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Abstract. There are several well known algorithms to minimize deterministic finite automata.
Apart from the theoretical worst-case running time analysis, however, not much is known about
the average-case analysis or practical performance of each of these algorithms. On this paper
we compare three minimization algorithms based on experimental results. The choice of the
algorithms was based on the fact that although having different worst-case complexities they
are usually considered to be ones that achieve best performance. We used an uniform random
generator of (initially-connected) deterministic finite automata for the input data, and thus
our results are statistically accurate. Because one of the algorithms allowed to minimize non-
deterministic finite automata (NFA), we also developed a non-uniform random generator for
NFAs. Nevertheless, although not statistically significant, the results in this case are fairly
interesting.
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1 Introduction

The problem of writing efficient algorithms to find the minimal deterministic finite automaton
equivalent to a given automaton can be traced back to the 1950’s with the works of Huffman
[Huf55] and Moore [Moo58]. Over the years several alternative algorithms were proposed.
Authors typically present the running time worst-case analysis of their algorithms, but the
practical experience is sometimes different. The comparison of algorithms performance is
always a difficult problem and, apart from the results presented by Bruce Watson [Wat95],
little is known about the practical running time performance of automata minimization
algorithms. In particular, there are no studies of average-case analysis of these algorithms,
an exception being the work of Nicaud [Nic00], where it is proved that the average-case
complexity of Brzozowski’s algorithm is exponential for group automata. Lhoták [Lho00]
presents a general data structure for DFA minimization algorithms to run in O(kn log n).

Using the Python programming language, we implemented Hopcroft’s algorithm, Brzo-
zowski’s algorithm, and two versions of an incremental minimization algorithm. This algo-
rithm was first presented by Watson [Wat01] and later improved by Watson and Daciuk
[WD03] , by using full memoization. . The main difference is the use of full memoization.

The choice of the algorithms was based on the fact that although having different worst-
case complexities they are usually considered to be ones that achieve best performance. We
used an uniform random generator of (initially-connected) deterministic finite automata for
the input data, and thus our results are statistically accurate. Because one of the algorithms
allowed to minimize non-deterministic finite automata (NFA), we also developed a non-
uniform random generator for NFAs.

The text is organized as follows. In Section 2 we present some definitions and notation
used throughout the paper. In Section 3 we describe each of the compared algorithms, explain



how they work. In Section 4 we describe the generation methods of the random automata
used as input for each algorithm. In Section 5 we present the experimental results and in
Section 6 we expose our final remarks and possible future work.

2 Preliminaries

A deterministic finite automaton (DFA) D is a tuple (Q,Σ, δ, q0, F ) where Q is a finite set
of states, Σ is the input alphabet (any non-empty set of symbols), δ : Q × Σ → Q is the
transition function, q0 is the initial state and F ⊆ Q is the set of final states. When the
transition function is total, the automaton D is said to be complete. Any finite sequence of
alphabet symbols a ∈ Σ is a word. Let Σ⋆ denote the set of all words over the alphabet Σ and
ǫ denote the empty word. We define the extended transition function δ̂ : Q × Σ⋆ → Q in the
following way: δ̂(q, ǫ) = q; δ̂(q, xa) = δ(δ̂(q, x), a). A state q ∈ Q of a DFA D = (Q,Σ, δ, q0, F )
is called accessible if δ̂(q0, w) = q for some w ∈ Σ⋆. If all states in Q are accessible, a complete
DFA D is called (complete) initially-connected (ICDFA). The language accepted by D, L(D),
is the set of all words w ∈ Σ⋆ such that δ̂(q0, w) ∈ F . Two DFAs D and D′ are equivalent if
and only if L(D) = L(D′). A DFA is called minimal if there is no other equivalent DFA with
fewer states. Given a DFA D = (Q,Σ, δ, q0, F ), two states q1, q2 ∈ Q are said to be equivalent,
denoted q1 ≈ q2, if for every w ∈ Σ⋆, δ̂(q1, w) ∈ F ⇔ δ̂(q2, w) ∈ F . Two states that are not
equivalent are called distinguishable. The equivalent minimal automaton D/≈ is called the
quotient automaton, and its states correspond to the equivalence classes of ≈. It is proved to
be unique up to isomorphism.

A non-deterministic finite automaton (NFA) is also a tuple (Q,Σ,∆, I, F ), where I is a
set of initial states and the transition function is defined as ∆ : Q × Σ → 2Q. Just like with
DFAs, we can define the extended transition function ∆̂ : 2Q × Σ⋆ → 2Q in the following
way: ∆̂(S, ǫ) = S; ∆̂(S, xa) =

⋃

q∈∆̂(S,x) δ(q, a). The language accepted by N is the set of all

words w ∈ Σ⋆ such that ∆̂(I, w)∩F 6= ∅. Every language accepted by some NFA can also be
described by a DFA. The subset construction method takes a NFA A as input and computes
a DFA D such that L(A) = L(D). This process is also referred to as determinization and has
a worst-case running time complexity of O

(

2|Q|
)

.

Following Leslie [Les95], we define the transition density of an automaton A = (Q,Σ,∆, I, F )
as the ratio t

|Q|2|Σ|
, where t is the number of transitions in A. We also define deterministic

density as the ratio of the number of transitions t to the number of transitions of a complete
DFA with the same number of states and symbols, i.e., t

|Q||Σ| .

The reversal of a word w = a0a1 · · · an, written wR, is an · · · a1a0. The reversal of a
language L ⊆ Σ⋆ is LR = {wR |w ∈  L}. Further details on regular languages can be found in
the usual references (Hopcroft [HMU00b] or Kozen [Koz97], for example).

3 Minimization algorithms

Given an automaton, to obtain the associated minimal DFA we must compute the equivalence
relation ≈ as defined in Section 2. The way this relation is computed is one of the main
differences between the several minimization algorithms. Moore’s algorithm and its variations
aim to find pairs of distinguishable states. Hopcroft’s algorithm, on the other hand, computes
the minimal automaton by refining a partition of the states’ set.



We have implemented and compared the performance of three different minimization
algorithms. Hopcroft’s minimization algorithm has the best worst-case running time analysis.
Brzozowski’s algorithm is simple and elegant. Despite its exponential worst-case complexity,
it is supposed to frequently outperform other algorithms (including Hopcroft’s). Brzozowski’s
algorithm also has the particularity of being able to minimize both DFAs and NFAs. Watson
presented an incremental DFA minimization algorithm which can be halted at any time,
yielding a partially minimized automaton. Later, Watson and Daciuk presented an improved
version of the same algorithm, this time including full memoization. Because our main moti-
vation, in the FAdo project [pro], was to check if a given automaton was minimal, and not
to obtain the equivalent minimal automaton, this algorithm was of particular interest. This
choice of algorithms was also motivated by the results presented by Watson [Wat95,WD03],
that pointed them as those which achieved better performance, in spite their different worst-
case running time analysis.

3.1 Hopcroft’s algorithm

Hopcroft’s algorithm [Hop71], published in 1971, achieves the best known running time worst-
case complexity for minimization algorithms. It runs on O(kn log n) time for a DFA with n
states and an alphabet of size k.

Let D = (Q,Σ, δ, q0, F ) be a DFA. Hopcroft’s algorithm, unlike Moore’s algorithm and
several variations [HMU00a,ASU86], does not identify pairs of distinguishable states. Instead,
it proceeds by refining the coarsest partition until no more refinements are possible. The initial
partition is P = {F,Q − F} and, at each step of the algorithm, a block B ∈ P and a symbol
a ∈ Σ are selected to refine the partition. This refinement process splits each block B′ of the
partition according to whether the states of B′, when consuming the symbol a, go to a state
which is in B or not. Formally, we call this procedure split and define it by

split(B′, B, a) = (B′ ∩ δ̌−1(B, a), B′ ∩ δ̌−1(B, a))

where δ̌(S, a) =
⋃

q∈S δ(q, a).
The algorithm terminates when there are no more blocks to refine. In the end, each block

of the partition is a set of equivalent states. Because, for any two blocks B,B′ ∈ P , every
state q ∈ B is distinguishable from any state q′ ∈ B′, the elements of P represent the states
of a new minimal DFA. The complete algorithm is presented in Algorithm 1.1.

def hopcro f t ( ) :
P = {F, Q−F}
L = {Q−F}
while L 6= ∅ :

S = ex t r a c t (L)
for a in Σ :

for B in P:
(B1 , B2) = s p l i t (B, S , a )
P = P − {B}
P = P ∪ {B1}
P = P ∪ {B2}
i f |B1 | < |B2 | :

L = L ∪ {B1}
else :

L = L ∪ {B2}



return P

def s p l i t (B, S , a ) :

foo = δ̌−1 (S , a )
bar = Q − foo
return (B ∩ foo , B ∩ bar )

Algorithm 1.1. Hopcroft’s algorithm.

3.2 Brzozowski’s algorithm

Brzozowski’s automata minimization algorithm [Brz63] is based on two successive reverse
and determinization operations and the entire algorithm is presented (in one single line!) on
Algorithm 1.2. This algorithm is the only one able to process both DFAs and NFAs, always
yielding a minimal DFA that accepts the same language as the input automaton. Given an
automaton A, let det be the subset construction method and rev to the procedure that
computes an NFA that accepts L(A)R. Brzozowski’s algorithm can be stated as a simple
function composition of the previous procedures: det · rev ·det · rev. Since the rev method can
be applied to any finite automaton, perhaps with non-determinism, this algorithm is able to
minimize both DFAs and NFAs.

def brzozowsk i ( fa ) :
return det ( rev ( det ( rev ( fa ) ) ) )

Algorithm 1.2. Brzozowski’s algorithm.

Having to perform two determinizations, the worst-case running time complexity of Brzo-
zowski’s algorithm is exponential. Watson’s thesis, however, presents some surprizing results
about Brzozowski’s algorithm practical performance, usually outperforming Hopcroft’s algo-
rithm.

As for the peculiar way that this algorithm computes a minimal DFA, Watson assumed it
to be unique and, in his taxonomy, placed it apart all other algorithms. Later, Champarnaud
et al. [CKP02] analyzed the way the sequential determinizations perform the minimization
and showed that it does compute state equivalences.

3.3 An incremental algorithm

In 2001 Watson presented an incremental DFA minimization algorithm [Wat01]. This al-
gorithm, unlike the other minimization algorithms, can be halted at any time yielding a
partially minimized DFA that recognizes the same language as the input DFA. Later, Watson
and Daciuk presented an improved version of the same algorithm [WD03] which makes use
of full memoization. While the first algorithm has a worst-case exponential running time, the
memoized version yields a O(n2) algorithm (for all practical values of n, i.e., n ≤ 2216

). It
was not clear, however, that this algorithm would outperform the Hopcroft’s algorithm as the
experimental results in [WD03] seemed to point to. Since the use of memoization introduces
some considerable overhead in the algorithm, we wanted to discover at what point this extra
work begins to pay back.

The incremental algorithm uses an auxiliary function, equiv, that tests if two states are
equivalent. The third argument, an integer k, is used to control the recursion depth . , and is



used only for matters of efficiency. Also for matters of efficiency, a variable S that contains
a set of presumably equivalent pairs of states, is made global. The pseudo-code for a non-
memoized, specialized for ICDFAs, implementation of equiv is presented in Algorithm 1.3.
The memoized algorithm is quite extensive and can be found in Watson and Daciuk [WD03].

def equ iv (p , q , k ) :
i f k = 0 :

return (p in F and q in F) or (not p in F and not q in F)
e l i f (p , q ) in S :

return True
else :

eq = (p in F and q in F) or (not p in F and not q in F)
S = S ∪ {(p , q )}
for a in Σ :

i f not eq :
return False

eq = eq and equ iv (δ(p, a) , δ(q, a) , k−1)
S = S − {(p , q )}

return eq

Algorithm 1.3. Pairwise state equivalence algorithm.

Having a method to verify pairwise state equivalence, we can now implement a test
minimal-p that calls equiv for every pair of states and returns False if some pair is found
to be equivalent. The complete algorithm for this test is given in Algorithm 1.4.

def minimal−p ( ) :
k = max(0 , |Q|−2)
for i in Q:

for j in Q:
i f i < j :

S = {}
i f equ iv ( i , j , k ) :

return False
return True

Algorithm 1.4. Minimal DFA test.

4 Random automata generation

Given the amount of DFAs with n symbols over an alphabet of k symbols [RMA05] for even
considerable small values of n and k, in order to compare the practical performance of the
minimization algorithms, we must have available an arbitrary quantity of uniformly generated
random automata. In a previous work [AMR06] we have already presented a uniform random
generator of ICDFAs, which allowed us to obtain all the necessary DFAs.

Because one of the algorithms (Brzozowski’s) is able to minimize both DFAs and NFAs,
we believe that a fair comparison will have to include the minimization of some NFAs and,
in the case of Hopcroft’s and Watson’s algorithm, account for the time spent in the NFA
determinization process. For the NFAs, we implemented a new random generator. This
generator combines the van Zijl bit-stream method as presented by Champarnaud et al.
[CHPZ04] with one of Leslie’s approaches [Les95], which allows us both to generate initially



connected NFAs (with one initial state) and to control the transition density. Leslie presents
a “generate-and-test” method which may never stop, so we added some minor changes that
correct this situation. A brief explanation of the random NFA generator follows. Suppose we
want to generate a random NFA with n states over an alphabet of k symbols and a transition
density d. Let the states (respectively the symbols) be named by the integers 0, . . . , n − 1
(respectively 0, . . . , k − 1). A sequence of n2k bits describes the transition function in the
following way: the occurrence of a non-zero bit at the position ink + jk + a denotes the
existence of a transition from state i to state j labeled by the symbol a. Consider the bitstream
on Table 1 which represents the NFA of the Figure 1.

q0

z}|{

0 0 |

q1

z}|{

1 1 |

q2

z}|{

1 0
| {z }

q0

‖

q0

z}|{

0 0 |

q1

z}|{

0 0 |

q2

z}|{

0 0
| {z }

q1

‖

q0

z}|{

0 1 |

q1

z}|{

1 0 |

q2

z}|{

0 1
| {z }

q2

Table 1. Bitstream for the NFA on Figure 1.

q0 q1

q2

a, b

a

a

b

b

Fig. 1. The NFA built from the bitstream on Table 1.

Starting with a sequence of zero bits, the first step of the algorithm is to create a connected
structure and thus ensure that all the states of the final NFA will be accessible. In order to
do so, we define the first state as 0, mark it as visited, generate a transition from 0 to
any not-visited state i, and mark i as visited. Next, until all states are marked as visited,
randomly choose an already visited state q1, randomly choose a not-visited state q2, add a
transition from q1 to q2 (with a random), and mark q2 as visited. At this point we have an
initially connected NFA and proceed by adding random transitions. Until the desired density
is achieved, we simply select one of the bitstream’s zero bits and set it to one. By maintaining
a list of visited states on the first step and keeping record of the zero bits on the second
step, we avoid generating either a disconnected NFA or a repeated transition and guarantee
that the algorithm always halts. The set of final states can be easily obtained by generating
an equiprobable bitstream of size n and considering final all the states that correspond to a
non-zero position in the bitstream.

5 Experimental results

To compare algorithms is always a difficult problem. The choice of the programming language,
implementation details, and the hardware used may harm the rigor of any benchmark. In order
to produce realistic results, the input data should be random so that it represents a typical
usage of the algorithm and the test environment should be identical for all benchmarks. We
implemented all the algorithms in the Python 2.4 programming language, using similar data
structures whenever possible. All the tests were executed in the same computer, an Intel R©

Xeon R© 5140 at 2.33GHz with 2GB of RAM. For both minimization tests we used samples of
automata with 5 ≤ n ≤ 100 states and alphabets with k ∈ {2, 5, 10, 20} symbols.



We established a running time limit for both tests. All processes that did not finish within
this limit were killed and the correspondent columns will not appear in the graphics. Also,
for n = 5 no graphics are shown, but now due to the small running times of the algorithms.

5.1 Random ICDFA minimization

On his thesis, Watson used a fairly biased sample. It consisted of 4833 DFAs of which
only 7 had 23 states. As Watson himself states, being constructed from regular expressions,
the automata “... are usually not very large, they have relatively sparse transition graphs,
and the alphabet frequently consists of the entire ASCII character set.”. On their paper
on the incremental minimization algorithm [WD03], Watson and Daciuk also present some
performance comparisons of automata minimization algorithms. They used four different data
sets, one from experiments on finite-state approximation of context-free grammars and three
that were automatically generated. These are not, however, uniform random samples, and
thus, do not represent a typical usage of the algorithms.

The following graphics show the running times for the three algorithms while minimizing
a sample of 10.000 random ICDFAs. The running time limit for all algorithms was 24 hours.
Because we used a uniform random generator, the size of the sample is sufficient to ensure
a 95% confidence level within a 1% error margin. On Table 2 we present a summary of the
algorithms’ behavior.

k = 2 k = 5 k = 10 k = 20

Hopcroft ✓ ✓ ✗ ✗

Watson – – – –

Watson+Daciuk ✗ ✗ ✓ ✓

Brzozowski – – – –

Table 2. Minimization algorithms’ performance with samples of 10.000 ICDFAs.

Fig. 2. Running time results for 10.000 ICDFAs with k = 2 and k = 5.

For small alphabets (k ≤ 5), Hopcroft’s algorithm is always the fastest. When the alphabet
size grows (k ≥ 10), Hopcroft’s algorithm is clearly outperformed by the memoized version
of Watson and Daciuk’s algorithm. The incremental algorithm Watson presents on his thesis



Fig. 3. Running time results for 10.000 ICDFAs with k = 10 and k = 20.

showed itself quite slow in all tests. The memoized version, however, was over twice as fast
as Hopcroft’s algorithm when minimizing ICDFAs with an alphabet of size k ≥ 10. It is
important to point out that for k ≥ 5 all the automata were already minimal and so the
speed of the incremental algorithm can not be justified by the possibility of halting whenever
two equivalent states are found. The fact that almost all ICDFAs are minimal was observed by
several authors, namely Almeida et al. [AMR06]. As Watson himself stated, the incremental
algorithm may show exponential performance for some DFAs. This was the case in one of our
tests. For the sample of 5 symbols and 15 states the memoized incremental algorithm took an
unusual amount of time. Brzozowski’s algorithm is never the fastest. In fact, even for small
alphabets it was not possible to use it on ICDFAs with more than 15 states.

5.2 Random NFAs minimization

The next set of graphics shows the execution times of the three algorithms when applied to
a set of 10.000 random NFAs. The running time limit for all algorithms was 15 hours. It is
important to note that the NFA generator we used is not a uniform one, and so we can not
prove that each sample is actually a good representative of the universe. Because we are dealing
with NFAs, the transition density is an important factor and so each sample was generated
with three different transition densities (d): 0.2, 0.5, and 0.8. For both the incremental and
Hopcroft’s algorithm, which are only able to minimize DFAs, we also accounted for the time
spent in the subset construction method.

For alphabets with two symbols there are no significant differences in any of the algorithms’
general performance, although Brzozowski’s is usually the fastest. Hopcroft’s algorithm out-
performs Brzozowski’s for less than 4% only when d = 0.5 and n ∈ {50, 100}.

For alphabets with five symbols, Brzozowski’s algorithm is always the fastest and, except
for occasional cases, Hopcroft’s algorithm is slightly faster than the incremental algorithm.

When alphabet size increases, the performance of Brzozowski’s algorithm becomes quite
remarkable. For an alphabet with size k ∈ {10, 20}, Brzozowski’s algorithm is definitively
the fastest, being the only algorithm to actually finish the minimization process of almost all
random samples within the 15 hour limit. As for Hopcroft’s and the incremental algorithm,
except for two cases, there are no significant performance differences.

For d = 0.2 and n = 10 all the algorithms showed a particularly bad performance. For
k = 5 only Brzozowski’s algorithm finished the minimization process (taking an unusual



Table 3. Running time results for 10.000 NFAs with k = 2 and k = 5.

Table 4. Running time results for 10.000 NFAs with k = 10 and k = 20.

high amount of time) and for k ∈ {10, 20} none of the algorithms completed the minimization
process within the 15 hour time limit. This result corroborates Leslie’s conjecture [Les95]about
the number of states obtained with the subset construction method for a given deterministic
density dd. Leslie’s conjecture states that randomly generated automata exhibit the maximum
execution time and the maximum number of states at an approximate deterministic density of
2.0. While generating the random NFAs, we considered the transition density d = t

n2k
, which

is related to the deterministic density dd = t
nk

by dd = nd. It is easy to see that in our case
dd = nd = 10×0.2 = 2.0, which will make the subset construction computationally expensive.
In order to achieve the same exponential behavior in the subset method for d ∈ {0.5, 0.8} the
number of states would have to be n ∈ {4, 2.5}, but for such a small number of states the
exponential blowup is not meaningful. This explains why there are no similar results for the
test batches with d ∈ {0.5, 0.8}. Considering we used a variation of one of Leslie’s random
NFA generators, this result does not come with any surprise.



6 Conclusion

We compared three automaton minimization algorithms based on experimental results. For
input data we used two different types of randomly generated automata (ICDFAs and NFAs)
with different number of states and alphabet size.

The tests with ICDFAs were conducted using a uniform random generator and a sample
large enough to ensure a 95% confidence level within a 1% error margin. For alphabets with
less than 10 symbols, Hopcroft’s algorithm is the fastest. As the alphabet size grows, Watson
and Daciuk’s algorithm performs better than Hopcroft’s. We can safely conclude that neither
Watson’s non-memoized algorithm nor Brzozowski’s algorithm perform well regardless of the
number of states or size of the alphabet.

As for the tests with NFAs, it is important to note that the random generator we used was
not a uniform one, and so, it is possible that the random samples are not a good representative
set. Brzozowski’s algorithm was definitively the fastest algorithm for NFAs. Hopcroft’s and
Watson and Daciuk’s algorithms, both slower than Brzozowski’s algorithm, always showed
similar results.

It would be interesting to obtain an average-case running time complexity analysis for
the DFA reversal, and thus possibly explain Brzozowski’s algorithm behavior with ICDFAs
minimization. Also, considering that when minimizing a NFA all algorithms must use the
subset construction at least once, the reason that makes Brzozowski’s algorithm so efficient
is not evident.
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