
Lightweight Fault-Tolerance
for Peer-to-Peer Middleware

(extended version of C-EMNs’10 paper)

Rolando Martins
EFACEC/CRACS & INESC-Porto LA,

Faculdade de Ciências, Universidade do Porto, Portugal
e-mail: rolando.martins@efacec.com

Priya Narasimhan
Carnegie Mellon University
e-mail: priya@cs.cmu.edu

Luı́s Lopes, Fernando Silva
CRACS & INESC-Porto LA,

Faculdade de Ciências, Universidade do Porto, Portugal
e-mail: {lblopes,fds}@dcc.fc.up.pt

Technical Report Series: DCC-2011-01

Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

Rua do Campo Alegre, 1021/1055,
4169-007 PORTO,

PORTUGAL
Tel: 220 402 900 Fax: 220 402 950

http://www.dcc.fc.up.pt/Pubs/



2

Lightweight Fault-Tolerance for Peer-to-Peer Middleware
(extended version of C-EMNs’10 paper)

Rolando Martins∗, Priya Narasimhan†, Luı́s Lopes‡, Fernando Silva‡

∗EFACEC/CRACS & INESC-Porto LA, Faculdade de Ciências, Universidade do Porto, Portugal

e-mail: rolando.martins@efacec.com
†Carnegie Mellon University

e-mail: priya@cs.cmu.edu
‡CRACS & INESC-Porto LA, Faculdade de Ciências, Universidade do Porto, Portugal

e-mail: {lblopes,fds}@dcc.fc.up.pt

Abstract

We address the problem of providing transparent,
lightweight, fault-tolerance mechanisms for generic peer-
to-peer middleware systems. The main idea is to use the
peer-to-peer overlay to provide for fault-tolerance rather
than support it higher up in the middleware architecture,
e.g. in the form of services. To evaluate our approach we
have implemented a fault-tolerant middleware prototype
that uses a hierarchical peer-to-peer overlay in which the
leaf peers connect to sensors that provide data streams.
Clients connect to the root of the overlay and request
streams that are routed upwards through intermediate
peers in the overlay up to the client. We report encour-
aging preliminary results for latency, jitter and resource
consumption for both the non-faulty and faulty cases.

I. Introduction And Motivation

The development and management of large-scale infor-
mation systems for application domains that require real-
time and fault-tolerant computing is pushing the limits of
the current state-of-the-art in middleware frameworks. Re-
quirements for faster development cycles, software reuse,
greater scalability, dependability and maintenance motivate
the research and use of decentralized middleware-based
architectures to serve as mediators between applications
and the underlying operating systems, network protocol
stacks, and hardware.

Fault-tolerance support makes such systems capable
of detecting certain categories of failures (e.g. hardware

failure, network connectivity) and recover from these
without, or with minimal, disruption of services. Real-time
support, on the other hand, allows for the implementation
of time critical operations that must be completed with
a high level of priority or within a rigid time frame. To
provide for such features a system must be resource aware
and capable of directly controlling resource distribution at
a very fundamental level (e.g. network bandwidth, CPU
reservation). Middleware systems that combine both of
these features pose quite formidable implementation chal-
lenges given the difficulty in managing system resources
for real-time tasks in the presence of resource hungry fault-
tolerance services.

Research in the integration of fault-tolerance and real-
time has focused mostly on CORBA and its siblings,
for which specifications have been proposed for Fault-
Tolerant [13, 14] and Real-Time [9, 15, 17] support. Their
integration, however, is difficult. The idea behind FT-
CORBA is to implement the fault-tolerance mechanisms
as a service or a set of services within CORBA itself. The
advantage of this approach is that it provides transparent
(i.e. network independent) fault-tolerance mechanisms.
The price however is high, as it introduces overhead
due to cross-layer service protocols, long code paths and
resource consumption. The additional overhead makes the
integration of real-time support difficult or impossible.
MEAD [12] provides transparent fault-tolerance at a some-
what lower-level using interceptors that capture IIOP mes-
sages between the applications and the ORB, and redirect
them to internal replication and logging-recovery managers
that provide fault-tolerance mechanisms. Another approach
is followed by TAO [18] that uses request redirection in
a strict client-server fashion to implement non-transparent



3
fault-tolerance mechanisms. In all these systems, the strict
adherence to the client-server paradigm severely limits
their overall scalability.

In peer-to-peer networks research has focused on ar-
chitecture, protocols and algorithms that address fault-
tolerance, QoS, and some aspects of real-time, for dis-
tributed file-sharing systems [5, 6, 10, 11]. Some other
work has focused on the specialized case of providing real-
time video and/or audio streaming capabilities [8].

In this paper we argue that a lightweight implemen-
tation of fault-tolerance mechanisms in a middleware is
fundamental for the successful integration of soft real-
time support. Our approach is novel in that it explores
peer-to-peer networking as a means to implement generic,
transparent, lightweight fault-tolerance support. We do this
by directly embedding fault-tolerance mechanisms into
peer-to-peer overlays, taking advantage of their scalable,
decentralized and resilient nature. For example, peer-to-
peer networks readily provide the functionality required to
maintain and locate redundant copies of resources. Given
their dynamic and adaptive nature, they are promising
infra-structures for developing lightweight fault-tolerant
and soft real-time middleware.

II. Problem Statement

Our goal is to validate the thesis that using low-level
networking from peer-to-peer overlays in a middleware
architecture enables the implementation of transparent,
generic and lightweight fault-tolerance mechanisms. We
present a prototype for such a system based on a hi-
erarchical peer-to-peer overlay, P3 [16], in the lines of
Gnutella [7] and P-Grid [1]. Using a worst case scenario
overlay configuration, we estimate latency, jitter and re-
source consumption for the non-faulty case to establish
a baseline for the overhead associated with the fault-
tolerance mechanism. We also evaluate latency and jitter in
the presence of incremental random peer failures (crashes).

The remainder of the paper is structured as follows.
Section III describes the overlay architecture used in the
middleware prototype. Section IV describes the experimen-
tal setup, the metrics used for evaluation, and the results
we have obtained. Section V ends the paper with the
conclusions and a brief description of current work.

III. The Overlay Architecture

This section describes the networking layer of the
prototype middleware used to validate our fault-tolerance
implementation. The prototype has been implemented in
Java.

A. Architecture

The networking layer of the middleware is a peer-to-
peer overlay based on the P3 framework [16] (Figure 1).

Fig. 1. A P3 peer-to-peer overlay.

The peers are responsible for maintaining the organi-
zation of the overlay and for providing access points to
the overlay for external peers. Peers in the overlay may
connect to external sensors dedicated to data collection
and its dissemination. Client peers act as data sinks in
the network. Requests for data with given QoS parameters
(e.g. maximum latency) are issued from client peers and
the overlay routes the relevant data packets from the
sensor peers up to the client peers, where it is eventually
processed. Each node in a P3 network corresponds to a
cell, a set of peers that collaborate to maintain a portion
of the overlay. Cells are logical constructions that provide
overlay resilience and are central in our implementa-
tion of fault-tolerance mechanisms. Thus communication
between distinct cells is accomplished through point-to-
point connections (TCP/IP sockets) between peers in those
cells. Communication between peers within a cell uses
JGroups [2], a reliable group communication framework,
to ensure strong replica consistency for fault-tolerance.

Each peer provides two basic services. The overlay
service handles the traffic generated for the management
of the peer-to-peer overlay. In a sense it is the most
fundamental service since it provides the infra-structure
for the other service, the streaming service. The later
is responsible for the relay of data in the overlay and
includes built-in fault-tolerance mechanisms. Overlay and



4
data traffic each use a dedicated communication channel.
The overlay service has two sub-services: membership and
discovery. Resource discovery in P3 is simplified through
the use of a naming scheme for cells and peers that maps
in a simple way to their position in the overlay.

B. Run-Time Semantics

We now describe the basic run-time operations of the
peer-to-peer overlay: the construction and management of
the overlay, the establishment of client requests, the routing
of data streams, and fault-detection and recovery.

a) Building, membership and discovery: The mem-
bership mechanism allows a peer to join the peer-to-peer
overlay (Figure 2). The process starts with a request for a
binding cell. This request has to be made to the root cell,
that in turn replies with a suitable cell. Upon receiving the
reply, the joining peer binds to the cell. After a successful
bind, the peer must now request a parent peer in the cell
immediately above the current in the overlay hierarchy. If it
manages to obtain a parent peer and to successfully bind to
it, then the peer sends a join message with the newly found
parent. This message is propagated through the overlay
until it reaches the root cell. It is the responsibility of
the root cell to validate the join request and to reply
accordingly. The reply is propagated through the overlay
downwards to the joining peer. After this, the peer is part
of the overlay.

Fig. 2. Binding to the overlay.

A peer may also part with the overlay if its parent peer
fails or leaves the overlay for some reason. If this situation
arises, the peer uses the discovery service to find a new
suitable parent in the same cell of the original parent. If
this operation succeeds the peer is again part of the overlay,
otherwise it must restart the binding process described
above.

If all the peers in a cell fail then the peer-to-peer
overlay must re-structure itself, in order to maintain the
connectivity of the cell’s sub-tree.

b) Client requests: Client peers may connect to the
overlay, through the root, to request a data stream from
one or more of the sensor peers. When such a request is
made the discovery service is used to find the appropriate
sensor in the overlay. Afterwards, a path is established
from the root of the overlay to the sensor (Figure 3). Client
requests not only select data streams but also specify QoS
parameters associated with the request. These may be real-
time parameters such as the maximum allowed latency for
packets arriving from a sensor, or fault-tolerance related
parameters such as whether or not the packets should
be replicated, the type of replication, and the number of
replicas.

Fig. 3. Establishing a client-sensor path.

The need to establish this client-sensor path stems from
the fact that we are interested in later integrating real-
time support in the middleware. This will have the form
of CPU reservation mechanisms for real-time tasks in the
peers, and bandwidth reservation protocols along paths in
the overlay (involving peers and routers). To do this we
must have full control of the hardware resources along
any client-sensor path. In this paper, however, we are just
trying to evaluate the latency and resource usage due to
the built-in fault-tolerance mechanisms in the overlay and
whether this precludes the future integration of real-time
support.

c) Routing and replication: When a path is estab-
lished between a client and a sensor, each intermediate
peer that forms the path in the overlay is used to relay
data (Figure 4). In the simplest case, when no replication
is required, the peers just forward the packets to the next



5
peer in the path. If the traffic must be replicated, then
each packet generated by a sensor is tagged for replication,
and includes a unique key. Every intermediate peer in
the path to the client takes the packet and the key and
distributes copies to a number of peers in the same cell
(the number of replicas is a QoS parameter also). This
operation is done using JGroups [2] to ensure strong
replica consistency within the cell (Figure 4, left). The
use of this tool was a compromise between a less than
ideal performance and fast prototyping. Also, the moment
when this copy is performed depends on which type of
replication is being used (another QoS parameter), that is
detailed below. Finally, the peer forwards the packet and
the key to the next peer in the path. Each peer that keeps
a copy of the packet also maintains a hash table with the
corresponding keys.

For this study we have implemented two replication
strategies: active replication (based on [19]), and passive
replication (based on [4]). Other strategies have been
proposed like the semi-active replication strategy present
in Delta-4/XPA [3] and hybrids between active and pas-
sive replication [12], but here we will only consider the
aforementioned two. In its original form, the first strategy
consists in replicating the state of the service among all
non-faulty replicas, with the requests being served in the
same order in all of them. Thus, in our middleware, active
replication replicates the packets immediately on arrival
to the peer. The second strategy originally allocates one
primary replica while the all the others act as backups.
A client only communicates with the primary replica,
that in turn periodically updates its state with the state
in the backups. Thus, in our implementation of passive
replication, upon arrival the packets are stored in the peer
and periodically sent to the backup replicas. The period is
a QoS parameter of the system.

When a packet is received by the client, an acknowl-
edgment message with the key is sent in the opposite
direction, down the path. Each intermediate peer receives
the message and propagates it to the peers in the same
cell that hold copies of the message associated with the
key. This propagation is regulated by the type of the
replication strategy used. If active replication is used,
the acknowledgment is sent immediately to the cell and
each peer removes its copy of the message. Otherwise,
if passive replication is used, the peer that receives the
acknowledgment message, searches its buffered messages
for a matching key. If the key is found, the associated
message is removed (Figure 4, right). If the period of
replication is such that the acknowledgement reaches the
peer before the primary copy has been replicated in the
cell, significant processing and memory savings can be
achieved, although message losses may increase as a result
of the delayed replication (c.f. Section IV).

After negotiating the replication procedure inside the
cell, the peer then forwards the acknowledgment mes-
sage down to the next peer in the path. Eventually the
acknowledgment reaches the peer that first propagated
the data packet whose reception is being acknowledged
by the client and the send is completed. In fact, after
sending a data packet, these originating peers wait for the
corresponding acknowledgment until a timeout is reached.
If the timeout is reached the peer retries to send the
data a predefined number of times. The timeout for each
subsequent try is increased to allow for latency in the
overlay.

Fig. 4. The data routing semantics.

d) Fault detection and recovery: While a client
request is being serviced, peers in the overlay along the
established client-sensor path may fail. In this paper we
model only complete peer failures (crashes), from which
peers never recover. The prototype however also supports
other models, e.g. byzantine failures. When a peer fails, its
sibling peers in the cell and its parent peer detect that the
connection is down (Figure 5, left). This is implemented
by doing periodic pings with timeouts over the TCP/IP
sockets connecting the peers. When a fault is detected, a
replacement for the faulty peer is elected among the peers
that have copies of the messages relayed by it. The process
uses the Levenshtein distance between the peer identifiers
in the overlay [20]. The peer that computes the minimum
distance is elected. This peer recovers the copies of the
pending messages of the faulty peer and re-sends them,
thus assuming the original peer’s role in the client-sensor
path (Figure 5, right). It is possible, although very unlikely,
that more than one peer is elected in this process. This will
just result in duplicate messages being delivered and these
will be discarded by the client.

In our prototype the recovery of data can only occur
after it enters the overlay. If the peer that directly connects
to the sensor in the path fails, some data will be irrecov-
erable. The sensor will continue to stream data while the
overlay establishes an alternative path between the sensor
and the client. The amount of data lost depends on how



6

Fig. 5. Fault detection and recovery.

fast the overlay detects and recovers from the fault.

IV. Validation

The physical infra-structure we used to evaluate the
prototype consists of a cluster of four identical nodes,
equipped with Intel Corei7 920@2.67Ghz CPUs and 6Gb
of memory, totaling 16 cores and 24Gb of memory. The
physical network infrastructure was based on a 1 Gbit/s
Ethernet network with a star topology. The clients, peers
and sensors are each executed in a Java Virtual Machine
(JVM). The clients and sensors are located in the same
machine as this allows the determination of the one-
way latency and jitter for the traffic (Figure 6). The
prototype starts by building a peer-to-peer overlay with a
user specified number of peers and sensors. The peers are
grouped in cells that are created according to the rules of
the underlying P3 framework. Overlay properties control
the tree span and the maximum number of peers per cell, at
a given depth. In the experiments below, we use a overlay
with a depth of 3 (levels 0, 1, and 2), arranged as a binary
tree with 2 peers per cell, totaling 14 peers. Each of the
8 peers at level 2 is also connected to a single sensor.
Finally, a client connected to the root cell acts as the data
sink, giving a full total of 23 JVMs (running on a total of
16 cores). The data generated by the sensors is composed
of 3 types of packets: small packets (38 fps, 418 bytes),
medium packets (25 fps, 1024 bytes) and large packets
(24 fps, 4180 bytes). The sizes and frame rates are based
on typical values for audio, events and video. The packets
are mixed in the following percentages in the total traffic:

40%, 30% and 30%, respectively.

Fig. 6. The experimental setup.

e) Latency, Jitter and Resource Usage – Non-Faulty
Case: We evaluate the overhead induced by the fault-
tolerance mechanisms in the transference of data from
sensors to clients through the overlay. We do this for a
worst-case scenario: a client requests the data from up
to 8 sensors connected to the overlay. With this basic
scenario we measure the latency, jitter (per packet type)
and resource usage (total) in the absence of faults, so
that only the overhead of the routing and replication
mechanisms is measured. Also, in these runs we replicate
each packet in all peers of each cell along the path. This
again is a worst-case scenario as typically the number of
replicas can be substantially lower. The following cases
are studied: 0 streams with fault-tolerance activated and 8
without (0/8), (1/7), (4/4) and the most demanding case
(8/0) in which all streams are replicated. The results can
be seen in Table I.

Packet Latency(ms) CPU (s) Mem (MB)
large 1.70 ± 0.06

0/8 medium 1.94 ± 0.08 9.29 ± 5.95 35.36 ± 0.71
small 1.82 ± 0.07
large 1.94 ± 0.05

1/7 medium 2.18 ± 0.07 13.21 ± 8.61 39.72 ± 5.0
small 2.08 ± 0.07
large 2.58 ± 0.04

4/4 medium 2.76 ± 0.05 19.69 ± 11.52 61.62 ± 21.03
small 2.58 ± 0.07
large 3.38 ± 0.07

8/0 medium 3.58 ± 0.07 28.92 ± 11.58 91.37 ± 35.03
small 3.36 ± 0.05

TABLE I. Worst-case scenario latency and
resource usage.

The table shows that an eightfold increase in traffic
handled by fault-tolerance mechanisms (case 0/8 vs. 8/0)



7
results in approximately a twofold increase in packet
latency and jitter. In fact, the latency apparently grows
logarithmically on the number of streams replicated. The
impact in the total CPU and peak memory usage is more
important with an approximate threefold increase. The
large standard deviation in the memory values results in
part from the fact that these are peak memory usage values
provided by the JVM. Estimating the total memory usage is
difficult due to the lack of control over the JVM’s internal
activities. Another factor is the asymmetry in memory
usage between the peers at the bottom and the peers at
the top levels of the tree, the later processing far more
incoming traffic and therefore more memory. A significant
part of this CPU and memory usage is due both to JGroups
and to the large number of replicas used. There is much
room for improvement here and it is important that the
overhead seems to scale favorably with the number of
sensors.

f) Latency, Jitter – Faulty Case: Table II shows
the aggregated latency (average of the three packet types)
and jitter in the presence of peer faults (crashes) for
the previous configurations 0/8 and 8/0. The faults are
introduced randomly during the run at a predefined level
of the overlay. A fault can affect an entire cell, depending
on the location of the faulty peer. For example, a failure of
two peers can induce a cell failure if the cell is composed
of just these two peers. Otherwise, the faulty peers may
belong to different cells and each have siblings to take
over their traffic management chores. Since the faults are
random the values in the table represent an average of both
scenarios.

Level 0
#Faults 1 2

0/8 1.68±0.04 1.84±0.08
8/0 3.54±0.29 6.63±1.26

Level 1
#Faults 1 2 3 4

0/8 2.0±0.06 1.95±0.11 1.89±0.14 1.88±0.11
8/0 4.05±0.37 4.08±0.42 4.31±0.33 4.73±0.69

Level 2
#Faults 1 2 3 4

0/8 1.84±0.05 1.82±0.12 1.91±0.12 1.86±0.09
8/0 3.68±0.20 3.75±0.31 3.86±0.21 3.61±0.24

#Faults 5 6 7 8
0/8 1.83±0.03 1.86±0.11 1.75±0.06 174±0.07
8/0 3.62±0.21 3.90±0.19 3.74±0.38 3.56±0.23

TABLE II. Latency and jitter in the presence
of faults.

The table shows that the overlay copes with many
failures and still maintains its responsiveness. The aver-
age overhead is fairly constant, approximately a twofold
increase relative to the baseline case with fault-tolerance
deactivated, across the different levels of the overlay. Here
we assume that a packet is lost if it does not arrive at

the client until the end of the run. The losses associated
with the experiments in table II are rather small, around
1%. More stringent QoS requirements associated with
client requests (e.g. maximum packet latency) would likely
increase the packet losses. This, however, is a matter for
future work on the integration of soft real-time in the
middleware system.

g) Active vs Passive Replication: The latency times
are a good measure of the overhead brought by the
different replication strategies. Table III presents the packet
latency when injecting faults at different levels of the tree
in the presence of active replication, passive replication
(with two test-cases, one with 100ms period and the other
with 1s period) and no fault-tolerance.

Level 0 Level 1 Level 2
No FT 1.68±0.04 2.00±0.06 1.84±0.05

Passive-FT (1s) 3.43±0.32 3.86±0.42 3.54±0.13
Passive-FT (0.1s) 3.38±0.23 3.87±0.19 3.61±0.20

Active-FT 3.54±0.29 4.05±0.37 3.68±0.20

TABLE III. Packet latency with one fault per
level.

The latency with active replication is at most 5% greater
than with passive replication. This can be explained by the
fact that, with active replication, each message that arrives
to a peer must be synchronized with the replication group
within that cell. The packet may only be forwarded to the
parent cell in the mesh after this internal synchronization
is performed, and this is the dominant contribution for the
overall communication latency.

In the passive replication approach, the newly arrived
message is queued for periodic replication within the cell.
Despite some contention due to concurrency in the access
to the queues, the amount of latency introduced is minimal
when compared with active replication.

The results for the resource usage for both active and
passive replication strategies, for a scenario similar to that
described for Table III, are presented in Table IV.

The resource usage for active replication needs approx-
imately more 20% CPU time, and approximately 15%
more of memory than the test scenario with passive repli-
cation with 1 second period. This variation is explained
by the workload put on the underlying synchronization
mechanism, JGroups. If in the case of active replication,
we synchronized each message individually, in the passive
approach we batch fault-tolerance messages, thus reducing
dramatically the amount of calls made to JGroups. In terms
of memory usage, the passive replication strategy has a
clear advantage over active replication which is due to the
fact that a message is not immediately replicated to the
cell upon arrival to a peer, but is immediately propagated
upwards towards the client. If the acknowledgement of



8Fault at Level 0
Level 0 1 2

CPU (s) MEM (MB) CPU (s) MEM (MB) CPU (s) MEM (MB)
No-FT 36.08±2.42 69.09±1.10 34.06±0.71 141.06±0.91 49.51±0.76 284.33±0.49

Passive-FT (1s) 71.09±3.20 316.81±2.75 77.07±1.68 349.77±14.29 123.92±3.60 522.05±7.26
Passive-FT (0.1s) 76.43±3.84 295.33±5.60 94.99±4.62 352.33±17.13 160.66±3.33 509.95±11.22

Active-FT 92.24±4.52 343.57±15.56 112.23±2.61 388.40±21.18 185.24±1.47 559.67±15.20
Fault at Level 1

Level 0 1 2
CPU (s) MEM (MB) CPU (s) MEM (MB) CPU (s) MEM (MB)

No-FT 46.20±2.84 71.63±0.85 31.85±3.11 140.27±1.25 51.34±3.22 282.36±4.87
Passive-FT (1s) 89.43±8.81 296.57±8.53 74.42±2.69 356.01±23.2 116.14±3.40 505.54±13.12

Passive-FT (0.1s) 97.16±12.12 294.41±3.47 89.09±3.44 349.83±20.99 155.35±2.74 519.48±21.01
Active-FT 114.02±7.31 339.98±19.50 102.96±3.73 362.46±23.01 181.06±4.47 601.37±23.72

Fault at Level 2
Level 0 1 2

CPU (s) MEM (MB) CPU (s) MEM (MB) CPU (s) MEM (MB)
No-FT 42.3±5.34 71.32±1.49 34.8±1.96 140.41±1.30 48.99±1.50 284.16±1.06

Passive-FT (1s) 82.01±3.73 303.71±5.13 79.37±4.86 344.63±14.34 114.58±5.63 508.12±15.50
Passive-FT (0.1s) 90.26±3.33 291.2±2.82 97.25±4.63 352.96±8.77 148.6±2.73 504.72±16.29

Active-FT 107.17±2.17 355.44±29.44 115.14±5.31 389.61±38.39 172.87±4.28 562.39±21.98

TABLE IV. Resouce usage in the presence of one fault per level.

reception from the client arrives before a replication period
has elapsed, a peer along the path to the sensor may delete
its copy of the message before it is replicated further to
the other peers in the cell.

Active replication can be seen as a limit case of passive
replication, in which the replication period is set to 0s.
Indeed, observing the table we see that there is a trend
towards increasing CPU usage with the period varying
from 1s, 0.1s, and 0s. This is due to the fact that, with
decreasing period it gets more and more difficult for the
acknowledgment for a message to reach the originating
peer before the period elapses and replication through the
cell (with JGroups) is triggered. With memory usage we
have essentially a tie. In fact, one might expect that the
amount of memory used would increase with decreasing
period since more replicas of the data would be produced.
However, at least for the periods of 1s and 0.1s the
difference is not statistically meaningful. On the other
hand, memory usage for active replication is clearly above
either of the passive replication cases, as expected.

V. Conclusions and Future Work

In this paper we addressed the problem of implement-
ing transparent, lightweight fault-tolerance mechanisms
for middleware systems. We propose that peer-to-peer
overlays provide good infra-structures upon which such
mechanisms can be implemented, taking advantage of their
de-centralized and resilient nature and discovery services.

We present a prototype implementation of a peer-
to-peer overlay with built-in fault-tolerance support. We
report some preliminary measures of latency, jitter and
resource consumption for the non-faulty case to establish

a baseline for the overhead associated with the fault-
tolerance mechanisms in a worst case scenario. We also
evaluate the evolution of latency and jitter in the presence
of incremental random peer failures. The results show
that even in the worst case scenario the overhead scales
favorably with the number of replicated streams and much
improvement is possible.

Currently we are implementing the middleware plat-
form in C++ and using built-in protocols for strong-
replica consistency (as opposed to using a tool in the
lines of JGroups). This implementation will also give
us an additional level of control over the hardware (e.g.
CPU reservation and scheduling) essential for the future
integration of real-time support.

Acknowledgements Luı́s Lopes and Rolando Martins
are partially supported by project CALLAS of the
Fundação para a Ciência e Tecnologia (contract PTD-
C/EIA/71462/2006). Rolando Martins is also supported by
EFACEC - Sistemas de Electrónica, S.A. and by PhD grant
SFRH/BDE/15644/2006 from the Fundação para a Ciência
e Tecnologia.

References

[1] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic,
M. Hauswirth, M. Punceva, and R. Schmidt. P-Grid: a Self-
Organizing Structured P2P System. SIGMOD Rec., 32(3):29–33,
2003.

[2] B. Ban. Design and Implementation of a Reliable Group Com-
munication Toolkit for Java. Technical report, Cornell University,
September 1998.

[3] P. Barrett, P. Bond, A. Hilborne, L. Rodrigues, D. Seaton, N. Speirs,
and P. Verı́ssimo. The delta-4 extra performance architecture (xpa).
In Digest of Papers of the 20th IEEE International Symposium on
Fault-Tolerant Computing (FTCS), pages 481–488, jun 1990.



9
[4] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The

primary-backup approach. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 1993.

[5] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-Area Cooperative Storage with CFS. In Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP’01),
volume 35, 5 of ACM SIGOPS Operating Systems Review, pages
202–215. ACM Press, October 2001.

[6] P. Druschel and A. Rowstron. PAST: A Large-Scale, Persistent
Peer-to-Peer Storage Utility. In Proceedings of 8th Workshop on
Hot Topics on Operating Systems (HotOS VIII), pages 75–80, 2001.

[7] J. Frankel and T. Pepper. Gnutella Specification.
http://gnet-specs.gnufu.net/.

[8] G. Tan and S. A. Jarvis. Improving the Fault Resilience of Overlay
Multicast for Media Streaming. IEEE Trans. Parallel Distrib. Syst.,
18(6):721–734, 2007.

[9] A. Gokhale, B. Natarajan, D. Schmidt, and J. Cross. Towards
Real-Time Fault-Tolerant CORBA Middleware. Cluster Computing,
7(4):331–346, 2004.

[10] J. Kubiatowicz, D. Bindel, Y. Chen, S. E. Czerwinski, P. R. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An Architecture for Global-
Scale Persistent Storage. In Proceedings of the 9th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS IX), ACM SIGPLAN, pages 190–
201. ACM Press, 2000.

[11] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A
Read/Write Peer-to-Peer File System. In Proceedings of the 5th
ACM Symposium on Operating System Design and Implementation
(OSDI’02), Operating Systems Review, pages 31–44. ACM Press,
December 2002.

[12] P. Narasimhan, T. A. Dumitraş, A. M. Paulos, S. M. Pertet, C. F.
Reverte, J. G. Slember, and D. Srivastava. MEAD: Support for Real-
Time Fault-Tolerant CORBA: Research Articles. Concurrency and
Computation: Practice & Experience, 17(12):1527–1545, 2005.

[13] B. Natarajan, A. Gokhale, S. Yajnik, and D. Schmidt. DOORS: To-
wards High-Performance Fault Tolerant CORBA. In International
Symposium on Distributed Objects and Applications (ISDOA-00),
pages 39–48, 2000.

[14] Object Management Group. Fault Tolerant CORBA Specification.
OMG Technical Committee Document, June 2002.

[15] Object Management Group. Real-time CORBA Specification. OMG
Technical Committee Document, January 2005.

[16] L. Oliveira, L. Lopes, and F. Silva. P3: Parallel Peer to Peer –
An Internet Parallel Programming Environment. In Workshop on
Web Engineering & Peer-to-Peer Computing, part of Networking
2002, volume 2376 of Lecture Notes in Computer Science, pages
274–288. Springer-Verlag, 2002.

[17] D. Schmidt and F. Kuhns. An Overview of the Real-Time CORBA
Specification. IEEE Computer, 33(6):56–63, 2000.

[18] D. Schmidt, D. Levine, and S. Mungee. The Design of the TAO
Real-Time Object Request Broker. Computer Communications,
21(4):294–324, 1998.

[19] F. B. Schneider. Replication management using the state-machine
approach. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 1993.

[20] V. I. Levenshtein. Binary codes capable of correcting deletions,
insertions and reversals. Sov. Phys. Dokl., 6:707–710, 1966.


