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Abstract

The main activity of a Network Intrusion Detection System (NIDS) consists
in analysing the flow of network packets and identify which ones are part of an
ongoing attack or intrusion. Two major problems related with NIDS deployment
are the distinction between normal and abnormal activity in the network and
the detection of new kind of attacks that have not occurred previously. Several
approaches have been applied to solve the problem, with relative success, includ-
ing machine learning, data mining, statistical and those inspired in the immune
System.

In spite of the large body of reseach done on this subject, the literature
evidences some problems these approaches have when applied to real world
networks. These are mainly due to performance and scalability issues. In
this paper we present negative selection and danger theory as two of the major
immunological approaches applied so far to the field of intrusion detection. We
present what we believe are their major limitations under this context and
propose a new NIDS framework based on the Grossman’s Tunable Activation
Threshold (TAT) theory. This theory is based on the general idea that in the
immune system T-cells activation thresholds are adjusted dynamically and this
adjustment is based on the recent history of T-cells and APCs interactions.

1 Introduction

An intrusion can be seen as a set of actions that attempt to compromise a secure
property. Intrusion detection is the process of monitoring relevant events that occur
in a computer-based information system. The main goal of intrusion detection is thus
to positively identify all possible occurrences of actual attacks and, at the same time,



to not be distracted by regular events and deceived by the signalling of false attacks
[33]. A NIDS has thus to detect unauthorised use, misuse and abuse of computer
systems by both system insiders and external intruders.

There are several ways to identify and technologically categorise existing Intrusion
Detection System (IDS), such as audit source location and intrusion detection response
and detection methods [I1]. Considering the source from where an IDS gets its
information, these systems can be further classified as Network IDS (NIDS), Host
IDS (HIDS) and Hybrids. The intrusion detection response is related with the way
the IDS responds to attacks and can be classified as passive, reactive and proactive.

There are also two classes to classify an IDS based on the way it identifies potential
intrusions: anomaly detection and misuse detection |11].

Anomaly (behaviour-based) detection bases its decisions on a profile of normal
network or system behavior, denoted by what is called the normal activity profile.
The system looks for anomalous activities, which by definition are activities that do
not match the previously established profile. An intrusion is thus a deviation from the
normal activity profile [4].

The misuse detection (knowledge-based) based systems examines network and
system activity, comparing the data collected by the IDS with the contents of a
database, looking for known misuses. The database contains the signatures of known
attacks in the form of rules. If a match is found, an alert is generated and all the
events that do not match any signature are considered not intrusive |].

Both of these methods of detection have strengths and weaknesses. On one hand,
misuse-based systems generally have a very low rate of false positives but cannot
identify novel attacks, leading to high false negative rates. On the other hand,
anomaly-based systems are able to detect novel attacks but currently produce a large
number of both false positives and false negatives [1]. These problems are due to
the inability of current anomaly-based techniques to deal adequately with continuous
changes in network environments. This is a clear indication for the need to find
and apply new paradigms that can better cope with legitimate changes in computer
networks and systems usage over time, meaning that any kind of profile for normal
behaviour also needs to be dynamic in nature.

The application of biological immune system concepts and algorithms provides the
system with the innate capability to distinguish self from non-self, learn new forms
of intrusion not previously seen and memorize past events, among other interesting
characteristics [10]. These characteristics increase the quality and resilience of these
systems by providing them with the ability to react to new and never encountered
attacks on networks that change gradually over time.

The immune-based IDS developed so far are generally based on two main immuno-
logical theories: Negative Selection (NS) |13] and Danger Theory (DT) |1]|. Starting
from this well established work we propose a new framework for network intrusion
detection based on a different theory proposed by Grossman: TAT [14]. TAT states
the activation threshold of Tcells is dynamically adjusted based on the recent history
of Tcells-APC interactions. This theory considers a different approach from both NS
and DT in what concerns the self-non-self system discrimination.

The selection is made by the T-cell based on the continuous reaction to the



signals received from APC. The activation is based on the tuning of a threshold that
reflects the recent history of intracellular interactions between T-cells and APCs. This
threshold is not fixed, as stated by NS and the immune response in not based in cell
apoptosis (death), as proposed by DT. We believe that TAT possesses interesting
characteristics that can be applied to IDS and harnessed to define a better metaphor
for intrusion detection based on immune systems that is better equipped to cope with
the acute problem of effectively detecting intrusions in real-world networks.

In Section 2 we summarize the developments done so far in immune-base IDS using
both approaches NS and DT. In Section 3 we describe the fundamentals of the TAT
theory and the metaphor that can be thus derived for network intrusion detection.
In Section 4 we propose a new work framework based on TAT, describing its main
components and processes. In Section 5 we present some conclusions we can derive
from this preliminary effort and describe the major ongoing research activities we are
currently engaged with to refine these ideas into a fully functional IDS.

2 Artificial Immune Systems applied to IDS

An Artificial Immune Systems (AIS) can be see as an adaptive system inspired by
theoretical immunology that can be applied to problem solving [10]. It is widely
recognized that network computer security is regarded as one of the most intuitive and
popular field of computer science where we can effectively use the biological immune
system as a computing metaphor in the form of an AIS.

In [20] the authors present an in-depth description of the state of the art in the
development of IDS based on immune biological approaches. The work done so far
in this field can be subdivided into three main subareas [20], there are: systems
inspired by the immune system that employ conventional algorithms (for example, IBM
virus detector from Kephart [17]), those derived from negative selection paradigms, as
introduced by Forrest [13| and finally those that take advantage of DT |24]. In this
section we give a summary description of the last two approaches, emphasizing their
main differences to the TAT theory.

In negative selection [13| the system generates a baseline of self patterns based on
normal system activity. A large randomly detector set is then generated where each
detector is compared to each one of the self patterns. If they match, the detector is
destroyed and removed from the initial repertoire. Otherwise, the detector is made
available to match the monitored patterns and, if they match with a certain affinity,
this should indicate that an abnormal activity has occurred. In her seminal work,
Forrest et al. [12] managed to take full advantage of some important base char-
acteristics of the immune system, such as diversity, adaptability, anomaly detection
and identity by behaviour, among others. In [13] she proposed a first approach to
deploy an AIS for network security, where the non-self is characterised as "undesired
network connections”. In this approach both good and bad connections, as well as
the detectors are represented by binary strings. These strings are then subjected to
a pattern matching algorithm that is applied to identify self connections. In this first
learning phase, the binary strings that are eliminated constitute the negative selection



operation of the AIS being built. On the other hand, if any one of the other surviving
patterns matches an antigen and a certain threshold is attained, the corresponding
antibody (the pattern matching string) is activated and the presumed intrusion is
reported to a human operator that decides if we are truly in the presence of a real
incident. If this is the case, the pattern match string is promoted to the memory
detector category with the mission to recognize future similar attacks. LISYS [5, 16|
was one of the first successful NIDS based on AIS.

In 18] Kim identified three fundamental design goals requirements for network
based intrusion detection systems: distribution, self-organisation and lightweight op-
eration. She also concludes a typical AIS framework must include negative selection
and clonal selection mechanisms and should take advantage of gene library evolution
algorithms. She presents an AIS incorporating the requirements and characteristics
listed above, describes the developed architecture and shows some promising results
of its application in a real local area network. There are however serious scalability
problems associated with the negative selection paradigm when is used in the context
of live network traffic [19]. When network traffic increases, the self and non-self
space increases dramatically, thus becoming increasingly difficult to find a set of
computationally efficient detectors capable of providing adequate coverage of the self
and non-self space.

With NS it is no trivial matter to map the entire self and non-self dynamic space.
Firstly, they both tend to change over time. Moreover, only some non-self is harmful
and one may find some self that can cause damages [18, 1]. More recently, Stibor et.al
[32] explored the appropriateness of using artificial immune systems based on negative
selection for intrusion and anomaly detection problems, specially when compared to
other well known statistical anomaly detection methods. In [31] the author identifies
some problems related with the use of Hamming shape-spaces applied to anomaly
detection in the context of negative-selection based algorithms.

systems based on AIS, stressing their weaknesses and defending the need to adopt a
new immunological paradigm, the Danger Theory. Matzinger’s Danger Theory [21]
starts by observing that there must be some kind of discrimination process that goes
beyond the classical self-non-self distinction. She bases her argument on evidences
from well known natural behaviours. For example, there is no immune reaction to
foreign bacteria in the food we eat although they are foreign entities. The human
body changes over its lifetime as well but the immune system is still capable of coping
with these changes. Other aspects that collide with the traditional viewpoint are the
autoimmune diseases which attack the self and successful grafting transplants where
there are no attacks against foreign (non-self) tissues. The central idea of the DT
is that the immune system does not react to non-self but to danger. The system
discriminates "some" self and "some" non-self, which is a starting point to explain
why it is possible to cope with "non-self but harmless" and with "self but harmful"
system aggressors [2].

The theory states that danger is measured by signals sent out when distressed
cells die in some unnatural way. These signals encourage the macrophages to capture
antigens in their neighbourhood and establish a danger zone around the alarm signal



emitted by the distressed cell. Only those B-cells producing antibodies that match
antigens within the danger zone get stimulated and start the clonal expansion process.
This theory suggests that the immune system reaction to threats is based on the
correlation of various signals, providing a method of linking the threat directly to the
attacker. In |1]| Aickelin et al. transposes the DT to the realms of computer security.
Their objective is to specify a computational model based on DT to define, explore
and find danger signals. The correlation of danger signals to IDS alerts and these
alerts to intrusion scenarios is a subject still far from being completely defined and
needs to be better clarified.

In our opinion, this theory has two main drawbacks. First there is the presumption
that triggering is based on cell apoptosis. In an IDS implementations this implies
that there must have been an intrusion for a correspondent reaction, without a prior
prediction that an intrusion is going on. This could be disastrous in a production
environment.

Secondly, the meaning and quantification of "danger" can be a hard task of difficult
practical applicability to intrusion detection. All computer networks are different, as
well as their meaning of what constitute normal and abnormal activities. So is their
measure of what constitutes a "danger signal".

3 The Tunable Activation Threshold theory

The biological immune system is a very complex multi-layered structure, composed
by a set of cellular components that interact with each other to react against the
microorganisms (pathogens), that can cause diseases, such as virus and bacterias.
Antigens are substances (usually proteins) identified as foreign by the immune system
(the nonself antigens), which stimulates the release of antibodies to destroy pathogens
[6]. The immune system is generally divided in two conceptual layers. Firstly, the
innate immune system, whose behaviour is determined by each person’s individual
genetic inheritance and responds similarly during each individual entire lifetime. It is
composed by a physical barrier (skin), some fluids (e.g. sweat and tears), and once
inside the body, by the activity of APCs (for example, the macrophages) that try
to destroy the pathogens, fragmenting them into antigenic peptides. Some of these
peptides bind to special proteins called Major Histocompatibility Complex (MHC),
being presented in the cell surface as a pair "MHC /peptide".

Secondly, the adaptive or specific immune response, recognizes an antigen as nonself
according to prior memory of past intrusions, reacting adaptively to new similar events.
In the adaptive system specificity refers to the binding process of an antigen (self or
nonself) by a cell, in which each cell has a receptor that only recognizes one specific
antigen. Furthermore, the molecule surface of an antigen has different antigen peptides
that can be bound by different cells. It is therefore possible to have a high number of
antigens that can be recognized and destroyed by numerous immune system cells |10)].

In the metaphor used in the context of a NIDS the innate immune system corre-
sponds to the baseline knowledge given to the system about know attacks. This can
be done by using signatures or rules for well known attacks. This is the approach



normally used by some popular NIDS; like Snort [28].

The adaptive immune system corresponds to the IDS ability to uncover new pre-
viously unseen attacks that can occur within the network.

One major mechanism of the immune system is its capability to distinguish self
from non-self and thus avoid auto-reactivity. This ability can be partly explained
by negative-selection but the problems of coverage, scalability and performance re-
ported by some recent research |19, 32| emphasizes the need for news approaches and
paradigms. Another question is related to the usually fixed threshold considered for
cell activation and the need for manual intervention in order to confirm the presence
of malicious activity.

The Tunable Activation Threshold (TAT) |14, 15| hypothesizes that T-cells have
their activation threshold adjusted dynamically by the "kind" and "quality" of signals
received from the APCs. This hypothesis proposes that every interaction between
T-Cell Receptor (TCR) and its ligands on APC result in an intracellular competition
between "excitation" and "de-excitation" signaling pathways, causing the T-cell to
increase or decrease its activation threshold |7].

T-cells react differently to the signals they receive from APC (through pairs "MHC /peptide"),
adjusting its threshold of activation proportionally to the signals received from the
APC. Thus, each T-cell has its own responsiveness and tuning updated according to
the history of intracellular interactions between T-cell and APC.

The activation threshold increases gradually if the signals received are recurrent and
decreases in the absence of signals. T-cells should be activated if, in a given period of
time, the signals received from the APC are higher than the current threshold. Notice
that this can happen if a T-cell does not receive signals from an APC for some time
and ends up with a substantially decreased threshold, thus becoming much easier to
activate in the presence of higher signals.

The selection process therefore is not pre-programmed, instead, it requires a mech-
anism of signal-transduction that translates the different external stimulation signals
from APC into relatively uniform intracellular signals. Under this scenario threshold
signals would allow some of the less excessively autoreactive naive T-cells to survive
longer than others, allowing negative selection earlier and late during the maturation
process [15]. This behavior contrasts with classical immunology paradigms where all
the cells that match the self are naturally discriminated by the survival of those cells
that have a higher level of affinity with the non-self (immunocompetent cells).

In TAT the interactions between TCR and "MHC /peptide" complexes induce
biochemical changes in the T-cell signalling and activation machinery that alter the
sensitivity of T cells to subsequent stimulation |30]. Thus, different T-cells will have
different affinity levels to react to the different pairs "MHC /peptides".

The TAT operation model can be described as follows. Each T-cell has two "coun-
ters"; One corresponds to the activation threshold (L) and the other corresponds to
the signal received from the APC in each interaction (I). The APC presents a peptide
to a T-cell that will adjust its level of activation according to the signal received.
Depending on the intensity of the signal, the counter I can become higher than L
and in this case, the T-cell is activated. This mechanism makes the T-cell regulated
according to the peptides presented by the APC. The T-cell thus adjusts dynamically



its limits of activations and inaction for a particular antigen. Figure 1 represents the
kinetics of intracellular signal intensity and the activation threshold. It illustrates a
signal intensity that increases smoothly, adjusting the threshold and a more intense
signal that overcomes the threshold limit, which implies the cell activation.

Activation

)

Signal intensity
| | | | | |

)]

Figure 1: The relation between the signal intensity and the activation threshold of a
T-cell.

In TAT the self-non-self discrimination depends heavily on the initial training of the
system and the continuous monitoring of the recent history of T-cell-APC interactions.
The signal received from the APCs is "self" if all T-cells able to receive the signal have
its thresholds (variable L) adapted and the signal is below the threshold. On the other
hand, if the signal received from the APC is above the threshold of all the T-cells
trained to receive it, then the signal is considered by TAT as "non-self".

The system key phase is thus the training phase. The baseline of the system is
the normal (self) behavior, and this knowledge is used to produce the TCR. This
naive cells are born in the thymus according to each individual genetic information.
Its activation threshold is high and during the maturation phase it decreases naturally
and spontaneously at a defined rate. In the T-cells that receive recurrent signals (self
patterns), the decreasing of the threshold is opposed by a natural tendency for the
signal to increase it. In this case, the activation threshold will be always above the
input signal received by the APC. On the other hand, in T-cells that do not receive
enough signals, the threshold will also decrease, but there is no signal in opposite
direction. Thus, in some moment, they will be activated, turning these cells too
reactive to detect non-self patterns [14]. This dynamic operation makes the automatic
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adjustment of the activation threshold in T-cells dependent on two main factors: their
initial training and the monitorization of the signals received by the APC.

The application of TAT to intrusion detection thus has the following points of
interest:

the automatic adjustment of T-cells activation threshold based on the system
activity reflects more accurately what really happens in a network. The network
traffic is different in all the networks and it is necessary to have detectors
compatible with this reality.

the activation is an automatic process based on the kinetics between the signal
intensity and threshold and thus the manual intervention to confirm the attack
may no longer be required.

the dynamic threshold seem to be more realistic than the model defended by
classical immunology, as it reflects the real operation of the system. The recog-
nition of a new unseen intruder (an attack) depends on the "strength" of the
signal received from the APCs (traffic filter).

the normal operation of the system should fine tune the threshold of some T-cells,
converting them into "memory" cells. For example, when an attack takes place
in the network, the T-cells that receive such signals will automatically adjust its
threshold to a value that will allow for their activation making that cell reactive
to this same attack or some of its variants.

the gradual threshold adjustment over time tends to minimize (or even eliminate)
the false negative events because T-cells will only activate when the signal is
above the threshold.

the activation is triggered when the bind match a threshold adjusted dynamically
over time. This should reflect the dynamic history of the system, instead of a
pre-defined state supposed to reflect the natural evolution of those individuals.
Computer networks are not all equal and each one has its own dynamics for
normal activity. Each network should thus adjust dynamically its threshold of
reaction according to its own activity profile.

recurrent signals are usually related to normal activity. This is precisely what
usually happens in a network. Abnormal activities are exceptional signals that
should adjust the threshold to a level capable of activating the T-cell.

The metaphor of TAT applied to intrusion detection is summarized in the figure 2.

At this phase of our research, there are some questions that need to be better clarified:

it is not clear what should be the rates in which the threshold (L) and signal
input variable (I) should vary, to reflect a real-world network system. If the
signal is recurrent, then L should increase more than I.



Immune system (TAT) network environment
Thymus detector set generator
Teell detector
TCR detector string
activation threshold Variable L of the detector
signal Variable | of the detector
Teell activation alarm trigered if |>L
APGC traffic filter
Peptide substrings matched by each APC
peptide concentration ncurrences of each string filtered by APC
tuning threshold automatic adjust to variable L of the detector
Self Normal activities
Non Self Abnormal activities

Figure 2: The metaphor of TAT and the intrusion detection.

e the strings that each APC will match in the network traffic must also be very
well defined.

In our opinion, the self-non-self distinction proposed by TAT has some very in-
teresting and metaphoric insights that can be easily mapped and applied to intrusion
and anomaly detection, when compared to NS and DT. Firstly, the T-cell selection
is directly related to its interaction with the environment, avoiding any premature
distinction in the thymus, as happens with NS. Moreover, the significant differences
between both approaches are based on the fact that activation is based on a tunable
threshold instead of a fixed one. We may thus have different individual T-cells with
different levels of reaction.

Comparing to DT, TAT is not based on cellular apoptosis. So, the system is not
expecting to be infected for latter reaction. In TAT, the system detects the intruder
if the signal received is above the T-cell threshold. Moreover, there is no need to
"classify" each signal since what matters is its intensity and its relation to its recent
occurrences level. A precise meaning for what is a "danger signal" and the need for
its correlation is not necessary.

4 The proposed framework

In this section we present a framework for an IDS based on the TAT model sum-
marily described in Section 3. Figure 3 illustrates the general proposed architecture,
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Figure 3: General architecture of the NIDS using TAT

emphasizing its main processes and data flows.

Our system is composed by two main structures that interact periodically: Tcells,
corresponding to detectors and APCs corresponding to network filters that extract
patterns from network flows. A network communication flow identifies all the packets
exchanged between two applications in the network and can be identified by the
following attributes: source and target TP address, source and target ports (Transport
layer), protocol type (Internet layer), service type (TCP header) and input router
interface |29]. We can identify three main operational phases: (1) the initial training
of Teells, (2) network traffic processing and (3) T-cell and APC interactions based
on the TAT algorithm. Each detector is identified by a string of m attributes and
has two variables: the activation threshold (variable L) and the intensity of the signal
received by each APC interaction (variable I). The APCs are identified by a vector of
sub-strings with k attributes (with k& < m), corresponding to the traffic being filtered
from the network, and a variable J corresponding to the number of occurrences for
each string.

The system operates as follow:

1. it starts by creating two sets: detectors represented by Tcells and traffic filters
represented by APCs.

2. variables L are initialized with a very large pre-defined value for all Tcells.
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3. variable I is reset to zero for each interaction T-cell-APC.

4. APCs collect network traffic in real time and store the occurrences of each of its
filters. The number of occurrences is stored in variable J.

5. each entry in the APC table is periodically presented to all the TCR and, in
case of a match, the variable I is updated with the value J. The variable L is
also increased by a value that should reflect the intensity of the signal (I). This
means that the signals are recurrent, corresponding to self activity, and both
variables are incremented in such a way that L always becomes greater than I.

6. on the other hand, if the detector finds a rare or a too strong signal, then both
I and L will decrease, but L is made to decreases faster, causing I to be higher
than L at some time in the future, causing the detector to become activated.

The activity of the APCs can be described as follow:

1. each network filter (APC) extracts several patterns from the network and counts
occurrences in a defined period of time.

2. These occurrences are stored in a APC table, associated to each string (variable
J)

3. In the case that no match exists to a particular string (J = 0), then that string
is removed from the list.

This description emphasizes the general characteristics described in the previous
section, being possible to identify the metaphor proposed in Figure 2 (Section 3).

Figure 4 details the main processes involved. The training is composed by two
distinct separate phases. Firstly, the system is trained with a self data composed
exclusively of normal traffic from the network we want to protect (Self-Tagged).
Secondly, we train the system with a data-set composed both by normal and known
attacks (Non-self Tagged). One possible approach is to "synthetically" generate these
attacks from the detection rules of the Snort IDS |28]. This second training phase
matures T-cells by causing an adaptation of its thresholds and turning them more
sensible to these attacks.

This procedure will tune some T-cells to be highly adjusted to react to the already
known attacks. These T-cells act as "memory cells" since their existence records
previous known attacks. The activation threshold for these cells should also remain
in a low value (near zero) in order to make them react quicker in any re-occurrence of
these attacks.

The monitorization process can occur in several points of the network. For example,
it could consist of processes running on several PCs in a local area network. Each
process has a set of generated APCs that will filter the network traffic according to

12
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Figure 4: General architecture for the NIDS.

specific rules. These rules will be used to create a vector of sub-strings that should
filter in real time the traffic collected from the network. The APC stores, for each
sub-string, the number of occurrences thus found.

For network traffic capture (“sniffing”) we intend to use the netmate [25] tool. This
is a flexible and extensible measurement tool written in Java. It has several modules for
packet accounting, delay/loss measurement, packet capturing and netflow statistics.
We have done several experiments collecting netflows from a medium size network that
confirmed the robustness and appropriateness of this tool, mainly its ability to classify
network flows and to be easily extended with more specific netflow characteristics, such
as the total packets sent in each direction, amount of bytes transmitted and duration
among others. During capture, besides the net flow statistics, it is possible to collect
several different kind of data from network traffic such as bandwidth measures, packet
delay and the payload for each packet.

For our framework, in order to carry on the two training phases, we intend to
collect traffic from normal activity of the network, as well as the traffic generated
during induced synthetic network attacks. The data thus collected will allow us to
produce two very different data-sets for further classification.

To obtain the first preliminary results we intend to use the DARPA /MIT Lincoln
Laboratory off-line intrusion detection evaluation data set |23]. This off-line data set
contains around 500000 network connections, between normal and 17 labeled attacks.

The amount of characteristics (features) collected by netmate, as well as by some
other network monitoring tools, is very large and, in some ways, redundant. From
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another perspective, not all the features are really important for intrusion detec-
tion [21]. It is possible to reduce the feature set without loosing accuracy. This is
largely substantiated by the large body of research done on the use of data mining
techniques|22| and machine learning |27, 26, 8, 9| approaches.

A much reduced feature set can generally be obtained from the training data-set,
such that: (1) it maintains the accuracy for the classification process and (2) it becomes
computationally possible, in real time, to process the data collected by netmate. Also,
in terms of representation, the reduced dimension of the feature set can bring good
benefits in the representation of the normal data-set in the shape-space (Hamming or
real-value), as well as in the measuring of the distance between T-cells and the events
observed.

We intend to explore mechanisms of feature set reduction for a better shape-space
coverage, starting by some accepted research in the field [9, 27]. The results described
in [30], explains the modulation of TAT in an Hamming space-space. We intend to
study the application of this model to our research and explore the appropriateness
of TAT implemented with Hamming shape-spaces as a network intrusion detection
system. We also intend to measure the accuracy obtained with different feature sets
and what can be its impact in the overall system performance.

The use of TAT in a NIDS context has the potential of bringing new insights to
the AIS research. A working system will certainly help to justify some immunological
behaviors that are not yet well understood.

5 Conclusions and future work

We have proposed a novel NIDS framework based on the TAT theory and presented a
framework for its application in the context of network intrusion detection. We have
also described NS and DT as the two main immunological models applied to AIS-based
IDS so far, summarized its behaviour and emphasized their major drawbacks when
applied to real large scale network intrusion detection.

The TAT theory sustains that the activation of a T-cell (network detector) is
based in a threshold that is fine tuned according to the recent history of Tcell- APC
interactions. This general idea gives interesting insights to the application of TAT to
practical NIDS.

In |20] it is argued that the research in AIS-based IDS, and its experimental results
so far, have shown that these systems are only able to work on relatively simple, small
problems, in very selected environments. The authors also emphasize the need to
explore new immunological mechanisms that have not been previously studied and
applied for intrusion detection. The theoretical study of TAT, the practical results
obtained with TAT in other contexts [7]| gives us good confidence that this theory can
be applied with success in the deployment of effective NIDS.

Our ongoing research will continue with the development and implementation of
this architecture in order to obtain comprehensive results about the use of TAT in
the context of NIDS. The next steps will be to define a methodology to cover in a
more optimal way the events shape-space (Hamming or Real-value), to define and test
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functions for adapting the thresholds and to fine tune the training phase for obtaining
better insights about the applicability and real value of TAT for and efficient network
intrusion detection.
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