
Acyclic Automata with easy-to-find short
regular expressions

José João Morais Nelma Moreira Rogério Reis

Technical Report Series: DCC-2005-03

Departamento de Ciência de Computadores – Faculdade de Ciências

&

Laboratório de Inteligência Artificial e Ciência de Computadores

Universidade do Porto

Rua do Campo Alegre, 823 4150 Porto, Portugal

Tel: +351+2+6078830 – Fax: +351+2+6003654

http://www.ncc.up.pt/fcup/DCC/Pubs/treports.html

Abstract

Computing short regular expressions equivalent to a given finite automaton is a hard
task. In this work we present a class of acyclic automata for which it is easy to find a
regular expression that has linear size. We call those automata UDR. A UDR automaton
is characterized by properties of its underlying digraph. We present a characterisation
theorem and an efficient algorithm to determine if an acyclic automaton is UDR. This
algorithm can be adapted to compute a short regular expression equivalent to a given
UDR automaton.

Keywords: Formal languages, finite automata, regular expressions, graph theory, min-
imisation

1 Introduction

Computing a regular expression from a given finite automaton can be achieved by well-
known algorithms based on Kleene’s theorem [Kle56], establishing the equivalence between
languages accepted by finite automata and languages represented by regular expressions.
However the resulting regular expression depends on the order of the automaton’s states
considered in the conversion. In particular, this is the case if the algorithm is based on the
state elimination technique. Consider, for example, the following automaton:

q1

q2

q3

q4

a

b

c
d

e

If we remove the state q2 and then the state q3, we obtain the regular expression
ad + (ac + b)e. But if we remove first q3 and then q2, we obtain the regular expression
be + a(ce+ d). In the first case, the symbol a occurs two times, and in the second, the
symbol e occurs two times. The first case corresponds to the application of the distributivity
rule on the right, and the second to the application of that rule on the left. Although in
this example the resulting regular expressions have the same number of symbols, in general
that will not be the case. If our goal is to obtain an equivalent regular expression with
short size from a given automaton, the order in which we consider the automaton states is
of great importance. Moreover, given an automaton with n states and k alphabetic symbols
the upper bound for the size of the equivalent regular expression is O(nk4n) (and no general
smaller lower bounds are known), and the problem of obtaining a minimal regular expression
equivalent to a given automaton is PSPACE-complete [JR93].

In this work we present a characterisation of acyclic automata for which it is easy to find
an order of state removal such that the resulting regular expressions have size linear in the
number of the automata transitions.

The paper is organised as follows. In the next section, we review some basic notions and
introduce notation used in this paper. In Section 3 we define a class of acyclic automata
that we call UDR. Section 4 gives a characterisation theorem of UDR automata in terms of
properties of their underlying digraphs. In Section 5 we show that it is possible to compute a
linear size regular expression from a UDR automaton. An efficient algorithm for determining
if an automaton is UDR is presented in Section 6. Relationships with other work and with
specific classes of finite automata are discussed in Section 7. In the last section, we provide
some final remarks.

2

2 Preliminaries

We recall the basics of digraphs, finite automata and regular expressions that can be found
in standard books [HMU00, Har69, BJG01]. A digraph D = (V,E) consists of a finite set V

of vertices and a set E of ordered pairs of vertices, called arcs. If (u, v) in E, u is adjacent to
v and v is adjacent from u. For each vertex v, the indegree of v is the number ni of vertices
adjacent to it and the outdegree of v is the number no of vertices adjacent from it, and we
write v(ni;no). An arc (u, v) can be denoted by uv. A path between v0 and vn is a sequence
v0v1, v1v2, . . . , vn−1vn of arcs, and is denoted by v0 − vn, or v0 − vk − vn, for 1 ≤ k < n. A
path is simple if all the vertices in it are distinct. The length of a path is number of arcs
in the path. A path is a cycle if v0 = vn and n ≥ 1. A digraph that has no cycles is called
acyclic. For an acyclic digraph D = (V,E), there is a topological ordering o of its vertices,
i.e., such that if (u, v) ∈ E then o(u) < o(v).

An alphabet Σ is a nonempty set of symbols. A string over an alphabet Σ is a finite
sequence of symbols of Σ. The empty string is denoted by ε. The set Σ? is the set of
all strings over Σ. A language L is subset of Σ?. If L1 and L2 are two languages, then
L1 · L2 = {xy | x ∈ L1 and y ∈ L2}. The operator · is often omitted. A regular expression
(r.e.) α over Σ represents a (regular) language L(α) ⊆ Σ? and is inductively defined by: ∅
is a r.e and L(∅) = ∅; ε is a r.e and L(ε) = {ε}; a ∈ Σ is a r.e and L(a) = {a}; if α1 and
α2 are r.e., α1 + α2, α1α2 and α?

1 are r.e., respectively with L((α1 + α2)) = L(α1) ∪ L(α2),
L((α1α2)) = (L(α1)L(α2)) and L(α1

?) = L(α1)
?. Let RΣ be the set of regular expressions

over Σ. Two regular expressions α1 and α2 are equivalent if L(α1) = L(α2), and we write
α1 ≡ α2. The algebraic structure (RΣ,+, ·, ∅, ε), forms a idempotent semi-ring. i.e., for all
α, β, γ ∈ RΣ we have:

α + (β + γ) ≡ (α + β) + γ α + β ≡ β + γ

α + ∅ ≡ α α + α = α

α(βγ) ≡ (αβ)γ αε ≡ εα ≡ α

α(β + γ) ≡ αβ + αγ (α + β)γ ≡ αγ + βγ

α∅ ≡ ∅α ≡ ∅

In this work, we will take the size of a regular expression α to be the number of symbols
from Σ contained in α, and we denote it by |α|.

A nondeterministic finite automaton (NFA) A is a quintuple (Q,Σ, δ, q0, F) where Q is
finite set of states, Σ is the alphabet, δ ⊆ Q × Σ ∪ {ε} × Q the transition relation, q0 the
initial state and F ⊆ Q the set of final states. A NFA is deterministic (DFA) if for each pair
(q, a) ∈ Q× Σ there exists at most one q ′ such that (q, a, q′) ∈ δ. For q ∈ Q and a ∈ Σ, we
denote by δ(q, a) = {p : (q, q, p) ∈ δ}, and we can extend this notation to x ∈ Σ? and T ⊆ Q,
by δ(q, ax) = δ(δ(q, a), x). The language accepted by A is L(A) = {x ∈ Σ? | δ(q0, x)∩F 6= ∅}.
Two NFA are equivalent if they accept the same language. The size of a NFA is the number
of its transitions.

The underlying digraph of a NFA A = (Q,Σ, δ, q0, F) is the digraph D = (Q,E) such
that E = {(q, q′) | q, q′ ∈ Q and ∃a ∈ Σ ∪ {ε} such that (q, a, q′) ∈ δ}. Note that even there
can be more than one symbol of Σ between two states q and q ′, only one arc exists in the
underlying graph. We call initial vertex the vertex that corresponds to the initial state, final
vertices the ones that correspond to final states and intermediate vertices, all the others. An
automaton is useful if in its underlying digraph, every vertex is in a path from the initial
vertex to a final vertex. An automaton is acyclic if its underlying digraph is acyclic. We will
use the above terminology both for digraphs and for automata.

3

An extended finite automaton (EFA) A is a quintuple (Q,Σ, δ, q0, F), where Q, Σ, q0

and F are as before and δ : Q × Q → RΣ. We assume that δ(q, q′) = ∅, if the transition
from q to q′ is not defined. A string x ∈ Σ is said to be accepted by A if x = x1 · · · xn,
for x1, . . . , xn ∈ Σ? and there is a state sequence q0, q1, . . . , qn with qn ∈ F , such that
x1 ∈ L(δ(q0, q1)),. . . , xn ∈ L(δ(qn−1, qn)). The language accepted by A is the set of all
strings accepted by A. The underlying digraph of a EFA is a digraph D = (Q,E) such that
(q, q′) ∈ E if and only if δ(q, q′) 6= ∅. Any NFA can be easily transformed into an equivalent
EFA, with the same underlying digraph: for each pair of states (q, q ′) one needs to construct
a regular expression a1 + · · ·+ an such that (q, ai, q

′) ∈ δ, ai ∈ Σ ∪ {ε}, 1 ≤ i ≤ n.
Finally, we recall the conversion of an EFA A into a regular expression α, using the state

elimination algorithm (SEA). In each step, a non-initial and non-final state of the EFA is
deleted and the transitions are changed in such way that the new EFA is equivalent to the
older one. Formally, let A = (Q,Σ, δ, q0, F) be a EFA. Then

1. (a) If q0 ∈ F or exists q ∈ Q such that δ(q, q0) 6= ∅, then add a new state i to Q,
define δ(i, q0) = ε and i is the new initial state.

(b) If |F | > 1, then add a new state f and transition δ(q, f) = ε, for all q ∈ F . The
set of final states becomes {f}.

Without lost of generality, let A′ = (Q′,Σ, δ′, i, {f}) denote the new EFA. We denote
by αqq′ the regular expression δ(q, q′).

2. If Q′ = {i, f}, then the resulting regular expression is αifα?
ff , and the algorithm

terminates. Otherwise continue to 3.

3. Choose q ∈ Q′\{i, f}. Eliminate q from A′, considering Q′−{q} the new set of states,
and for each q1, q2 ∈ Q′ − {q},

δ′(q1, q2) = αq1q2
+ αq1qα

?
qqαqq2

,

Continue to 2.

Let us observe that, in each step, if we have q(k; l), the contribution of q for the size of
the final regular expression can be measured by

(k − 1)

k∑

i=1

|αqiq|+ (l − 1)

l∑

j=1

|αqqj
|+ (kl − 1)|αqq|. (1)

This contribution is 0 if q(1; 1). To illustrate, this dependence from the order of state
elimination in the resulting regular expression, consider the following automaton:

q1

q2 q3

q4
a

a b

a

b

a b

If the order of state removal is q2, q1, q4 and q3 we obtain the regular expression a+(b+
aa)(ba + a(b + a(b + aa))∗(b + aaa) with 16 alphabetic symbols. If order is q3, q4, q2 and
q1, the resulting expression is ba(ba)∗a+(a + bb + ba(ba)∗bb)(ab + aa(ba)∗bb)∗aa(ba)∗a)∗(a+
bb + ba(ba)∗bb)(ab + aa(ba)∗bb)∗ with 44 alphabetic symbols. In each step, we could try to
simplify the regular expression obtained, but our goal is try to discover a state order that
leads to shorter regular expressions. One of the advantage of this approach is to avoid the
generation of bigger intermediate regular expressions.

4

3 UDR Automata

In this section, we will consider only useful acyclic automata with one final state. The un-
derlying digraphs of these automata are called in the literature acyclic st -digraphs [BJG01].
In an acyclic st -digraph there exists only a vertex of indegree 0 (denoted by s), only a vertex
of outdegree 0 (denoted by t), and each vertice occurs in some path from s to t. In an acyclic
automaton, the vertices s and t correspond to the initial and final state, respectively.

We are going to characterise a class of automata, using the notion of digraph homeomor-
phism. Two digraphs are homeomorphic if both can be obtained from the same digraph by
a sequence of subdivisions of arcs [Har69, BJG01].

Let consider the digraph1

R
→ = ({q1, q2, q3, q4}, {(q1, q2), (q1, q3), (q2, q3), (q2, q4), (q3, q4)}),

represented in Figure 1.

q1

q2

q4

q3

Figure 1: Digraph R
→

Definition 1. A useful acyclic NFA with one final state is UDR if its underlying digraph
does not contain a subgraph homeomorphic to R

→. We say that the underlying digraph is a
UDR digraph.

The digraph in Figure 2, is not UDR, because its underlying digraph contains a subgraph
homeomorphic to R

→, namely, the one obtained by excluding the vertex q3 and the arcs
(q4, q6), and (q5, q10) (with dashed lines, in the figure). On the other hand, the digraph in
Figure 3 is UDR. The automaton presented in the introduction is obviously not UDR.

The name UDR is an acronym of Unique for the Distributivity Rule. If an automaton is
not UDR, there are at least two states (with outdegree or indegree greater than 1) such that
the order chosen to eliminate them leads to two different regular expressions, one that results
from the application of a distributivity rule to the other. In general, one of the choices will
lead to a shorter expression, but is not easy to determine which. In the next section, we
show that this is not the case if the automaton is UDR. In a UDR automaton, in each step
we can choose to eliminate a state q(1; 1).

Proposition 1. Any acyclic NFA is equivalent to a UDR automaton.

1
R

→ is a directed version of Frank Harary’s omnipresent random graph ,.

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

Figure 2: A non-UDRdigraph

5

q1

q2

q3

q4

q5

q6

q7

Figure 3: A UDRdigraph

Proof. Every acyclic NFA A = (Q,Σ, q0, F) is equivalent to a regular expression in disjunctive
normal form, i.e., α1 + · · · + αn where αl is ε or a concatenation of symbols alj ∈ Σ,
αl = al1 · · · alkl

, 1 ≤ l ≤ n. From this r.e. we can construct a NFA A′ = ({i} ∪ {f} ∪
∪1≤l≤nQl,Σ, i, {f}) where Ql = {ql1, . . . , qlkl

}, 1 ≤ l ≤ n, and such that δ′(i, al1) = {ql1},
δ′(qlj, alj+1) = {qlj+1}, for 2 ≤ j ≤ kl−1, and δ′(qlkl

, ε) = {f}. The automaton A′ is trivially
UDR.

An interesting open problem is how to obtain from any acyclic NFA a UDR automaton
with a minimal number of transitions (size).

4 The Characterisation Theorem

Without loss of generality, we can just consider UDR digraphs (instead of automata), D =
(Q,E, i, f), where i denotes the initial vertex and f denotes the final vertex. It is obvious
that,

Lemma 1. A st-digraph subgraph of a UDR digraph is a UDR digraph.

Lemma 2. Let D = (Q,E, i, f) be a UDR digraph. Let i(0; k), f(0;m), and k,m > 1.
Suppose that u and u′ are two distinct vertices adjacent from i, and v and v ′ are two distinct
vertices adjacent to f . If there are two disjoint paths iu− vf and iu′− v′f then there cannot
exist a path iu− v′f nor a path iu′ − vf .

Proof. Suppose that exists a path iu− v ′f , partially in dashed line in the picture below:

i

u

u′

v

v′

f

It is obvious that there will be a subgraph of D homeomorphic to R
→. This subgraph will

contain the vertices {i, u, q′, f} (corresponding to the vertices of R
→), where q′ is the first

vertex common to the path iu− v′f and to the path iu′ − v′f (at least v′ or u′). The proof
is analogous if there exists a path iu′ − vf .

If i(0; k) and k > 1, let U be the set of the vertices adjacent from i. For u ∈ U , let

Xu = {u} ∪ {q | q ∈ Q \ {f} and there exists a path u− q}.

Consider the binary relation ↓ in U × U , such that u ↓ u′ if and only if Xu ∪Xu′ 6= ∅.

6

Lemma 3. If D is a UDR digraph, the relation ↓ is an equivalence relation on U .

Proof. The reflexivity and the symmetry are trivial, we only need to prove the transitivity.
Let u1, u2, u3 ∈ U and u1 ↓ u2 and u2 ↓ u3. Then there exist q1 ∈ Xu1

∪ Xu2
and q2 ∈

Xu2
∪Xu3

. If q1 = q2 then u1 ↓ u3. Suppose that q1 6= q2 and that there is no path q1 − q2

nor q2 − q1. Then, we will have the following diagram:

i

u1

u2

u3

q1

q2

f

The vertices {i, u2, q1, f} define a subgraph homeomorphic to R
→, which contradicts the fact

that D is UDR.

Lemma 4. Let D = (Q,E, i, f) be a UDR digraph. Let i(0; k), f(0;m), and k,m > 1. Let
U and Xu, for u ∈ U be as above. If [u] is an equivalence class of the relation ↓ with more
than one element, then there exists q ∈ Q \ {f} such that:

1. q ∈ ∩u′∈[u]Xu′

2. For all q′ ∈ ∪u′∈[u]Xu′ , every path i− q′ − f contains q.

Proof. The existence of q, satisfying 1 is a directed consequence of the argument given in
proof of the transitivity of ↓. If condition 2 does not hold, then the digraph D will have a
subgraph homeomorphic to R

→.

Now we can characterise the essential propriety of a UDR digraph.

Theorem 1. Let D = (Q,E, i, f) be a UDR digraph and |Q| > 2. Then D has at least a
vertex q such that q(1; 1).

Proof. The proof is by induction on the number of vertices of the digraph, |Q| = n. If n = 3,
it is trivially true. The UDR digraphs with 4 vertices are enumerated in Figure 4, and it is
easy to see that all of them have one vertex q such that q(1; 1). Assume that the theorem

q1 q2 q3 q4 q1

q2

q3 q4

q1

q2

q3 q4 q1

q2 q3

q4

q1 q2

q3

q4 q1

q2 q3

q4

Figure 4: UDR digraphs with 4 vertices

holds for UDR digraphs with less than n > 4 vertices. We want to show that the same is true
for a D = (Q,E, i, F) with |Q| = n. If i(0; 1), let u ∈ Q \ {f} be the vertex adjacent from i.

7

Then the digraph D′ = (Q \ {i}, E \ {(i, u)}, u, f) is a UDR digraph with n− 1 vertices, and
by induction hypothesis it has a vertex q such that q(1; 1). An analogous argument can be
given if f(1; 0). Let us suppose that i(0; ki) and f(kf ; 0), with ki, kf > 1. As we are seeking
for an intermediate vertex, we can ignore the arc (i, f) ∈ E, if it exists. Let U , Xu and ↓ be
as defined above. For every u ∈ U , we have one of the following cases:

1. The class [u] has an unique element. Let D ′ = (Xu ∪ {f}, E
′, u, f), where E ′ has all

the arcs of D with vertices in Xu ∪ {f}. Then by Lemma 1, D′ is a UDR digraph and
has less than n vertices. If |Xu ∪ {f}| = 2, then u(1; 1) in D. Otherwise, by induction
hypothesis, D′ has a vertex q′ such that q′(1; 1), and, in D we have also q′(1; 1) (by
Lemma 2).

2. The class [u] has more than one element. Consider q as defined in Lemma 4. Let
D′ = (∪u′∈[u]Xu′ , E′, i, q), where E ′ has all the arcs of D with vertices in ∪u′∈[u]Xu′ .
Then by Lemma 4, D′ is a UDR digraph and has less than n vertices. By induction
hypothesis, it has a vertex q′ such that q′(1; 1), and, in D we have also q′(1; 1).

5 Computing Regular Expressions from UDR Automata

Theorem 2. Let A = (Q,Σ, i, δ, f) be a useful acyclic NFA with an unique final state. We
can obtain a regular expression equivalent to A using the state elimination algorithm (SEA)
in such way that in each step we remove a state q with q(1; 1) if and only if A is UDR.

Proof. Suppose that A is UDR. If Q = {i, f} then there is nothing to be proven. Otherwise,
by Theorem 1, we can choose a state q to eliminate such that q(1; 1). The resulting EFA A ′

is UDR, since with that elimination step no automaton state increases its indegree nor its
outdegree (at most the adjacent state to q, decreases its outdegree by one, and the adjacent
state from q decreases its indegree by one).

If we apply the SEA to a useful acyclic non-UDREFA A , then the underlying digraph of
A has a subgraph homeomorphic to R

→. Let q1, q2, q3 and q4 be the corresponding vertices.
All of them have either indegree or outdegree greater than 1, and all those degrees cannot
decrease to 1 unless one of the states is eliminated.

Corollary 1. Given a UDR automaton A, it is possible to construct an equivalent regular
expression with size linear in the size of A.

Proof. In the application of the SEA, in each step if q is the state to remove (and q(1; 1)),
then ∃!q1∃!q2 : δ′(q1, q2) = αq1q2

+ αq1qαqq2
and all the other transitions are not changed.

The size of the regular expression obtained is the number of transitions of A with alphabetic
symbols (counting its multiplicities).

6 An algorithm to decide if a digraph is UDR

Fortune and al. [FHW80] have shown that the problem of determining if an acyclic digraph
D = (V,E) has a subgraph homeomorphic to a fixed digraph P = (V ′, E′) has a polynomial
time algorithm O(nk+s), where n = |V |, m = |E|, k = |E ′| and s = |V ′|. However, to
determine if a digraph is UDR, a specialised algorithm can be designed.

8

Let us suppose that we have already determined that D = (V,E, i, f) is an acyclic st -
digraph, with a topological ordering o (this can be achieved in O(n + m)). For v ∈ V , let
AdjT(v) be a list of vertices adjacent to v and let AdjF(v) be a list of vertices adjacent from
v.

In Figure 6 we present the algorithm in pseudo-code. The vertices of the digraph are
going to be traversed in topological order. Each arc (u,v)∈ E is annotated with a list of
relevant vertices with outdegree greater than 1, that precedes v (in a path from i). Those
labels are denoted by label(u,v) and are implemented with references to other labels. The
empty list is denoted by nil and l.v represents the concatenation of v with the list l. We
use← as the standard assignment operator. The semantics of an expression e1= e2 is defined
by induction on the type of e2:

[[e1 = val]] ≡ e1 ← val if e2 is a value val,

[[e1 = ref(e3)]] ≡ [[e1 = e3]] if e2 is a reference ref(e3).

We use other standard list operations as first (first element of the list),last (last
element of the list) and butlast (the list without the last element).

The algorithm proceeds as follows. While the visited vertices have indegree less than
2, the relevant predecessors are collected (lines 19–26). If a vertice v1 has indegree greater
than 1, then either we can “resolve” all the precedent bifurcations or the digraph must be
non UDR (lines 4–18). A junction is “resolved” if there are two vertices, v and vi adjacent
to v1 with labels that have equal values but which are not references to the same object. In
this case, those labels can be unified and if vp is the last element of those labels, outd(vp) is
decreased by 1. When that value is 1, the vertice vp is no longer relevant an can be deleted
from the labels (lines 7–15).

Theorem 3. The algorithm udrp is correct and has time complexity O(n2 log n).

Proof. (Sketch) If the digraph D is not UDR, it has a subgraph homeomorphic to R
→.

Let q1, q2, q3 and q4 be the corresponding vertices. The vertice q3 has indegree greater
than 1. When q3 is visited, there are v, v′ ∈ AdjF(q3) such that q1 ∈ label(v,q3) and
q1, q2 ∈ label(v′,q3). Those labels can never refer to the same object, thus the algorithm
must return 0.

Suppose that the algorithm returns 0. Then there exists v ∈ V such that v(nf; k) with
nf > 1 and there exist v′, v′′ ∈ AdjF(v) such that label(v′,v) and label(v′′,v) are diferent.
Let q1 ∈ (label(v′,v)\label(v′′,v)). The outdegree of q1 is greater than 1 (otherwise it
was not relevant) and q1 6= i. Then there must exist two disjoint paths i− q1− v1 and i− v1.
There exists a path q1 − f that does not go through v1 and a path v1 − f that does not go
through q1. Thus D has a subgraph homeomorphic to R

→, defined by i, q1, v1, q
′, where q′

is a common ancestor of q1 and v1 (at least f). Thus the digraph D is not UDR.
Now, we analyse the time complexity. The total cost of executing the lines 23–26 is

O(m). For each v ∈ V , the lines 4–18 can be, in the worst case, executed O(n log n) (as the
annotations can be sorted only once). The time complexity of udrp is O(n2 log n).

Proposition 2. If A is UDR, the algorithm udrp can be used to compute an equivalent
regular expression with size linear in the size of A.

Proof. (Sketch) Let A = (Q,Σ, δ, i, f) be an EFA. In the algorithm udrp we can extend
the algorithm annotations of the arcs to contain the automaton’s transition labels. For
(q, q′) ∈ Q, let label(q,q′) be the list of vertices as before and let regexp(q,q ′) be the

9

� �

1 udrp {

2 for v1 in V ordered topologically do

3 nf ← |AdjF(v1)|

4 while nf > 1 do

5 max ← max{|label(v,v1)|: v ∈ AdjF(v1)}

6 lmax ← { v ∈ AdjF(v1): |label(v,v1)| == max}

7 vi ← first(lmax)

8 if v in lmax\{vi} and

9 (ref(label(v,v1)) <> ref(label(vi,v1)))

10 and (label(v,v1) = = label(vi,v1)) then

11 vp ← last(label(vi,v1))

12 outd(vp) ← outd(vp) - 1

13 label(v,v1) = ref(label(vi,v1))

14 if outd(vp) = = 1 then

15 label(v,v1) = butlast(label(v,v1))

16 nf ← nf - 1

17 continue

18 else return 0 % is not UDR

19 if v1 = = i then

20 lp = nil

21 else

22 lp = ref(label(first(AdjF(v1)),v1))

23 for v2 in AdjT(v1) do

24 if outd(v1) < > 1 then

25 label(v1,v2) ← lp.v1

26 else label(v1,v2) ← lp

27 return 1 % is UDR

28 }
� �

Figure 5: Determining if a digraph is UDR

10

associated regular expression. Whenever a state q1(k; 1) is visited and its incident arcs have
been resolved (lines 19–26) let rp be the regular expression correspondent to the label lp.
Then, in line 26, we add the instruction

regexp(v1,v2) ← rp·regexp(v1,v2).

Whenever a junction is resolved (in line 13) we add an instruction

regexp(v,v1) = regexp(v,v1) + regexp(vi,v1).

And in line 15, we add another concatenation:

regexp(vi,v1) = rp ·regexp(vi,v1),

where rp is the regular expression correspondent to the vertice vp (there must be only one).
In the end we obtain the same regular expression of Corollary 1.

7 Relationship with other works

There is no much papers in the literature on the characterization of the conversion from
NFAs to regular expressions, as was pointed by Ellul and al. [ESwW02]. Giammarresi and
al. [GPWZ04] characterised the automata generated by the Thompson method [Tho68] for
converting regular expressions to automata. They called the underlying digraphs, Thompson
digraphs. By induction on the structure of those digraphs we can prove that

Corollary 2. Every acyclic Thompson digraph is UDR.

In the same way Caron and Ziadi [CZ00] characterised the automata generated by the
Glushkov method for transforming regular expressions into finite automata [Yu97]. As these
automata may have more than one final state, we cannot directly compare the acyclic
Glushkov digraphs and the UDR digraphs. Introducing ε-transitions it is possible to obtain
an equivalent UDR automata equivalent to an acyclic Glushkov automaton.

8 Conclusions

In this work we have characterised a small class of acyclic automata for which it is easy to
find short equivalent regular expressions. Determining the exact number of UDR digraphs
(and automata) is one of our next goals. Would be interesting to investigate an algorithm to
transform any acyclic automaton into a UDRequivalent with minimal size, although in general
this problem is NP-complete (it is equivalent to the minimisation of regular expressions
without the ? operator). Finally, we hope to extend the UDR notion to acyclic automata
with several final states and some restricted classes of cyclic automata.

References

[BJG01] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms, and Applications.
Monographs in Mathematics. Springer-Verlag, 2001.

[CZ00] Pascal Caron and Djelloul Ziadi. Characterization of Glushkov automata. Theor.
Comput. Sci., 233(1-2):75–90, 2000.

11

[ESwW02] Keith Ellul, Jeffrey Shallit, and Ming wei Wang. Regular expressions: New
results and open problems. Talk at the DCFS 2002 conference (Descriptional
Complexity of Formal Systems), London, Ontario, 2002.

[FHW80] Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph
homeomorphism problem. Theoretical Computer Science, 10:111–121, 1980.

[GPWZ04] Dora Giammarresi, Jean-Luc Ponty, Derick Wood, and Djelloul Ziadi. A
characterization of Thompson digraphs. Discrete Applied Mathematics, 134(1-
3):317–337, 2004.

[Har69] Frank Harary. Graph Theory. Addison Wesley, 6 edition, 1969.

[HMU00] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages and Computation. Addison Wesley, 2000.

[JR93] Tao Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM Journal
of Computation, pages 1117–1141, 1993.

[Kle56] S. C. Kleene. Representation of events in nerve nets and finite automata. In C. E.
Shannon and J. McCarthy, editors, Automata Studies, pages 3–41. Princeton
University Press, 1956.

[Tho68] K. Thompson. Regular expression search algorithm. Communications of the
ACM, 11(6):410–422, 1968.

[Yu97] Sheng Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 1. Springer-Verlag, 1997.

12

