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Abstract

This paper presents stochastic tree search, an alternative method to local search. Stochastic
tree search consists of the exploration of a search tree, making use of heuristics for guiding the
choice of the next branch, and a combination of diving and randomized selection of the path for
exploring the tree.

Stochastic tree search efficiency relies on avoiding the repetition of the search on the same
areas of the space, thus being unlikely to be trapped in a particular area of the search tree. By
concentrating first on the most promising parts of the search tree, it allows to quickly determine
solutions of very good quality.

1 Introduction

Combinatorial optimization is a field on the intersection between operations research, mathematics,
and computer science. Problems in this field are among the most important in what concerns
practical applications; and unfortunately there is no known efficient algorithm to solve for most
of the interesting ones. As a way for tackling practical applications, heuristics — algorithms that
can find good solutions in reasonable amounts of time — have been developed for many specific
problems. A further step was done through the development of metaheuristics, i.e., algorithms that
can be applied with few modifications to a wide range of problems. Metaheuristics have been very
successful on finding very good solutions to most of the difficult problems with practical interest.

Problem-dependency is a major concern on the development of heuristics, as it implies that
whenever a new problem is met a significant amount of time of a very skilled person has to be used
for solving it. The idea behind the development of metaheuristics was to mitigate this requirement.
Metaheuristics have been successful to a certain extent, but for obtaining solutions of very high
quality they have to incorporate a good deal of problem-specific knowledge.

There are many works on the usage of exact, tree search methods, especially in a context of
solving academic problems (e.g.[1], [2]). Even though some seminal works stressed the importance
of enumerative methods [3], and some essays on this have been done [4], [5], research has to a large
extent neglected the experimentation of exact methods applied to solve real-world, large size problems.
This is arguably due to two reasons: the first is that these algorithms have to be interrupted before
reaching a final, proven optimal solution; and the other is the difficulty inherent to the implementation
of problem-specific, exact algorithms. Our claim in this text is that neither of these reasons is valid
nowadays. Interrupting an exact algorithm, even in early stages of the search, most of the times
still leads to state-of-the-art solutions; and the progress in computer programming languages makes
the implementation of problem-specific exact algorithms a reasonable task, not substantially harder
than the fine tuning of metaheuristics. Using exact methods on some easy problems, where complete
search is possible in a reasonable amount of time, has an additional advantage over heuristics: that
of being certain that the solution is optimal.

For the sake of clarity, we will illustrate our ideas on a simple, very well known problem: the
knapsack problem.



2 The knapsack problem

For introducing the knapsack problem (KP) in a formal way, let us define a set J = {1,...,n} of
items available, and the capacity c of the knapsack. Each item j has associated a value denoted by
pj, and a weight denoted by w;. For solving this problem we have to decide, for each of the items, if
it will be selected or not; let us define a vector of variables © = (z1,...,z,) and assign the meaning
xz; = 1 to select item j and x; = 0 otherwise. With these definitions, the total value of the items
selected is the sum of p;x; for all selected items. The capacity constraint implies that the sum of
wjz; for the selected items must be at most equal to c¢. This can be formulated as a linear integer
program as follows:

(KP) maximise z= ijxj (1)
j=1

n
subject to : ijxj <eg,
j=1

z; € {0,1}, ji=1,...,n.

Notice that a solution to the knapsack problem may also be defined as the set of indices of the
items put in the knapsack (i.e., the set of variables equal to one, X = {j € {1,...,n}|z; = 1}.

For an in-depth analysis of this problem and its variants, the most comprehensive references are [6]
and [7].

2.1 A greedy approach

A quick solution for the knapsack problem (albeit many times of poor quality) can be obtained by
means of the greedy heuristics. Intuitively, an item is good if it has a high profit and a low weight.
We can thus determine the profit-to-weight ratio p;/w; for each item — called its efficiency — , and
then start putting in the knapsack the items with highest efficiency. We continue doing this until no
more items fit.

The algorithm starts thus by sorting the items by non-increasing order of efficiency, i.e., in such
a way that

brybzy 5P (2)
w1 w2 Wn,

Then, start with an empty knapsack and go through all the items (in this order), putting in the
knapsack all the items whose inclusion does not violate the capacity constraint.

Algorithm 1 presents the main steps of the greedy algorithm for the knapsack problem, where ¢
is the capacity of the knapsack, p and w are vectors with the items’ values and weights, respectively,
and J is the list of items, in non-increasing order of efficiency. The output is z, the set of items put
in the knapsack, and the corresponding profit (2¢) and weight (10).

Algorithm 1: A greedy heuristics for the knapsack problem

Data: ¢,p,w,J
Result: z,z¢, w
x—0
w <« 0
Z¢ —0
for j € J do
if w; +w < c then
2 — 20 {j}
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A variant of this algorithm can be used for obtaining an upper bound to the objective value.
For the first item that does not fit into the knapsack, compute the fraction that could be inserted,
and add the corresponding value to the sum of p; for the items in the knapsack. This is detailed in
Algorithm 2.

Algorithm 2: An upper bound to the knapsack problem.

Data: ¢,p,w,J
Result: zV5
ZUB —0
for j € J do
if w; < cthen
C—c—wj
sUB __ sUB +p;

(2 N

else
L VB 3UB 4 picjw;

N o

return zVB

o return zUB

2.2 Complete search

We have seen in the greedy heuristics a method to obtain a solution in linear time (after the items are
sorted): for each item, the decision of putting it on the knapsack or not is taken only once, and the
alternative decision is not analyzed. This method can be easily extended in order to do a complete
search of the solution space, by dividing the problem into two subproblems at each stage; in one of
the subproblems the item is put in the knapsack, and in the other one it is not. This branching
process is repeated for each variable, creating a tree with all the possible alternatives.

An example of the complete search tree for a small instance is shown in Figure 1. In this example
the knapsack has capacity 8, and there is a set of four items available, with values (10, 12,14, 16) and
weights (2,3,4,5). The knapsack is empty at the beginning (node 1). At each node it is decided if
some item is put on the knapsack or not, until having considered all the items. Thus, at node 1 (the
root node), we divide the main problem into two subproblems; in one of them (the left branch) it is
decided that the item with p = 10 is put on the knapsack; in the right branch it is decided not to
include that item. At each node the value of the current knapsack is shown at the top (in bold face),
and the weight at the bottom.

The list of items is sorted in non-increasing order of efficiency; the greedy solution is to select
items with p = 10 and p = 12; the items with p = 14 and p = 16 will not be included, as the
capacity constraint would be violated. Therefore, if on the exploration of the tree we take the left
branch whenever the capacity constraint is respected, and the right branch otherwise, we will reach
the greedy solution; in this case the greedy rule would lead to node 19.

Observing the tree we can verify that the optimum is at node 26, corresponding to the selection
of items p = 12 and p = 16; the value of these items is 28 and their weight is 8. There are nodes with
a higher value, but none of them respects the knapsack’s capacity.

This process, complete enumeration without further refinements, is a brute force method, which
only works for very small instances. The size of the tree duplicates for each variable analyzed, and
thus for n variables there will be 2" nodes to process — even with very fast computers, only very
small instances can be solved this way.

Even though no known algorithm for solving the knapsack problem is better than this on the
worst case, several improvements allow avoiding exploring a substantial part of the search tree in
most of the practical situations. A simple set of rules for fathoming more nodes in which we are sure
not to find the optimum solution, during the implicit enumeration of the tree is the following:



Include item p = 10, w = 27

Include item p = 12, w = 37

Include item p = 14, w = 47

Figure 1: Complete search tree for a knapsack with capacity 8 and a set of four items, with values
(10,12, 14, 16) and weights (2, 3,4, 5). The thick path leads to the optimal solution.

e when the size of the smallest item available does not fit in the knapsack, the node (and all its
descendants) can be fathomed;

e when all the items available can be put in the knapsack, they can be immediately included
(without analyzing alternative possibilities);

e if the upper bound for inserting the items not yet analyzed on the remaining capacity, plus the
value of the items currently put on the knapsack, does not exceed the value of the best known
solution, then the node can be fathomed.

Even though these rules are very simple, they allow a very dramatic reduction of the effort required
to (implicitly) explore the tree.

There are several ways for exploring the nodes of a search tree; we will analyze them next. A
generic algorithm for doing so, making use of a priority queue, is presented in Procedure tree_search.
In this procedure, what is stored on each element of the queue @ is the data necessary to explore a
node (and its descendants) in the search tree: the set of items currently included in the knapsack,
and the set of items available for future inclusion (those that were not analyzed yet).

The arguments of Procedure tree_search are the capacity c of the knapsack, vectors with the
items’ values p and weights w, and the set J of items available. Here we denote a solution as a
set X of selected items. The procedure starts by creating a queue (line 1) and inserting there the
information concerning the root node: a tuple with an empty solution and the initial set J of items
(line 2). The value of the best found solution is initialized in line 3, and updated in line 6. The main
cycle, iterating as long as the queue is not empty, is in lines 4 to 11. The information of the node to
analyze on the current cycle, i.e., the current solution X and the set J of available items, is popped
from the queue in line 5. The selection of the next item to analyze from the currently available set
J is made at line 8; this can be done, e.g., by means of the same rule used in the greedy heuristics
(decreasing efficiency). Then, information for the left recursion node is pushed into the queue at
line 10 (if the item can be included in the knapsack without violating capacity), and for the right
recursion at line 11. When the queue becomes empty, the cycle finishes and the best objective found
is returned at line 12.

This procedure relies on two ordering processes: one for extracting elements of the queue @ (line 5),
and the other for extracting elements of the set J of items (line 8). Knowing a good lower bound to
the current solution early on the tree exploration generally allows fathoming more nodes, and thus
reducing the effort to find the optimum. For this purpose, these two choices are very important.

Concerning the selection of the next item of J to analyze, one possibility is to use the rule proposed
for the greedy heuristics in Equation 2: analyze the remaining item with the greatest profit-to-weight
ratio.



Procedure tree_search(c,p,w,J)

1 create empty queue @
2 push ({},7) into @

3 2% «+— —00

4 while Q not empty do

5 pop (X,J) from @

6 | if X ;cxp; >2" then 2" — > . p;
7 if 7 # 0 then

8 j < an element of J

9 if wj 4> ,cx wr < cthen

10 | push (X U{j}, 7\{j}) into Q

11 push (X, 7\{j}) into @

12 return z*

As for the order of the nodes under which the tree is explored, the two most common possibilities
are breadth-first search and depth-first search.

2.2.1 Breadth-first

One possibility for exploring the tree presented in Figure 1 is to explore all the nodes in a level of the
tree (i.e., all the nodes that are at the same distance to the root) before starting exploring the next
level (i.e., before going down one layer on the tree). In this case, when following the left branch first
and without fathoming any nodes, the order of visit is node 1-2-3-4-5-...-31.

This can be implemented by means of a first-in-first-out queue on @, and by selecting the item
with highest efficiency when picking elements from the set J in Procedure tree_search.

2.2.2 Depth-first

One possibility for exploring the tree presented in Figure 1 is to descend on the tree as far as possible;
when a node with no children is reached, backtrack to its upper node.

When using depth-first search on the example provided in Figure 1, following the left branch first
and without fathoming any nodes, the order for visiting the tree is 1-2-4-8-16-17-9-18-19-5-10-20-21-
11-22-23-3-6-12-24-25-13-26-27-7-14-28-29-15-30-31. This can be implemented by selecting the item
with highest efficiency when picking elements from the set J in Procedure tree_search, and by
adding the left child to the front of queue @, and the right child to its rear.

2.3 Incomplete search

Even when advanced methods are used to fathom parts of the search tree, complete search takes
too long for large problems; the meaning of large depends on the problem being tackled, on the
elaboration of the methods used for determining bounds, on the hardware used, etc. But for difficult
problems, above a certain instance size, the exact exploration of the search tree is not practical. In
this case, the search must be interrupted when the time (or other resource, like space/memory) used
exceeds a reasonable limit. The solution found is no longer a proven optimum, but hopefully it is a
good feasible solution (i.e., a lower bound to the optimum, for maximization problems); additionally,
tree search also provides an upper bound (or lower bound, for minimization problems). For many
practical situations this information is enough.

2.3.1 Depth-first

Interrupting depth-first search is trivial: it suffices to check, at each node, if the allowed time has
been exceeded; if so, return immediately and report the current bounds. Depth-first search usually



keeps a low number of open nodes, so interruption due to space limits is rare.

If the time allowed to the search is severely limited, relatively to the time required to explore the
whole tree, the solution found (if some) can be of poor quality. In this case, the quality of the solution
is critically dependent on the item selected at each node. Hence, a good heuristic for choosing the
item to explore next is essential. On the knapsack example, the profit-weight ratio was proposed; in
this case, if time allows reaching a leaf of the tree, the solution found is at least as good as the greedy
solution obtained using the same rule.

2.3.2 Breadth-first

Breadth-first search can also trivially be interrupted based on time; it suffices to check at each node if
time has been exceeded, and return without branching if so. However, in many situations the number
of open nodes grows very large, quickly using all the available space. In these cases, it may be useful
to include also a criterion for stopping whenever the number of open nodes is too large.

In the case of the knapsack problem, if search is interrupted when the nodes being explored are
close to the root, the knapsacks probably have much space still available. For other problems, a
feasible solution may not have been found yet. In this situation, it is generally rewarding to descent
the tree until reaching a leaf, at least in some of the nodes. This process is called diving. An example
of diving for the knapsack problem is to complete the solution at each node in a greedy way, and use
the corresponding objective as a lower bound for the node.

3 Stochastic tree search

Tree search can be put into a setting of stochastic search, by means of adding a random component
to any of the two main selection steps in the search: the selection of the next item of J to analyze,
and the selection of the next node of the tree to visit. In this paper we focus on the latter.

For the design of the stochastic algorithm we want to take advantage of two facts. The first is
that, in general, diving quickly allows obtaining complete solutions; if the heuristics guiding the dive
is of good quality, so will hopefully be the solutions obtained. The second fact is that making use
of random start on tree search many times dramatically improves the results; this was observed,
for example, for the satisfiability problem [8], due to the existence of heavy tails in the solutions’
distribution.

The strategy devised for taking these considerations into account relies on two queues. One queue
is a stack, were the left-hand side child of each processed node is placed; the other queue is used for
placing the right-hand side child, as detailed in Procedure stochastic_tree_search,

The usage of two queues implements the desired behaviors described earlier. Departing from any
point of the tree, the stack D will drive the search into a dive, until reaching a leaf. In this process,
the right-hand child of the visited nodes is inserted into D if it is the only choice (line 14), or into @
if the left branch is feasible (line 12); in the latter case, the left-hand child is pushed into the stack
D (line 11). When stack D is empty, the next node to visit is randomly popped from the queue Q;
this implements the desired random behavior. However, as no part of the tree is neglected, the whole
solution space is enumerated, except in the case of interruption. We are, thus, in a case of stochastic
implicit enumeration.

As said earlier, for difficult, large problems, complete search of the tree is usually not affordable.
We claim that if we interrupt the method proposed here, it will provide very good results. The reason
is that, by concentrating the search mostly on the left part of the tree, it will visit first the most
interesting solutions. This is especially true if the heuristics for selecting the branching item in each
node is carefully designed for the problem being tackled.

3.1 Experimental results

In order to show experimentally the merit of the ideas developed in this section we devised a simple
test, comparing stochastic tree search to standard depth-first search. The data were generated making
use of the properties of knapsack instances reported in [9], so as to provide difficult instances with



Procedure stochastic_tree_search(c,p,w, J)

1 create empty queues D, @

2 push ({},J) into D

3 2% «+— —00

4 while D or @ not empty do

5 if D not empty then pop (X, J) from D
6 else randomly pop (X, J) from Q

7 if > cxpj = 2" then 2" <3 .+ p;

8 if 7 # () then

9

j < an element of J
10 if wj 4+ ,cx wr < c then
11 push (X U{j}, J\{j}) into D
12 L push (X, 7\{j}) into @
13 else
14 | push (X, 7\{j}) into D

15 return z*

small coefficients. Notice that no advanced concepts like the core [10], or other kinds of preprocessing,
were used; the results reported here are, therefore, not expected to be close to the state-of-the-art in
knapsack solving.

Table 1 reports the average number of nodes required for the (complete) solution of the series of
instances for depth-first search and stochastic tree search, for a series of 25 instances or each size. As
can be seen, the reduction on the resource usage brought by stochastic tree search is considerable.
There was no instance for which stochastic tree search was not, at least, as good as depth-first search.

The most interesting usage of stochastic tree search is likely to be for determining good solutions in
a short time. Table 2 reports the best solution found with respect to the number of nodes explored, for
a typical instance. The initial values obtained are identical to both methods; these are the solutions
obtained in the first dive. After exploring 17 nodes, the path of the two methods is different, with a
clear advantage to stochastic tree search.

4 Conclusions

This paper presents stochastic tree search, an alternative method to local search. Stochastic tree
search consists of the exploration of a search tree, making use of heuristics for guiding the choice of
the next branch, and a combination of diving and randomized selection of the path for exploring the
tree.

The strongest points in favor of such method are the following:

e it avoids the repetition of the search on the same areas of the space, which is unavoidable even
for carefully implemented metaheuristics;

e as opposed to depth-first search or breadth-first search, the method is not likely to be trapped
in a particular area of the search tree, thanks to combination of diving and random selection of
the nodes to explore;

e by concentrating first on the most promising parts of the search tree, it allows to quickly
determine solutions of very good quality.

For the sake of simplicity, we have made an illustration of the application of the methods proposed
to the knapsack problem. This is not meant to be a state-of-the-art solver for this problem, as many
important features (like preprocessing, identification of the core variables, etc.) were not implemented.



Instance #nodes | #nodes | % impro-
size (n) 2C 2UB 2 dfs sts vement
4 202.0 320.0 206.2 5.6 5.9 2.1
5 305.2 392.1 319.4 8.7 8.6 0.9
6 371.9 469.5 397.1 16.4 15.2 7.6
7| 458.8 | 543.8 | 502.3 23.8 21.7 9.1
8 | 536.2 | 623.5 | 573.8 42.9 38.0 11.5
9| 646.5 | 690.9 | 6614 57.1 52.4 8.3
10 716.0 767.9 743.8 86.6 62.5 27.9
11 823.9 860.7 841.0 115.4 95.0 17.6
12 923.2 954.7 935.8 176.7 141.3 20.0
13 | 975.1 | 1027.0 | 1005.7 323.0 243.2 24.7
14 | 1071.7 | 1123.3 | 1105.8 407.9 276.6 32.2
15 | 1165.4 | 1212.1 | 1192.7 707.0 510.9 27.7
16 | 1267.0 | 1307.1 | 1290.0 769.0 584.4 24.0
17 | 1346.1 | 1384.1 | 1367.8 1051.6 652.7 37.9
18 | 1426.0 | 1468.1 | 1448.3 1914.7 1149.9 39.9
19 | 1516.8 | 1559.2 | 1544.0 3214.7 1704.8 47.0
20 | 1609.8 | 1647.5 | 1634.0 4442.6 2755.5 38.0
21 | 1671.9 | 1716.8 | 1700.6 6029.6 4581.8 24.0
22 | 1768.7 | 1796.5 | 1780.4 6797.0 44447 34.6
23 | 1849.2 | 1869.8 | 1856.2 14815.7 10509.4 29.1
24 | 1926.7 | 1956.2 | 1938.6 24997.2 19246.3 23.0
25 | 1993.6 | 2026.0 | 2012.2 | 35953.2 | 25332.6 29.5
26 | 2080.6 | 2115.6 | 2099.2 46732.8 32780.4 29.9
27 | 2170.9 | 2192.5 | 2179.4 | 112437.0 97351.2 13.4
28 | 2261.7 | 2293.2 | 2280.5 | 173883.3 | 139366.2 19.9
29 | 2337.1 | 2363.3 | 2349.1 | 220552.9 | 152719.1 30.8
30 | 2448.5 | 2478.3 | 2462.0 | 442854.3 | 408471.7 7.8
31 | 2510.0 | 2542.6 | 2528.4 | 499979.4 | 412342.6 17.5
32 | 2584.9 | 2614.1 | 2601.0 | 411892.6 | 263107.7 36.1

Table 1: Results for the knapsack problem: number of items, greedy solution, initial upper bound to
z, optimal z, number of searched nodes for depth-first search (dfs) and stochastic tree search (sts),
percent reduction on nodes searched by the latter (average for 25 instances of each size).



dfs sts
# nodes z || # nodes z
2| 190 2| 190
31 380 31 380
4 | 551 4| 551
51 703 5| 703
6| 836 6| 836
7 931 71 931
8 | 1026 8 | 1026
9 | 1121 9 | 1121
10 | 1178 10 | 1178
11 | 1235 11 | 1235
12 | 1292 12 | 1292
13 | 1349 13 | 1349
14 | 1406 14 | 1406
15 | 1425 15 | 1425
16 | 1444 16 | 1444
17 | 1463 17 | 1463
34 | 2063 19 | 2095
65 | 2082 42 | 2117
158 | 2095 3683 | 2117

3407 | 2117
6741 | 2117

Table 2: Log of the best solution found with respect to the number of nodes explored for a typical
instance, for depth-first search (left) and stochastic tree search (right).

On the directions for future research, one interesting path to follow is to use a non-uniform way for
selecting the next node to explore, giving larger probabilities to the most promising nodes, according
to some heuristics. Another direction is the application of this method to other problems; the only
limitation in this respect is the requirement of a good heuristics for supporting the branching decision.
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