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Introduction

In this paper we calculate the Poincaré polynomial of the moduli
space of stable Higgs bundles of rank 3 on a Riemann surface Σ of genus
g ≥ 2. This space was introduced by Hitchin in [10] and we generalise
his calculation in the rank 2 case. We consider Higgs bundles with
rank and degree coprime; this condition ensures that the moduli space
is smooth. We shall do the calculation for the case of bundles with
fixed determinant but we also state the result for bundles with any
determinant. From a principal bundle point of view the natural space
to consider is the moduli space of PSL(3,C) Higgs bundles. However,
as noted in [10, §5], this space has singularities and the method of
calculation does not apply directly.

Hitchin analyses many aspects of the geometry of M in [10], and
among other things he shows that M is a hyperkähler manifold, i.e.
it has complex structures I, J , and K which satisfy the identities
of the quaternions. The complex structure I arises from the inter-
pretation of M as the moduli space of Higgs bundles. The complex
stucture J arises from an alternative description of M, which follows
from results of Donaldson [7] and, more generally, Corlette [5] (see
also [10]). There is a universal central extension Γ of π1Σ, generated
by elements A1, B1, . . . , Ag, Bg and a central element J subject to the
relation

∏
[Ai, Bi] = J , and M is the moduli space of irreducible rep-

resentations of Γ in SL(3,C) which take J to a fixed non-trivial central
element determined by the first Chern class of the bundle. Thus our
calculation gives the Betti numbers of this purely topologically defined
space.

As mentioned before our calculation is modeled Hitchin’s calculation
in the rank 2 case. It exploits the fact that the moduli space has a circle
action which respects the symplectic form of the complex structure I.
There is a moment map for this action, and this is used as a Morse
function. Frankel [8] has shown that such a Morse function is perfect,
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2 P. B. GOTHEN

thus giving the Poincaré polynomial of the moduli space. Also, it
follows from the moment map interpretation that the critical points
can be identified with the fixed points of the circle action, and this
is what allows them to be described in an explicit way. In [10] the
description of the critical submanifolds is quite straightforward, but in
our case it becomes more complicated. It is crucial to observe that the
critical submanifolds can be described in terms of σ-stable pairs (see
Section 2). These were introduced by Bradlow in [2] and [3], and a
careful study in the rank 2 case was made by Thaddeus [14] (see also
[4]); these results shall be very useful to us.

The paper is organised as follows: in Section 1 we introduce some
terminology and state our main result, which appears as Theorem 1.2.
We also outline the structure of the proof. The rest of the paper con-
tains the details of the proof: in Section 2 and Section 3 we describe
the critical submanifolds in two different cases, and in Section 4 we
calculate the indices of the critical submanifolds.

I would like to thank Nigel Hitchin for introducing me to the subject
and for illuminating discussions.

1. The moduli space and Morse theory

First we recall a few facts about Higgs bundles; the reader is re-
ferred to [10] for details. Let Σ be a closed compact Riemann surface
of genus g, and denote the canonical bundle by K. A Higgs bundle is
a pair (E,Φ) consisting of a holomorphic vector bundle E → Σ and a
twisted holomorphic endomorphism Φ ∈ H0(Σ; End(E)⊗K). We de-
note the rank of E by k and the degree of E by d. For any holomorphic
bundle E the slope is defined by µ(E) = d/k. A subbundle F ⊂ E is
said to be Φ-invariant if Φ(F ) ⊂ F ⊗K. A Higgs bundle (E,Φ) is said
to be stable if for any proper, non-zero Φ-invariant subbundle F ⊂ E
we have µ(F ) < µ(E). Let E → Σ be a C∞ complex vector bundle,
and equip E with a Hermitian metric. Then there is a 1-1 correspon-
dence between unitary connections and holomorphic structures on E,
and for a unitary connection A we denote the ∂̄-operator of the corre-
sponding holomorphic structure by ∂̄A. We shall consider bundles with
a fixed connection A0 on the determinant bundle ΛkE, and denote the
corresponding holomorphic determinant bundle by Λ0 = (ΛkE, ∂̄A0).
The space of all such connections is an affine space A modeled on
Ω1(Σ; adP ), where adP ⊂ End(E) is the su(k)-bundle associated to
the adjoint representation of the group U(k)/Z(U(k)). Denote the
space Ω1,0(adP ⊗C) of Higgs fields by Ω. For any pair (A,Φ) ∈ A×Ω,
we have the equations

(1.1)

{
F (A)⊥ + [Φ,Φ∗] = 0

∂̄AΦ = 0,
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where F (A)⊥ denotes the trace free part of the curvature of A. The
following theorem of Hitchin is of fundamental importance.

Theorem (Hitchin, [10, p.80]). Let E → Σ be a smooth vector bundle
with (d, k) = 1. There is a bijection between the set of solutions (A,Φ)
with fixed induced connection A0 on ΛkE to (1.1), modulo SU(k)-gauge
equivalence, and the set of stable Higgs bundles (∂̄E,Φ) with fixed de-
terminant bundle Λ0, modulo SL(k,C)-gauge equivalence.

When (d, k) = 1 Hitchin also constructs a moduli space, M, of stable
Higgs bundles with fixed determinant. This is done by gauge theoretic
methods, and the construction shows that M is a smooth manifold
of dimension 4(g − 1)(k2 − 1) ([10, p.87]). The results of [10] are
only stated in the case of bundles of rank 2, but the generalisation to
arbitrary rank poses no significant problems. Alternatively one could
refer to Simpson’s theorem [13]: he proves analogous results for vector
bundles on Kähler manifolds of arbitrary dimension, but we do not
really need these more general results.

We can now state our main result.

Theorem 1.2. Let Σ be a closed Riemann surface of genus g ≥ 2, and
let Λ0 be a holomorphic line bundle on Σ of degree d with (d, 3) = 1.
Let M be the moduli space of rank 3 stable Higgs bundles on Σ with
fixed determinant bundle Λ0. The Poincaré polynomial of M is

Pt(M) =
(1 + t)4g−4

(1− t)4

(
2t2 + t4 + 2t2g + 2t2g+2 − 1

4
t4g−4 − 3gt4g−3

+(6g2+2g−3)t4g−2+(11g−12g2)t4g−1+(6g2−10g+17
4
)t4g−t8g−6−t10g−8

)
+

t2g(1 + t)2g−4

(1− t)4(1 + t2)2

(
(1 + t)2g(−2t4 − 2t6 + t2g−4 + 2t2g−2 + t2g − t4g−2)

+ t6g−8(1 + t3)2g(−2g − t2 + (2g − 2)t4)
)

−22gt2g(1 + t)2g−1

(1− t)4
+

2gt8g−8(1 + t)2g−3(1 + t3)2g−1

(1− t)3(1 + t2)
+

22g−1t10g−8(1 + t)2g

(1− t)3(1− t3)

+
t4g−4(1− t)2g−1(1 + t)2g−1

4(1 + t2)
+
t6g−2(1 + t)4g−3(1 + t2 + t4)

(t− 1)3(1 + t2)2(t6 − 1)

+
(1 + t5)2g(1 + t3)2g−1

(t2 − 1)(t4 − 1)2(t3 − 1)
+ t4g−4

(
(32g − 1)(1 + t)4g−4 − 32g

)
.

Let M′ denote the moduli space of stable Higgs bundles of rank 3 and
degree d with (d, 3) = 1 and any determinant. Then

Pt(M′) = (1 + t)2g
(
Pt(M)− (32g − 1)t4g−4((1 + t)4g−4 − 1)

)
.

�
It is interesting to note that the Poincaré polynomial of M′ does

not split as the product of those of the Jacobian and M. This is in
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contrast to the case of stable bundles (without Higgs field), see [1]. In
particular it follows that tensoring by a linebundle gives a nontrivial
action of the group

Γ3 = {L ∈ Jac0(Σ) | L3 = O} ∼= (Z/3)2g

on H∗(M; Q).
Some simpler results can be obtained from the above formulas. Set-

ting t = −1 we see that χ(M) = −32g, while χ(M′) = 0. And for a
Riemann surface of genus 2, the above formula becomes:

Pt(M) = 1 + 3t2 + 20t3 + 54t4 + 416t5 + 572t6 + 376t7 + 117t8

+ 32t9 + 47t10 + 56t11 + 42t12 + 28t13 + 16t14 + 8t15 + 3t16.

The proof of the theorem follows the method of [10, §7]. It uses
some of the extra structure M gets from the gauge theory construc-
tion. From the identification Ω1(Σ; adP ) = Ω0,1(Σ; adP⊗C) (given by
the correspondence between holomorphic structures and unitary con-
nections) we see that A × Ω is a complex vector space. This gives an
almost complex structure I on M, and this turns out to be integrable
(as mentioned above, M is in fact a hyperkähler manifold). A Kähler
metric on A× Ω is defined by

g((ψ1,Φ1), (ψ2,Φ2)) = 2i

∫
Σ

tr(ψ∗1ψ2 + Φ1Φ
∗
2),

and because it is invariant under the action of the gauge group, it de-
scends to M. The corresponding Kähler form is ω1(X, Y ) = g(IX, Y ).
Furthermore S1 acts on M by (A,Φ) 7→ (A, eiθΦ), preserving g and
the symplectic form ω1. The function (A,Φ) 7→ −1

2
‖Φ‖2 is a moment

map for the S1-action with respect to the symplectic form ω1. This is
basically the Morse function we shall use, but we choose to normalise
it as

(1.3) µ(A,Φ) = 1
4π
‖Φ‖2.

Frankel [8, p.5] shows that in this situation the function µ is a non-
degenerate perfect Morse function. Therefore the Poincaré polynomial
of the moduli space M is given by the Morse counting polynomial

(1.4) Pt(M) =
∑
N

tλNPt(N),

where the sum is over the critical submanifolds, and λN is the index of
the critical submanifold N , i.e. the dimension of the subbundle of the
normal bundle, on which the Hessian of µ is negative definite. So we
must determine the critical submanifolds and calculate their Poincaré
polynomials and indices.

It follows from the moment map interpretation of µ that the critical
points of µ are exactly the fixed points of the S1-action on M. Let
(A,Φ) ∈ A × Ω represent a fixed point of the S1-action. If (A,Φ) =
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(A, eiθΦ) we must have Φ = 0. The corresponding critical submanifold
is N0 = µ−1(0), the moduli space of stable bundles of rank k. The
index of N0 is of course λN0 = 0, and Desale and Ramanan calculated
the Poincaré polynomial of N0 in [6, p.241]. Their formula is

Pt(N0) =

(t5 + 1)2g(t3 + 1)2g − (t2 + 1)2t4g−2(1 + t)2g(1 + t3)2g + (1 + t2 + t4)t6g−2(1 + t)4g

(t2 − 1)(t4 − 1)2(t6 − 1)
.

The other critical submanifolds are described in propositions 2.5, 2.9,
and 3.10, while their indices are given in Proposition 4.2. From these
results an elementary but rather unpleasant calculation gives the for-
mula of Theorem 1.2, and we shall omit the details.

To determine the other critical submanifolds, observe that if (A,Φ)
represents a fixed point and Φ 6= 0 then there is a gauge transforma-
tion taking (A,Φ) to (A, eiθΦ). As noted in [11, p.466] this gives an
infinitesimal gauge transformation ψ, which splits the bundle E into
eigenspaces E =

⊕
m Um, where ψ acts by im on Um, for real numbers

m. With respect to this decomposition

Φ: Um → Um+1 ⊗K,

and all these maps are non-trivial. Furthermore the consecutive values
of m differ by 1. Thus the critical submanifolds fall in different families
according to how the bundle E splits into eigenspaces. From now on
we shall assume that k = 3, and in this case there are three distinct
types of critical points: we shall say that a Higgs bundle (E,Φ) (or the
critical point it represents) is of type (1, 2) if it is of the form E = L⊕V ,
where rk(L) = 1 and rk(V ) = 2, and where

Φ =

(
0 0
φ 0

)
,

with φ : L→ V ⊗K. Similarly we say that (E,Φ) is of type (2, 1) if it
is of the form E = V ⊕ L, with rk(V ) = 2 and rk(L) = 1, and where

Φ =

(
0 0
φ 0

)
with φ : V → LK. Finally, (E,Φ) is said to be of type (1, 1, 1), if it is
of the form E = L1 ⊕ L2 ⊕ L3, with

Φ =

 0 0 0
φ1 0 0
0 φ2 0

 ,

where φ1 : L1 → L2K and φ2 : L2 → L3K.
In the following two sections we shall give an explicit description of

the different types of critical submanifolds.
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2. Critical submanifolds of type (1, 2) and (2, 1)

Let (E,Φ) represent a critical point of µ of type (1, 2), and write E =
L ⊕ V , and Φ =

(
0 0
φ 0

)
. Set d = deg(E), l = deg(L), and v = deg(V ),

then d = l + v. An easy calculation using the Higgs bundle equation
F (A)⊥ + [Φ,Φ∗] = 0 and the fact that F (A) = F (A)⊥ + 1

3
F (A0) · I,

shows that the (critical) value of µ at the point represented by (E,Φ)
is

(2.1) µ = l − 1
3
d.

The fact that (E,Φ) is a stable Higgs bundle allows us to get bounds
on the values l (and hence µ) can attain. There is a rank 1 subbundle
L′ ⊂ V , defined by the requirement that φ : L → L′K. Thus φ is a
section of the line bundle L−1L′K. There are three obvious Φ-invariant
subbundles of E, namely L′, L ⊕ L′, and V . Applying the stability
condition to these and combining with the inequality deg(L−1L′K) > 0
(φ is a non-zero section of L−1L′K) gives

(2.2) 1
3
d < l < 1

3
d+ g − 1.

It follows that we can construct any Higgs bundle representing a critical
point of type (1, 2) by first choosing a holomorphic line bundle L of
degree l with 1

3
d < l < 1

3
d + g − 1. Then we choose a rank 2 bundle

V and a non-zero section φ ∈ H0(Σ;L−1V K) such that Λ0 = Λ3(L ⊕
V ), and set E = L ⊕ V and Φ =

(
0 0
φ 0

)
. But not any V and φ will

do; they have to be chosen such that (E,Φ) becomes a stable Higgs
bundle. Conversely the calculation of [11, p.464] shows that any stable
Higgs bundle constructed in this way represents a critical point of µ.
As we shall show later, the condition on V and φ turns out to be
essentially Bradlow’s condition of τ -stability (see [2] and [3]). In the
case of bundles of rank 2 on a Riemann surface it takes the following
form (cf. [14, p.3]).

Definition 2.3. Let σ be a positive rational number. A pair (Ṽ , φ)
consisting of a holomorphic bundle Ṽ → Σ and a non-zero section
φ ∈ H0(Σ; Ṽ ) is said to be σ-semi-stable if for any line bundle Ũ ⊂ Ṽ

deg(Ũ) ≤ 1
2
deg(Ṽ )− σ if φ ∈ H0(Σ; Ũ),

and
deg(Ũ) ≤ 1

2
deg(Ṽ ) + σ if φ 6∈ H0(Σ; Ũ).

If we have strict inequality above (Ṽ , φ) is said to be σ-stable.

Let r = deg(Ṽ ). For σ 6≡ 1
2
r (mod Z) and σ < 1

2
r smooth mod-

uli spaces of σ-stable pairs can be constructed; in [14] Thaddeus con-
structed a moduli space N (σ,Λ) of pairs with fixed determinant bundle
Λ by geometric invariant theory, and in [3] Bradlow and Daskalopoulos
constructed a moduli space N (σ) of pairs with any determinant bundle
(of degree r).
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Before we can apply this to our situation, we need a lemma about
Φ-invariant subbundles.

Lemma 2.4. Let (E,Φ) be a Higgs bundle constructed from L, V ,
and φ as described above. If U ⊂ E is a Φ-invariant subbundle, not
contained in V , then L′ ⊂ U .

Proof. Because U is not contained in V , the projection π : U → L is
generically non-zero. Hence Φ|U : U → L′K is generically non-zero. By
the Φ-invariance of U it follows that L′K is contained in UK generically,
and hence, by continuity, identically. This proves the lemma. �

We can now determine the critical submanifolds.

Proposition 2.5. Let r = d−3l+4g−4 and let h : Jacl(Σ) → Jacr(Σ)
be the 32g-fold covering of the Jacobian given by L 7→ L−3Λ0K

2. Set
σ = −1

6
d + 1

2
l. For 1

3
d < l < 1

3
d + g − 1 the critical submanifold

N(l− 1
3
d) corresponding to the critical value µ = l− 1

3
d is the pull-back

of this covering under the map N (σ)
det→ Jac(Σ). Consequently there is

a pull-back diagram

N(l − 1
3
d)

f−−−→ Jacl(Σ)yπ

y
N (σ)

det−−−→ Jacr(Σ)

The map f is given by (L ⊕ V,Φ) 7→ L, and the map π is given by
(L⊕ V,Φ) 7→ (L−1V K, φ), where Φ =

(
0 0
φ 0

)
.

Proof. Let L be any line bundle of degree l. Consider pairs (V, φ), where
V is a rank 2 bundle with Λ2V = L−1Λ0 and φ ∈ H0(Σ;L−1V K)− 0.
We need to describe all such pairs, such that the Higgs bundle, defined
by setting E = L⊕ V and Φ =

(
0 0
φ 0

)
, is stable. Let L′ ⊂ V be the line

bundle defined by the requirement that φ : L→ L′K.
First we consider Φ-invariant line bundles U ⊂ E. Note that U ⊂ V ,

because otherwise U = L′ by Lemma 2.4, in contradiction with U 6⊂ V .
If U = L′ the bundle L ⊕ L′ is Φ-invariant, and hence we get the
condition

(2.6) deg(U) < 2
3
d− l,

for stability of (E,Φ). On the other hand, if U 6= L, we simply get the
condition

(2.7) deg(U) < 1
3
d.

To apply Bradlow’s σ-stability condition we note that we can equiva-
lently consider pairs (Ṽ , φ) with Ṽ = L−1V K and φ ∈ H0(Σ; Ṽ ) − 0,
and such that Ṽ has fixed determinant bundle Λ2Ṽ = Λ0L

−3K2. For
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a line bundle U ⊂ V , let Ũ = L−1UK be the corresponding subbundle
of Ṽ . The conditions (2.6) and (2.7) are equivalent to

deg(Ũ) < 2
3
d− 2l + 2g − 2 if φ ∈ H0(Σ; Ũ),

and
deg(Ũ) < 1

3
d− l + 2g − 2 if φ 6∈ H0(Σ; Ũ).

Setting σ = −1
6
d+ 1

2
l, this is just the condition that (Ṽ ,Φ) be σ-stable.

Actually this is sufficient to ensure stability of (E,Φ): consider any
Φ-invariant bundle U ⊂ E of rank 2. If U = V the stability condition is
satisfied by construction, so we may assume that the restriction of the
projection πL : L⊕V → L to U is non-zero. By Lemma 2.4 L′ ⊂ U , and
as L′ ⊂ ker(πL) we get a non-zero map U/L′ → L. Hence deg(U) ≤
deg(L) + deg(L′), and we are done by (2.6), which is equivalent to
deg(L) + deg(L′) < 2

3
d.

From this description it is clear that N(l − 1
3
d) is the pull-back by

N (σ)
det→ Jacr(Σ) of the 32g-fold covering Jacl(Σ) → Jacr(Σ) given by

L 7→ L−3Λ0K
2. This finishes the proof. �

Finally we need to calculate the Poincaré polynomial of the critical
submanifold N(l − 1

3
d). This is done along the lines of [14, (4.1)];

we briefly recall the relevant details (or rather the version for σ-stable
pairs without fixed determinant of [4]). Let i be an integer in the
interval [0, (r− 1)/2], then the σ-stability condition is the same for all
σ ∈ (max(0, r/2− i−1), r/2− i). Put Ni = N (σ) for σ in this interval.
There are subvarieties PW+

i of Ni and PW−
i of Ni−1, such that when

these are blown up, we get the same variety Ñi. Furthermore PW+
i is a

Pr+g−2−2i-bundle over SiΣ× Jacr−i(Σ) and PW−
i is a Pi−1-bundle over

SiΣ × Jacr−i(Σ). Also, if the projection π : PW+
i → SiΣ × Jacr−i(Σ)

is composed with the map SiΣ× Jacr−i(Σ) : (D,L) 7→ [D]⊗ L we get
the determinant map (and similarly for PW−

i ).

Proposition 2.8. The Poincaré polynomial of N(l − 1
3
d) is

Pt(N(l−1
3
d)) =

(1 + t)2g

1− t2
Coeff

xi

(
t2d−6l+10g−10−4i

xt4 − 1
− t2i+2

x− t2

)(
(1 + xt)2g

(1− x)(1− xt2)

)
,

where i = [2
3
d]− 2l + 2g − 2.

Proof. Note that i = [2
3
d] − 2l + 2g − 2 corresponds to σ = −1

6
d + 1

2
l.

Let Ni be defined by the following pull-back diagram

Ni −−−→ Jacl(Σ)y y
Ni −−−→ Jacr(Σ).

We can similarly pull back the subvariety PW+
i ofNi to get a subvariety

(PW+
i )′ of Ni. Blowing up this we get a new variety Ñi. But this is
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the same variety as the one obtained by pulling back the blow-up Ñi,
because they are locally isomorphic, and blowing up doesn’t change the
fundamental group. Note also that (PW+

i )′ is a Pr+g−2−2i-bundle over
the pull-back of Jacl(Σ) → Jacr(Σ) under the map SiΣ× Jacr−i(Σ) →
Jacr(Σ) : (D,L) 7→ [D] ⊗ L. It is, however, easy to see that this pull-
back is isomorphic to SiΣ×Jacr−i(Σ). Of course similar remarks apply
to PW−

i . Finally we make the observation that N0 is a Pr+g−2-bundle
over Jacr(Σ). Altogether this information allows us to replicate the
argument of [14, (4.1)] and arrive at the formula stated. It should
be remarked that the basic reason why the calculation works and no
further informaton about the various projective bundles is needed, is
that the Poincaré polynomial of any projective bundle splits. �

The description of critical submanifolds of type (2,1) is of course
completely analogous. Alternatively one can note that E 7→ E∗ takes
stable Higgs bundles of type (1,2) to stable Higgs bundles of type (2,1).
In any case we have the following.

Proposition 2.9. For 1
3
d+ 1− g < l̄ < 1

3
d there are critical subman-

ifolds N(1
3
d − l̄) corresponding to the critical value µ = 1

3
d − l̄. These

fit into a pull-back diagram

N(1
3
d− l̄)

f−−−→ Jac(Σ)yπ

y
N (σ)

det−−−→ Jac(Σ)

where σ = 1
6
d − 1

2
l̄. The map f is given by (V ⊕ L,Φ) 7→ L, and the

map π is given by (V ⊕ L,Φ) 7→ (V ∗LK, φ), where Φ =
(

0 0
φ 0

)
. The

map on the Jacobians is given by L 7→ Λ−1
0 L3K2.

Furthermore the Poincaré polynomial of N(1
3
d− l̄) is given by

Pt(N(1
3
d−l̄)) =

(1 + t)2g

1− t2
Coeff

xi

(
t6l̄−2d+10g−10−4i

xt4 − 1
− t2i+2

x− t2

)(
(1 + xt)2g

(1− x)(1− xt2)

)
,

where i = [−2
3
d] + 2l̄ + 2g − 2.

3. Critical submanifolds of type (1,1,1)

The remaining case is when (E,Φ) is a critical point of type (1, 1, 1),
i.e. it is of the form

(3.1) E = L1 ⊕ L2 ⊕ L3,

with

(3.2) Φ =

 0 0 0
φ1 0 0
0 φ2 0

 ,
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where φ1 : L1 → L2K and φ2 : L2 → L3K are non-zero. It will be
convenient to introduce

M1 = L−1
1 L2K,

M2 = L−1
2 L3K,

so that φ1 ∈ H0(Σ;M1) and φ2 ∈ H0(Σ;M2). Set li = deg(Li), mi =
deg(Mi), and m = m1 +m2. The value of µ at a critical point can be
calculated to be

µ = 4(g − 1)−m.

Now, clearly d = l1 + l2 + l3 and because M1 and M2 have non-zero
global sections we have

mi ≥ 0, for i = 1, 2

There are two subbundles which are clearly Φ-invariant, namely L2⊕L3

and L3. Hence by stability we get

l3 <
1
3
d,(3.3)

l2 + l3 <
2
3
d.(3.4)

The li’s can be expressed in terms of the mi’s (and vice versa), and the
inequalities (3.3) and (3.4) are equivalent to

m1 + 2m2 < 6(g − 1),(3.5)

2m1 +m2 < 6(g − 1).(3.6)

Note also that the values of m lie in the range 0 ≤ m < 4(g−1). Hence,
for m in this range, there are critical submanifolds N(4(g − 1) − m)
corresponding to the critical value µ = 4(g − 1) − m. These have
components N(m1,m2) for m = m1 +m2, and m1 and m2 positive and
satisfying (3.5) and (3.6).

The line bundles M1 and M2 do not quite determine L1, L2, and L3.
But a small calculation shows that

L1 = M−1
1 L2K,(3.7)

L3 = M2L2K
−1,(3.8)

L3
2 = M1M

−1
2 Λ0.(3.9)

We see from the above that any critical point in N(m1,m2) can be
constructed in the following way: first we choose line bundles M1 and
M2 of degrees m1 and m2 respectively, and non-zero sections φi ∈
H0(Σ;Mi) for i = 1, 2. This can be done by choosing effective divisors
Di of degrees mi on Σ, i.e. points of the symmetric products SmiΣ. The
sections φi will be determined up to a non-zero constant, so different
choices of φi will give equivalent solutions. Then we choose one of the
32g L2’s satisfying (3.9), and define L1 and L3 by the formulas (3.7)
and (3.8). Finally we define (E,Φ) in the obvious way (by (3.1) and
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(3.2)). Next we shall prove that any Higgs bundle (E,Φ) constructed
in this way is stable.

Proposition 3.10. For 0 ≤ m < 4(g − 1) there are critical submani-
folds

N(4(g − 1)−m) =
∐

m1,m2

N(m1,m2)

corresponding to the critical value µ = 4(g − 1) − m. These have
components N(m1,m2), for m1+m2 = m, mi ≥ 0, m1+2m2 < 6(g−1),
and 2m1 +m2 < 6(g − 1). Each N(m1,m2) is the 32g-fold covering of

Sm1Σ× Sm2Σ given by the pull-back of the covering Jac(Σ)
3·→ Jac(Σ)

under the map

f : Sm1Σ× Sm2Σ → Jac(Σ)

(D1, D2) 7→M1M
−1
2 Λ0.

Here Mi = [Di] is the line bundle associated to the divisor Di.

Proof. We must show that (E,Φ) constructed as above is stable. De-
note the projections E → Li by πi for i = 1, 2, 3. Let U ⊂ E be any
Φ-invariant rank 1 subbundle of E. Then π1|U and π2|U cannot both be
zero, because then U = L1, which is obviously not Φ-invariant. Simi-
larly π2|U 6= 0 implies π3|U 6= 0. Hence π : U → L3 is always non-zero,

and so deg(U) < l3 <
1
3
d by (3.3).

Now let U ⊂ E be a Φ-invariant rank 2 subbundle. If U = L2⊕L3, we
are done by (3.4). In fact this is the only Φ-invariant rank 2 subbundle
of E. To see this assume that π1|U 6= 0. Then (π2 + π3)|U : U →
L2 ⊕ L3 is generically, and hence identically of rank 1. It follows that
U = L1 ⊕ U ′, where U ′ = (π2 + π3)(U) ⊂ L2 ⊕ L3. By Φ-invariance of
U we get

Φ(L1) ⊂ U ′K ∩ L2K.

As Φ(L1) 6= 0, it follows that U ′ = L2, and hence U = L1⊕L2. But this
is clearly not Φ-invariant, in contradiction with our assumption. �

Finally we need to calculate the Betti numbers of N(m1,m2).

Proposition 3.11. The Poincaré polynomial of the component N(m1,m2)
of the critical submanifold N(4(g − 1)−m) is

Pt(N(m1,m2)) = Pt(S
m1Σ)Pt(S

m2Σ)+

(
2g − 2

m1

)(
2g − 2

m2

)
(32g−1)tm.

Proof. H∗(N(m1,m2); R) is the Sm1×Sm2-invariant part of H∗(Σ̃m; R),
where Σ̃m is the covering

(Z/3)2g → Σ̃m → Σm

of Σm induced by the composite Σm → Sm1Σ× Sm2Σ
f→ Jac(Σ). The

fundamental group of Σm is π1Σ
m = π1Σ ⊕ · · · ⊕ π1Σ, the direct sum
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of m copies of π1Σ, and we denote the 2g generators of the rth copy
by {αr

i}
2g
i=1. In the case m = 1 the map f : Σ → Jac(Σ) induces an

isomorphism

f ∗ : H1(Jac(Σ); Z)
∼=→ H1(Σ; Z),

and from this it follows that αr
i ∈ π1Σ

m acts on the covering (Z/3)2g →
Σ̃m → Σm by permuting the elements of the ith copy of Z/3 cyclically.
Consequently H∗(Σ̃m; R) = H∗(Σm;F), where F is a local coefficient
defined as follows. Let W ′

i be the π1Σ
m-representation in R3 defined

by letting αr
i permute the basis vectors of R3, and letting the other

αr
i act trivially. Then the local coefficient system F is given by the

representation W ′
1 ⊗ · · · ⊗W ′

2g. Note that W ′
i splits as W ′

i = R ⊕Wi,
where αr

i acts trivially on R and rotates the 2-dimensional space Wi

through an angle of 2π
3

. Thus F is of the form

F =

2g⊕
j=0

Fj,

where F0 is given by the trivial 1-dimensional real representation and
Fj is given by the representation⊕

i1<···<ij

Wi1 ⊗ · · · ⊗Wij .

In the following we will use the notation WI = Wi1 ⊗ · · · ⊗Wij for a
multi-index I = (i1, . . . , ij), with |I| = j, and we will denote the local
coefficient system corresponding to the representation WI by WI .

The group H∗(Σ;F0) is just the ordinary real cohomology of Σ. To
calculate H∗(Σm;Fj) for j ≥ 1 we use the fact that

H0(Σ;WI) = {w ∈ WI : ξw = w for all ξ ∈ π1Σ},

the set of points in WI fixed by π1Σ (see e.g. [15, pp. 275–276]). From
this we see that H0(Σ;WI) = 0 and hence, by Poincaré duality, that
H2(Σ;WI) = 0. By induction on m it follows that the cohomology
of Σm with local coefficients WI is concentrated in dimension m. The
same is certainly true of the cohomology of Sm1Σ×Sm2Σ (because the
cohomology of this space is just the Sm1 × Sm2-invariant part of the
cohomology of Σ̃m), and therefore

dim(Hm(Sm1Σ× Sm2Σ);WI) = |χ(Sm1Σ)||χ(Sm2Σ)| dim(WI).

The Euler characteristic of SmiΣ can be calculated to be χ(SmiΣ) =
(−1)mi

(
2g−2
mi

)
(for example by Macdonald’s formula [12, p.322] for the

Poincaré polynomial of the symmetric product of a Riemann surface).
This finishes the proof. �
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4. Calculation of the indices of the critical
submanifolds

Denote the diffeomorphism of M corresponding to eiθ ∈ S1 by F (θ).
At a fixed point x we get an infinitesimal action

ρ =
d

dθ
dxF (θ)

∣∣
θ=0

: TxM→ TxM.

As shown by Frankel [8, p.4], the fact that our Morse function is a
moment map for the S1-action, means that the indices at a critical
point x ∈M for µ can be calculated as the weights of the infinitesimal
circle action ρ on TxM. At a critical point x ∈ M represented by a
pair (A,Φ), there are gauge transformations g(θ) such that

(A, eiθΦ) = g(θ) · (A,Φ).

It follows from this that the weights of the action of S1 on the tangent
space TxM are the weights of the infinitesimal gauge transformation
ψ = d

dθ
g(θ)

∣∣
θ=0

. As noted in [10, p.95] there is a subspace Y ⊂ TxM
given by

Y = H0(Σ; End0(E)⊗K)/[H0(Σ; End0(E)),Φ].

Because we know the weights of the action of ψ on End0(E) we can
calculate the weights on Y ⊂ TxM from this. To get the weights on
TxM we use the complex symplectic form ω on M, defined by

ω((ψ1,Φ1), (ψ2,Φ2)) =

∫
Σ

tr(Φ2ψ1 − Φ1ψ2),

(cf. [10, p.90]). Y is a Lagrangian subspace for ω, and therefore there
is an isomorphism

f : TxM/Y
∼=→ Y ∗.

To take advantage of this we must examine the interplay between the
circle action and ω.

Proposition 4.1. Under the isomorphism f above, a weight m on Y
corresponds to a weight 1−m on Y ∗.

Proof. From the definition of ω we see that F (θ)∗ω = eiθω at a critical
point. For v, w ∈ TmM differentiating this identity gives

iω(v, w) =
d

dθ
ω(dg(θ)v, dg(θ)w)

∣∣
θ=0

= ω(ρ(v), w) + ω(v, ρ(w)).

The proposition follows easily from this. �

Proposition 4.2. The critical submanifolds for the function µ have
the following indices.

(i) For 1
3
d < l < 1

3
d + g − 1 the index of N(l − 1

3
d) is λl = 2(3l −

d+ 2g − 2).
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(ii) For 1
3
d + 1 − g < l̄ < 1

3
d the index of N(1

3
d − l̄) is λl̄ = 2(d −

3l̄ + 2g − 2).
(iii) For 0 ≤ m < 4(g − 1) the index of N(4(g − 1) −m) is λm =

8(g − 1)− 2m

Proof. We shall only prove (i), the other cases being very similar. Let
(E,Φ) represent a point of N(l− 1

3
d). Then it is of the form E = L⊕V ,

with rk(L) = 1, rk(V ) = 2, and Φ =
(

0 0
φ 0

)
. The bundle End0(E) splits

in the following way:

End0(E) = Hom(L, V )⊕ Hom(V, L)⊕ End(V ).

Because tr(ψ) = 0 we see that ψ acts with weights −2
3

on L and 1
3

on V . It follows that ψ acts with weights (1,−1, 0) with respect to
the decomposition above. From Proposition 4.1 the weights on Y ∗ are
(0, 2, 1), and in particular we see that there are no negative weights
on Y ∗. We also have to examine [H0(Σ; End0(E)),Φ]. This consists of
elements of the form[(

− tr(a) b
c a

)
,

(
0 0
φ 0

)]
=

(
bφ 0

aφ+ φ tr(a) −φb

)
,

where b ∈ H0(Σ;V ∗ ⊗ L) and a ∈ H0(Σ; End(V )). Clearly b1φ = b2φ
if and only if b1 = b2, so

H0(Σ;V ∗ ⊗ L) ↪→ [H0(Σ; End0(E)),Φ]

is injective. Any a ∈ H0(Σ; End(V )) such that aφ + tr(a)φ = 0 has
L̃ as an eigenspace with eigenvalue − tr(a), which is constant, being a
globally defined holomorphic function. It follows that the other eigen-
value of A is also constant, and equal to 2 tr(a). So if tr(a) 6= 0, we
get a decomposition V = L̃⊕ L⊥. This is impossible, so tr(a) = 0 and
hence a = 0. It follows that

H0(Σ; End(V )) ↪→ [H0(Σ; End0(E)),Φ]

is injective. Thus

[H0(Σ; End0(E)),Φ] ∼= H0(Σ; End(V ))⊕H0(Σ; Hom(V, L)),

where the first summand lies in H0(Σ; Hom(L, V )⊗K), and the second
lies in H0(Σ; End(V )⊗K).

Thus the index is equal to dimRH
0(Σ; Hom(V, L) ⊗ K). Now note

that the correspondingH1 vanishes: it is Serre dual toH0(Σ; Hom(L, V )),
so suppose we had a non-zero element of this. This would define a
non-trivial map L → L′′ ⊂ V for some line bundle L′′, and hence
− deg(L)+deg(L′′) ≥ 0. On the other hand deg(L′′) < 1

3
d by stability,

and we also know that deg(L) > 1
3
d. Hence − deg(L) + deg(L′′) < 0,

which is a contradiction. From Riemann-Roch we then get

λl = 2(−v + 2l + 4(g − 1) + 2(1− g))

= 2(3l − d+ 2(g − 1)),
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which finishes the proof. �
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