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tThe main a
tivity of a Network Intrusion Dete
tion System (NIDS) 
onsistsin analysing the �ow of network pa
kets and identify whi
h ones are part of anongoing atta
k or intrusion. Two major problems related with NIDS deploymentare the distin
tion between normal and abnormal a
tivity in the network andthe dete
tion of new kind of atta
ks that have not o

urred previously. Severalapproa
hes have been applied to solve the problem, with relative su

ess, in
lud-ing ma
hine learning, data mining, statisti
al and those inspired in the immunesystem.In spite of the large body of resea
h done on this subje
t, the literatureeviden
es some problems these approa
hes have when applied to real worldnetworks. These are mainly due to performan
e and s
alability issues. Inthis paper we present negative sele
tion and danger theory as two of the majorimmunologi
al approa
hes applied so far to the �eld of intrusion dete
tion. Wepresent what we believe are their major limitations under this 
ontext andpropose a new NIDS framework based on the Grossman's Tunable A
tivationThreshold (TAT) theory. This theory is based on the general idea that in theimmune system T-
ells a
tivation thresholds are adjusted dynami
ally and thisadjustment is based on the re
ent history of T-
ells and APCs intera
tions.1 Introdu
tionAn intrusion 
an be seen as a set of a
tions that attempt to 
ompromise a se
ureproperty. Intrusion dete
tion is the pro
ess of monitoring relevant events that o

urin a 
omputer-based information system. The main goal of intrusion dete
tion is thusto positively identify all possible o

urren
es of a
tual atta
ks and, at the same time,2



to not be distra
ted by regular events and de
eived by the signalling of false atta
ks[33℄. A NIDS has thus to dete
t unauthorised use, misuse and abuse of 
omputersystems by both system insiders and external intruders.There are several ways to identify and te
hnologi
ally 
ategorise existing IntrusionDete
tion System (IDS), su
h as audit sour
e lo
ation and intrusion dete
tion responseand dete
tion methods [11℄. Considering the sour
e from where an IDS gets itsinformation, these systems 
an be further 
lassi�ed as Network IDS (NIDS), HostIDS (HIDS) and Hybrids. The intrusion dete
tion response is related with the waythe IDS responds to atta
ks and 
an be 
lassi�ed as passive, rea
tive and proa
tive.There are also two 
lasses to 
lassify an IDS based on the way it identi�es potentialintrusions: anomaly dete
tion and misuse dete
tion [11℄.Anomaly (behaviour-based) dete
tion bases its de
isions on a pro�le of normalnetwork or system behavior, denoted by what is 
alled the normal a
tivity pro�le.The system looks for anomalous a
tivities, whi
h by de�nition are a
tivities that donot mat
h the previously established pro�le. An intrusion is thus a deviation from thenormal a
tivity pro�le [4℄.The misuse dete
tion (knowledge-based) based systems examines network andsystem a
tivity, 
omparing the data 
olle
ted by the IDS with the 
ontents of adatabase, looking for known misuses. The database 
ontains the signatures of knownatta
ks in the form of rules. If a mat
h is found, an alert is generated and all theevents that do not mat
h any signature are 
onsidered not intrusive [4℄.Both of these methods of dete
tion have strengths and weaknesses. On one hand,misuse-based systems generally have a very low rate of false positives but 
annotidentify novel atta
ks, leading to high false negative rates. On the other hand,anomaly-based systems are able to dete
t novel atta
ks but 
urrently produ
e a largenumber of both false positives and false negatives [4℄. These problems are due tothe inability of 
urrent anomaly-based te
hniques to deal adequately with 
ontinuous
hanges in network environments. This is a 
lear indi
ation for the need to �ndand apply new paradigms that 
an better 
ope with legitimate 
hanges in 
omputernetworks and systems usage over time, meaning that any kind of pro�le for normalbehaviour also needs to be dynami
 in nature.The appli
ation of biologi
al immune system 
on
epts and algorithms provides thesystem with the innate 
apability to distinguish self from non-self, learn new formsof intrusion not previously seen and memorize past events, among other interesting
hara
teristi
s [10℄. These 
hara
teristi
s in
rease the quality and resilien
e of thesesystems by providing them with the ability to rea
t to new and never en
ounteredatta
ks on networks that 
hange gradually over time.The immune-based IDS developed so far are generally based on two main immuno-logi
al theories: Negative Sele
tion (NS) [13℄ and Danger Theory (DT) [1℄. Startingfrom this well established work we propose a new framework for network intrusiondete
tion based on a di�erent theory proposed by Grossman: TAT [14℄. TAT statesthe a
tivation threshold of T
ells is dynami
ally adjusted based on the re
ent historyof T
ells-APC intera
tions. This theory 
onsiders a di�erent approa
h from both NSand DT in what 
on
erns the self-non-self system dis
rimination.The sele
tion is made by the T-
ell based on the 
ontinuous rea
tion to the3



signals re
eived from APC. The a
tivation is based on the tuning of a threshold thatre�e
ts the re
ent history of intra
ellular intera
tions between T-
ells and APCs. Thisthreshold is not �xed, as stated by NS and the immune response in not based in 
ellapoptosis (death), as proposed by DT. We believe that TAT possesses interesting
hara
teristi
s that 
an be applied to IDS and harnessed to de�ne a better metaphorfor intrusion dete
tion based on immune systems that is better equipped to 
ope withthe a
ute problem of e�e
tively dete
ting intrusions in real-world networks.In Se
tion 2 we summarize the developments done so far in immune-base IDS usingboth approa
hes NS and DT. In Se
tion 3 we des
ribe the fundamentals of the TATtheory and the metaphor that 
an be thus derived for network intrusion dete
tion.In Se
tion 4 we propose a new work framework based on TAT, des
ribing its main
omponents and pro
esses. In Se
tion 5 we present some 
on
lusions we 
an derivefrom this preliminary e�ort and des
ribe the major ongoing resear
h a
tivities we are
urrently engaged with to re�ne these ideas into a fully fun
tional IDS.2 Arti�
ial Immune Systems applied to IDSAn Arti�
ial Immune Systems (AIS) 
an be see as an adaptive system inspired bytheoreti
al immunology that 
an be applied to problem solving [10℄. It is widelyre
ognized that network 
omputer se
urity is regarded as one of the most intuitive andpopular �eld of 
omputer s
ien
e where we 
an e�e
tively use the biologi
al immunesystem as a 
omputing metaphor in the form of an AIS.In [20℄ the authors present an in-depth des
ription of the state of the art in thedevelopment of IDS based on immune biologi
al approa
hes. The work done so farin this �eld 
an be subdivided into three main subareas [20℄, there are: systemsinspired by the immune system that employ 
onventional algorithms (for example, IBMvirus dete
tor from Kephart [17℄), those derived from negative sele
tion paradigms, asintrodu
ed by Forrest [13℄ and �nally those that take advantage of DT [24℄. In thisse
tion we give a summary des
ription of the last two approa
hes, emphasizing theirmain di�eren
es to the TAT theory.In negative sele
tion [13℄ the system generates a baseline of self patterns based onnormal system a
tivity. A large randomly dete
tor set is then generated where ea
hdete
tor is 
ompared to ea
h one of the self patterns. If they mat
h, the dete
tor isdestroyed and removed from the initial repertoire. Otherwise, the dete
tor is madeavailable to mat
h the monitored patterns and, if they mat
h with a 
ertain a�nity,this should indi
ate that an abnormal a
tivity has o

urred. In her seminal work,Forrest et al. [12℄ managed to take full advantage of some important base 
har-a
teristi
s of the immune system, su
h as diversity, adaptability, anomaly dete
tionand identity by behaviour, among others. In [13℄ she proposed a �rst approa
h todeploy an AIS for network se
urity, where the non-self is 
hara
terised as "undesirednetwork 
onne
tions". In this approa
h both good and bad 
onne
tions, as well asthe dete
tors are represented by binary strings. These strings are then subje
ted toa pattern mat
hing algorithm that is applied to identify self 
onne
tions. In this �rstlearning phase, the binary strings that are eliminated 
onstitute the negative sele
tion4



operation of the AIS being built. On the other hand, if any one of the other survivingpatterns mat
hes an antigen and a 
ertain threshold is attained, the 
orrespondingantibody (the pattern mat
hing string) is a
tivated and the presumed intrusion isreported to a human operator that de
ides if we are truly in the presen
e of a realin
ident. If this is the 
ase, the pattern mat
h string is promoted to the memorydete
tor 
ategory with the mission to re
ognize future similar atta
ks. LISYS [5, 16℄was one of the �rst su

essful NIDS based on AIS.In [18℄ Kim identi�ed three fundamental design goals requirements for networkbased intrusion dete
tion systems: distribution, self-organisation and lightweight op-eration. She also 
on
ludes a typi
al AIS framework must in
lude negative sele
tionand 
lonal sele
tion me
hanisms and should take advantage of gene library evolutionalgorithms. She presents an AIS in
orporating the requirements and 
hara
teristi
slisted above, des
ribes the developed ar
hite
ture and shows some promising resultsof its appli
ation in a real lo
al area network. There are however serious s
alabilityproblems asso
iated with the negative sele
tion paradigm when is used in the 
ontextof live network tra�
 [19℄. When network tra�
 in
reases, the self and non-selfspa
e in
reases dramati
ally, thus be
oming in
reasingly di�
ult to �nd a set of
omputationally e�
ient dete
tors 
apable of providing adequate 
overage of the selfand non-self spa
e.With NS it is no trivial matter to map the entire self and non-self dynami
 spa
e.Firstly, they both tend to 
hange over time. Moreover, only some non-self is harmfuland one may �nd some self that 
an 
ause damages [18, 1℄. More re
ently, Stibor et.al[32℄ explored the appropriateness of using arti�
ial immune systems based on negativesele
tion for intrusion and anomaly dete
tion problems, spe
ially when 
ompared toother well known statisti
al anomaly dete
tion methods. In [31℄ the author identi�essome problems related with the use of Hamming shape-spa
es applied to anomalydete
tion in the 
ontext of negative-sele
tion based algorithms.In [3℄ Ai
kelin et al. presents a survey of the state of the art in intrusion dete
tionsystems based on AIS, stressing their weaknesses and defending the need to adopt anew immunologi
al paradigm, the Danger Theory. Matzinger's Danger Theory [24℄starts by observing that there must be some kind of dis
rimination pro
ess that goesbeyond the 
lassi
al self-non-self distin
tion. She bases her argument on eviden
esfrom well known natural behaviours. For example, there is no immune rea
tion toforeign ba
teria in the food we eat although they are foreign entities. The humanbody 
hanges over its lifetime as well but the immune system is still 
apable of 
opingwith these 
hanges. Other aspe
ts that 
ollide with the traditional viewpoint are theautoimmune diseases whi
h atta
k the self and su

essful grafting transplants wherethere are no atta
ks against foreign (non-self) tissues. The 
entral idea of the DTis that the immune system does not rea
t to non-self but to danger. The systemdis
riminates "some" self and "some" non-self, whi
h is a starting point to explainwhy it is possible to 
ope with "non-self but harmless" and with "self but harmful"system aggressors [2℄.The theory states that danger is measured by signals sent out when distressed
ells die in some unnatural way. These signals en
ourage the ma
rophages to 
aptureantigens in their neighbourhood and establish a danger zone around the alarm signal5



emitted by the distressed 
ell. Only those B-
ells produ
ing antibodies that mat
hantigens within the danger zone get stimulated and start the 
lonal expansion pro
ess.This theory suggests that the immune system rea
tion to threats is based on the
orrelation of various signals, providing a method of linking the threat dire
tly to theatta
ker. In [1℄ Ai
kelin et al. transposes the DT to the realms of 
omputer se
urity.Their obje
tive is to spe
ify a 
omputational model based on DT to de�ne, exploreand �nd danger signals. The 
orrelation of danger signals to IDS alerts and thesealerts to intrusion s
enarios is a subje
t still far from being 
ompletely de�ned andneeds to be better 
lari�ed.In our opinion, this theory has two main drawba
ks. First there is the presumptionthat triggering is based on 
ell apoptosis. In an IDS implementations this impliesthat there must have been an intrusion for a 
orrespondent rea
tion, without a priorpredi
tion that an intrusion is going on. This 
ould be disastrous in a produ
tionenvironment.Se
ondly, the meaning and quanti�
ation of "danger" 
an be a hard task of di�
ultpra
ti
al appli
ability to intrusion dete
tion. All 
omputer networks are di�erent, aswell as their meaning of what 
onstitute normal and abnormal a
tivities. So is theirmeasure of what 
onstitutes a "danger signal".3 The Tunable A
tivation Threshold theoryThe biologi
al immune system is a very 
omplex multi-layered stru
ture, 
omposedby a set of 
ellular 
omponents that intera
t with ea
h other to rea
t against themi
roorganisms (pathogens), that 
an 
ause diseases, su
h as virus and ba
terias.Antigens are substan
es (usually proteins) identi�ed as foreign by the immune system(the nonself antigens), whi
h stimulates the release of antibodies to destroy pathogens[6℄. The immune system is generally divided in two 
on
eptual layers. Firstly, theinnate immune system, whose behaviour is determined by ea
h person's individualgeneti
 inheritan
e and responds similarly during ea
h individual entire lifetime. It is
omposed by a physi
al barrier (skin), some �uids (e.g. sweat and tears), and on
einside the body, by the a
tivity of APCs (for example, the ma
rophages) that tryto destroy the pathogens, fragmenting them into antigeni
 peptides. Some of thesepeptides bind to spe
ial proteins 
alled Major Histo
ompatibility Complex (MHC),being presented in the 
ell surfa
e as a pair "MHC/peptide".Se
ondly, the adaptive or spe
i�
 immune response, re
ognizes an antigen as nonselfa

ording to prior memory of past intrusions, rea
ting adaptively to new similar events.In the adaptive system spe
i�
ity refers to the binding pro
ess of an antigen (self ornonself) by a 
ell, in whi
h ea
h 
ell has a re
eptor that only re
ognizes one spe
i�
antigen. Furthermore, the mole
ule surfa
e of an antigen has di�erent antigen peptidesthat 
an be bound by di�erent 
ells. It is therefore possible to have a high number ofantigens that 
an be re
ognized and destroyed by numerous immune system 
ells [10℄.In the metaphor used in the 
ontext of a NIDS the innate immune system 
orre-sponds to the baseline knowledge given to the system about know atta
ks. This 
anbe done by using signatures or rules for well known atta
ks. This is the approa
h6



normally used by some popular NIDS, like Snort [28℄.The adaptive immune system 
orresponds to the IDS ability to un
over new pre-viously unseen atta
ks that 
an o

ur within the network.One major me
hanism of the immune system is its 
apability to distinguish selffrom non-self and thus avoid auto-rea
tivity. This ability 
an be partly explainedby negative-sele
tion but the problems of 
overage, s
alability and performan
e re-ported by some re
ent resear
h [19, 32℄ emphasizes the need for news approa
hes andparadigms. Another question is related to the usually �xed threshold 
onsidered for
ell a
tivation and the need for manual intervention in order to 
on�rm the presen
eof mali
ious a
tivity.The Tunable A
tivation Threshold (TAT) [14, 15℄ hypothesizes that T-
ells havetheir a
tivation threshold adjusted dynami
ally by the "kind" and "quality" of signalsre
eived from the APCs. This hypothesis proposes that every intera
tion betweenT-Cell Re
eptor (TCR) and its ligands on APC result in an intra
ellular 
ompetitionbetween "ex
itation" and "de-ex
itation" signaling pathways, 
ausing the T-
ell toin
rease or de
rease its a
tivation threshold [7℄.T-
ells rea
t di�erently to the signals they re
eive from APC (through pairs "MHC/peptide"),adjusting its threshold of a
tivation proportionally to the signals re
eived from theAPC. Thus, ea
h T-
ell has its own responsiveness and tuning updated a

ording tothe history of intra
ellular intera
tions between T-
ell and APC.The a
tivation threshold in
reases gradually if the signals re
eived are re
urrent andde
reases in the absen
e of signals. T-
ells should be a
tivated if, in a given period oftime, the signals re
eived from the APC are higher than the 
urrent threshold. Noti
ethat this 
an happen if a T-
ell does not re
eive signals from an APC for some timeand ends up with a substantially de
reased threshold, thus be
oming mu
h easier toa
tivate in the presen
e of higher signals.The sele
tion pro
ess therefore is not pre-programmed, instead, it requires a me
h-anism of signal-transdu
tion that translates the di�erent external stimulation signalsfrom APC into relatively uniform intra
ellular signals. Under this s
enario thresholdsignals would allow some of the less ex
essively autorea
tive naive T-
ells to survivelonger than others, allowing negative sele
tion earlier and late during the maturationpro
ess [15℄. This behavior 
ontrasts with 
lassi
al immunology paradigms where allthe 
ells that mat
h the self are naturally dis
riminated by the survival of those 
ellsthat have a higher level of a�nity with the non-self (immuno
ompetent 
ells).In TAT the intera
tions between TCR and "MHC/peptide" 
omplexes indu
ebio
hemi
al 
hanges in the T-
ell signalling and a
tivation ma
hinery that alter thesensitivity of T 
ells to subsequent stimulation [30℄. Thus, di�erent T-
ells will havedi�erent a�nity levels to rea
t to the di�erent pairs "MHC/peptides".The TAT operation model 
an be des
ribed as follows. Ea
h T-
ell has two "
oun-ters"; One 
orresponds to the a
tivation threshold (L) and the other 
orresponds tothe signal re
eived from the APC in ea
h intera
tion (I). The APC presents a peptideto a T-
ell that will adjust its level of a
tivation a

ording to the signal re
eived.Depending on the intensity of the signal, the 
ounter I 
an be
ome higher than Land in this 
ase, the T-
ell is a
tivated. This me
hanism makes the T-
ell regulateda

ording to the peptides presented by the APC. The T-
ell thus adjusts dynami
ally7



its limits of a
tivations and ina
tion for a parti
ular antigen. Figure 1 represents thekineti
s of intra
ellular signal intensity and the a
tivation threshold. It illustrates asignal intensity that in
reases smoothly, adjusting the threshold and a more intensesignal that over
omes the threshold limit, whi
h implies the 
ell a
tivation.

Figure 1: The relation between the signal intensity and the a
tivation threshold of aT-
ell.In TAT the self-non-self dis
rimination depends heavily on the initial training of thesystem and the 
ontinuous monitoring of the re
ent history of T-
ell-APC intera
tions.The signal re
eived from the APCs is "self" if all T-
ells able to re
eive the signal haveits thresholds (variable L) adapted and the signal is below the threshold. On the otherhand, if the signal re
eived from the APC is above the threshold of all the T-
ellstrained to re
eive it, then the signal is 
onsidered by TAT as "non-self".The system key phase is thus the training phase. The baseline of the system isthe normal (self) behavior, and this knowledge is used to produ
e the TCR. Thisnaive 
ells are born in the thymus a

ording to ea
h individual geneti
 information.Its a
tivation threshold is high and during the maturation phase it de
reases naturallyand spontaneously at a de�ned rate. In the T-
ells that re
eive re
urrent signals (selfpatterns), the de
reasing of the threshold is opposed by a natural tenden
y for thesignal to in
rease it. In this 
ase, the a
tivation threshold will be always above theinput signal re
eived by the APC. On the other hand, in T-
ells that do not re
eiveenough signals, the threshold will also de
rease, but there is no signal in oppositedire
tion. Thus, in some moment, they will be a
tivated, turning these 
ells toorea
tive to dete
t non-self patterns [14℄. This dynami
 operation makes the automati
8



adjustment of the a
tivation threshold in T-
ells dependent on two main fa
tors: theirinitial training and the monitorization of the signals re
eived by the APC.The appli
ation of TAT to intrusion dete
tion thus has the following points ofinterest:
• the automati
 adjustment of T-
ells a
tivation threshold based on the systema
tivity re�e
ts more a

urately what really happens in a network. The networktra�
 is di�erent in all the networks and it is ne
essary to have dete
tors
ompatible with this reality.
• the a
tivation is an automati
 pro
ess based on the kineti
s between the signalintensity and threshold and thus the manual intervention to 
on�rm the atta
kmay no longer be required.
• the dynami
 threshold seem to be more realisti
 than the model defended by
lassi
al immunology, as it re�e
ts the real operation of the system. The re
og-nition of a new unseen intruder (an atta
k) depends on the "strength" of thesignal re
eived from the APCs (tra�
 �lter).
• the normal operation of the system should �ne tune the threshold of some T-
ells,
onverting them into "memory" 
ells. For example, when an atta
k takes pla
ein the network, the T-
ells that re
eive su
h signals will automati
ally adjust itsthreshold to a value that will allow for their a
tivation making that 
ell rea
tiveto this same atta
k or some of its variants.
• the gradual threshold adjustment over time tends to minimize (or even eliminate)the false negative events be
ause T-
ells will only a
tivate when the signal isabove the threshold.
• the a
tivation is triggered when the bind mat
h a threshold adjusted dynami
allyover time. This should re�e
t the dynami
 history of the system, instead of apre-de�ned state supposed to re�e
t the natural evolution of those individuals.Computer networks are not all equal and ea
h one has its own dynami
s fornormal a
tivity. Ea
h network should thus adjust dynami
ally its threshold ofrea
tion a

ording to its own a
tivity pro�le.
• re
urrent signals are usually related to normal a
tivity. This is pre
isely whatusually happens in a network. Abnormal a
tivities are ex
eptional signals thatshould adjust the threshold to a level 
apable of a
tivating the T-
ell.The metaphor of TAT applied to intrusion dete
tion is summarized in the �gure 2.At this phase of our resear
h, there are some questions that need to be better 
lari�ed:
• it is not 
lear what should be the rates in whi
h the threshold (L) and signalinput variable (I) should vary, to re�e
t a real-world network system. If thesignal is re
urrent, then L should in
rease more than I.9



Figure 2: The metaphor of TAT and the intrusion dete
tion.
• the strings that ea
h APC will mat
h in the network tra�
 must also be verywell de�ned.In our opinion, the self-non-self distin
tion proposed by TAT has some very in-teresting and metaphori
 insights that 
an be easily mapped and applied to intrusionand anomaly dete
tion, when 
ompared to NS and DT. Firstly, the T-
ell sele
tionis dire
tly related to its intera
tion with the environment, avoiding any prematuredistin
tion in the thymus, as happens with NS. Moreover, the signi�
ant di�eren
esbetween both approa
hes are based on the fa
t that a
tivation is based on a tunablethreshold instead of a �xed one. We may thus have di�erent individual T-
ells withdi�erent levels of rea
tion.Comparing to DT, TAT is not based on 
ellular apoptosis. So, the system is notexpe
ting to be infe
ted for latter rea
tion. In TAT, the system dete
ts the intruderif the signal re
eived is above the T-
ell threshold. Moreover, there is no need to"
lassify" ea
h signal sin
e what matters is its intensity and its relation to its re
ento

urren
es level. A pre
ise meaning for what is a "danger signal" and the need forits 
orrelation is not ne
essary.4 The proposed frameworkIn this se
tion we present a framework for an IDS based on the TAT model sum-marily des
ribed in Se
tion 3. Figure 3 illustrates the general proposed ar
hite
ture,10



Figure 3: General ar
hite
ture of the NIDS using TATemphasizing its main pro
esses and data �ows.Our system is 
omposed by two main stru
tures that intera
t periodi
ally: T
ells,
orresponding to dete
tors and APCs 
orresponding to network �lters that extra
tpatterns from network �ows. A network 
ommuni
ation �ow identi�es all the pa
ketsex
hanged between two appli
ations in the network and 
an be identi�ed by thefollowing attributes: sour
e and target IP address, sour
e and target ports (Transportlayer), proto
ol type (Internet layer), servi
e type (TCP header) and input routerinterfa
e [29℄. We 
an identify three main operational phases: (1) the initial trainingof T
ells, (2) network tra�
 pro
essing and (3) T-
ell and APC intera
tions basedon the TAT algorithm. Ea
h dete
tor is identi�ed by a string of m attributes andhas two variables: the a
tivation threshold (variable L) and the intensity of the signalre
eived by ea
h APC intera
tion (variable I). The APCs are identi�ed by a ve
tor ofsub-strings with k attributes (with k < m), 
orresponding to the tra�
 being �lteredfrom the network, and a variable J 
orresponding to the number of o

urren
es forea
h string.The system operates as follow:1. it starts by 
reating two sets: dete
tors represented by T
ells and tra�
 �ltersrepresented by APCs.2. variables L are initialized with a very large pre-de�ned value for all T
ells.11



3. variable I is reset to zero for ea
h intera
tion T-
ell-APC.4. APCs 
olle
t network tra�
 in real time and store the o

urren
es of ea
h of its�lters. The number of o

urren
es is stored in variable J.5. ea
h entry in the APC table is periodi
ally presented to all the TCR and, in
ase of a mat
h, the variable I is updated with the value J. The variable L isalso in
reased by a value that should re�e
t the intensity of the signal (I). Thismeans that the signals are re
urrent, 
orresponding to self a
tivity, and bothvariables are in
remented in su
h a way that L always be
omes greater than I.6. on the other hand, if the dete
tor �nds a rare or a too strong signal, then bothI and L will de
rease, but L is made to de
reases faster, 
ausing I to be higherthan L at some time in the future, 
ausing the dete
tor to be
ome a
tivated.The a
tivity of the APCs 
an be des
ribed as follow:1. ea
h network �lter (APC) extra
ts several patterns from the network and 
ountso

urren
es in a de�ned period of time.2. These o

urren
es are stored in a APC table, asso
iated to ea
h string (variableJ)3. In the 
ase that no mat
h exists to a parti
ular string (J = 0), then that stringis removed from the list.This des
ription emphasizes the general 
hara
teristi
s des
ribed in the previousse
tion, being possible to identify the metaphor proposed in Figure 2 (Se
tion 3).Figure 4 details the main pro
esses involved. The training is 
omposed by twodistin
t separate phases. Firstly, the system is trained with a self data 
omposedex
lusively of normal tra�
 from the network we want to prote
t (Self-Tagged).Se
ondly, we train the system with a data-set 
omposed both by normal and knownatta
ks (Non-self Tagged). One possible approa
h is to "syntheti
ally" generate theseatta
ks from the dete
tion rules of the Snort IDS [28℄. This se
ond training phasematures T-
ells by 
ausing an adaptation of its thresholds and turning them moresensible to these atta
ks.This pro
edure will tune some T-
ells to be highly adjusted to rea
t to the alreadyknown atta
ks. These T-
ells a
t as "memory 
ells" sin
e their existen
e re
ordsprevious known atta
ks. The a
tivation threshold for these 
ells should also remainin a low value (near zero) in order to make them rea
t qui
ker in any re-o

urren
e ofthese atta
ks.The monitorization pro
ess 
an o

ur in several points of the network. For example,it 
ould 
onsist of pro
esses running on several PCs in a lo
al area network. Ea
hpro
ess has a set of generated APCs that will �lter the network tra�
 a

ording to12



Figure 4: General ar
hite
ture for the NIDS.spe
i�
 rules. These rules will be used to 
reate a ve
tor of sub-strings that should�lter in real time the tra�
 
olle
ted from the network. The APC stores, for ea
hsub-string, the number of o

urren
es thus found.For network tra�
 
apture (�sni�ng�) we intend to use the netmate [25℄ tool. Thisis a �exible and extensible measurement tool written in Java. It has several modules forpa
ket a

ounting, delay/loss measurement, pa
ket 
apturing and net�ow statisti
s.We have done several experiments 
olle
ting net�ows from a medium size network that
on�rmed the robustness and appropriateness of this tool, mainly its ability to 
lassifynetwork �ows and to be easily extended with more spe
i�
 net�ow 
hara
teristi
s, su
has the total pa
kets sent in ea
h dire
tion, amount of bytes transmitted and durationamong others. During 
apture, besides the net �ow statisti
s, it is possible to 
olle
tseveral di�erent kind of data from network tra�
 su
h as bandwidth measures, pa
ketdelay and the payload for ea
h pa
ket.For our framework, in order to 
arry on the two training phases, we intend to
olle
t tra�
 from normal a
tivity of the network, as well as the tra�
 generatedduring indu
ed syntheti
 network atta
ks. The data thus 
olle
ted will allow us toprodu
e two very di�erent data-sets for further 
lassi�
ation.To obtain the �rst preliminary results we intend to use the DARPA/MIT Lin
olnLaboratory o�-line intrusion dete
tion evaluation data set [23℄. This o�-line data set
ontains around 500000 network 
onne
tions, between normal and 17 labeled atta
ks.The amount of 
hara
teristi
s (features) 
olle
ted by netmate, as well as by someother network monitoring tools, is very large and, in some ways, redundant. From13



another perspe
tive, not all the features are really important for intrusion dete
-tion [21℄. It is possible to redu
e the feature set without loosing a

ura
y. This islargely substantiated by the large body of resear
h done on the use of data miningte
hniques[22℄ and ma
hine learning [27, 26, 8, 9℄ approa
hes.A mu
h redu
ed feature set 
an generally be obtained from the training data-set,su
h that: (1) it maintains the a

ura
y for the 
lassi�
ation pro
ess and (2) it be
omes
omputationally possible, in real time, to pro
ess the data 
olle
ted by netmate. Also,in terms of representation, the redu
ed dimension of the feature set 
an bring goodbene�ts in the representation of the normal data-set in the shape-spa
e (Hamming orreal-value), as well as in the measuring of the distan
e between T-
ells and the eventsobserved.We intend to explore me
hanisms of feature set redu
tion for a better shape-spa
e
overage, starting by some a

epted resear
h in the �eld [9, 27℄. The results des
ribedin [30℄, explains the modulation of TAT in an Hamming spa
e-spa
e. We intend tostudy the appli
ation of this model to our resear
h and explore the appropriatenessof TAT implemented with Hamming shape-spa
es as a network intrusion dete
tionsystem. We also intend to measure the a

ura
y obtained with di�erent feature setsand what 
an be its impa
t in the overall system performan
e.The use of TAT in a NIDS 
ontext has the potential of bringing new insights tothe AIS resear
h. A working system will 
ertainly help to justify some immunologi
albehaviors that are not yet well understood.5 Con
lusions and future workWe have proposed a novel NIDS framework based on the TAT theory and presented aframework for its appli
ation in the 
ontext of network intrusion dete
tion. We havealso des
ribed NS and DT as the two main immunologi
al models applied to AIS-basedIDS so far, summarized its behaviour and emphasized their major drawba
ks whenapplied to real large s
ale network intrusion dete
tion.The TAT theory sustains that the a
tivation of a T-
ell (network dete
tor) isbased in a threshold that is �ne tuned a

ording to the re
ent history of T
ell-APCintera
tions. This general idea gives interesting insights to the appli
ation of TAT topra
ti
al NIDS.In [20℄ it is argued that the resear
h in AIS-based IDS, and its experimental resultsso far, have shown that these systems are only able to work on relatively simple, smallproblems, in very sele
ted environments. The authors also emphasize the need toexplore new immunologi
al me
hanisms that have not been previously studied andapplied for intrusion dete
tion. The theoreti
al study of TAT, the pra
ti
al resultsobtained with TAT in other 
ontexts [7℄ gives us good 
on�den
e that this theory 
anbe applied with su

ess in the deployment of e�e
tive NIDS.Our ongoing resear
h will 
ontinue with the development and implementation ofthis ar
hite
ture in order to obtain 
omprehensive results about the use of TAT inthe 
ontext of NIDS. The next steps will be to de�ne a methodology to 
over in amore optimal way the events shape-spa
e (Hamming or Real-value), to de�ne and test14



fun
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