor

An optimal scheduler design for a multi-processor system with uncertainty in tasks duration is difficult

to achieve and is clearly a great challenge [15]. In the figure 1, we present the model from which is

possible to achieve statistically answers about the worst case sequence and the optimal case sequence,

in particular, of a two-processors scheduler system. There are in this system two processors where

we can run two tasks at same time. Supposing that there are three tasks {a, b, c}, we can only

run two tasks at same time and the other one when one of the tasks is done. Thus, the presented

model have eleven states that describe the state of the two processors at time, and the tasks that

were done. The scheduler can make three choices, begins with (a, b), (a, c), or (b, c). The event init

of the model, representing these choices: p([, ab, c]; [, , abc], init) = 1
3 , p([, ac, b]; [, , abc], init) = 1

3 , and

p([, bc, a]; [, , abc], init) = 1
3 respectively. These choices bounds the time (i.e., worst and optimal) of the

11 Available from http://desframework.sourceforge.net/

15

, , abc

, ab, c

, ac, b

, bc, a

A, bc,

B, ac,

C, ab,

AB, c,

BC, a,

AC, b, ABC, ,

init,1/3

init,1/3

init,1/3

a

b a

c

b

c

a

c

b

c b

a

c

a

b

102 103 104
0

2

4

6

Number of samples

T
im

e
(s

)

Performance analysis

0 200 400 600 800 1,000
0

5

10

Number of samples

N
u
m

b
er

o
f

st
a
te

s
Convergence analysis

Fig. 1. Learning GSMP of a multi-processor scheduler with uncertainty

execution for these three tasks. If we have a scheduler that is completely random (i.e., the probability

of events {ab, ac, bc} are equiprobable) where the probability for each choice is equal then we select the

path with maximum probability which means that is the better sequence. Thus, if we have a scheduler

that begins with the optimal tasks then we have a optimal scheduler for these tasks. However, we

need to describe two situations, as follows: if we use only exponential distributions the chose is easy,

the rate of distribution identifies the order (lower expected value is the more probable), but otherwise

if have different continuous distributions the ordering selection is not so trivial. This is the case

where our method solves. For instance, given init : Tinit ∼ Exponential(1), a : Ta ∼Weibull(0.1, 1),

b : Tb ∼ Exponential(0.4), and c : Tc ∼ Log-Normal(0, 0.25), respectively.

Given the sample executions that form a SCS, we have compared the performance and the

convergence of our algorithm when sample executions grow, on the figure 1. We can see in this

convergence graph that for one thousand sample executions, the model converges into a model with

same number of states. According to the correctness of our learning algorithm, we can ensure that

if we grows infinitely the model converges certainly to the original model. However, we verify, in

this example, that the learned model with our algorithm acquired with approximately nine hundred

sample executions have the same event language of the original model. This process was made in one

machine with an Intel Core 2 Duo CPU T7500 @ 2.2Ghz that have 4Gb of memory.

16

An interesting point in this model is that the path with more probability to occur is the optimal

case execution and the path with lower probability is the worst case execution, when we have a

random scheduler.

6 Conclusion and Future Work

We have presented a novel learning algorithm to learning GSMPs from deployed stochastic systems

for which we do not know the model before-hand. The learn algorithm can be used to verify the

deployed systems using existing probabilistic model-checking tools. We also have developed a toolbox

for Matlab that applies the techniques described in this report. We also show with our experiment,

a scheduler analysis for multi-processor system, that stochastic automata are really capable and

scalable. We can use our algorithm for analysis of a stochastic system but also to verify or testing

it. However, one of the limitations of our work is that it may not scale up for systems having large

stochastic automata. Development of techniques that allows the approximate verification as the model

is learning may be the solution.

Acknowledgments

We would like to thank to Ana Paula Martins by the very constructive discussions about the statistical

properties of the proposed learning algorithm. We also thank to Paul Andrew Crocker by the revision

of some topics in this report, and lastly we thank to Kouamana Bousson and Thierry Brouard by the

initial answers about stochastic systems and Markov chains.

References

1. Rafael C. Carrasco and Jose Oncina. Learning deterministic regular grammars from stochastic samples

in polynomial time. RAIRO (Theoretical Informatics and Applications, 33:1–20, 1999.

2. Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event Systems. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 2006.

3. Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, and Zheng Wang. Time for statistical

model checking of real-time systems. In CAV, pages 349–355, 2011.

4. André de Matos Pedro. Learning and testing stochastic discrete event systems, 2011.

5. André de Matos Pedro, Maria João Frade, Ana Paula Martins, and Simão Melo de Sousa. Learning

generalized semi-Markov processes: From stochastic discrete event systems to testing and verification.

INForum2011 - SOFTPT, pages 160–165, 2011.

6. Morris H. DeGroot. Probability and Statistics. Addison Wesley, 2nd edition, 1989.

7. Arabin Kumar Dey and Debasis Kundu. Discriminating among the log-normal, weibull, and generalized

exponential distributions. IEEE Transactions on Reliability, 58(3):416–424, 2009.

8. P. W. Glynn. A gsmp formalism for discrete event systems. Proceedings of The IEEE, 77:14–23, 1989.

9. E. Mark Gold. Language identification in the limit. Information and Control, 10(5):447–474, 1967.

10. Mor Harchol-Balter and Allen B. Downey. Exploiting process lifetime distributions for dynamic load

balancing. ACM Trans. Comput. Syst., 15:253–285, August 1997.

11. Christopher Kermorvant and Pierre Dupont. Stochastic grammatical inference with multinomial tests. In

Proceedings of the 6th International Colloquium on Grammatical Inference: Algorithms and Applications,

ICGI ’02, pages 149–160, London, UK, UK, 2002. Springer-Verlag.

12. Jerome Klotz. Asymptotic efficiency of the two sample Kolmogorov-Smirnov test. Journal of the American

Statistical Association, 62(319):932–938, 1967.

13. Axel Legay, Benôıt Delahaye, and Saddek Bensalem. Statistical model checking: An overview. In RV,

pages 122–135, 2010.

14. Ming-Wei Lu and Cheng Julius Wang. Weibull data analysis with few or no failures. In Hoang Pham,

editor, Recent Advances in Reliability and Quality in Design, pages 201–210. Springer London, 2008.

17

15. Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer Publishing Company,

Incorporated, 3rd edition, 2008.

16. Koushik Sen, Mahesh Viswanathan, and Gul Agha. Learning continuous time markov chains from sample

executions. In Proceedings of the The Quantitative Evaluation of Systems, First International Conference,

pages 146–155, Washington, DC, USA, 2004. IEEE Computer Society.

17. William J. Stewart. Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of

Performance Modeling. Princeton University Press, Princeton, NJ, USA, 2009.

18. Wei Wei, Bing Wang, and Don Towsley. Continuous-time hidden Markov models for network performance

evaluation. Perform. Eval., 49:129–146, September 2002.

19. H̊akan L. S. Younes. Ymer: A statistical model checker. In CAV, pages 429–433, 2005.

20. H̊akan L. S. Younes, Edmund M. Clarke, and Paolo Zuliani. Statistical verification of probabilistic

properties with unbounded until. In SBMF, pages 144–160, 2010.

21. Hakan Lorens Samir Younes. Verification and planning for stochastic processes with asynchronous events.

PhD thesis, Pittsburgh, PA, USA, 2004.

22. C. S. Yu. Pitman efficiencies of Kolmogorov-Smirnov test. The Annals of Mathematical Statistics,

42(5):1595–1605, 1971.

18

