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Abstract

Inductive Logic Programming (ILP) is a subfield of Machine Learning that provides an
excellent framework for learning in multi-relational domains and inducing first-order clausal the-
ories. ILP systems perform a search through very large hypothesis spaces containing redundant
hypotheses. The generation of redundant hypotheses may prevent the systems from finding
good models and increase the time to induce them. In this paper we propose a classification of
hypotheses redundancy. We show how expert knowledge can be provided to an ILP system to
avoid the generation of redundant hypotheses. Preliminary results suggest that the the number of
hypotheses generated and execution time are substancially reduced when using expert knowledge
to avoid the generation of redundant hypotheses.

Keyworks: Machine Learning, Inductive Logic Programming, expert-assistance

1 Introduction

Inductive Logic Programming (ILP) [1, 2] is a form of supervised learning that aims at the induction of
logic programs, or theories, from a given set of examples and prior knowledge (background knowledge),
also represented as logic programs. ILP has been successfully applied to learning in multi-relational
domains [3].

Like other Machine Learning approaches, ILP systems have to traverse a potentially infinite
hypothesis space. At each search node an ILP system generates and then evaluates an hypothesis
(represented as a clause). The evaluation of an hypothesis usually requires computing its coverage,
that is, computing which and how many examples it explains. ILP systems therefore may have long
execution times.

Research in improving the efficiency of ILP systems has thus focused in reducing their sequential
execution time, either by reducing the number of generated hypotheses (see, e.g., [4, 5]), or by
efficiently testing candidate hypotheses (see, e.g., [6, 7, 8, 9]). An alternative approach to improve the
response time of ILP systems, besides improving their sequential efficiency, is through parallelization
as recommended by Page [10], and confirmed by research results [11, 12, 13, 14, 15]. Our report
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2 BACKGROUND 3

contributes to the effort of improving the efficiency of ILP systems by identifying types of redundancy
found in ILP search spaces and by proposing techniques for handling such redundancy.

In order to explain why ILP systems generate redundant hypotheses, we first observe that ILP
systems may be seen as using refinement operators [16] to generate hypotheses. According to Van der
Laag [17], ideal refinement operators should respect three properties: properness, i.e., a refinement
operator should not generate equivalent (redundant) clauses; local finiteness; and completeness. He
showed that ideal operators do not exist for unrestricted θ-subsumption ordered set of clauses, as used
in most ILP systems. Hence, generic refinement operators for ILP cannot be ideal, and is usually the
properness property that is sacrified. Thus is usual the generation redundant of hypotheses by ILP
systems.

The efficiency of an ILP system may therefore be significantly improved if the number of redundant
hypotheses is reduced. A first step to achieve this goal is to identify and classify the types of
redundancy actually found in ILP systems search spaces. Based on this information one can envisage
ways to try to avoid the generation of redundant hypotheses. We thus classify several types of
redundancy in hypotheses. To the best of our knowledge this is the first time that someone presents
a classification of hypotheses redundancy found in ILP systems search spaces. A second step is to deal
with these forms of redundancy. Ideally, we would like to avoid redundancy automatically whenever
possible. Alternatively, we present several strategies through which experts can easily provide relevant
knowledge to help reduce redundancy. The exploitation of the human expertise is not novel in ILP.
Recently, human expertise in providing a partial ordering on the sets of background predicates was
exploited by Ashwin et al. [18] with good results.

The remainder of this report is organized as follows. Section 2 provides some background
information. Section 3 presents a classification of hypotheses redundancy and in Section 4 we propose
techniques to handle the identified types of redundancy. In Section 5 we present and discuss some
preliminary results. We conclude in Section 6 pointing out future work.

2 Background

This section briefly presents some basic concepts and terminology used in the remaining of the report
and is not meant as an introduction to the field of ILP. For such introduction we refer to [19, 20, 21].

From a logic perspective, the ILP problem can be defined as follows. Let E+ be the set of positive
examples, E− the set of negative examples, E = E+ ∪ E−, and B the background knowledge. In
general, B and E can be arbitrary logic programs. The aim of an ILP system is to find a set of
hypotheses (also referred to as a theory) H, in the form of a logic program, such that the following
conditions hold:

• Prior Satisfiability: B ∧ E− 2 �

• Prior Necessity: B 2 E+

• Posterior Satisfiability: B ∧ E− ∧H 2 � (Consistency)

• Posterior Sufficiency: B ∧H � E+ (Completeness)

• Posterior Necessity: B ∧ hi � e+
1 ∨ e+

2 ∨ . . . ∨ e+
n (∀hi ∈ H, ej ∈ E+)

The sufficiency condition is sometimes named completeness with regard to positive evidence, and
the posterior satisfiability is also known as consistency with the negative evidence. Posterior necessity
states that each hypothesis hi should not be vacuous. The consistency condition is sometimes relaxed
to allow hypotheses to be inconsistent with a small number of negative examples. This allows ILP
systems to deal with noisy data (examples and background knowledge).

The ILP problem can be mapped into a search through a space of hypotheses. The states in
the search space (designated as hypothesis space) are concept descriptions (hypotheses) and the goal
is to find one or more states satisfying some quality criterion. The ILP problem can be solved
by the use of general artificial intelligence techniques like generate and test algorithms. However,
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due to the large and, in most domains, even infinite size of the search space, this approach is too
computationally expensive to be of interest. To tackle this problem the search space is structured
by imposing a generality order upon the clauses. Such an order on clauses is usually denoted by
�, and the structured search space designated as generalization lattice. A clause C is said to be a
generalization of D (dually: D is a specialization of C) if C � D holds. There are many generality
orders, the most important are subsumption and logical implication. In both of these orders, the
most general clause is the empty clause �. The subsumption order is the generality order most often
used in ILP and is defined as follows:

Definition 1 Let C and D be clauses. A clause C subsumes D, denoted by C � D, if there exists a
substitution θ such that Cθ ⊆ D.

The search can be done in two ways: specific-to-general [22] (or bottom-up); or general-to-
specific [16, 23, 24] (or top-down). Refinement operators generalize or specialize an hypothesis,
thus generating more hypotheses. To restrict the generation of hypotheses is usual to impose further
conditions to the refinement operators besides completeness. One of those conditions require that the
generated hypothesis satisfy the language bias. Bias are the restrictions, mostly syntactic, imposed
on candidate hypotheses.

3 Redundancy in Hypotheses

In which context is an hypothesis redundant? We classify the redundancy of an hypothesis in terms
of its “location” as intrinsically redundant or contextually redundant. An hypothesis is intrinsically
redundant, or simply redundant, if it includes redundant literals (e.g., a(X) ← b(X), b(X)). An
hypothesis is contextually redundant if it is redundant when considered in some context (e.g., if it
repeats a node of the search space).

A different approach to classify redundant hypotheses is by the way in which redundancy is
detected. From this perspective, redundancy could be classified as semantic or syntactic. Syntactic
redundancy can be verified through syntactic analysis (of the literals or clauses). On the other hand,
semantic redundancy requires computing the model to determine equivalence between the clauses or
literals, and thus depends on the background knowledge.

In general, even if an hypothesis is redundant, it is possible that some of its descendants will not
be. We say that an hypothesis h is R∗ if all refinements of h are also redundant. Search may only
be pruned at R∗ hypotheses, otherwise we would loose completeness.

We next formalize several types of intrinsic redundancy and contextual redundancy. In the
definitions throughout this section we will use the following notation: C is a sequential definite
clause in the form L0 ← L1, . . . , Ln (n ≥ 1); Li (1 ≤ i ≤ n) is a literal in the body of the clause and
L0 is the head literal of the clause; each literal Li can be represented by pi(A1, . . . , Aia) where pi is
the predicate symbol with arity ia and A1, . . . , Aia are the arguments; and S is the set of hypotheses
of the search space generated by an ILP system. The symbol �B denotes the logical implication
and ≡B the logical equivalence considering the background knowledge provided (B). Since there is
no doubt of the context of both logical relations we simplify the representation using only � and ≡.
Some logic definitions used in this section are provided in the appendix. For further definitions we
refer the reader to [25].

3.1 Intrinsic Redundancy

The problem of verifying where a clause has redundancy corresponds to the problem of verifying
whether the clause is condensed, that is, if it does not subsume any proper subset of itself. Gottlob et
al. [26] showed that the problem of verifying whether a clause is condensed is co-NP-complete. They
also showed that it is undecidable to verify that a clause does not contain any proper subset that is
implied by the clause.

We thus can only hope to address instances of the problem that are common in practice, and that
are easy to detect. In this work we will be interested in R∗, so that we can benefit by pruning the
search space.
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The ILP process refines a clause by adding an extra literal or by binding variables in a clause. It
is therefore natural to focus on redundant literals:

Definition 2 (Intrinsically Redundant Literal) The literal Li is an intrinsically redundant lit-
eral in a clause C if (C \ Li) � C

Clauses which have a redundant literal are clearly intrinsically redundant. Consider for example
the clause a(X) ← b(X), b(X). It is an intrinsically redundant clause since it contains a redundant
literal (e.g.,L2 = b(X)).

3.1.1 Syntactic Redundancy

We next discuss several cases of syntactic redundancy. These cases are particularly interesting because
they can be verified in polynomial time, and because they are surprisingly common in ILP systems.
We start from the simplest case (we assume that the order of literals does not matter):

Definition 3 (Duplicate) A literal Li is duplicate in C if Li occurs in C more than once.

Consider for example the clause a(X)← b(X), b(X). As pointed out earlier, it contains a duplicate
literal b(X), and it is intrinsically redundant. It should be clear that a clause with a duplicate literal
is R∗: all further refinements will have both duplicate literals.

Generalizations of duplicate literals are not necessarily R∗. Consider:

Definition 4 (Duplicate Up To Renaming) A literal Li is duplicate up to renaming if there is
another literal Lj such that (i) there is a renaming σ of the free variables in Li such that Liσ = Lj ,
and (ii) all renamed variables only occur in Li or Lj.

As an example consider the clause a(X) ← b(X,Y ), b(X,Z). If the literal b(X,Y ) succeeds,
the literal b(X,Z) will also succeed, so it is sufficient to prove a(X) ← b(X,Y ). Unfortunately,
as we said before, hypotheses with literals up to renaming are not necessarily R∗. For instance,
a(X)← b(X,Y ), b(X,Z), Y > Z is a not redundant but might be a valid refinement of the example
clause. This form of redundancy therefore cannot always be used to improve the search space, but it
has been successfully used to improve performance in coverage detection [8].

3.1.2 Semantic Redundancy

Often, the background knowledge may include structural information on a domain. We may know
some degenerate cases when a literal is always or never satisfiable. We may also have extensional
information on a predicate, say, whether it is reflexive, associative, or commutative. Last, we
generalize this concept through the notion of entailment between sub-goals. It should be easy to
see that all these cases are R∗: all properties we mention must hold for all instances of a literal,
therefore any extension of the clause will also be redundant.

It is convenient to consider reflexivity as an example of two degenerate cases, a valid literal or an
unsatisfiable literal:

Definition 5 (Tautology) A literal Li is tautologically redundant in C if Li is always true.

Consider for instance the ”greater or equal” relation denoted by ≥. The literal X ≥ X is a
tautologically redundant literal in the clause a(X)← X ≥ X.

Definition 6 (Contradiction) A literal Li is a contradiction in C if C \ Li is satisfiable and C is
always inconsistent.

Consider for instance the ”greater than” relation denoted by> and the ”less than” relation denoted
by <. The literal X > Y is a contradiction redundant literal in the clause a(X)← X < Y,X > Y .

Definition 7 (Commutativity) The literal Li = pi(A1, . . . , Aia) is commutative redundant in a
clause C if there is a compatible literal Lj = pj(B1, . . . , Bja) such that:
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1. Lj 6= Li

2. ∃ permutation((B1, . . . , Bja)) = (A1, . . . , Aia)

3. Lj ≡ Li

Consider the clause C = r(X,Z) ← mult(X, 2, Z),mult(2, X, Z) where mult(X,Y, Z) is true if
Z = X ∗ Y . Since multiplication is commutative, it is known that mult(X,Y, Z) ≡ mult(Y,X,Z),
thus mult(Y,X,Z) is a commutative redundant literal.

Definition 8 (Transitivity) The literal Li is transitive redundant in a clause C if there are two
compatible literals Lj and Lk in C such that Li 6= Lj 6= Lk and Lj ∧ Lk � Li

Consider again the ”greater or equal” relation: the literal X ≥ Z is transitive redundant in the
clause p(X,Y )← X ≥ Y, Y ≥ Z,X ≥ Z.

Definition 9 (Proper Direct Entailment) A literal Li is proper direct entailed in a clause C if
there is a compatible literal Lj in C such that Li 6= Lj and Lj � Li.

For instance, the literal X < 2 is a proper direct entailed redundant in the clause p(X) ← X <
1, X < 2.

Definition 10 (Proper Direct Equivalence) A literal Li is properly direct equivalent in a clause
C if there is a literal Lj in C such that Li 6= Lj and Li ≡ Lj.

Note that in the definition of proper direct equivalent redundant literal we drop the compatibility
constraint on the literals. For instance, the literal X < 1 is equivalent redundant in the clause
p(X)← 1 > X,X < 1 since 1 > X ≡ X < 1. This is another type of semantic redundancy.

Definition 11 (Direct Entailment) A literal Li is direct entailed redundant in C if there is a
sub-sequence of literals SC from C \ Li such that SC � Li.

For instance, consider the clause p(X) ← X ≤ 1, X ≥ 1, X = 1. The literal X = 1 is direct
entailed redundant because there is a sequence of literals (X ≤ 1, X ≥ 1) that imply Li. In general,
verifying whether a set of sub-goals entails another one requires solving a constraint system over some
specific domain (the integers in the example).

3.2 Contextual Redundancy

When considering contextual redundancy we are manipulating sets of clauses (hypotheses) instead of
sets of literals as in intrinsic redundancy:

Definition 12 (Contextual redundant clause) The clause C is contextual redundant in S ∪C if
S � C.

The major types of contextual redundancy are obtained by generalizing over the cases of intrinsic
redundancy:

Definition 13 (Duplicate) A clause C is duplicate redundant in S if C ∈ S.

For instance, consider that S contains the clause C = p(X)← a(X,Y ). The clause C is duplicate
redundant in S.

Definition 14 (Commutativity) The clause C is commutative redundant in S ∪ C if there is a
compatible clause D ∈ S with the same literals of C but with a different ordering such that C ≡ D.

For instance, C = p(X)← a(X,Y ), a(X,Z) is a commutative redundant clause in S if S contains
p(X)← a(X,Z), a(X,Y ).
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Definition 15 (Transitivity) The clause C is transitive redundant in S ∪ C if there are two com-
patible clauses D and E in S such that

1. the body of C and D differ only in one literal (LC and LD respectively)

2. the body of E contains one more literal than D (LE)

3. LD ∧ LE � LC

For instance, consider the clause p(X,Y, Z) ← X > Z. Such clause is transitive redundant in a
set S containing p(X,Y )← X > Y and p(X,Y, Z)← X > Y, Y > Z.

Definition 16 (Direct Equivalence) The clause C is directly equivalent redundant in S ∪ C if
there is a compatible clause D ∈ S such that

1. the body of C and D differ only in one literal (LC and LD respectively)

2. LC is a proper equivalent redundant literal in D

As an example consider S = {D = p(X) ← X > 1}. The clause p(X) ← 1 < X is proper
equivalent redundant in S since the clauses differ in one literal (X > 1 and 1 < X) and 1 < X is a
proper equivalent redundant literal in D.

Definition 17 (Direct Entailment) The clause C is directly entailed redundant in S ∪ C if there
is a literal L in C and compatible clause D ∈ S such that L is a direct entailed redundant literal in
D and D \ SC = C \ L.

Consider S = {D = p(X) ← X ≤ 1, X ≥ 1}. The clause C = p(X) ← X = 1 contains a literal
X = 1 that is a directly entailed redundant literal in D. Thus C is a directly entailed redundant
clause.

4 Handling Redundancy

In the previous section we identified several types of redundancy and classified them as intrinsically
redundant or contextually redundant. In this section we will show how and where such redundancy
types can be efficiently eliminated in ILP systems that perform a search following a top-down
approach.

The generation of hypotheses in top-down ILP systems can be seen as being composed of the
following two steps. First, an hypothesis is selected to be refined. Then a literal is selected (or
generated) to be added to the end of the clause’s body. We advocate that almost all types of
redundancy previously described could be efficiently eliminated if the expert provides meta-knowledge
information to ILP systems about predicates’ properties and relations among the predicates found in
the background knowledge. Such information can be used by the literal generation procedure or by
the refinement procedure to avoid the generation of intrinsic and contextual redundant hypotheses.

4.1 Possible approaches

We envise several approaches to incorporate the information provided by the expert in ILP systems
to avoid the generation of redundant hypotheses.

A possible solution is the modification of the refinement operator and the literal generation
procedure to allow the use of information provided by the expert.

Another approach is the extension of user-defined constraint mechanisms available in some systems
(e.g., Progol [27], Aleph [28], Indlog [9]). The constraints are added by the user in the form of clauses
that define when an hypothesis should not be considered. Integrity constraints are currently used to
eliminate the generation of intrinsic redundant clauses containing contradiction redundant literals.
Note that a “. . . integrity constraint does not state that a refinement of a clause that violates one
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or more constraints will also be unacceptable.” [28]. We are of the opinion that one should try
to eliminate the redundancy as a built-in procedure of the refinement operator instead of using
mechanisms like constraints since the first option should be more efficient.

Another possible way to eliminate redundant literals could be through the use of user-defined
pruning. Pruning is used to exclude clauses and their refinements from the search. It is very useful to
state which kinds of clauses should not be considered in the search. Some ILP systems allow the user
to provide such rules defining when a hypothesis should be discarded (pruned). Before discarding the
clauses they are evaluated against the examples. The use of pruning greatly improves the efficiency
of ILP systems since it leads to a reduction of the size of the search space. However, since it involves
evaluating a redundant hypothesis against the examples before discarding it, we do not consider it
has an ideal solution.

4.2 Implementation

To eliminate the generation of redundant hypotheses we modified the refinement operator and literal
generation procedure to exploit the meta-knowledge information provided by the expert. We modified
the April [29] ILP system to accept the redundancy declarations that we describe next. The main
reason for choosing April is our knowledge regarding its implementation. The declarations are
provided to the system as background knowledge in the form of Prolog rules.

We start by describing the declarations that the user may pass to the literal generation. Dupli-
cate, commutative and properly direct equivalent redundant literals can be eliminated during literal
generation.

The user may inform the April system of literals’ properties through declarations such as tautology,
commutative, and equiv. For instance, the declaration :- tautology(’=<’(X,X)) informs the
system that literals of the form ’<=’(X,X) are tautological redundant literals. With this information
the ILP system avoids the generation of such redundant literals.

The commutative declaration indicates that a given predicate is commutative and helps to
avoid the ILP system to generate hypotheses with commutative redundant literals. As an example
consider that an ILP system is informed that the predicate adj(X,Y) is commutative through
the declaration :-commutative(adj/2). That information is used to prevent the generation of
commutative equivalent literals such as adj(X, 2) and adj(2, X).

The equiv declaration allows the expert to indicate that two predicates, although possibly
different, generate equivalent literals. For instance, the declaration :-equiv(’<=’(X,Y),’>=’(Y,X))

informs that the literals like ’<=’(X,1) and ’>=’(1,X) are equivalent.
The commutative and equiv declarations allow the expert (user) to pass knowledge about the

equivalence of literals. Using the information provided the ILP system only needs to consider one
literal of each equivalence class. We point out that these declarations allow the ILP system to
avoid the generation of several types of intrinsically redundant hypotheses and contextual redundant
hypotheses (direct equivalent redundant clauses).

The remaining types of redundancy are eliminated in the refinement operator. The generation of
commutative redundant clauses or clauses containing duplicate literals is automatically avoided by
the refinement operator of the April system without the need of extra information provided by the
user.

To avoid the generation of contradiction redundant hypotheses we used the mechanism of con-
straints. The constraints are defined by rules of the form constraint(HypothesysHead, HypothesisBody):-

Body. Body is a set of literals that specify the condition(s) that should not be violated by hypotheses
found by April. For instance, the rule

constraint(p(X),Body):-body contains(Body, (X<Y)), body contains(Body,(X>Y)).

is evaluated as true if Body contains, for example, X < 1 and X > 1.
The generation of transitive redundant literals and clauses can be avoided by the use of infor-

mation provided by the expert indicating which predicates are transitive. For instance, the rule
:- transitive(lt(X,Y),lt(Y,Z),lt(X,Z)) informs that the lt (less than) predicate is transitive.
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With such information, a redundant hypothesis containing the literals lt(X,1),lt(1,Y),lt(X,Y)

will not be generated by the refinement operator.

Avoiding the generation of hypotheses with proper directed entailed redundant literals can be
achieved if the expert provides knowledge that a literal implies another. The knowledge can be
provided using declarations on the form of semantic rule(L1, L2): −RuleBody, meaning that L1
implies L2 if the RuleBody is evaluated as true. For instance, the rule semantic rule(lt(A,B),

lt(A,C)):-C<B allows the refinement operator to avoid generating hypotheses containing a literal
like lt(A, 2) followed by a literal like lt(A,1) (e.g.,p(X)← lt(A,2),lt(A,1)).

Direct entailed redundant literals or clauses can be prevented from being generated if the expert
provides knowledge that a sequence of literals implies another literal. Such information can be
provided using the following declaratione d entail([L1, . . . , Lk],L). With such information the
refinement operator will not generate clauses containing L together with any of the Li (1 ≥ i ≥ k) and
clauses containing all Li. For instance, the clauses p(X)← X<=1,X=1 or p(X)← X<=1,X>=1 would
not be generated if the expert provides a declaration like d entail([X<=1,X>=1],X=1).

Redundancy Type Handled Declaration Example
Intrinsic / Tautological literal

genera-
tion

:-tautology(’>=’(X,X)). p(X)← X>=X

Intrinsic / Contradic-
tion

refinement constraint(p(X),Body):-

contains(Body,’>’(X,Y)),

contains(Body,’<’(X,Y)).

p(X)← X>Y, X<Y

Intrinsic / Commuta-
tive

literal
genera-
tion

:-commutative(mult(X,Y,R),

mult(Y,X,R))

p(X)←
mult(X,3,R),
mult(3,X,R)

Intrinsic & Contextual
Transitivity

refinement :-transitive(’>’(X,Y),

’<’(Y,Z), ’<’(X,Z))

p(X)← X>1, 1>Z,
X>Z

Intrinsic / Proper di-
rect Entailment

refinement semantic rule(’<’(A,B),

’<’(A,C)):- C<B

p(X)← X<0,X<2

Intrinsic & Contextual
Direct Equivalence

literal
genera-
tion

:-equiv(’<’(X,Y),

’>=’(Y,X))

p(X)← X<Y,
Y>=X

Intrinsic & Contextual
Direct Entailment

refinement d entail([’<=’(X,Y),

’>=’(X,Y))],’=’(X,Y)

p(X)←
X<=1,X>=1,X=1

Table 1: Redundancy Declarations

Table 1 summarizes the types of redundancy handled in our implementation. For each type of
redundancy it is shown where it is handled, an example of a redundancy declaration, and an example
of redundant hypothesis.

5 Experiments and Results

The impact of using the redundancy declarations presented in the previous section was empirically
evaluated in four datasets. We selected datasets where we were able to identify redundancy on the
background knowledge. There are far more interesting datasets available, but a domain expert is
required in order to detect possible types of redundancy. Unfortunately, since we did not have access
to such experts we selected datasets where our expertise was sufficient to detect redundancy.

The aim of the experiments was to evaluate if the redundancy declarations improve the efficiency
of ILP systems. The experiments were made on an AMD Athlon XP 1400+ processor PC with
512MB of memory, running the Linux RedHat (kernel 2.4.20) operating system. The ILP system
used was the April [29] system version 0.5. The Prolog compiler used was YAP [30] version 4.3.23.

The datasets used were downloaded from the Machine Learning repositories of the Universities



6 CONCLUSIONS 10

Characterization April’s Settings
Dataset | E+ | | E− | | B | i noise

krki I 342 658 1 1 10
krki II 3240 6760 1 1 10

multiplication 9 15 3 2 0
range 19 14 1 1 0

Table 2: Settings used in the experiments

of Oxford1 and York2, and from Camacho’s3 home page. Table 2 characterizes the datasets in terms
of number of positive and negative examples as well as background knowledge size. Furthermore, it
shows the April settings used with each dataset. The i -depth corresponds to the maximum depth of
a literal with respect to the head literal of the hypothesis [31]. Finally, the parameter noise defines
the maximum number of negative examples that an hypothesis may cover in order to be accepted.
No limit on the number of hypotheses generated was imposed, and thus an exhaustive search was
performed.

| Hypotheses | Time (sec.)
Dataset

normal red-decl (%) normal red-decl (%)
krki I 7,281 911 12.51 3.13 0.97 30.99
krki II 2,103,988 192,911 9.16 5,991.73 194.70 3.24

multiplication 839 478 56.97 49.20 11.86 24.10
range 4,203 579 13.77 7.08 1.27 17.93

Table 3: Impact of using redundancy declarations (red-decl) on April

Table 3 summarizes the performance of the April system using redundancy declarations and not
using them. It shows the total number of hypotheses generated, execution time, and the impact
in number of generated hypotheses and execution time (given as a ratio between using redundancy
declarations and not using them). For the purposes of this study we do not present accuracies of the
models generated because they do not differ in both runs of April for each dataset. For all datasets
considered, one can observe that a significant reduction on the execution time and on the number of
hypotheses generated has occurred.

These results suggest that the performance of the April system is significantly improved if the
expert provides redundancy knowledge. It is important to remember that since the redundancy
information provided is used to eliminate R∗ redundant hypotheses, the accuracy of the models
found is not affected negatively.

6 Conclusions

This work contributes to the effort of improving the efficiency of ILP systems by classifying major
forms of redundancy found in the search space of ILP applications, and by designing a mechanism that
allows pruning of redundant hypotheses. In our approach, a domain expert provides meta-knowledge
about the redundancy types by describing high-level properties of the relations in the background
knowledge. Experiments with the modified system show substantial performance improvements, up
to an order of magnitude. Our experimental results have two limitations: only four datasets were
used; and the datasets are relatively small. However, we believe that they suggest that we can achieve
even more significant performance gains for larger datasets. The major thrust of our work is to make

1http://www.comlab.ox.ac.uk/oucl/groups/machlearn/
2http://www.cs.york.ac.uk/mlg/index.html
3http://www.fe.up.pt/∼rcamacho/datasets/datasets.html
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ILP systems able to learn from larger datasets. Most ILP systems are configured to generate a limited
number of hypotheses. Therefore, avoiding redundant hypotheses may lead to the generation of good
hypotheses that otherwise would be lost. We hope that this may result in an improvement of the
quality of the induced models. Further experiments are required to confirm or refute these claims.
Also, we have not considered all forms of redundancy in ILP learning. Work is thus necessary to
continue on the discovery of major sources of redundancy in hypotheses, namely through experience
with more applications.
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A Definitions from Logic

A literal is an atom (positive literal) or the negation of an atom (negative literal). A clause C
is a finite (possibly empty) set of literals that represent the disjunction of literals. The empty clause
is denoted by � and is always false (it has no true element). A clause {L1,. . .,Li,¬Li+1,. . .,¬Ln} can
be represented as L1∨ . . .∨Li ∨ ¬Li+1∨ . . .∨¬Ln or, equivalently, as L1∨ . . .∨Li∨←Li+1∧ . . .∧Ln
A clause is a definite clause if it has exactly one positive literal. The positive literal is called the
head of the clause. The set of all negative literals is called the body of the clause. A Horn clause
(Prolog clause) is a clause with at most one positive literal. Two literals are compatible if they have
the same predicate symbol and sign. Two clauses are compatible if they have the same head literal.
The traditional definition of clause does not take into account the internal ordering and repetition
of literals, which are relevant in the context of Prolog programs. To cope with this problem we will

used the sequential clause definition [17]. A sequential clause, denoted by
→
C,
→
D,. . . is a sequence of

literals. Unless otherwise stated, all clauses in this report are sequential definite clauses.


