A Peer-to-Peer Middleware Platform for
Fault-Tolerant, QoS, Real-Time Computing

Rolando Martins
CRACS/EFACEC Sistemas de Electronica, S.A.
Rua Engenheiro Ulrich - Apartado 3081

4471-907 Moreira da Maia
rolando.martins@efacec.pt

Luis Lopes, Fernando Silva
CRACS/Faculdade de Ciéncias, Universidade do Porto
Rua Campo Alegre 1021/1055

Portugal, 4169 - 007 Porto
{1blopes, fds}@dcc.fc.up.pt

Technical Report Series: DCC-2008-02

[MPORTO

‘F FACULDADE DE CIENCIAS
UNIVERSIDADE DO PORTO

Departamento de Ciéncia de Computadores

Faculdade de Ciéncias da Universidade do Porto
Rua do Campo Alegre, 1021/1055,
4169-007 PORTO,

PORTUGAL

Tel: 220 402 900  Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/



A Peer-to-Peer Middleware Platform for
Fault-Tolerant, QoS, Real-Time Computing

Rolando Martins
CRACS/EFACEC Sistemas de Electrénica, S.A.
rolando.martins@efacec.pt

Luis Lopes, Fernando Silva
CRACS/Faculdade de Ciéncias, Univ. do Porto
{lblopes, fds}@dcc.fc.up.pt

Abstract

In this paper we present the architecture of RTPy;, a
middleware framework aimed at supporting the develop-
ment and management of information systems for high-
speed public transportation systems. The framework is
based on a peer-to-peer overlay infra-structure with the
main focus being on providing a scalable, resilient, recon-
figurable, highly available platform for real-time and QoS
computing.

Keywords: Peer-to-Peer, Middleware, Fault-Tolerance,
QoS, Real-Time

1 Introduction and Motivation

The development and management of information sys-
tems for application domains that require real-time and QoS
computing is pushing the limits of the current state-of-the-
art in middleware frameworks. At EFACEC', our particular
case-study is that of information systems used to manage
public, high-speed, transportation networks. Such systems
typically transfer large amounts of streaming data; have
erratic periods of extreme network activity; are subject to
relatively common hardware failures and for comparatively
long periods, and; require low jitter and fast response
time for safety reasons (e.g. vehicle coordination). These
characteristics put stringent constraints on the software
used for management and therefore on the underlying
middleware framework. Real-time, QoS and fault-tolerance

'EFACEC, the largest Portuguese Group in the field of electricity, with
a strong presence in systems engineering namely in public transportation
systems, employs around 3000 people and has a turnover of almost 500
million euro; it is established in more than 50 countries and exports almost
half of its production (c.f. http://www.efacec.pt).

mechanisms are clearly essential features for middleware
platforms that support such extreme information systems.

Despite the large body of research on middleware sys-
tems (e.g. [8, 14, 18,21]), the integration of resilient ser-
vices, soft real-time and QoS in these systems remains a
hard problem. Several major steps have been taken in recent
years to introduce fault-tolerance and real-time mechanisms
in CORBA [12, 13, 15, 20], arguably the standard by which
most middleware implementations are developed.

We feel, however, that the way this support is introduced
in CORBA may get in the way of supporting QoS and real-
time features. For example, fault-tolerant CORBA resorts
to services that implement mechanisms for object repli-
cation, fault detection and fault recovery. These services
are implemented at the ORB level and follow moderately
complex protocols that introduce a considerable amount of
overhead, that conspires to make QoS and real-time more
difficult to support. Moreover, the service infra-structure
that supports fault-tolerant CORBA must, naturally, in itself
be fault-tolerant, thus shifting part of the problem to the
underlying networking layer. This poses a problem if
we realize that most middleware platforms are based on
classic client-server network layer architectures which have
little or no builtin support for fault-tolerance mechanisms,
besides other limitations relevant for QoS and real-time
implementations such as: single point of failure associated
with servers; limited load-balancing and reconfiguration
capabilities, and; permeability to denial-of-service attacks.
In addition, fault-tolerant CORBA does not handle byzan-
tine and partial failures, and does not guarantee that two
implementations that conform to the real-time and fault-
tolerant CORBA specifications will result in the same QoS
properties [7].

Real-time and QoS issues have been given attention
in the context of the TAO project [21]. For example,



TAO introduced different, configurable, execution models
to minimize code paths both within and across layers,
thus minimizing protocol overheads. The ICE [8] project
trimmed the CORBA standard in order to produce a mid-
dleware framework optimized for scalability and efficiency.
Lately, the introduction of computational mobility [25]
and especially of virtualization techniques [2,5,9], has
provided a new tool to solve problems like reconfigurability,
load-balancing and availability, all fundamental issues in
fault-tolerant, real-time, QoS middleware.

In this paper, we argue for a more integrated approach to
the problem of introducing fault-tolerance, QoS and real-
time in middleware platforms. The key idea is to drop
the centralized client-server architecture of the networking
layer and replace it with a more flexible infra-structure with
builtin support for the above mentioned middleware fea-
tures. Peer-to-peer infra-structures stand out as good can-
didates since their decentralized nature promotes scalability
and resilience, and their architectures may be optimized to
address QoS and real-time constraints [1, 17].

There is a considerable amount of work on architec-
ture, protocols and algorithms for peer-to-peer systems that
addresses fault-tolerance, QoS and some aspects of real-
time. A particularly good example of this work comes from
distributed file-sharing systems [4, 6, 10]. Finally, there are
several frameworks that provide system developers with
components and patterns to implement custom peer-to-peer
systems [16, 24, 27].

Despite these a priori advantages, mainstream peer-to-
peer middleware systems soft real-time and QoS computing
are, to our knowledge, unavailable. This is partly due to the
proliferation of distinct peer-to-peer architectures. Moti-
vated by this state of affairs, by the limitations of the current
infra-structure for the information system we are managing
(based on CORBA technology) and, last but not least, by
the comparative advantages of flexible peer-to-peer network
architectures, we have designed a service-oriented peer-
to-peer middleware framework we call RTP,; (Real-Time
Peer-to-Peer Middleware). The framework aims to provide
deterministic behavior, suitable for real-time systems, with
an underlying extensible resilient network infra-structure
with QoS support, in the line of peer-to-peer overlays such
as P3 [16] and Tapestry [27].

The RTP;, networking layer relies on a modular infra-
struc-ture with multiple peer-to-peer overlays. The support
for fault-tolerance and, in part, for QoS and real-time fea-
tures is provided at this level through the implementation of
efficient and resilient services for, e.g. resource discovery,
messaging and routing. The kernel of the middleware
system (the ORB) is implemented on top of these overlays
and uses the above mentioned peer-to-peer functionalities
to provide developers with APIs for fault-tolerance and
customization of QoS and real-time policies. The kernel

also provides support for service migration by integrating
virtualization techniques with the peer-to-peer networking
layer. However, QoS and real-time support is not just
provided at the network level. For example, RTPj, provides
APIs to the operating system layer that allow the definition
of dynamic scheduling policies for CPU resources, taking
advantage of the current trend in multicore technology. This
can be seen as a further extension to the approach taken in
TAO [21] by defining distinct strategies for the execution of
tasks by threads.

The main contribution of this work is on the use of
peer-to-peer overlays to implement the networking layer of
the middleware platform and on the implementation of the
kernel functionalities (the ORB) based on the facilities pro-
vided by the above mentioned peer-to-peer infra-structure,
allowing the developers to customize and optimize the fault-
tolerance, QoS and real-time features of the framework to
the needs of each specific application.

The remainder of this paper is structured as follows.
The next section gives an overview of the RTP,; software
architecture. Section 3 describes the low level interface
with the operating system. Section 4 describes the peer-to-
peer infra-structure that supports the RTP,; network model.
Section 5 describes RTP,;’s kernel and its core services.
Sections 6 and 7 describe the service and application devel-
opment APIs. Finally, the last section describes the current
state of the work and the prospects for future development.

2 Architecture Overview

RTP,, is based on a modular layered architecture. Fig-
ure 1 gives an overview of the different layers provided by
the framework.

User Applications
User Services

Kernel Services

Kernel
P3P Networking
ACE

Operating System

Figure 1. RTP,, architecture overview.

The two bottom layers provide the interface with the
underlying operating system, support interoperability and
some degree of virtualization. In the peer-to-peer net-



working layer we have the underlying peer-to-peer overlays
that support scalable, efficient protocols for networking
such as membership, discovery and routing. Each computa-
tional node may belong to several overlays simultaneously.
The kernel is the central piece of RTP,,’s architecture,
its responsibilities include the management of the network
resources, task scheduling, including real-time policies, and
QoS enforcing. Atop the kernel we have the kernel ser-
vices, that have access to in-kernel facilities, just as Linux’s
kernel modules. The top layers are the user application and
user services, both having access to several entry points
in the framework: user services; kernel services; kernel;
and network (network access is guarded and monitored by
the kernel, thus for added simplicity, this connection is
omitted in figure 1). This allows users to customize their
applications for minimal framework overhead.

3 Operating System Interface

One important design goal of RTP,; is to provide a
portable infrastructure capable of running in a multitude
of operating systems. We decided to use the ACE frame-
work [18] that provides patterns and components for the
seamless development of portable high-performance real-
time services and applications. ACE simplifies the de-
velopment of network services by providing mechanisms
for inter-process communication, event demultiplexing, ex-
plicit dynamic linking, and concurrency.

Linux is our most used OS and we dedicate special
attention to it. The path for enabling real time perfor-
mance in the Linux kernel demands efforts in reducing
long code paths, better interrupt handling, and a real-time
aware scheduler. The first two are being tackled by the
Linux community, while the last is almost unexplored. In
this context, the ARTiS [11] project explored scheduling
techniques for the new multi-core processor architectures.
More specifically, ARTIS tries to reserve a set of cores for
real-time operations and another set for generic operations.
The real-time reservation, while guaranteed, is not exclusive
and does not imply a waste of resources. A migration
mechanism of non-preemptive tasks ensures a latency level
on these real-time processors. Furthermore, load-balancing
strategies take full advantage of the full power of the SMP
systems.

RTP); goes one step further in that it introduces an
admission control entity, implemented as a kernel module,
that is responsible for verifying the executability of a given
real-time task, under the chosen scheduling policy, e.g.
EDF (earliest deadline first) or RM (rate monotonic).

4 Peer-to-Peer Networking

The networking layer is based on the notion of netrwork
overlay introduced in JXTA [24]. However, JXTA’s rigid
architecture, text based messaging and lack of QoS support
make it inadequate to be considered as starting point for
an implementation. Thus we have opted to design and
implement our own peer-to-peer infra-structure.

We use peer-to-peer overlays based on P3 [16], resulting
in a hierarchical peer-to-peer topology, where the bottom
peers have less knowledge than the upper peers, the later
also called super-peers. A set of these super-peer is called
a cell, and they cooperate in order to maintain the coordina-
tion of lower rank peers. Lower rank peers can be promoted,
or promote themselves in certain circumstances, to become
a super-peer and join a given coordination cell. This
characteristic of the networking layer effectively excludes
single point of failure problems higher up in the framework.

Each network overlay (figure 2) includes the following
modules: membership, that handles the overlay’s dynamic
topology; messaging, a QoS aware messaging infrastruc-
ture; security, that enforces the security policies; routing,
that maintains the routing information, and; discovery, that
controls dynamic resource searching and publish/subscribe.
This modular approach makes it possible to implement dis-
tinct peer-to-peer overlays by simply adjusting the behavior
implemented by these modules.

Kerne| Madulzs J
Metwark Mgr Bacurity
Ly E.

g o o

Cvarlay G+ A1

[ Discovary H Security H Rauting ]

Mernbership

[ F!sa;‘l‘;léne& J [ Virtualization J

x T

:

Owarlay

Messaging

Legend:

() Overlay Module
() Kernel Medules

—* Internal Data Flaw

Ramate Data Flow

—eemeeen - @rnakOuerlay Data Flow

Figure 2. Peer-to-peer overlay architecture.

The membership module is responsible for joining,
maintaining and leaving the peer-to-peer overlay. The boot-
strap process is done by means of a multicast advertisement,
where the peer announces its wish to join the overlay.



The nearby available super-peers reply to this request by
sending a message, using the messaging service, containing
all the relevant information on service access points (SAP)
and their respective real-time and QoS policies.

Message passing is supported by the messaging mod-
ule, that is optimized for throughput rather than for low
latency. We have chosen this approach in order to ease the
implementation of the prototype. More elaborate strategies
will be implemented in the future. This module has several
SAPs, each one reflecting an implicit QoS policy. By doing
this we can avoid multiplexing requests of different QoS
values, decreasing overheads and thus promoting real-time
behavior.

The routing information is maintained by the routing
module, that handles all the necessary operations needed
to maintain the overlay organization, with full support for
direct and indirect routing.

All the security features are implemented in the overlay’s
security module, that in turn is coordinated by the kernel.
The main goal of this module is to enforce security policies
on the access and usage of local resources.

The discovery service handles dynamic resource search-
ing and resource publishing, using the messaging service
for peer-to-peer communication. The search capability uses
the routing and messaging services. When a peer isn’t
known, a dynamic search is made in order to find that
specific peer in the overlay. In this context, the discovery
service uses the messaging service to send a message to the
coordination cell of the current peer, requesting the wanted
routing information. If none of the super-peers have the
requested information, the request is propagated until the
information is found or the root cell is reached (and the
resource is found). When a peer wants to publish a new
SAP, it uses the publishing capabilities built in the discovery
module, that acts as a proxy for the peer and contacts
the peer’s coordination cell by sending an advertisement
message.

5 The Kernel

The kernel layer is composed of five main modules
(figure 3), namely: a) the core module acts as the controller
for the middleware, and is responsible for enforcing the
desired real-time, QoS, fault-tolerance and load-balancing
policies; b) the real-time and QoS modules manage all
aspects of the real-time and QoS related policies. It is
through these modules that the real-time behavior of the
framework is configured, allowing for example, to define
a balance between throughput and latency. Middleware
tasks are processed based on the chosen real-time model and
QoS parameters. Here there are multiple opportunities for
optimization. For example, TAO [21] demonstrated several
software patterns that can be applied in the handling of

User
Applivations [P,

i ey Ty
[JAVA API] [F’W‘\DH AP\] [Custnm AP\)

=)

(T

Karnel C++ API

Kemel Modules

i

Kernel

Netwark Kgr

Security H REEEE‘;“” H Virlualization ] { libvirt J

F2P Overlays

Legend
b User-Kernel Data Flow
icernel Madules
— — Internal Data Flow
(T User Applicstions Extarmal Gal
(T External Resouce Language Binding
() PP Cverlays e OWETSHIR

Figure 3. Kernel architecture.

concurrency in a real-time context providing in-layer and
cross-layer reduction of overheads (e.g. the half-sync/half-
async [19] and leader-followers [22] patterns); c) the se-
curity module contains all the information about security
policies used to control access to resources throughout the
framework. This module manages the security modules
of every network overlay entity, allowing for a centralized
enforcement of security policies; d) the network manager
is responsible for maintaining every network overlay in
the system and supports their management, e.g. dynamic
(un)loading of network overlays; e) the virtualization
module manages all the aspects of the migration of services,
coordinating the efforts of the network overlays and local
virtualization resources (e.g. libVirt in Linux); f) finally, a
set of kernel modules provides the entry points for kernel
and user level services to access privileged resources.

6 Kernel and User-Level Services

The tight integration of the fault-tolerance, QoS and real-
time support in the network and kernel layers might lead to
a monolithic framework architecture that would be difficult
to maintain and unreliable. Thus, despite the focus on
performance, modularity and operation safety are greater
concerns in the RTP,, design. To promote modularity and
efficient resource management, the framework supports the
dynamic (un)loading of services on demand, inspired in
ACE’s service framework.



There are basically two types of services: kernel services
and user services. The kernel services are similar to
Linux’s kernel modules in that they have access privileges
to kernel facilities, and network layer resources, providing
a cross-layer pathway for interaction with key software
components with a negligible performance loss. The remote
procedure call (RPC), for example, is a primitive kernel
service in the current prototype. User services, on the other
hand, have a limited access to the underlying RTP,; re-
sources through the use of RTPj,’s user API. An event
service, a common middleware facility that is responsible
for notifying consumers of specific system events, can be
straightforwardly implemented as a user-level service that
uses the discovery service provided by the peer-to-peer
networking.

7 Programming API

In this section we present a general view of the APIL.
Several facilities are not reflected in the code samples that
follow for the sake of clarity and due to space restrictions.

The RTP,’s application programming interface is natu-
rally mapped into the C++ namespaces. The base names-
pace 1is country::company:rtpm which has the the following
nested namespaces: service, with all user applications and
services; kernel, with the core classes for RTP;,, and; network,
with the classes responsible for the management of the peer-
to-peer overlays.

The main entry point for the API is class RTPm (listing
1). To access the RTPj,’s runtime facilities a user must
provide some authentication information (lines 31 to 34).
Among other functionalities, the runtime manages the ker-
nel services (lines 17 to 22), user services (lines 10 to 15)
and controls the network overlays (lines 24 to 29).

namespace country { namespace company { namespace rtpm {

1

2 class RTPm{

3 public:

4 // RTPm entry point

5 RTPm(string& user, string& passphrase)

6 throw (RTPmException);

7 virtual "RTPm();

9 // user services API

10 void insertUserService (UserServicex us)

11 throw (RTPmException);

12 void removeUserService (UUIDx uuid)

13 throw (RTPmException) ;

14 UserServicex getUserService (UUID+ uuid)

15 throw (RTPmException) ;

16 // kernel services API

17 void insertKernelService (KernelServicex ks)
18 throw (RTPmException);

19 void removeKernelService (KernelServicex ks)
20 throw (RTPmException);

21 KernelServicex getKernelService (UUID+ uuid)
22 throw (RTPmException) ;

23 // network related API

24 void insertNetwork (string& networkLibPath);
25 throw (RTPmException);

26 void removeNetwork (UUIDx networkUUID)

27 throw (RTPmException);

28 Networks getNetwork (UUID+ networkUUID)

29 throw (RTPmException);

30 // user related API

31 void loginUser (string& user, string& passphrase)
32 throw (RTPmException) ;

33 void logoutUser(string& user)

34 throw (RTPmException) ;

350}

36 13}

Listing 1. Main interface.

The Kernel class (listing 2) encapsulates all the core
entities present in the runtime, ranging from kernel and
user service handling (lines 5 to 23), security (line 25) and,
network management (line 26). More details on the security
and network management modules are shown in listings 3
and 4, respectively.

1 namespace country { namespace company { namespace rtpm {
2 namespace kernel

3 class Kernel {

4 public:

5 void insertUserService (Userx user,

6 UserServicex ks)

7 throw (KernelException);

8 void removeUserService (Userx user,

9 UUID* uuid)

10 throw (Userx user, KernelException);
11 UserServicex getUserService (Userx user,
12 UUID* uuid)

13 throw (KernelException);

15 void insertKernelService (Userx user,

16 KernelServicex ks)

17 throw (KernelException);

18 void removeKernelService (Userx user,

19 UUID* uuid

20 throw (Userx user, KernelException);
21 KernelServicex getKernelService (Userx user,
22 UUID= uuid)

23 throw (KernelException);

24 protected :

25 KernelSecurityx getSecurity ();

26 NetworkMgr« getNetworkManager () ;

27}

28}

2 13}

Listing 2. RTP,,’s kernel interface.

The security module implements the general RTP,, se-
curity policy, allowing the enforcement of service level
permissions. The access is granted to privileged users with
adequate permissions (lines 9 to 15).

namespace country { namespace company { namespace rtpm {

1

2 namespace kernel

3 class KernelSecurity: public Module {

4 public:

5 Permissionsx getPermissions (Userx user,
6 UUID* serviceUUID)

7 throw (SecurityException);

9 void addUser(Userx user, Permissionsx permissions)
10 throw (SecurityException);

11 void removeUserPermissions (Userx user,

12 Permissionsx permissions)

13 throw (SecurityException);

14 void removeUser(Userx user)

15 throw (SecurityException);

16 3

17 13}

Listing 3. RTP;,’s security module.
Another runtime kernel module is the network manager
that implements the NetworkMgr class (shown in listing 4),
responsible for the dynamical (un)loading of peer-to-peer



overlays.

namespace country { namespace company { namespace rtpm {

namespace kernel {
class NetworkMgr: public Module

void insertNetwork (string& networkLibPath)
throw (KernelException);

1

2

3

4 A

5 public:
6

7

8 void removeNetwork (Networks net)

9 throw (KernelException);

10 Network+ getNetwork (UUID+ netUUID)

11 throw (KernelException);

12 Network+ getNetwork (string& netName)

13 throw (KernelException);

14 // search an UUID in all the active overlays
15 Networks findUUID (UUID* uuid);

16 };

17}

18 11}

Listing 4. RTP,,’s network manager module.

A network overlay is represented by the Network class
(listing 5) which provides hooks for the routing (line 9),
messaging (line 10), membership (line 11), discovery
(line 12) and security (line 13) modules, as described in
section 4.

namespace country { namespace company { namespace rtpm {

1

2 namespace network {

3 class Network: public Service {
4 public :

5 UUID= getUUID ();

6 string& getName ();

8 // network modules

9 virtual Routing*x getRouting() = 0;

10 virtual Messagingx getMessaging() = 0;
11 virtual Membershipx getMembership() = 0;
12 virtual Discoveryx getDiscovery() = 0;
13 virtual Securityx getSecurity () = 0;

14 }s

15 }

16 }}}

Listing 5. RTP,,’s network interface.
For example, listing 6 shows the code to dynamically
load an RPC kernel-service onto the runtime.

try{
RTPm« runtime = new RTPm (“user”, ”passphrase”);
RPCServicex rpcService = new RPCService ();
runtime—>insertKernelService (rpcService);
}catch (RTPmException& ex){
// error handling ...

NN A W=

Listing 6. Dynamic loading of RPC service.

Listing 7 sketches the development of a kernel service,
a simple RPC service. Being a kernel service, it can access
reserved kernel facilities, such as threading policies, QoS
and real-time policies.

The user services are managed by the interface im-
plemented in lines 12 to 15. The sketched RPC service
code does not rely on the generic messaging service (for
demonstration purposes), instead it manages all the key
interactions with the network layer. Lines 7 to 9 shows the
network registration and client handling (with the addition
of lines 57 to 60), through the Acceptor [18] class.

The oneWaylnvocation method starts by assesing the user

permissions to execute the requested invocation (lines 18
to 24), that is followed by a search to our local services
list with the objective of checking for a possible local
invocation (consult lines 25 to 30). If the wanted service is
not local, we use the network manager to conduct a search
across all the overlays present in the RTPj,’s runtime, in
order to find a suitable network (lines 31 to 39).

If such a network exists, a RPC client is created that
interacts with the remote Acceptor instance (see lines 40 to
44), and will be used to send the rpc request (line 46).
Incoming RPC requests are dispatched by the network
client to the service, through the interface sketched in lines
62 to 70.

Finally, lines 72 to 75 shows the interface stub for
handling the replies for two way invocations.

1 namespace country { namespace company { namespace rtpm {

2 namespace kernel
3 // RPC kernel service

4 class RPCService: public KernelService {

5 public:

6 RPCService () {

7 Network+ net = getNetworkManager() >

8 register (RPCService ::getUUID ());

9 net—addAcceptor (new RPCAcceptor( h s));

10

11 // service management ...

12 void registerRPCServer (RPCUserServicex server)
13 throw (RPCException);

14 void unregisterRPCServer (RPCUserServicex server)
15 throw (RPCException);

17 void oneWaylnvocation (RPCRequestx request) {
18 Userx user = request—>getUser();

19 Permissions* perms =

20 this—getKernel ()—>security —

21 getPermissions (user, request—>getUUID());
22 if (!perm—hasExecutionPermission ()) {

23 throw RPCException (NOTALLOWED) ;

24

25 Servicex service;

26 if ((service =

27 isLocalRPCService (request—>getUUID())) != 0) {
28 service—oneWaylnvocation (request);

29 return;

30 telse {

31 Networkx net = getNetworkManager—>

32 findNetworkByObjectUUID (request—>getUUID ());
33 if( net 1= 0)

34 UUID* peerUUID = net—>getDiscovery ()—>

35 findUUID (RPC_SERVICE, request—>getUUID());
36 if (peerUUID == 0) {

37 // peer no longer exists

38 throw RPCException (SERVICE.NOT_FOUND);

39 telse {

40 try {

41 RPCNetClient+ rpcNetClient =

42 static_cast<RPCNetClients>

43 (net—getClient (RPCService::getUUID (),
44 peerUUID));

46 rpcNetClient—send (request);

47 }catch (NetwortException& ex) {

48 throw RPCException (SERVICE_.NOT_AVAILABLE);
49

50

51 telse {

52 throw RPCException (SERVICE.NOT_FOUND);

53 }

54 }

55 }

57 int onNewClient(RPCSvcHandlerx rpcSrvHandler) {
58 rpcSrvHandler—setRPCService (this);

59 return rpcSrvHandler—open ();

60

62 int onRPCRequest(RPCSvcHandler« rpcSrvHandler,



63 RPCRequestx request) {

64 if (request—oneWaylnvocation()) {

65 this—oneWaylnvocation (request);

66 } else {

67 RPCReply+ reply = this—>twoWaylnvocation (request);
63 rpcSrvHandler—send (reply);

69 }

70 }

72 int onRPCReply (RPCSvcHandlers rpcSrvHandler,
73 RPCReplyx reply) {

74 /.

75 }

76

77 }

8 11}

Listing 7. Request dispatch in RPC kernel
service.

Listing 8 sketches a user-level RPC service that basically
registers itself with the kernel RPC service defined above
and waits for requests issued by clients (lines 12 to 23).

1 namespace country { namespace company { namespace rtpm {

2 namespace services{

4 // a RPC user server

5 class RPCExampleServer: RPCUserService {
6 public:

7 static UUIDx getServiceUUID ();

8 enum Operations {

9

10

PING-OP = 1

¥
12 void oneWaylnvocation (RPCRequestx request)
13 throw (ServiceException) {
14 switch (request—>getOperation ()) {
15 case PING.OP: {
16 ping ();
17 return;
18 }
19 default:
20 throw
21 ServiceException (OPERATION.NOT_IMPLEMENTED ) ;
22 }
23 1
25 void ping () {
26 // the actual ping code goes here ...
27 }
28}
29 }
30 13}

Listing 8. RPC user service.

Listing 9 sketches a RPC client that handles the
(un)registration of the server with the runtime (lines 9 to 16)
and interfaces with the RPC kernel service from listing 7,
the later acting as a proxy for the user service defined in
listing 8 (lines 18 to 23 and 26 to 30).

1 namespace country { namespace company { namespace rtpm {

2 namespace services{

4 // a RPC client

5 class RPCExampleServiceClient: public RTPmNotifier {
6 public:

7 RPCExampleServiceClients (RTPm« runtime)

9 void registerRPCServer (RPCUserServicex server)

10 throw (RPCException) {

11 getRPCService ()—>registerRPCServer (server);

12 1

13 void unregisterRPCServer (UUID*x rpcUserServiceUUID)
14 throw (RPCException) {

15 getRPCService ()—>unregister (rpcUserServiceUUID);

16 1

18 void ping () throw (RTPmException) {

19 RPCRequest* request =

20 new RPCRequest(RPCExampleServer::getUUID (),
21 RPCExampleServer :: PING_.OP) ;

22 getRPCService()—>oneWaylnvocation (request);

23

24 protected:

25 RTPms« getRuntime ();

26 RPCServicex getRPCService () throw (RTPmException){
27 KernelServicex service = getRuntime ()—>

28 getKernelService (RPCService ::getUUID ());

29 return static_.cast<RPCServicex> (service);

Listing 9. RPC client.

8 Conclusions and Future Work

In this paper we present the architecture of RTPj;, a mid-
dleware framework based on a peer-to-peer infra-structure
and aimed at fault-tolerant, real-time, QoS computing. The
modular peer-to-peer infra-structure is based on P3 [16]
overlays, supporting kernel services with efficient, highly
scalable protocols, e.g. membership, discovery, routing and
messaging. RTPj;’s kernel architecture includes several
real-time and QoS features, namely at the level of service
virtualization, thread scheduling and cross-layer optimiza-
tions and, multi-core aware scheduling.

RTP),, is an ongoing work. We are currently finalizing
the implementation of the first system prototype which, as
yet, has no support for virtualized services. This work will
be followed by a thorough architecture and performance
evaluation. All future developments are, naturally, depen-
dent on this evaluation. However there are some issues that
we envision will be important in future work.

First we plan to add the aforementioned service vir-

tualization support by integrating existing technology [5,
9], providing pathways for implementing dynamic load-
balancing, highly availability of services and fault-
tolerance. A further QoS enhancement will be provided
by the use of the concepts brought by the XenSock-
ets [26], allowing for optimized communication paths be-
tween RTP,,; runtime and virtualized services. Another
interesting feature to include is real-time computing with
lock-free shared objects [3, 23], for improved performance.
Finally, thread scheduling, namely at the level of multi-core
architectures [11], is another important aspect to explore
given the ubiquity of these systems in our days and pre-
sumably in the future.
Acknowledgments Rolando Martins is supported by the
SFRH/BDE/15644/2006 grant from the Fundagdo para
a Ciéncia e Tecnologia and by EFACEC Sistemas de
Electroénica, S.A.. Luis Lopes is partially funded by project
CALLAS of the Fundagido para a Ciéncia e Tecnologia
(contract PTDC/EIA/71462/2006).



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9

—

(10]

[11]

[12]

[13]

[14]

[15]

K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic,
M. Hauswirth, M. Punceva, and R. Schmidt. P-Grid: A
Self-organizing Structured P2P System. SIGMOD Rec.,
32(3):29-33, 2003.

K. Adams and O. Agesen. A Comparison of Software
and Hardware Techniques for x86 Virtualization. In Pro-
ceedings of 15th ACM SIGPLAN International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS XII), pages 2—-13. ACM, 2006.
J. Anderson, S. Ramamurthy, and K. Jeffay. Real Time
Computing with Lock-Free Shared Objects. In IEEE Real-
Time Systems Symposium, pages 28-37, 1995.

F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-Area Cooperative Storage with CFS. In Proceedings
of the 18th ACM Symposium on Operating Systems Princi-
ples (SOSP’01), volume 35, 5 of ACM SIGOPS Operating
Systems Review, pages 202-215. ACM Press, October 2001.
B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, 1. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the Art
of Virtualization. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP’03), October 2003.

P. Druschel and A. Rowstron. PAST: A Large-Scale,
Persistent Peer-to-Peer Storage Ultility. In Proceedings of
8th Workshop on Hot Topics on Operating Systems (HotOS
VIII), pages 75-80, 2001.

A. Gokhale, B. Natarajan, D. Schmidt, and J. Cross. To-
wards Real-Time Fault-Tolerant CORBA Middleware. Clus-
ter Computing, 7(4):331-346, 2004.

M. Henning. A New Approach to Object-Oriented Middle-
ware. [EEE Internet Computing, 8(1):66-75, 2004.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
KVM: the Linux Virtual Machine Monitor. In Proceedings
of the 2007 Ottawa Linux Symposium (OLS’-07), June 2007.
J. Kubiatowicz, D. Bindel, Y. Chen, S. E. Czerwinski, P. R.
Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. OceanStore: An Archi-
tecture for Global-Scale Persistent Storage. In Proceedings
of the 9th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS IX), ACM SIGPLAN, pages 190-201. ACM Press,
2000.

M. Momtchev and P. Marquet. An Asymmetric Real-Time
Scheduling for Linux. In Proceedings of the 16th In-
ternational Parallel & Distributing Processing Symposium
(IPDPS’02), pages 96-96, 2002.

B. Natarajan, A. Gokhale, S. Yajnik, and D. Schmidt.
DOORS: Towards High-Performance Fault Tolerant
CORBA. In Proceedings of International Symposium on
Distributed Objects and Applications (DOA’00), pages
39-48, 2000.

Object Management Group. Fault Tolerant CORBA Speci-
fication. OMG Technical Committee Document, June 2002.
Object Management Group. The Common Object Request
Broker: Architecture and Specification. OMG Technical
Committee Document, June 2002.

Object Management Group. Real-time CORBA Specifica-
tion. OMG Technical Committee Document, January 2005.

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

L. Oliveira, L. Lopes, and F. Silva. P3: Parallel Peer to
Peer — An Internet Parallel Programming Environment. In
Workshop on Web Engineering & Peer-to-Peer Computing,
part of Networking 2002, volume 2376 of Lecture Notes in
Computer Science, pages 274-288. Springer-Verlag, 2002.
S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Network.
Technical Report TR-00-010, University of California at
Berkeley, 2000.

D. Schmidt. An Architectural Overview of the ACE Frame-
work. ;login: the USENIX Association newsletter, 24(1),
Jan. 1999.

D. Schmidt and C. Cranor. Half-Sync/Half-Async: An
Architectural Pattern for Efficient and Well-Structured Con-
current I/O. In Proceedings of the 2nd Annual Conference
on the Pattern Languages of Programs (PLoP’95), pages 1—
10, 1995.

D. Schmidt and F. Kuhns. An Overview of the Real-Time
CORBA Specification. IEEE Computer, 33(6):56-63, 2000.
D. Schmidt, D. Levine, and S. Mungee. The Design of
the TAO Real-Time Object Request Broker. Computer
Communications, 21(4):294-324, 1998.

D. Schmidt, C. O’Ryan, 1. Pyarali, M. Kircher, and
F. Buschmann. Leader/Followers: A Design Pattern for Ef-
ficient Multi-threaded Event Demultiplexing and Dispatch-
ing. In 7th Pattern Languages of Programs Conference,
2001.

H. Sundell and P. Tsigas. Fast and Lock-Free Concurrent
Priority Queues for Multi-Thread Systems. In Proceedings
of the 17th International Parallel & Distributing Processing
Symposium (IPDPS’03). IEEE press, 2003.

J. Team. JXTA v2.0 Protocol Specification, October 2007.

G. Vigna. Mobile Code Technologies, Paradigms, and
Applications. PhD thesis, Politecnico Di Milano, Milan,
Italy, 1997.

X. Zhang, S. Mclntosh, P. Rohatgi, and J. Griffin.

XenSocket: A High-Throughput Interdomain Transport for
Virtual Machines. In Proceedings of the 8th ACM/I-
FIP/USENIX International Middleware Conference (Mid-
dleware 2007), volume 4834 of Lecture Notes in Computer
Science, pages 184-203. Springer, 2007.

B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and
J. Kubiatowicz. Tapestry: A Resilient Global-Scale Overlay
for Service Deployment. IEEE Journal on Selected Areas in
Communications, 2003.



