

1 * Intro *

The purpose of this report is to analyze some current routing solutions to security problems in ad-hoc networks.
We will summarly describe the proposals, and compare them, emphasizing the main goals of each. The
shortcommings/problems will also be noted.
We will start by, in the first section, introduce the characteristics and security problems of ad-hoc networks. We
will then describe some protocols that try to cope with these problems.
We will end the report with some comments and conclusions regarding this analysis.

2 * Contents *

I. Intro
II. Context

III. Basic Definitions
a) Hash Chains
b) Keys, Signatures and Certificates
c) AODV and DSR basics

IV. Protocols
1. Mitigating Routing Misbehavior in Mobile Ad Hoc Networks
2. Performance Analysis of the CONFIDANT Protocol - Cooperation Of Nodes: Fairness In Distributed

Ad-hoc NeTworks
3. An On-Demand Secure Routing Protocol Resilient to Byzantine Failures
4. Secure Ad hoc On-Demand Distance Vector (SAODV) Routing
5. A Security Aware Routing Protocol for Wireless Ad Hoc Networks
6. Ariadne: A Secure On-Demand Routing Protocol for Ad Hoc Networks
7. Efficient Security Mechanisms for Routing Protocols
8. Self-securing Ad Hoc Wireless Networks

V. Conclusions
VI. Proposal
VII. Acronyms
VIII. References

3 * Context *

Ad hoc networks are a new emerging technology (the term emerging may however be an overstatement). Their
main objective is to enable the autonomous creation of communication channels between devices. These
channels should adapt to highly dynamical network configurations, with nodes entering and leaving the network
and no knowledge of what nodes are connected prior to entering the network. The configuration of the node is to
be done with the least assumptions possible: the number of nodes that exist is not known, there are no particular
node types (no central servers expected), user interaction to configure the connection should be minimal (if at
all).

When the number of nodes increases and communications cannot be done point to point (either due to a range
limit on wireless links or non-direct connection in wired links), there is the need of cooperation to forward
packets to their destiny. This required cooperation is the source of the majority of security problems associated
with ad-hoc. Nodes that are asked to forward packets are not inherently good nodes, and knowledge of goodness
is difficult in a network where nodes are not known before their entrance in the network.

Another security issue is the network layer used. Although, wired links may be employed (in which the
following is less of a problem), the vast majority (if not all) of the communication channels used will be radio
waves. In this medium, as one can easily perceive, it is very simple to listen to other nodes communications

- 1 -

1 * Intro * Ad-Hoc Routing security Report

(regarding physical access to the medium). All that it is needed is a wireless card and to be in the range of the
transmission.

Adding to these disadvantages, most of the nodes in these type of networks are small powered, in processing and
battery capacity.

These characeristics lead to the following security concerns:

+ Easy eavesdropping
- as said it it is simple to ’hear’ the data transit that literally flows in the air.

+ Denial of Service (DoS)
- there are several variants of these attacks:

> packets flood - the usual DoS attack: flood the victim with more requests than it can handle. This is
the general objective, accomplished with the more specific attacks detailed below.
> radio jamming - as the physical medium is shared by all nodes in range, it is possible to flood the
medium with bogus data, invalidating any other communication. This is however out of the scope of
this report (and the protocols studied). There are techniques associated with the physical medium to
surpass this; examples of this use frequency hoping spread spectrum techniques.
> battery exhaustion - as mentioned, we are dealing with small powered devices. If one sends a flood
of packets to be forwarded by a victim node, its battery could be exhaust just serving others needs.
> CPU exhaustion - when defining security measures, one should be aware of the complexity of the
algorithms used. It may be possible for an attacker to send bogus packets, which will oblige the
victims’ CPU to make complex tasks to discern them as bogus. This allows a DoS attack.

All these attacks could also be done in a distributed manner, thus scalating to a Distributed DoS (DDoS). In
this report, however, the concern will be mitigating DoS (which does not automatically imply mitigating
DDoS).

+ Identity problems
- these problems are less specific of this type of network but their resolution is highly dependant of the
architecture/protocols used. One must deal with:

> (un)authorization - nodes should only be allowed to execute actions that they are authorized to do.
This implies a mechanism to associate actions to levels of authorization and to enforce the
authorization verification.
> impersonation - nodes can use eavesdropping or capture/theft to acquire information that will enable
them to assume the identity of other node. One has to guarantee that nodes are who they pretend to be.
The confirmation routine should not allow other nodes (that were listening) to assume/steal the identity
of the node. If a node is captured through software/hardware flaws and/or misconfigurations or if it is
physically stolen, the information it has (keys, passwords, code authorizations, etc) should not permit
impersonation or information gathering in order to impersonate or escalate privileges.

+ Trust issues
- the trust discussed at the beginning of the section associated with the previous point make the following
deception attacks possible:

> black-hole and/or delays - nodes can wrongfully advertise good forwarding characteristics (or use
information poisoning (see below)), to make nodes route packets through them. These packets may not
be delivered or delayed in favor of other packets (that the attacker has interest in delivering first). This
also increases the scope of eavesdropping as packets forwarded to the malicious node may come from
more distant nodes, thus enabling snooping to broaden from packets of neighbour nodes (ones in
reception range) to packets that are routed from afar to the malicious node.
> information poisoning - there is the possibility of malicious nodes sending wrong routing
information, that will be benefic to them (routes will travel through them or other colluding nodes,
routing loops can be induced, thus causing DoS). This is similar to the previous point, however it is not
restricted to own characteristics advertisement, but also encompass the modification of routing
messages from other nodes. The objective is not constrained to attract packet routes but could also be
to wreak havoc the routing infrastructure.
> wormhole - in this attack two colluding nodes have a fast/direct connection between them, that
surpasses the non-malicious slower/multi-hop connection. This way the nodes can (truthfully)

- 2 -

Pedro Brandão, Susana Sargento, Rui Prior, Sérgio Crisóstomo3 * Context *

advertise good routing characteristics. The existence of the connection is not the problem, the
intentions of the nodes using this link are the security issue.
> selfishness - although not evilly intended, nodes can decide that they will only forward packets that
have interest to them. Their primary objective being to save CPU and battery. This is not really a security issue
and there is no identity problem here. This will however prejudice good behaving nodes in a way similar (but in
a completely different scale) to a DoS attack.

+ Replays
- in these attacks malicious nodes retransmit packets sent previously (identification/authorization packets,
routing packets that advertise routes that are now invalid, etc). These attacks share a resemblance with
identity problems, as the source of the information is wrongfully identified (if the replay attack works).

The level of security demanded can vary, and determine certain restrictions to the security architecture. In a
military ad-hoc network (a common example in this type of literature is a task force deployed in a hostil
environment that needs network communications), there is a mandatory requisite to exclude non identified nodes
from the network, and eavesdropping on the network is not even a possibility. Even network existance must be
concealed.
However, in civilian networks, one can even question whether to remove a bad node from our usable nodes, or to
keep them so to contact a given node that would be unreachable otherwise.
This is merely an example, of solutions that are feasible to a certain level of security, but are not even an option
to other levels.

He have identified the primary security issues that are of concern in ad-hoc networks. The protocols that will be
discussed try to address some of these problems. We will discussed them based on the points defined.

4 * Basic Definitions *

4.1 # Hash Chains
Hash chains are based on one way functions. These functions cannot be reversed, so if we calculate h = F(j),
being F a one way function or hash, there is no computational feasible way of deriving j from h without knowing
F. This means that if we release h as result of a hash then we must also have/know j.
Hash chains are built applying the one way function recursively, that is Hk = F(Hk-1), where each Hk for 0 < k

< N is an element of the chain. HN is the top of the chain, or top hash.

A value J is part of the chain if it is possible to hash it to get HN , that is HN = Fk (J), meaning that J = H j and k

= N-j, for some 0 < j < N.

4.2 # Keys, Signatures and Certificates

Keys are used to encrypt data and to sign content. There are two generic types of key uses: symmetric and
asymmetric.

In symmetric keys each intervenient in the process shares the same key. If node A wants to encrypt something to
node B it uses Secret Key (SK) to encrypt the data. Node B must also have SK , so it can decrypt the message.

The messages could be sent to any node that has SK , as it would be able to decrypt the information. The key

would have to be distributed to intended nodes in a secure way, because its disclosure would mean that the
encrypted data was no longer secure.
Each two nodes wanting to establish a secure communication must share a different key, so that no other node
can eavesdrop their messages (if node A wants to establish a communication with B and another with C, it must
have a different shared key with each, which means two different keys).

With asymmetric keys, each node has a pair of keys, a public key (PK) and a secret one (SK). As for its name,

PKi is known by every node wishing to communicate with node i. SKi must be secret and only known by node i.

To send data to node i, one uses PKi to encrypt the data. Only with SKi can this message be decrypted. SKi does

not need to be distributed, as only node i uses it. To send encrypted data to multiple nodes, one as to encrypt it

- 3 -

4 * Basic Definitions *Ad-Hoc Routing security Report

with each recipients public key. But, for each node, only one key pair is needed, independently of the number of
correspondent nodes.

To ensure that a message was really sent by the specified source, data should be signed. In symmetric and
asymmetric encryption, the sender uses SK to sign the data. The receiver can then check the signature using SK

(symmetric encryption) or PKi (asymmetric encryption).

Certificates are a way to ascertain the credibility of data. A certificate testifies that presented data is truthful. It
can be used to certificate that a PKi is a valid public key of node i. This way a node can distribute its PK and

nodes that receive it can check if it is valid.
The certificate creation and verification is done using a Certificate Authority (the creation part is usually done
through a Registration Authority (RA), but it is simpler to suppose only one entity). This entity (a machine in a
network, a human that imprints certificates, etc) issues certificates (this step should be done after checking the
veracity of the information being certificated), signing the PKi with its (the CA’s) secret key. Node i can then

present its PKi with the certificate. Nodes check the information using the PK of the CA to verify the certificate.

This PK (from the CA) must be accessible through trusted and secure means (already present in the node, in

trusted servers, etc). The CA’s PK is self certificated and ultimately trusted.

The certificate contains an identification of the owner of the data, that bonds the data to its owner. When the
certified PKi is presented, the receiver nodes know (from the certificate) the identity of the owner of PKi .

4.3 # AODV and DSR basics

As will be seen, most protocols discussed here use DSR or AODV principles to operate. We will introduce here
their basic foundations.

Both these protocols are on-demand, meaning that only when a node wants to transmit data does it search for a
route to the destination. AODV has reached a RFC form and DSR is currently an Internet Draft from IETF.
The major difference between the two protocols is that DSR is source based (each packet has the route to be
travelled (every hop) explicitly set) and AODV only has the address of the destination node (each node that
receives the packet has to do a routing table lockup to discover the next hop for the given destination).

The protocols, however, share some common principles of operation.
When a node needs to reach another one it consults its internal cache for the route. If it does not find one it
broadcasts a routing request (RREQ) to query the network. Nodes hearing the broadcast should make the same
check on their internal cache. If they have a route for the destination node or if they are the destination node they
should originate a route reply (RREP). If none of the previous conditions hold, the node must rebroadcast the
RREQ, but only if it is the first time it sees the request; to check this, a request identifier in the RREQ is used.

The RREP differs in each protocol.
AODV only sends a RREP per RREQ. That means that, a node only sends a RREP for the first RREQ it gets
(identified by destination and the request identifier). In DSR all RREQs are replied, originating multiple RREP.
This behaviour of DSR enables each node to cache different routes to the same destination. In AODV only one
route is known for each destination.
In DSR the RREQ and RREP have a field that contains all nodes where the packet has passed. This way the node
issuing the RREP can use the path from this field to send the RREP (although it could use another route). The
node that issued the RREQ (and that receives the RREP) uses this field to know the route to the destination.
Nodes hearing the RREQ or RREP can use the path field to update their internal routing table.
In AODV nodes update their routing tables, through RREP and RREQ. In RREP, the route for the destination
node is updated to the node that sent the RREP if the information in the RREP is newer or if it is as new as the
node’s current one and the hop count is smaller. In RREQ, node’s update the routing tables to the source node
using the same principles.

Both protocols use routing error messages (RERR) to report error in paths.
In AODV each node has a table with nodes in their neighboord, reporting which nodes use others to access a
destination. If a node is unable to send a packet to a next hop neighboor, it sends an RERR to each of its

- 4 -

Pedro Brandão, Susana Sargento, Rui Prior, Sérgio Crisóstomo4.3 # AODV and DSR basics

neighboor that (in its local table) uses that, now faulty, node to reach someone.
DSR only sends RERR to the reverse path of the packet’s source route.

Table entries in AODV expire if not used. They can also be removed in case of a RERR.
In DSR entries do not expire and are only removed due to RERR.

In the following table we present a summary of the protocolos.

AODV DSR

On-demand protocol

Use of RREQ to discover route to destination node

RREP determines the route

Intermediary nodes can send RREP if path is known from
internal cache

RERR remove routing entries

Routing table with next hop for
destination

Several complete routes for
destination in routing cache

Only next hop is known
Complete path is known (source

routing)

RREP carries number of hops
travelled

RREP and RREQ carry path
travelled

Intermediary nodes update
routing information from

RREP and RREQ that travel
through them

RREP and RREQ listened (even
promiscuously) are used to
update routing information

Table entries expire if not used
No expiration of route cache

entries

RERR are sent to node that
used the faulty node

RERR are sent to reverse path
of packet that triggered the

detection of faulty node

When a path gets RERR, a
new RREQ must be issued

More errors due to slow
propagation of RERR and rapid

propagation of (stale) route
information

5 * Protos Analysis *

We will discuss several proposals to increase security in ad-hoc routing protocols. Some (namely the first two
addressed) are more concerned with ensuring/enforcing good behaviour from the nodes in the network. They
emphasize on node watching to find good routes.
The third proposal also tries to detect links fault locations, but using a different reactive (as opposed to proactive)
approach. It also adds cryptographic schemes to guarantee data integrity, confidentiality and signing.
The fourth proposal is an extension (in draft form) to AODV. Therefore it uses its message extensions to add
integrity and signing to the IETF protocol.
The next protocol will also use AODV as basis, but it can extend any on demand protocol. It uses shared

- 5 -

5 * Protos Analysis *Ad-Hoc Routing security Report

symmetric keys to define security levels and according security paths.
The sixth and seventh proposals are from the same authors and aim at lowering computational effort by using
one way functions and hash chains to secure respectively DSR and distance vector protocols respectively.
The last discussed protocol is the only one that specifically addresses the key distribution problem. It proposes
the definition of a distributed CA using threshold secret sharing.

5.1 # Mitigating Routing Misbehavior in Mobile Ad Hoc Networks
Sergio Marti, T.J. Giuli, Kevin Lai and Mary Baker 2000
This proposal tries to provide secure paths to the packets route.

Easy eavesdropping Not addressed

Denial of Service Not addressed

Identity problems Not addressed

Trust issues If malicious paths are correctly identified these problems can be obviated

Replays Not addressed

This protocol extends DSR, adding two components, the watchdog and the Path Rater. As it enforces a specific
path it uses a source routing protocol. The basic idea is to add a new metric for choosing paths, which measures
the behaviour of nodes.

One of the components is the ’watchdog’, which is responsible for detecting nodes misbehavior . It uses the
possibility of listening promiscuously to the medium, to check if the node it forwarded the packet to has
transmited the packet accordingly. As it knows (using the source route protocol) the node where the packet
should be in two hops, it can also check the correctness of the addressee.
The packets sent are kept in memory until they are seen in the medium or a timeout occurs. If the timeout occurs
or there was something wrong in the packet seen, the watchdog judges that the node is misbehaving and sends a
message to the source node of the packet. Packets’ modifications can also be detected. This mechanism incurs in
high memory and processor capacity usage to: store packets sent (longer than normal), listen to communications
promiscuously and compare packets sent to packets listened. The content comparison precludes the use of
encryption hop by hop. The watchdog has the following weaknesses that are stated in the proposal paper:

collisions issues - when colisions occur there are no guarantees of the results. If the collision is in the
listening node’s range, it cannot detect packet forwarding of a previously sent packet; even if the listening
node hears its packet being forwarded there could, nonetheless, have occured a collision in the next hop.
nodes can control transmission power deceiving the watcher node (transmission power is set to a level high
enough to permit the watcher’s detection, but low enough to not reach the intended receiver)
colluding nodes can elude the watchdog

The Path Rater is the second component which measures the quality of a path. The algorithm uses an average of
the nodes’ rating to evaluate the path. This rating is compiled from link breaks, active nodes (where a packet was
successfully sent in a previous time interval) and watchdog accusations.
Watchdog accusations count as a highly negative input to the metric, and implies the exclusion of this path as
viable.

Node accusations (that lead to path exclusions) are not reversible, that is, although there is a mention of a node
recovering from an accusation (that can be a wrong one due to the mentioned problems) there is no clear/secure
method to implement this (a timeout to increase the node metric or bring it to a positive value is suggested).
The trust in the reports of other nodes’ watchdogs is not defined, although mentioned as future work. The use of
these reports is not clear, although one is lead to assume that the Path Rater uses them as accusations made by
the node’s own watchdog (perhaps using a different weight).
Another issue not addressed (and brought up in the next paper) is the lack of fairness, in that nodes that do drop
packets are rewarded by not receiving packets to forward. These bad nodes are avoided in routes by the path

- 6 -

Pedro Brandão, Susana Sargento, Rui Prior, Sérgio Crisóstomo5.1 # Mitigating Routing Misbehavior in Mobile Ad Hoc Networks Sergio Marti, T.J. Giuli, Kevin Lai and Mary Baker 2000

http://mosquitonet.stanford.edu/~laik/projects/adhoc/mitigating.pdf

rater. Their packets however, are routed as usual.

Advantages Disadvantages

Avoid bad routes
Detection of packet modification
Detection of routing misbehavior
Trust (except wormholes) issues mentioned
are dealt with, provided we can rate nodes
correctly (selfishness is detected but not
penalized)

High processing/storage in
nodes
The problem of incorrect
accusations is only
mentioned, but not treated
Content comparison
inhibits the use of
encryption hop-by-hop
Colluding nodes can elude
the watchdog
The watchdog has some
possible weaknesses
Inherent trust on other
nodes reports, leading to
false accusations

5.2 # Performance Analysis of the CONFIDANT Protocol - Cooperation
Of Nodes: Fairness In Distributed Ad-hoc NeTworks
Sonja Buchegger, Jean-Yves Le Boudec 2002

This protocol’s primary objective is to deal with misbehaving/selfish nodes. It shares some characteristics with
the previous proposal.

Easy eavesdropping Not addressed

Denial of Service Nodes in black lists are ignored

Identity problems Not addressed, although it mentions imprinting friendship relations and weighted trust

Trust issues
If malicious nodes are correctly identified these problems can be obviated.
However, the identification issue is only scratched

Replays Not addressed

CONFIDANT is based on DSR, as it needs to manage the path traversed by packets. It aims at thwarting the
advertisement of false routing information and the tampering with routing protocol headers.

One of its essencial components is the Neighborhood watch. Nodes watch over each other to see if packets are
forwarded correctly. It is based on the same premise of a shared environment as before, enabling detection of
content change or packet dropping, which leads to the same high processing in nodes of the previous protocol.
As stated earlier, content comparison does not allow encryption hop by hop. In this protocol, however, content
comparison is considered secondary.
Although DSR is used, the requirement is to be based on a reactive source routing protocol in order to know the
two hop destination of the packet and thus ensure that the forward packet is correctly addressed.

The misbehavior is reported through ALARM messages sent unicast to interested nodes (the source node and
friend nodes). The trust in these messages is treated using imprinted friendship. Nodes have (by means not
discussed) knowledge of the signatures of nodes that are their friends. This enables a weighted trust in reports
that are signed by several nodes (the presence of known friends increases the trustworthiness).
This then leads to a reputation system where nodes move in the ranking according to the information gathered.
Own information weights more than information reported by other nodes (where friend nodes are more trusted).

- 7 -

5.2 # Performance Analysis of the CONFIDANT Protocol - Cooperation Of Nodes: Fairness In Distributed Ad-hoc NeTworks Sonja Buchegger, Jean-Yves Le Boudec 2002Ad-Hoc Routing security Report

http://ic2.epfl.ch/publications/documents/IC_TECH_REPORT_200201.pdf
http://ic2.epfl.ch/publications/documents/IC_TECH_REPORT_200201.pdf

Nodes can be black listed, and in this way ignored by the node that black listed them. A scheme for
re-socialization (or reintegration) of the node is mentioned, but concretely only with black lists timeouts can a
node repend.

The Path Manager uses the reputation system to delete routes that use intolerable nodes. This shows the need for
source routing, as the node that sends the packet is the one that chooses the route to use. Paths are ranked
acording to the security metric. This component can also alert nodes when requests arrive with malicious nodes
in the path.

As can be seen CONFIDANT is very similar to the previous protocol. The main difference is that a black list is
used to ignore nodes, so not to receive their packets. The previous proposal only used the information gathered to
exclude nodes from paths to the destination, not caring about their source.
Another distinction is the use of trustiness relationships to rate reports. CONFIDANT has a more defined notion
of what to do with other nodes reports. Mitigating left as future work the use of other nodes watchdog
assesments.

Both use promiscuous listening to compare packets sent to packet listened. Both suffer from the problems stated:
collision issues, transmission power control and colluding nodes. The processing in nodes is high in both
proposals, motivated by packets storage, listening to communication not addressed to the node and comparison
of packets.

Advantages Disadvantages

Nodes that do not forward are
punished by being ignored
DoS can be prevented if one can
identify the malicious nodes
Avoid possible bad routes
Detection of packet modification
Detection of routing misbehavior
The trust based problems mentioned
can be tackled, provided nodes are
rated correctly

High processing/storage in nodes
Reintegration of repentant nodes
is not addressed (except by
timeouts)
Content comparison precludes the
use of encryption hop-by-hop
Friend making is not well
established
Nodes are unable to identify other
nodes (except for the friendship
relation)
The watch has some possible
weaknesses

5.3 # An On-Demand Secure Routing Protocol Resilient to Byzantine
Failures
Baruch Awerbuch, David Holmer, Cristina Nita-Rotaru and Herbert
Rubens September 28 2002 ↑
The aim of this proposal is to introduce a routing algorithm that is able to cope with byzantine failures. For this,
data is encrypted and signed, a method for detecting faulty links is portrayed, and route discovery is based on a
metric that weights the faultiness of the links.

- 8 -

Pedro Brandão, Susana Sargento, Rui Prior, Sérgio Crisóstomo5.3 # An On-Demand Secure Routing Protocol Resilient to Byzantine Failures Baruch Awerbuch, David Holmer, Cristina Nita-Rotaru and Herbert Rubens September 28 2002 -

http://www.cnds.jhu.edu/archipelago/
http://www.cnds.jhu.edu/archipelago/

Easy eavesdropping Data is encrypted between sender and receiver

Denial of Service Not addressed

Identity problems Packets are signed, unauthorized nodes can thus be detected

Trust issues
Faulty links (black holes, selfishness) are detected and avoided
HMACs are calculated for every packet

Replays Sequence numbers are used, but not mentioned to be part of replay avoidance

This protocol stems from the principle that only source and destination are to be trusted. Data in data packets is
encrypted with a shared key between the source and the destination.

Every node has a list of link weights that measure the expected reliability of every link known by the node. A
heavy weight means a small reliability. This metric is used in the route discovery process.

The algorithm is divided in two phases: route discovery and fault detection.
All cryptographic operations are made using shared keys.
Route discovery follows the principles of on demand protocols: the source broadcasts a Route Request and waits
for a Route Response. The Route Request packet is signed and carries a sequence number. Each node checks that
the packet comes from an authorized node (checking the signature) and then signs and forwards the flood if it did
not see this request before (as in normal on demand protocols).
When the destination node receives the request, it generates a signed response (including the sequence number)
with an empty node list. This list is to be populated by each node in the return path. Therefore, when a node
receives a response packet it calculates the total cost so far, using its internal weight list and the nodes list from
the packet. If the total computed cost is lower than the previous one (or if this is the first response seen from
source and destination node, with that sequence number), the node checks the signature of all nodes (verifying
the path travelled), adds itself to the path, signs the packet and broadcasts it. If the cost is higher or equal, or if
the signatures are not correct the packet is dropped.
The signature check should probably be done before the cost calculation. As it is, a malicious node can alter the
nodes list (adding or changing nodes) so that this path would be a heavier one. For this to work a previous path
(favorable to the malicious node) must have been already seen. The advantage of the current approach is
resource savings, as the node only computes signatures if the cost is less than the previous smaller cost.
When the source node receives the packet it uses the same algorithm (except broadcasting the packet), and
updates its path list accordingly. The source node can then use the lighter path to the destination.

Fault detection is done using acknowledgements from data packets. The procedure is as follows: the source node
encrypts the data for the destination node and adds a packet counter (which identifies the packet) to the
information to be sent. The destination node should send an acknowledgement for each data packet received
(using the counter to identify them). A treshold for non-acknowledged packets exists. When the number of
missed acks exceeds this threshold the fault detection mechanism is triggered. The data packets used for probing
are from new data (we deduced this, altough it is not clear if data is resent or if probing is done using normal
flow data).
The mechanism probes the path to identify the faulty link. To accomplish this it requests acks from nodes in the
path to the destination. This is achieved by adding the node’s id in a probing list that exists in the data packets.
The objective is to do a binary search on the path.
After the first failure (the first time the treshold is exceeded) the node in the middle is added to the probing list.
If it answers (the source node receives its ack) we infer that the faulty link is somewhere between the middle
node an the destination node. If a second failure is detected (the treshold is again exceeded), we deduce that the
faulty link is between the source and the middle node. The node in the middle of the presumed faulty path is
added to the probing list and the algorithm proceeds.
Nodes only acknowledges packets that have their id in the probing list. As can be perceived, nodes are added to
the list, so if the fault on a links was temporary, the destination node will send an ack for the packet.
As can be seen in the figure node 4 is requested to send an ack after the first failure and until the probable faulty
link is discovered. Node 3 is only added to the probe list after the third failure.
The probe list is ’onion’ encrypted, meaning that each node in the probe list has to decrypt the list before sending

- 9 -

5.3 # An On-Demand Secure Routing Protocol Resilient to Byzantine Failures Baruch Awerbuch, David Holmer, Cristina Nita-Rotaru and Herbert Rubens September 28 2002 -Ad-Hoc Routing security Report

it to the next node in the path. This way a malicious node cannot change the probe list, only decrypt its onion
layer. Additionaly, each layer also has a HMAC of the destination, source, and encrypted data. The HMAC is
generated using the shared key of the node to which this layer is meant. This enables each probed node to check
if data was not altered.

Fig 1 - Fault Detection on An On-Demand Secure Routing Protocol Resilient to Byzantine Failures

Each probed node waits a specified time before sending its ack, in order to combine acks from the following
nodes. The source node thus expects to receive the acks combined in a specified order. This eliminates the
possibility of a malicious node arbitrarly dropping ack packets, as to incriminate specific links. The acks are
again ’onion’ encrypted.
This binary search will enable detection of the faulty link with log(n) probes, where n is the number of nodes. As
it is mentioned in the proposal, this will only detect an error between two nodes; if node colluding involves more
nodes this process will fail to determine the correct faulty link.
For speeding up the encryption and signing processes, shared keys are used between each pair of nodes. The
authors state that a key exchange should occur integrated with the fault detection. This integration is however out
of the scope of the proposal. .

The fault detection serves as input for the weight list. This means that a heavy weight links is more unreliable
than a lighter one. A link can lighten is weight if ack packets start comming through.
Wormholes attacks are not mitigated by this protocol, as is mentioned in the paper.

The main purpose of this first three proposals is similar, in that they try to discover badly behaved nodes in the
network. The first two ’watched’ the one hop neighbours, this one tries to detect the faulty link in the travelled
path.
The work done by each node is lightened, as nodes only have to react to faults (and not listen to each packet
sent). Data packets are sent as normal traffic with extra headers for signing/encrypting and fault detection. The
cryptographic operations allied with fault detection (which implies an extra use of these operations) will
undoubtedly lead to a processing penalty in nodes. These cryptographic operations are however an advantage as
encryption and signatures are used to secure data packets; in the previous proposals no data encryption, hashing
and/or signing was addressed.
This proposal also protects the routing information, securing the information received by the node that issued a
RREQ.

Advantages Disadvantages

Signing of packets
Encryption of data
HMAC of packets
Black Hole and
Information poisoning
mitigated

In the route discovery Route Response, the
signature check should probably be done before
the cost calculation
Possible processing penalties in nodes
Key distribution is not addressed
No DoS defense

- 10 -

Pedro Brandão, Susana Sargento, Rui Prior, Sérgio Crisóstomo5.3 # An On-Demand Secure Routing Protocol Resilient to Byzantine Failures Baruch Awerbuch, David Holmer, Cristina Nita-Rotaru and Herbert Rubens September 28 2002 -

5.4 # Secure Ad hoc On-Demand Distance Vector (SAODV) Routing
Manel Guerrero Zapata 10 October 2001 ↑

This proposal is an extension to the AODV[AODV] routing protocol from IETF. Aimed at securing the routing
protocol, its main objectives, as stated in the paper, are that a malicious node can only cause damage to the
routing protocol by not replying to certain routing messages and to lie with information about itself. Which, in
either case, the protocol deals as non existing nodes.

Easy
eavesdropping Not addressed

Denial of
Service

Not addressed

Identity
problems

Nodes use digital signatures or
public/private keys for authentication

Trust issues
Hashes are used as a means to validate
metric counts

Replays
Sequence numbers are used, so to mitigate
replay attacks

The proposal uses new extension messages for AODV. It relies on hash chains and digital signatures. The
distribution of these signatures/keys is outside of the scope of the proposal.

When a node sends a routing request (RREQ) it adds a top hash, a signature and a hash value. The signature
certifies that all non-mutable fields (all except the hop-count) in the RREQ message were defined by this node
(including the sequence number). The hash value correlates to the hop count value. For the source node, this
hash value is the seed or H0 of a hash chain. The top hash is the value HN such that HN = FN (H0) where N is

the maximum hop count and F is the global one-way function that is used for the hash chains. A new value H0 is

generated for every RREQ.
A node receiving the RREQ has to verify the signature and the hash hop-count so that HN = FN-i (H i) where

H i is the current hash value and i is the current hop count. A failure of any test implies packet drop. If the tests

hold true the normal AODV routing update algorithm follows and the sequence number is greater than the one
currently defined for this route it updates its routing table. Then the node increments the hop count of the
message and the corresponding hash value. All other fields (including the signature) are left unchanged. The
message is then rebroadcasted.

When the destination node receives the RREQ message it does the same verifications as the intermediate nodes.
It then generates a routing reply (RREP) where it sends the same fields in the SAODV extension as for the
RREQ. It sends a new hash for the hop count and a new top hash. It signs the packet with its signature.
Intermediate nodes also act as in the RREQ, verifying signature and hash values as before, and only updating
routing tables if both checks are valid. Hash values for the hop count are incremented as before. RREP packets
are only unicast as a reverse route is now known.
Routing error messages are signed by the originating node, and only accepted by other nodes if the signature
holds true. Acknowledgments of route replies are signed in the same manner.

The proposal also addresses RREP made by intermediate nodes, instead of the destination nodes. If a node
already has a route to the destination node in his routing table or the RREQ allows gratuitous replies, the node
can send a RREPs relaying the destination node.
To enable this, new extensions to RREQ and RREP must be defined. When a node sends a RREQ (the node
which is to be the destination node of the gratuitous reply) it sends an additional signature for the expected
packet of the gratuitous RREP. A lifetime for the signature is also added and signed to avoid dangling signatures
and enable routes to age if not refreshed.

- 11 -

5.4 # Secure Ad hoc On-Demand Distance Vector (SAODV) Routing Manel Guerrero Zapata 10 October 2001 -Ad-Hoc Routing security Report

http://www.ietf.org/internet-drafts/draft-guerrero-manet-saodv-00.txt

Later, when an intermediate node receives a RREQ for the previous node (the one that sent a RREQ with the
additional signature) it can imediately generate a RREP, with the previous signature. To send the RREP it uses
the signature supplied earlier. It then adds the initial lifetime. It signs the packet (where it includes the new
lifetime) using its own signature.
These RREP extensions (called double signature) are treated by other nodes the same way as normal RREP. The
Double signature RREQ involves an additional step of storing the signature and lifetime for later usage.

The current trend (from the previous proposals) of malicious node detection has been dropped. SAODV only
cares that routes are judged with truthfull metrics, and that senders and receivers can ascertain that routing
messages were really sent by the recipient stated in the packet field. Encryption of messages is not addressed (as
was in the previous proposal). Signatures are used, but only from sender and receiver (the previous proposal
assured signing by every node that dealt with the packet). In contrast with the previous three proposals SAODV
only deals with routing packets, it does not address the security of data packets. The AODV routing metric is
protected, as it cannot be decremented (it can be maintained meaning that colluding nodes can advertise a lower
metric). The previous proposal secured the path advertised as it worked with a source route based protocol. This
protection of the metric is more difficult to ellude as it carries the signatures of each node. The first two did not
secure routing messages.
Processing capacity is alleviated through the use of less demanding operations. Signature making and
verification is done only in sender and receiver respectively, freeing intermediary nodes from this process.

Advantages Disadvantages

Replies are dealt with
sequence numbers
Metric counts are not
decreased (although they
can be maintained)
Routing Packets are
authenticated (source and
destination only,
intermediate nodes do not
sign packets)

Key distribution is not considered
No encryption, it is mentioned that is
meant for public ad hoc networks that do
not have very high security needs
Colluding nodes can pass low metric
hashes to each other
AODV lifetime (and thus validity of
gratuitous RREP) is relative, not absolute,
that is, a t lifetime means that a route is
valid for more t msecs after the RREP was
received
DoS are not addressed

5.5 # A Security Aware Routing Protocol for Wireless Ad Hoc Networks
S. Yi, P. Naldurg, and R. Kravets 2002

This protocol aims at providing a path (from source to destination) with only nodes from a specified security
level. It dwells only in securing the routing protocol, not mentioning data packets.

Easy eavesdropping Use of symmetric encryption

Denial of Service Not addressed

Identity problems
Definition of security levels
Use of digital signatures
Reference to usage of tamper-proof hardware

Trust issues Use of hash signatures

Replays Not addressed, but there is a mention to the use of sequence numbers

- 12 -

Pedro Brandão, Susana Sargento, Rui Prior, Sérgio Crisóstomo5.5 # A Security Aware Routing Protocol for Wireless Ad Hoc Networks S. Yi, P. Naldurg, and R. Kravets 2002

http://www-sal.cs.uiuc.edu/~rhk/pubs/SCI2002.pdf

SAR (Security Aware Routing) follows a security clearance level hierarchy. Nodes belong to a specific level by
holding a symmetric encryption key for that level, which means a key for every level in the hierarchy. This
enables the encryption and hash signing to nodes of the same level.

The purpose is to obtain a path with nodes that belong to a level specified by the sender. Nodes with lower
security clearance are kept outside the path. This is achieved by using the shared key of the desired level to
encrypt the routing packet headers/data. In this way only nodes of that level can understand the routing
information being exchanged. Messages not understood are dropped and not forwarded. The authors mention
that malicious interruption of routing traffic is treated as the node being of a lower security than the one required.
However if a node only drops data traffic (forwarding normally routing traffic) it could cause a black-hole, as the
protocol only copes with nodes that thwart routing packets. The black hole node needs to have a valid key for the
security level in order to achieve this.
Although not mentioned, we assume that nodes have the keys from the security levels lower than their clearance.

The protocol is built on top of AODV (although it could use any on-demand protocol). It adds a security level
header to the RREQ and RREP messages so to specify the security level wanted, and the maximum available.
This implies that the sender can request a level and find a path with a higher security. To enable this another field
is added to the RREQ to maintain the highest security level possible in the path being probed.
The encryption/signing using the security level key ensures that nodes do not claim that they have greater
clearance than their actual level.

The problem of node capture/take over is left to tamper-proof hardware.
Key distribution mechanisms are assumed to be in place, so the security level associated with each node is
assigned by the key distribution infrastructure.
In an implementation/performance evaluation done in NS-2 [NS-2], the authors assessed that the number of
routing messages exchanged is lower than in AODV, due to the dropping of higher level messages. However,
message processing in nodes is expected to be high, because of the cryptographic functions used (this was not
tested as NS-2 is not meant for processing measurements).

The protocol only addresses the routing packets, leaving data packets unmentioned. One can nonetheless assume
that data packets (header and data) are encrypted using the same algorithm.

This protocol differs from the previous ones as it tries to establish different security groups in the network.
Routing messages are secured by encryption and signing; SAODV only addressed the sender/receiver
truthfullness and metric control; Resilience to Byzantine secured the path field by signing it. Here the packet
vital information is encrypted with the key for the security level, leaving it inaccessible to nodes not holding the
key. The advantage is that nodes not in the level can not even access what request is being made; the downsize is
higher processing in each node.

Advantages Disadvantages

Encryption of data and headers (only
routing packets mentioned)
Signing/hash digests of packets
Lower number of messages, due to
nodes dropping the ones that do not
belgong to their security level

High processing in nodes as
each node has to
decrypt/encrypt routing
messages
Trust issues are left to
tamper-proof hardware
Dependence on key distribution
algorithm is not addressed
No mention of data transit

- 13 -

5.5 # A Security Aware Routing Protocol for Wireless Ad Hoc Networks S. Yi, P. Naldurg, and R. Kravets 2002Ad-Hoc Routing security Report

5.6 # Ariadne: A Secure On-Demand Routing Protocol for Ad Hoc
Networks
Yih-Chun Hu, Adrian Perrig and David B. Johnson 2002 ↑
This proposal aims at ensuring correct paths with route discoveries, using low computational overheads. It uses a
broadcast authentication protocol developed by the authors named TESLA (Timed Efficient Stream
Loss-tolerant Authentication).

Easy
eavesdropping Not addressed

Denial of
Service

Route Request ratio limits and use of TESLA
hash chains prevents floods of Route Requests
Routing Errors must be authenticated

Identity
problems

Nodes are identified

Trust
issues

MACs are used in data/routing packets
Keys are disclosed only when they expire, so
impersonation is not possible

Replays
The temporal elements of keys mitigate replay
attacks

As TESLA is an important part of the protocol we will give a brief overview of it. Ariadne can nonetheless use
other methods of authentication, as digital signatures and MACs generated using shared keys.

TESLA aims at providing shared key authentication MACs without the problems associated to key distribution.
To enable this, each node creates a hash chain. The hash values (K i , 0 < i < N) are the keys used to generate the

MACs for each packet (in fact, what is really used is a K’ i derived with another one way function from K i , this

is to avoid using the same key multiple times in different cryptographic operations).

Each key is valid only for a limited time (nodes know this schedule by means of the bootstrapping phase). When
a key expires the node broadcasts it to the network.
A node starts by using the KN-1 key. Other nodes receive the packets with the MACs and an indication of what

key is being used in the packet (the index of the hash value).

Nodes know the lifetime of each key. This way, they can know if the key, used in the received packet to
calculate the MAC, has already expired. If so, they drop the packet. If it is a valid key, they store the packet
(including the index of the key) until the key is disclosed.
When a key is released, the nodes check the stored packets for correctness. Keys are disclosed in data packets.

The boostrapping phase is very important for determining the starting KN of each node and the key schedule.

For this, each node broadcasts KN , the start time for the key chain (T0), the interval duration (T Int) and the

disclosure delay (all this is authenticated with a digital signature or other means). A key is only valid in its
interval, that means that K i is only valid in Int i , that starts at T0 + T Int * i (this is approximate as the protocol

includes network delay to achieve a loose synchronization). In each interval a node can send multiple packets
(using the same key) or none at all. The disclosure delay is measured in T Int units.

The initial KN enables the authentication of received keys as KN = FN-j (K j), i.e., valid keys belong to the hash

chain of KN .

Packet losses may imply key losses, but that does not inhibit the checking of previous received packets as long as
a posterior key is revealed. It is possible to calculate K j from K i as long as i < j, K j = F j-i (K i).

- 14 -

Pedro Brandão, Susana Sargento, Rui Prior, Sérgio Crisóstomo5.6 # Ariadne: A Secure On-Demand Routing Protocol for Ad Hoc Networks Yih-Chun Hu, Adrian Perrig and David B. Johnson 2002 -

http://www.ece.cmu.edu/%7Eadrian/projects/secure-routing/ariadne.pdf
http://www.ece.cmu.edu/%7Eadrian/projects/secure-routing/ariadne.pdf

As can be easily seen this scheme implies time synchronization between nodes. This is loosely coupled and a ∆
value is used to delay the discloser of keys.
When nodes calculate MACs they must antecipate the round trip time, so that when the packet reaches the
destination it gets their before the lifetime of the key used.

The protocol Ariadne is based on DSR. As so, it has Route Request and Route Response messages.
The Request message carries the ID of the destination, source node’s ID and an ID for the request. The sender
calculates a MAC with a shared key between the sender and the destination (this is not a TESLA key, but a
normal symmetric key that every node must share with communicating nodes). The request is then broadcasted
with the expected time of arrival to the target. Each node that receives the request checks if this is a new request
and if the time of arrival is still valid (the node has a key usable in the remaining time). If any of these
requirements fails the packet is dropped. Otherwise, the node adds itself to a nodes list, calculates a hash of its
ID and the previous hash value using a one way function (h i = F[ID i , h i-1]), and a MAC of the packet with

the new list. The hash value prevents the removal of nodes from the nodes list, as in the end h K = F[ID K , F[

ID K-1 , F[ID K-2 , ... h 0]...]]], where h 0 is the MAC from the source node using the shared key. However,

this does not prevent the removal of every node except the source. A malicious node could remove every node
and calculate a new h K = F[ID K ,h0], because h0 is konown.

This packet is then broadcasted. When the target node receives the request it checks the hashes from the nodes
list as described, and if the keys of the MACs are still valid. It also checks the MAC from the source, using the
shared key. The target then issues a response sending the full path and the MACs from the nodes list. A MAC of
the entire packet using the shared key is also added. The response is now unicast to the reverse path. Each node
discloses in the packet the key used in the request (waiting if necessary, for the expiration time of the key). When
the sender receives the response it checks the keys returned (if are they part of the K j = F j-i (K i)), that the MAC

from the target is valid and that each MAC in the nodes list is also valid.

Route errors are also issued with a MAC, a disclosure key and a time for disclosure. The address of the node that
encountered the error and the address of the node to which the packet was to be sent is also added to the
message. The packet is sent to the previous node (following the reverse path). A node receiving this packet
checks the MAC, which implies cashing the packet until the key is disclosed. Until disclosure the error is not
accepted, which means that route tables are only updated after disclosure.

The proposal also mentions the use of feedback to measure path reliability. An end-to-end layer message, or a
transport layer scheme is suggested to achieve this. Probes could be sent to evaluate multiple known paths to a
destination, the returned ACKS would be used to measure the paths reliability.

With the objective of thwarting route request floods, a TESLA key is used in each Route Request. When the key
is released the previous Route Request becomes non-valid and thus is dropped by nodes. If a schedule for the
keys is also known by every node, the nodes could check if the keys should have already been released, inspite
of not seing their packet disclosure. This introduces a ratio limit for route requests broadcasts.
A list of nodes to avoid in Route Requests is also considered.

This proposal tries to lower the computational efforts of node, using less demanding operations. Metric and path
of routing messages are protected as in Resilient to Byzantine and in Security Aware, although it shares more
resemblance to Resilient then to Byzantine. The computational effort is lighter as mainly hash functions are used,
as opposed to cryptographic funtions in the previous proposals. There is also the mention of assessing path
reliability as in CONFIDANT and Mitigating. The methodology is through acks from the destination instead of
promiscuous hearing.

- 15 -

5.6 # Ariadne: A Secure On-Demand Routing Protocol for Ad Hoc Networks Yih-Chun Hu, Adrian Perrig and David B. Johnson 2002 -Ad-Hoc Routing security Report

Advantages Disadvantages

Computational savings by
using MACs with symmetric
keys
Ensure truthfulness of routing
discoveries and routing errors
DoS defense in route requests

Non-repudiation is not available, due
to key disclosure
Shared keys between Sender and
Target must be in place
No encryption
Delays in packet deliveries (to the
application layer) due to key
disclosure
Route Requests ratio limits imply
delays in route discovery

5.7 # Efficient Security Mechanisms for Routing Protocols
Yih-Chun Hu, Adrian Perrig and David B. Johnson 2002 ↑

Through the use of one-way functions the authors aim to provide identification and proof of metric correctness in
distance vector routing protocols.

Easy
eavesdropping Not addressed

Denial of
Service

Techniques to avoid DoS attacks on hash
calculations

Identity
problems

Nodes are identified in routing updates

Trust
issues

Routing metrics and sequence numbers are
protected

Replays
Through the use of sequence numbers, replays
are mitigated as long as nodes hear the released
sequence numbers

This protocol follows the same principal as the previous Ariadne for which the authors are also responsible.
Futhermore, it relies on data signing for the bootstrapping phase.
As one expects, it uses hash chains. In addition, it adds Merkle hash trees [Merkle], in which a binary tree (a
binary tree is used for simplicity, other trees can also be used) is built from the leafs nodes to the root using a
one-way function. Fig. 1 illustrates the process:

- 16 -

Pedro Brandão, Susana Sargento, Rui Prior, Sérgio Crisóstomo5.7 # Efficient Security Mechanisms for Routing Protocols Yih-Chun Hu, Adrian Perrig and David B. Johnson 2002 -

http://www.ece.cmu.edu/~adrian/projects/secure-routing/ndss03.pdf

v’ i = F(v i)

mkj = F((v’k || v’ j)) for k-j = 1

mkj = F((mk((k-j+1)/2 -1) || m ((k-j+1)/2)j for k-j >1

|| denotes concatenation

Fig 2 - Merkle Hash Tree

Using this tree enables the authentication of released values. First the node releases m07 to every node,

authenticated with a digital signature or other means. When it wants to release the information 1 it sends 1, v’1 ,

v’0 , m23 and m47 . These values provide m07 by evaluating: F(m47 || F(m23 || F(v’0 || v’1))). The only way

a node could release these numbers was if it generated the tree. So the nodes that receive (1, v’1 , v’0 , m23 ,

m47) should already have m07 (authenticated) and check that the calculation is correct.

The protocol has a sequence number and a hop metric, to be conformant to distance vector protocols. It ensures
that a node does not decrease the metric or increases the sequence number.
To achieve this, we generate a hash chain as in TESLA, discussed in Ariadne. But the values H i = F(H i-1) are

not used as keys. Instead the node discloses HN signed as before. It has the following constants globally defined:

K, the maximum hop count possible (the infinite value in distance vector) and S, the maximum sequence number
allowed in a chain. N should be S*K.
The values H i represent the sequence number of the message and the metric. That is, the N space of H is divided

in S groups for each sequence number available. In each group there are K values representing the metric values
0 to K-1.
The sequence numbers increase from HN to H0 ; in each group if i > j then H i represents a metric higher than

H j .

- 17 -

5.7 # Efficient Security Mechanisms for Routing Protocols Yih-Chun Hu, Adrian Perrig and David B. Johnson 2002 -Ad-Hoc Routing security Report

Fig 3 - Hash Chains for Sequence Number and Metric

In a message with sequence number 1 we use the HN-K to HN-1 values to indicate 0 to K-1 metric respectively.

When sending a message with sequence number 1 a node A then broadcasts HN-K indicating that it can reach

itself with a 0 hop count. When one hop neighbours of A receive this, they broadcast a message indicating that
they can reach A with 1 hop count, adding HN-K+1 = F(HN-K). Other nodes follow the same principle always

checking that the H i received is HN = FN-i (H i) for the destination node.

This will oblige nodes to, at least, advertise the same metric (they can maintain the H i received not hashing it).

When a node receives an update it revises its routing table if the sequence number for that destination is greater
than the one he has (a fresher route) or if the sequence number is the same and the metric is lower.
In each update nodes broadcast their routing information (as for distance vector protocols) with the associated
hash values (remember that these values are intrinsic to a destination node). Nodes cannot issue a greater
sequence number (because it is unfeasible to reverse F()) and they cannot decrease the metric for the same
reason. If nodes hear the lower metrics they probably can reach the nodes broadcasting them, thus being one hop
from them. If low metrics hashes are passed by colluding nodes they can advertise better routes than the ones
they really have.

Trying to force nodes to increase the metric, the authors developed Hash Tree Chains. This construction is based
on creating a hash chain where each value is connected to the other through a hash tree (its discussion is beyond
the scope of this writing). This construct uses Merkle hash trees to authenticate values . The construction will
serve to identify the node sending the update. With this, intermediary nodes have to increase the metric in order
to identify themselves. Receiving nodes check if the node ID from which they receive the update matches the ID
from the hash value received. This construct as some problems with networks with large number of nodes, as it
is possible (with low probability) to overhear hash values that will enable a same distance fraud.

Regarding the protection of path information in routing packets, this paper proposes the approach used in
Ariadne, but it also mentions that the use of shared keys between each node in the path could also be employed.

To increase speed performance in verifying hash values the authors introduce Merkle-Winternitz chains and
skiplists. These construction will help prevent DoS, by decreasing the effort needed to verify hash chains. This
aims to prevent (or at least alleviate) the effect of malicious nodes that send phony packets to force nodes to
compute the hash values, testing them for correctness.
New hash chains can be constructed and their hash roots sent authenticated using Merkle-Winternitz chains.
The authors also mention other work [Jak01][Jak02] that deal with the minimization of space storage for hash
chains.

- 18 -

Pedro Brandão, Susana Sargento, Rui Prior, Sérgio Crisóstomo5.7 # Efficient Security Mechanisms for Routing Protocols Yih-Chun Hu, Adrian Perrig and David B. Johnson 2002 -

This proposal is directed to distance vector protocols. As such (and being made by the same authors) it shares
some common ideas with the previous one. The sequence number and hop count protection is done using hash
chains in the same way as in Ariadne. Overall the protocol is very similar to Ariadne adding Hash Tree Chains to
force nodes to increase hop metrics (and not just prevent its decrease), which use Merkle hash trees to
authenticate values. Some efforts are also done to allow secure/authenticated distribution of hash roots and
decrease computational efforts regarding hash chains which could also be applied to Ariadne.

Advantages Disadvantages

Use of hash functions
which have lower
complexity than
asymmetric keys
Development of
constructs to lower the
complexity of
authentication
Routing Updates are
authenticated and with
correct metrics
Computational DoS are
addressed

Hash roots need to be deployed
authenticated (although after initial
bootstrapping it is possible to piggyback
new hash chain roots)
Metric must be hop count
Colluding nodes can pass low metric hashes
to each other
Non-repudiation is not available
No encryption

5.8 #Self-securing Ad Hoc Wireless Networks
Jiejun Kong, Petros Zerfos, Haiyun Luo, Songwu Lu, Lixia Zhang 2001
This protocol strays a little from the previous ones, as it does not specifically address routing issues.
Nonetheless, it focus on key issues, that the other proposals did not tackle (altough they used them).
The main objectives are to enable encryption, authentication and non-repudiation ubiquity, ensuring high
availability of the key system. These cryptographic functions are all done distributedly.
The following discussion will center on the concepts, leaving the mathematical proofs aside. The interested
reader is refered to the paper for further details.

Easy eavesdropping Data is encrypted

Denial of Service Nodes not authorized are not able to use the network

Identity problems
Packets are signed
Unauthorized nodes are not accepted in the network

Trust issues
IDS are referred, but not addressed
No hash mechanisms are defined

Replays Not addressed

This proposal uses threshold secret sharing [Thresh]. It has the following pre-requisites for each node: an unique
ID, that is non forgeable (or forgery is detected by IDS systems), a mechanism for local detection of
misbehaving nodes (usually an IDS), at least K one-hop neighbouring nodes and a key pair for each node
(public, secret key). As will be seen, the encryption mechanism uses RSA assymetric keys.
There is a global Secret Key (SK) and the corresponding Public Key (PK). SK is ’divided’ into K nodes. Each
node i has a partial secret key that is a function of its ID v i (Pv i

). This enables that K nodes function as a

Certificate Authority using SK.
The distribution of Pv i

 involves the generation of a polynomial of order K-1, known only in the initial setup.

Using Lagrange interpolation it is possible for K nodes holding a partial secret share to recover SK, but a
coalition of K-1 nodes holding a partial secret share do not have any information about SK.

- 19 -

5.8 #Self-securing Ad Hoc Wireless Networks Jiejun Kong, Petros Zerfos, Haiyun Luo, Songwu Lu, Lixia Zhang 2001Ad-Hoc Routing security Report

http://www.cs.ucla.edu/~jkong/publications/ISCC02.pdf

A node wanting to use the distributed CA must contact K nodes that have a partial secret share. These K nodes
can only be one-hop neighbouring nodes, according to the specification. This is due to the fact that it is easier to
collect reliable information about misbehaviour of closer nodes than multi-hop ones, which implies that
information about closer neighbours is more easily gathered.
As it is expected PK is known by all nodes.

Each node must have a certificate signed by SK validating its key pair. This certificate as a limited lifetime, to
ensure continual renewal. A node must ask K nodes to sign its key pair in order to acquire a valid certificate. The
K nodes accept the request if the node has not been convicted of misbehaviour, according to each node internal
information. Here IDS system can be used as a way to gather knowledge about node behaviour.
Certificate renewall follows the same principles, adding that the current certificate must not be in a Certificate
Revocation List (CRL). A node enters this list (which is local to each node) when the list owner, by direct
monitoring, observes malicious behaviour or when K different signed accusations are received by a node. When
a node observes misbehaviour it broadcasts its finding, signing the information.
Nodes in CRLs are ignored in the network. A node needs only to maintain entries in the CRL as long as the
node’s certificate is valid, after it has expired the node can remove the entry from the CRL, because the
certificate is no longer valid, regardless of the entry in the CRL.
Nodes in CRLs have to get new certificates through offline methods.
If no information is known about a node, it is treated as a valid node.
A node can also request a partial secret to K nodes. Using their partial secrets and the requesting node’s ID, the
K nodes issue a partial secret. Each node consults its CRLs as for certificate issuing before responding to the
node’s request.

The partial secret keys are also renewed periodically. Note that SK remains the same, what changes are the
partial secrets, i.e. the function that generates Pv i

. Each node (holder of a partial secret) has a probability of

starting this function renewal. In which case it uses K nodes to generate an update polynomial. This polynomial
is encrypted using SK and broadcasted. Each node that receives the change notification uses K nodes to update
its part of the share secret. This works even if the K nodes have not updated their secrets, what is necessary is
that all K nodes have the same version of the function.
This scheme prevents that malicious nodes accumulate partial secret shares through updates (as long as they are
identified as malicious, if they are not their partial share could also be updated).

The K nodes needed to use the SK key, can be any K nodes. This means that a node can roam to find nodes,
collecting results from responding nodes. In this way mobility improves the availability of the distributed CA.

Initialization is done by an offline authority that distributes the partial secrets by K initial nodes. Nodes without a
valid certificate are given one by the coalition nodes if none misbehaviour information exists (as mentioned).
The authors also mention the possibility of the initial issuing being made offline or through a coalition of K
nodes using colaborative admission control. The trustiness approach (give certificates and secret partial keys to
unknown nodes) can lead to giving malicious nodes initial startup. The offline initialization could prevent this
but would make it more difficult for new nodes to enter and move in the network.

Regarding the possibility of malicious nodes sending false partial certificates and/or generating false partial
secrets for good nodes, the authors point to VSS (Verifiable Secret Sharing) [VSS1,VSS2,VSS3]. This would
imply the signature of partial certificates and partial secrets with the node’s partial secret. The VSS techniques
(multi-signature algorithms) would enable detection of invalid partial secrets. This detours, malicious nodes with
invalid partial secrets, but if valid certificates are acquired, one could surpass this. That would mean that
certificate generation would fail (nodes would however discover the error before using the certificate, due to the
algorithm of the generation). The partial secret generation would also fail, but only be detected (using VSS)
when the node used it in a request by other nodes.

The K factor defines availability (K one-hop nodes need to be reached) and security level (K nodes must be
taken over before malicious nodes can became a CA). As is mentioned in the proposal this can lead to conflicting
goals.
The performance evaluation done by the authors indicates that low end devices (PDAs) will be significantly
delayed by the process (either as a node requester or as a part of the CA). Laptops (in the proposal PentiumIII

- 20 -

Pedro Brandão, Susana Sargento, Rui Prior, Sérgio Crisóstomo5.8 #Self-securing Ad Hoc Wireless Networks Jiejun Kong, Petros Zerfos, Haiyun Luo, Songwu Lu, Lixia Zhang 2001

500) would cope with the computational work.

This proposal addresses the key distribution issues, that all others left unattended. The only common concern that
can be pointed is the treatment of misbehaviour (using CRLs), which is also done in CONFIDANT.
Self-Securing does not deal with misbehaviour detections (it is left to an IDS) as opposed to the promiscuous
detection in CONFIDANT.
Processing concerns are stated, but the protocol depends heavily on assymetric keys, which has a heavy cost on
processing power.

Advantages Disadvantages

Highly available distributed CA
(depending on network density and
security level)
Authentication, Encryption and
signing through certified keys
Periodically renewed partial secrets
Certificate revocation lists
Malicious nodes are ignored (if their
malevolence is detected)

High processing in nodes (node
requesters or as a part of the
CA)
High dependency on IDS
Nodes in CRL must ensure
out-of-bound reissuing
Initial deployment can pose a
restriction in ad-hoc networks
formations
Initial trustiness can pose a
security problem

6 * Conclusion *

Security (or the lack of) is nowadays a growing concern in everyone’s mind. Routing protocols are one of the
points to be addressed. In the wired, widely used Internet routing protocols have no inherent security. These
issues are now being addressed [IETF01] and some proposals exist [RoutSec] to retrofit security into these
protocols.
Ad-hoc networks are only now taking their first steps, and the chance to design its routing protocols secure,
instead of adding security at a later point, with all the problems that this brings, exists.
The protocols described in this report try to achieve this goal, with SAODV being the exception. Although other
proposals also use as basis already developed ad-hoc routing protocols, the major constraint of not disturbing
already deployed products (that the internet routing protocols encounter) is not (yet) an issue.

The two major conclusions after writing this report are that there might not be a one ’size fits all’ solution and
that no current solution is self-contained.

The first statement jumps out when reading SAR and the sentence from SAODV which states "maybe it
[confidentiality] is needed for scenarios with very high security needs". The fact that the security needs may vary
with the circumstances is not new. However, the scope, dimension and dynamic of ad-hoc networks makes it
even more appropriated to have different security (or even different protocols) in different ad-hoc networks.
Groups might want to have ad-hoc networks where others (not members of the group) may not enter, and so use
special protocols to enable this. SAR tries to encompass this notion, when it defines different security levels.
Different groups are formed according to their level clearance. However, we might want to create an even
greater barrier between groups, where they do not even share the same protocols. As can be easily perceived this
leads to a very ample discussion.
From this point on when we discuss security in ad-hoc we will be meaning security where "the scenario is a
public ad hoc network that everybody can join at any moment" (from SAODV). This however does not preclude
the use of encryption (as in SAODV). Here we encounter another divergence. What to encrypt: everything, only
data packets, only routing packets... Some proposals did not address this or left it unclear. Encryption in data
packets means that keys need to exist and be at hand. If we also need them to encrypt routing packets, it is wise
to correlate the usage/distribution of these keys. This common usage, is brought by the multitude of roles of each
ad-hoc node. It serves as a router, but it is also a common node trying to get by, using the network for its own

- 21 -

6 * Conclusion * Ad-Hoc Routing security Report

purposes.

This key problem, leads to the second conclusion. Current proposals do not address the whole picture. Although
many focus on multiple aspects, the one resilient to Byzantine failures has signing, HMAC, encryption and black
holes avoidance; Ariadne deals with easing computational effort; Self-Securing tackles key distribution/usage;
none attacks all fronts.
In our opinion the fronts are:

Signing
to ensure information origin, non-repudiation is not (in our opinion) a must have

Integrity of messages
using MACs or HMACs

Encryption of information
the possibility of encryption should exist (in routing and data packets), the user/application could then
define its needs

Path information/assessment
should exist to avoid possible bad nodes

Computational/Energy savings
a protocol should try to minimize these spendings, because low-end devices are expected to be a great
percentage of nodes in this type of network

Key distribution/usage
this is an important factor, as this must exist to enable striking the first and third front (the second could use
MACs)

IDS can also be a factor to account for. The path information/assessment can be done using an IDS based
technology. However, this should not grow to be a full blown IDS system, but rather the sufficient to evaluate
node behaviour (in accordance to the defined factors).
The selfishness aspect dealt in some proposals (namely at Mitigating and CONFIDANT), should not be
considered a requirement, because a node could use more power to evaluate the nodes behaviour than if it was
imoral/unethical and forwarded all packets from the bad-behaving nodes. This does not exclude that our path
information/assessment algorithms could evaluate this conduct.

In our view one should try to use the concepts depicted in "An On-Demand Secure Routing Protocol Resilient to
Byzantine Failures", "Efficient Security Mechanisms for Routing Protocols" and "Self-securing Ad Hoc Wireless
Networks" to be able to resist attacks in what we believe are the battle fronts of ad-hoc security.

7 * Proposal *

Steps Added Costly Actions

Entering the Network - DSR / AODV

1. Generate ID (using network identification)
2. Generate pk/sk if does not have one
3. Get {pk,ID} Certificate using K-coalition (Self-sec)
4. Broadcast {pk,ID,Cert} with TTL=max hops
5. Construct the first Hash Tree Chain (for hop count) (AODV)
6. Broadcast the first Hash Tree Chain(AODV)

pk/sk generation
Other Nodes: partial cert
generation
Partial Cert. aggregation
Hash Tree Chain
construction(AODV)

Receiving key

if certificate verifies
1. add to local tables
2. rebroadcast

certificate verification
using coalition

- 22 -

Pedro Brandão, Susana Sargento, Rui Prior, Sérgio Crisóstomo7 * Proposal *

RREQ/RREP - AODV

1. Verify Source Sign. (hop count not signed)
2. Verify Sender Node Sign. (hop count could be signed)
3. Sign packet
4. Verify hop count (using Hash Tree Chains)(AODV)
5. Increment hop count/hash of hop count (using Hash Tree

Chains)(AODV)
6. Add to routing table if conditions for update hold {In AODV nodes only

cache [dest node => next hop node] which is verified by seing the source
sig and the node sig, which asserts that node has received a request
originating at source node}(AODV)

In aodv we could also use RREQ for getting the pk of the node, which
would be piggybacked in the RREP

2 signature verifications
1 signature
Verify hop count using
Hash Tree Chain(AODV)
Increase hop count in the
Hash Tree Chain(AODV)

RREQ arrival AODV

1. Same as in RREQ/RREP above, except 3
2. Send Signed RREP (hop count received not signed)
3. Add Hash Tree Chain for hop count for reversal path

Same as in RREQ/RREP
above, except increase of
hop count

RREP arrival AODV

1. Verify Source Sign. (hop count not signed)
2. Verify Sender Node Sign. (hop count could be signed)
3. Verify hop count (using Hash Tree Chains)
4. Add to routing table if conditions for update hold {In AODV nodes only

cache [dest node => next hop node] which is verified by seing the source
sig and the node sig, which asserts that node has received a request
originating at source node}

2 signature verifications
Verify hop count using
Hash Tree Chain

DSR

- 23 -

7 * Proposal * Ad-Hoc Routing security Report

Legend

Source Node

SSN = Sign(Option Type|Identification|Target Addr|Source Addr|nonce_S)

CS = Crypt_Dest(SSN|nonce_S|Source Addr)

Hash = F(SSN|nonce_S|Source Addr)

SSs = Sign(Option Type|Identification|Target Addr|Source Addr)

SS = Sign(Option Type|Identification|Target Addr|Source Addr|CS|Hash)

Mesg
=

Normal RREQ|SSs|CS|Hash|SS

Intermediate Nodes

SSs = signature from source node

CS = encryption from source node

Hash = F(SIs|Node Addr|Hash_previous)

SI =
Sign(Option Type|Identification|Target Addr|Source
Addr|HC|CS|Node List)

Sigs = (SI|Sigs)

Mesg
=

Normal RREQ|SSs|CS|Hash|Sigs

Option Type = 2 in DSR 6.2
HC = Hop Count (could be excluded)

Identification= unique value (seq number)

RREQ - DSR

- 24 -

Pedro Brandão, Susana Sargento, Rui Prior, Sérgio Crisóstomo7 * Proposal *

1. Verify Source Sign. (hop count not signed) (using SSs)
2. Verify Sender Node Sign. (hop count could be signed) (using top of

Sigs)
3. New hash (create Hash)
4. Sign packet (new SI)
5. If source Sign Nonce(create SSN)
6. If source Crypt to dest (create CS)
7. Broadcast
8. Nodes can add the routes to their routing tables, verifying the Sigs List

against the nodes List

Prevents:

removable of every node ’till source
=>bad node unable to produce SSN (although it has SS)
removable of previous node
=> bad node unable to reverse Hash (F)
=> bad node unable to produce Hash_previous (unable to produce SSN)
(the security of this depends on the security of SSN production)
removable of intermediate nodes
=> bad node unable to reverse CI (Crypt_Dest)
=> bad node unable to produce previous CI (Sign of Intermediate
Nodes)

Notes:

If pk (for encryption or sig verification) is not known, use get pk
The use of the nonce in the source node prevents the removal of every
node from the node path, leaving only the source node. If the nonce was
not used every node seing the RREQ would have SS, and could generate
CS, because the public key of Dest is known and SSN would be SS.
The use of F lightens the CPU compared to Crypt
Availability of Sigs allows the update of routing tables from source to
here

2 signature verifications
1 signature
1 hash computation
1 signature if source
One Assymetric
Encryption if source

RREQ arrival DSR

1. Verify Source Sign (hop count not signed)(SSs)
2. Verify Nodes Sign (hop count could be signed)(Sigs)
3. Verify node list using Hash and CS
4. Send RREP signed, including node list (bidirectional links assumed)

1 + nr hops signature
verifications
1 assymetric decryption
nr hops has computations

RREP DSR

1. Same as in RREQ above, except 3 {this implies a trust in the
destinatination node; the source trusts the signed node path list from the
destination. If extra carefulness was needed the same encryption by each
node in RREQ could be done in each RREP}

2. Add to routing table (if conditions for update hold) the path from this to
dest , seen in the signed full path {in DSR route table is with complete
path, so only in RREP does one have certification of complete traversal
by the dest node (each node signed to it), this is to prevent node
removals from the path}

3. Could verify the path added in RREQ from this to source
4. In arrival no new signature is needed

2 signature verifications
1 signature (except for
arrival)

- 25 -

7 * Proposal * Ad-Hoc Routing security Report

Get pk for other nodes

1. Broadcast request for key of the node identified by N ID . The request

should carry an REQPK ID

2. Each node hearing REQPK
If REQPK for N ID in cache ignore

Else If {pk,N ID ,Cert} exists, broadcast REPPK with TTL=max

hops and REPPK ID = REQPK ID and the {pk,N ID ,Cert}

Else
a) rebroadcast request
b) add REQPK for N ID to cache with TIMEOUT (in AODV 6.3

= NET_TRAVERSAL_TIME, and in DSR = exponential
back-off algorithm (2^request_sent*DEF_TIME (not
specified, could be NET_TRAVERSAL_TIME))

3. Each node hearing the REPPK
If {pk,N ID ,Cert} known ignore

Else
if certificate verifies (using th global PK)

1. add to local tables
If REQPK for N ID in cache

1. rebroadcast {could rebroadcast in any case =>
higher key spread and higher coalition
verification usage}

2. remove REQ N ID from cache if it exists

If TIMEOUT expired
1. Clear REQPK for N ID from cache

2. Increase number of failures for N ID

3. If number of failures reaches MAX_FAIL (RREQ_RETRIES
in AODV, not defined for DSR) return destination unreachable
to application and stop REQPK sending

to obviate overwhelming of network resources due to unreachable
nodes, the TIMEOUT is used to rate-limit sending new REQPK. A
limit is imposed in the number of REQPK (as in RREQ in AODV),
which triggers a destinaton unreachable to the application
{pk,N ID ,Cert} will travel through the network as requests from

further nodes are seen
Even the requesting node should broadcast the REP, to deliver the
{pk,N ID ,Cert} further (limited to TTL hops){perhaps should test

do and not do}
timeout on REQ are used so that if no REP is seen that entry does
not prevent future requests (even re-requests due to timeout of not
seen REP)
usage of N ID intends to avoid broadcasts that are unecessary. As

REP are broadcast, REQ from different nodes can be answered by
the same REP, thus the N ID is the comon factor.

In REPPK only if key unknown is rebroadcast => node could have
responded if asked => was not asked or already replied
TTL verifications are not mention, but should be undertaken before
mesg arrival at this layer

Spontaneous RREP

- 26 -

Pedro Brandão, Susana Sargento, Rui Prior, Sérgio Crisóstomo7 * Proposal *

See article

RERR

See article

Route Maintenance/Repair

See article

Our proposal tries to include the benefits of An On-Demand Secure Routing Protocol Resilient to Byzantine
Failures", "Efficient Security Mechanisms for Routing Protocols" and "Self-securing Ad Hoc Wireless
Networks" in a protocol that will address:

impersonation (using sinatures)
eavesdropping (by providing keys to enable data encryption)

8 * Acronyms *

These are the acronyms used throughout the report:

AODV - Ad-hoc On demand Distance Vector
CA - Certificate Authority
CONFIDANT - Cooperation Of Nodes: Fairness In Distributed Ad-hoc NeTworks
CPU - Central Processing Unit
CRL - Certificate Revocation List
DDoS - Distributed DoS
DoS - Denial of Service
DSR - Dynamic Source Routing
IDS - Intrusion Detection System
IETF - Internet Engineering Task Force
HMAC - Hashed MAC
MAC - Message Authentication Code
NS - Network Simulator
PDA - Personal Digital Assistant
PK - Publice Key
RREQ - Route REQuest
RREP - Route REsPonse
RSA - Rivest, Shamir and Adleman (public key technology)
SAR - Security Aware Routing
SAODV - Secure AODV
SK - Secret Key
TESLA - Timed Efficient Stream Loss-tolerant Authentication

9 * Refs *

[Jak01] Markus Jakobsson. Fractal Hash Sequence Representation and Traversal. In Proceedings of the 2002
IEEE International Symposium on Information Theory (ISIT 02), pages 437-444, July 2002.
[Jak02] Don Coppersmith and Markus Jakobsson. Almost Optimal Hash Sequence Traversal. In Proceedings of
the Sixth International Conference on Financial Cryptography (FC 2002), Lecture Notes in Computer Science.
Springer, 2002.
[NS-2] The Network Simulator - ns-2 http://www.isi.edu/nsnam/ns/
[IETF01] A. Barbir, S. Murphy and Y. Yang Generic Threats to Routing Protocols, April 2003
[RoutSec1] from efficient [18],[20], [21], [39], [40]
{18} - Stephen Kent, Charles Lynn, Joanne Mikkelson, and Karen Seo. Secure Border Gateway Protocol
(S-BGP) Real World Performance and Deployment Issues. In Proceedings of the 2000 Symposium on Network

- 27 -

8 * Acronyms * Ad-Hoc Routing security Report

and Distributed Systems Security (NDSS 00), pages 103 116, February 2000.
{20} - Brijesh Kumar. Integration of Security in Network Routing Protocols. SIGSAC Review, 11(2):18 25,
1993.
{21} - Brijesh Kumar and Jon Crowcroft. Integrating Security in Inter Domain Routing Protocols. Computer
Communication Review, 23(5):36 51, October 1993
{39} - Bradley R. Smith and J.J. Garcia-Luna-Aceves. Securing the Border Gateway Routing Protocol. In
Proceedings of Global Internet 96, pages 81 85, November 1996.
{40} - Bradley R. Smith, Shree Murthy, and J.J. Garcia-Luna- Aceves. Securing Distance Vector Routing
Protocols. In Proceedings of the 1997 Symposium on Network and Distributed Systems Security (NDSS 97),
pages 85 92, February 1997.
[VSS1] Berry Schoenmakers A Simple Publicly Verifiable Secret Sharing Scheme and its Application to
Electronic Voting 1999
[VSS2] Stadler M. Publicly Verifiable Secret Sharing 1996
[VSS3] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung Proactive Secret Sharing (or How to
Stop Perpetual Leakage) 1998
[AODV] C. Perkins, E. Belding-Royer, S. Das RFC3561 - Ad hoc On-Demand Distance Vector (AODV)
Routing - July 2003
[DSR] David B. Johnson, David A. Maltz, Yih-Chun Hu The Dynamic Source Routing Protocol for Mobile Ad
Hoc Networks (DSR) - 15 April 2003
[DSR-AODV] Samir R. Das, Charles E. Perkins, Elizabeth M. Royer Performance Comparison of Two
On-demand Routing Protocols for Ad Hoc Networks - 2000
[Thresh] A. Shamir, How to share a secret, Communications of ACM, 1979
[Merkle] R. C. Merkle. Protocols for public key cryptosystems. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 122-134, 1980.

- 28 -

Pedro Brandão, Susana Sargento, Rui Prior, Sérgio Crisóstomo9 * Refs *

	1€€ * Intro *
	2€€* Contents *
	3€€* Context *
	4€€* Basic Definitions *
	4.1€€# Hash Chains
	4.2€€# Keys, Signatures and Certificates
	4.3€€# AODV and DSR basics

	5€€* Protos Analysis *
	5.1€€# Mitigating Routing Misbehavior in Mobile Ad Hoc Networks Sergio Marti, T.J. Giuli, Kevin Lai and Mary Baker 2000
	5.2€€# Performance Analysis of the CONFIDANT Protocol - Cooperation Of Nodes: Fairness In Distributed Ad-hoc NeTworks Sonja Buchegger, Jean-Yves Le Boudec 2002
	5.3€€# An On-Demand Secure Routing Protocol Resilient to Byzantine Failures Baruch Awerbuch, David Holmer, Cristina Nita-Rotaru and Herbert Rubens September 28 2002 �
	5.4€€# Secure Ad hoc On-Demand Distance Vector †SAODV‡ Routing Manel Guerrero Zapata 10 October 2001 �
	5.5€€# A Security Aware Routing Protocol for Wireless Ad Hoc Networks S. Yi, P. Naldurg, and R. Kravets 2002
	5.6€€# Ariadne: A Secure On-Demand Routing Protocol for Ad Hoc Networks Yih-Chun Hu, Adrian Perrig and David B. Johnson 2002 �
	5.7€€# Efficient Security Mechanisms for Routing Protocols Yih-Chun Hu, Adrian Perrig and David B. Johnson 2002 �
	5.8€€#Self-securing Ad Hoc Wireless Networks Jiejun Kong, Petros Zerfos, Haiyun Luo, Songwu Lu, Lixia Zhang 2001

	6€€* Conclusion *
	7€€* Proposal *
	8€€* Acronyms *
	9€€* Refs *

