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Introduction

Introduction

These are the slides from my lectures on Higgs bundles at the International
School on Geometry and Physics: moduli spaces in geometry, topology and
physics of the Spanish Semester on Moduli Spaces (January-June 2008).

I would like to thank the organizers of the school for the invitation to
speak and for all their excellent work, and I would also like to thank the
participants for creating a stimulating athmosphere.

These slides are provided “as is” and should be considered simple lecture
notes. Nevertheless, I will be grateful if errors, omissions, missing
references etc. are brought to my attention at pbgothen@fc.up.pt.
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Harmonic maps

Harmonic maps
Classically, a function f : R2 → R is harmonic if

∆(f ) =
∂2f

∂x2
+
∂2f

∂y2
= 0.

Important examples of harmonic maps are the real parts of holomorphic
functions.
Let M be a smooth manifold and let f : M → R be smooth. the
differential of f is

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn,

this has a natural extension to the exterior differential on p-forms
ω =

∑
fi1...ip dx i1 ∧ . . . ∧ dx ip ∈ Ap(M) given by

d
(∑

fi1...ip dx i1 ∧ . . . ∧ dx ip
)

=
∑

dfi1...ip ∧ dx i1 ∧ . . . ∧ dx ip .
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Harmonic maps

de Rham cohomology

Since d2 = 0, the exterior differential gives rise to the de Rham complex:

0 → A0(M)
d−→ A1(M)

d−→ . . .
d−→ An(M) → 0.

We have the de Rham cohomology groups:

HP
dR(M) = ker(d : Ap → Ap+1)/ im(d : Ap−1 → Ap).

When M is compact and riemannian, there is an L2-inner product on
Ap(M) and d has a formal adjoint d∗ : Ap → Ap−1 defined by

〈ω, dτ〉 = 〈d∗ω, τ〉.

The Laplace operator is

∆ = d ◦ d∗ + d∗ ◦ d : Ap(M) → Ap(M).
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Harmonic maps

Harmonic representatives of cohomology classes
Assume that M is compact.
Question: Given ω ∈ Ap(M) with dω = 0, is there a “best” representative
of the de Rham cohomology class [ω] ∈ Hp

dR(M)?
Answer: Minimize the L2-norm ‖ω‖2 =

∫
M |ω|

2.

Clearly, ‖ω‖ is minimal if and only if

〈ω, dτ〉 = 0 ∀τ ⇐⇒ d∗ω = 0.
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Harmonic maps

Harmonic forms

One easily sees that: dω = 0 and d∗ω = 0 ⇐⇒ ∆(ω) = 0.

Definition
ω ∈ Ap(M) is harmonic if ∆(ω) = 0.

On Rn with the standard euclidean metric,

∆ =
∂2

∂(x1)2
+ · · ·+ ∂2

∂(xn)2
.
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Abelian Hodge Theory

Complex manifolds

I X – complex manifold with coordinates (z1, . . . , zn).

I Holomorphic and antiholomorphic tangent and cotangent spaces:

T 1,0X = C〈 ∂
∂z1 , . . . ,

∂
∂zn 〉, (T 1,0)∗X = C〈 dz1, . . . , dzn〉,

T 0,1X = C〈 ∂
∂z̄1 , . . . ,

∂
∂z̄n 〉, (T 0,1)∗X = C〈 dz̄1, . . . , dz̄n〉.

I Complexified cotangent space:

T ∗XC = HomR(T 1,0X ,C) = (T 1,0)∗X ⊕ (T 0,1)∗X

(C-linear and antilinear parts).

I C-valued real differential forms decompose according to type:

(T p,q)∗X = Λp(T 1,0X )∗ ∧ Λq(T 0,1X )∗,

Ap,q(X ) = C∞(X , (T p,q)∗X ),

∈

α =
∑

αI dz i1 ∧ . . . ∧ dz ip ∧ dz̄ j1 ∧ . . . ∧ dz̄ jq .
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Abelian Hodge Theory

Exterior differential

The exterior differential d : An(X ) → An+1(X ) decomposes according to
type d = ∂ + ∂̄, where

∂ : Ap,q(X ) → Ap+1,q(X ) and ∂̄ : Ap,q(X ) → Ap,q+1(X ).

Locally:

∂̄(
∑

αI dz i1 ∧ . . . ∧ dz ip ∧ dz̄ j1 ∧ . . . ∧ dz̄ jq)

=
∑

∂̄(αI ) ∧ dz i1 ∧ . . . ∧ dz ip ∧ dz̄ j1 ∧ . . . ∧ dz̄ jq ,

where

∂̄(αI ) =
∑ ∂αI

∂z̄ i
dz̄ i ;

∂

∂z̄ i
=

1

2

(
∂

∂x
+ i

1

2

∂

∂y

)
.
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Abelian Hodge Theory

Harmonic theory

Analogously to the case of real manifolds, there is a harmonic theory for
complex manifolds X endowed with a hermitian metric

h = g − 2iω,

where g is a riemannian metric and ω is a (non-degenerate) positive form
of type (1, 1). (In fact, h can be recovered from ω.)

Since ∂̄2 = 0, the Dolbeault cohomology groups can be defined:

Hp,q(X ) =
ker

(
∂̄ : Ap,q(X ) → Ap,q+1(X )

)
im

(
∂̄ : Ap,q−1(X ) → Ap,q(X )

) .
When X is compact, there is a harmonic theory for the ∂̄-Laplacian:

∆∂̄ = ∂̄ ◦ ∂̄∗ + ∂̄∗ ◦ ∂̄ : Ap,q(X ) → Ap,q(X ).
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Abelian Hodge Theory

Kähler manifolds

In general, the harmonic theories for ∆ and ∆∂̄ are unrelated.

Definition
A hermitean metric on a complex manifold X is Kähler if its associated
(1, 1)-form is closed: dω = 0; in other words, (X , ω) is symplectic.

On a Kähler manifold, the d- and ∂̄-Laplacians are related:

∆ = 2∆∂̄ = 2∆∂ .

By looking at the harmonic representatives, this leads to the Hodge
decomposition:

H r (X ) =
⊕

p+q=r

Hp,q(X ).
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Abelian Hodge Theory

Philosophy

Recall de Rham’s Theorem H r
sing(X ,C) ∼= H r

dR(X ,C) which relates
topology and geometry of real differential forms.
The representation of cohomology classes through harmonic differential
forms on a compact Kähler manifold X , together with de Rham’s
Theorem, reveals an intimate interplay between

I Topology: H r (X ,C) (singular cohomology).

I Geometry of differential forms: H r
dR(X ,C) (de Rham cohomology).

I Holomorphic geometry: Hp,q(X ) (Dolbeault cohomology). Recall:
Hp,q(X ) = Hq(X ,Ωp), where Ωp is the sheaf of holomorphic
differential p-forms.
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Abelian Hodge Theory for H1

First cohomology

The first singular cohomology group is the abelianization of the
fundamental group:

H1(X ,C) ∼= Hom(π1(X ),C).

Thus Hodge theory provides an isomorphism

Hom(π1(X ),C) ∼= H1(X ,OX )⊕ H0(X ,Ω1).

“Integrate”:
The character variety of the group π1(X ) (or Betti moduli space of X ) is

R(π1(X ),C∗) = Hom(π1(X ),C∗) ∼= H1(X ,C∗).
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Abelian Hodge Theory for H1

The de Rham moduli space

Definition
The de Rham moduli space is the space of flat connections on the trivial
complex line bundle on X :

MdR := {flat connections}/{gauge equivalence}
= A1(X ,C)/G,

where the gauge group of smooth gauge transformations is
G = C∞(X ,C∗).

From this point of view, the analogue of de Rham’s Theorem is

MdR
∼=−→ R(π1(X ),C∗)

B 7→
(
[γ] 7→ holonomy of B around γ)
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Abelian Hodge Theory for H1

Interpretation in Čech cohomology

Let Ȟ1(X ,C∗) be the first Čech cohomology group with coefficients in C∗.

With respect to a cover U = {Uα} of X , a Čech cohomology class is given
by a cocycle {gαβ : Uαβ → C∗} of locally constant functions on the
intersections Uαβ satisfying the cocycle conditions:{

gαα = 1

gαβgβγ = gαγ

The gαβ can be interpreted as the transition functions defining a flat
bundle with respect to trivializations over the Uα.

Thus H1(X ,C∗) can be identified with the space of isomorphism classes of
flat complex line bundles on X .
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Abelian Hodge Theory for H1

The de Rham moduli space – 2
The short exact sequence of sheaves of locally constant functions

0 → Z → C → C∗ → 0

gives an exact sequence in cohomology:

0 → H1(X ,Z) → H1(X ,C) → H1(X ,C∗)
δ−→ H2(X ,Z).

The coboundary δ maps a flat bundle with trivial underlying topological
bundle to zero. Hence, the de Rham moduli space is:

MdR := {flat connections}/{gauge equivalence}
∼= H1

dR(X ,C)/H1(X ,Z).

Remark: This could of course also be seen directly via the action of g ∈ G.
This gives a canonical identification

TBMdR = H1
dR(X ,C). (4.1)
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Abelian Hodge Theory for H1

Abelian Hodge Theory for H1

Thus Hodge theory says that

TBMdR
∼= H1(X ,OX )⊕ H0(X ,Ω1)

at any flat connection B.

Question: What is the “integrated” version of this statement?

Clue: H1(X ,OX ) is the tangent space to the group of degree zero line
bundles Pic0(X ) = H1(X ,O∗

X ) and Serre duality says that

H0(X ,Ω1) ∼= H1(X ,O)∗.

Answer: There is an isomorphism:

MdR
∼= T ∗Pic0(X ). (4.2)
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Harmonic theory in the non-abelian case

Representations of π1(X ) and flat connections

I Let X be a closed Riemann surface of genus g > 2.

I Let G be a connected reductive Lie group (real or complex).

The fundamental group of X is

π1(X ) = 〈a1, b1, . . . , ag , bg :

g∏
i=1

[ai , bi ] = 1〉

Basic object of interest: Character variety or Betti moduli space

R(π1(X ),G ) = MB(X ,G ) := Hom+(π1S ,G )/G .
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Harmonic theory in the non-abelian case

Flat connections

Smooth G -bundles on X are classified by a characteristic class

c(E ) ∈ H2(X , π1(G )) ∼= π1(G ).

Fix d ∈ π1(G ) and let E be a fixed smooth G -bundle on X with
c(E ) = d .

Define the de Rham moduli space by
Md

dR(X ,G ) := {reductive flat connections on E}/{gauge equivalence}.
I A flat connection is reductive if its holonomy representation is

reductive.

I A representation ρ : π1(X ) → G is reductive if the Zariski closure of
its image is a reductive subgroup of G .
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Harmonic theory in the non-abelian case

Holonomy
Let

Rd(X ,G ) ⊆ R(X ,G )

be the subspace of representations such that that the corresponding flat
bundle has characteristic class d ∈ π1(G ).

The holonomy representation provides an identification

Rd(π1(X ),G ) ∼= Md
dR(X ,G ).

Conversely, given ρ : π1(X ) → G , the corresponding flat principal
G -bundle Eρ is given by

Eρ = X̃ ×π1(X ) G ,

where X̃ → X is the universal cover and π1(X ) acts on G via ρ.
Note: Everything we do can be generalized to the situation of connections
with constant central curvature. These correspond to representations of a
central extension of the fundamental group.
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Harmonic theory in the non-abelian case

Harmonic maps

Let (M, g) and (N, h) be riemannian manifolds, with M compact.
A map f : M → N is harmonic if it is a critical point of the energy
functional

E (f ) =

∫
M
|df |2dvol.

Note that df is a section of f ∗TN → M. Let ∇h be the Levi–Civita
connection on (N, h) and let f ∗∇h be its pull-back to f ∗TN. The
Euler–Lagrange equations for E (f ) are

f ∗∇h(df ) = 0.

When dim M = 2, the equation only depends on the conformal class of the
metric g on M. In particular, the notion of a harmonic map on a Riemann
surface makes sense.
The fundamental work of Eells and Sampson proves the existence of
harmonic maps under suitable conditions.
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Harmonic theory in the non-abelian case

Harmonic metrics in flat bundles
Let H ⊆ G be a maximal compact subgroup.

A metric on a G -bundle E is a section σ : X → E/H of the bundle
E/H → X .

Equivalently, a metric is a ρ-equivariant map

σ : X̃ → G/H,

Since G/H is riemannian and X is a Riemann surface, it makes sense to
ask for σ to be a twisted harmonic map, i.e.,

σ∗∇(dσ) = 0, (5.1)

where ∇ is the Levi–Civita connection on G/H.

Theorem (C. Corlette [4], S. Donaldson [6])

A flat bundle E → X admits a harmonic metric if and only if the flat
connection is reductive.
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Harmonic theory in the non-abelian case

Lie groups and the isotropy representation

Let H ⊆ G be a maximal compact subgroup. Take a Cartan
decomposition of the Lie algebra of G :

g = h⊕m.

The restriction of the adjoint representation of G on g to H ⊂ G preserves
the Cartan decomposition. In particular, we get the isotropy representation

ι : H → Aut(m).

All this can be complexified to gC = hC ⊕mC.
There is a Cartan involution τ : gC → gC with τ|hC = 1 and τ|mC = −1.
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Harmonic theory in the non-abelian case

Harmonic metrics – 1

A metric σ : X → E/H gives a reduction of structure group i : EH ↪→ E .
Let B be a flat G -connection on E . Write

i∗B = A + θ ∈ A1(E , g⊕m).

Then A is an H-connection on EH and θ ∈ A1(EH ,m) is tensorial, i.e.,

θ ∈ A1(X ,EH(m)),

where EH(m) = EH ×H m is the m-bundle associated to the isotropy
representation.
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Harmonic theory in the non-abelian case

Harmonic metrics – 2
Note that Ad(E ) = E (g) = EH(g) = EH(h)⊕ EH(m). In terms of the data
(A, θ), the harmonicity condition (5.1) on the metric σ is

d∗Aθ = 0, (5.2)

where dA : A1(EH(m)) → A2(EH(m)) is the covariant derivative associated
to the connection A and d∗A : A1(EH(m)) → A0(EH(m)) is its adjoint.

Interpretation in holomorphic terms
Write dA = ∂̄A + ∂A and θ = φ+ τ(φ), where
τ : A1(EH(mC)) → A1(EH(mC)) denotes the combination of complex
conjugation on the form component with the Cartan involution.
Then (5.2) and the flatness condition F (B) = 0 become Hitchin’s
equations:

F (A)− [φ, τ(φ)] = 0

∂̄Aφ = 0.
(5.3)

() 24 / 66



Higgs bundles

Higgs bundles

Note that ∂̄Aφ = 0 means that φ is a holomorphic one-form with values in
EH(mC), endowed with the holomorphic structure defined by ∂̄A.

Definition
A G-Higgs bundle is a pair (E , φ), where E is a holomorphic principal
HC-bundle and φ ∈ H0(X ,E (mC)⊗ K ).

Remark

I Consider the case of complex G with maximal compact H ⊆ G (so
G = HC). Then a G -Higgs bundle is (E , φ) where
φ ∈ H0(X ,E (g)⊗ K ) = H0(X ,Ad(E )⊗ K ).
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Higgs bundles

Higgs bundles – 2

Whenever G is a (real reductive) subgroup of SL(n,C), there is a Higgs
vector bundle associated to the data of the principal Higgs bundle.

Example

1. Let G = SL(n,C). Then a G -Higgs bundle is a pair (E ,Φ), where
E → X is a holomorphic rank n vector bundle with det(E ) = O and
Φ ∈ H0(X ,End0(E )⊗ K ) (traceless endomorphisms).

2. Let G = SL(2,R). Then a G -Higgs bundle is a pair (L, φ) with L a
holomorphic line bundle and φ ∈ H0((L2 ⊕ L−2)⊗K ). The associated
Higgs vector bundle is (

L⊕ L−1, φ =
(

0 β
γ 0

))
with β ∈ H0(X , L2K ) and γ ∈ H0(X , L−2K ).
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Higgs bundles

Higgs bundles – 3

Remark

I One can consider Higgs bundles (E ,Φ), where E is a holomorphic
bundle (of any determinant) and Φ ∈ H0(X ,End(E )⊗ K ). Instead of
flat connections, one must then consider connections with constant
central curvature and introduce a corresponding term in the first of
Hitchin’s equations (5.3).
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Higgs bundles and Hitchin–Kobayashi correspondence

Stability

Basic question: When does a G -Higgs bundle (E , φ) come from a flat
G -bundle EG?
In other words, when can we find a metric σ′ : X → E/H such that (A, φ)
satisfy Hitchin’s equations (5.3)? (With A = A0,1 + A1,0 and A1,0 defined
via the metric.)
Answer: “stability”

Recall the degree of a holomorphic vector bundle V → X :
deg(V ) = deg(det(V )) ∈ Z.
Alternatively, deg(V ) can be defined via Chern–Weil theory as
deg(V ) = i

2π

∫
X tr F (A) for any unitary connection A on V .

The slope of a vector bundle V is, by definition, µ(V ) = deg(V )
rk(V ) .
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Higgs bundles and Hitchin–Kobayashi correspondence

Stability – 2
Let (V ,Φ) be a Higgs bundle. Think of φ ∈ H0(X ,End(V )⊗ K ) as a
K -twisted endomorphism φ : V → V ⊗ K .

Definition
A subbundle F ⊆ V is φ-invariant if φ(F ) ⊆ F ⊗ K .

I A Higgs bundle (V , φ) is stable if µ(F ) < µ(V )
for any proper φ-invariant subbundle F ⊆ V .

I A Higgs bundle (V , φ) is semistable if µ(F ) 6 µ(V )
for any φ-invariant subbundle F ⊆ V .

I A Higgs bundle (V , φ) is polystable if
(V , φ) = (F1 ⊕ · · · ⊕ Fr , φ1 ⊕ · · · ⊕ φr ),
where each (Fj , φj) is a stable Higgs bundle of slope µ(Fi ) = µ(V ).

Remark
The correct definition of stability in the principal bundle setting is subtle
(and will be treated in the course by Mundet i Riera). Here we shall stick
to the simpler vector bundle case.
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Higgs bundles and Hitchin–Kobayashi correspondence

The Hitchin–Kobayashi correspondence

Theorem (Hitchin [10], Simpson [16], Bradlow–Garćıa-Prada–Mundet
[3])

A G-Higgs bundle (E , φ) admits a solution to Hitchin’s equations (5.3) if
and only if it is polystable.
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Moduli spaces

Moduli spaces
Fix the topological invariant d ∈ π1(G ). The following moduli spaces
intervene in the theory:

I Rd(π1(X ),G ) – the character variety.
I Md

dR(X ,G ) – the moduli space of flat G -connections on X , or de
Rham moduli space.

I Md
gauge(X ,G ) – the gauge theory moduli space of solutions to

Hitchin’s equations:

Md
gauge(X ,G ) =

{
(A, φ) :

F (A)− [φ, τ(φ)] = 0

∂̄Aφ = 0.

}
/GH ,

where GH = A0(EH ×Ad H) is the gauge group of H-gauge
transformations.

I Md
Dol(X ,G ) – the moduli space of polystable (or better, semistable)

G -Higgs bundles constructed via GIT:

Md
Dol = {(E , φ) : polystable G -Higgs bundles}/ ∼= .
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Moduli spaces

Identifications between the moduli spaces

With more care, the above correspondences give identifications

MB
∼= MdR

∼= Mgauge ∼= MDol.

When G is complex, the moduli spaces MB and MdR are naturally
complex varieties. Let J be the complex structure on MdR .

The moduli space MDol is also a complex variety, since X is an algebraic
curve; let I be its complex structure.

Fact: The complex structures I and J are inequivalent. One way to see
this: (MdR , J) is affine, while (MDol, I ) contains the projective moduli
space of principal G -bundles. This gives rise to the hyper-Kähler structure
on the moduli space.
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Deformation theory

Deformation theory of flat bundles
Let E be a smooth G -bundle. The deformation theory of flat connections
on E goes as follows:
Linearize the flatness condition F (B) = 0:

d

dt
F (B + bt)|t=0 = dB(b)

for b ∈ A1(X ,Ad(E )).
Linearize the action of the gauge group B 7→ g · B = gBg−1 + dg g−1.
For g(t) = exp(ψt) with ψ ∈ A0(X ,Ad(E )),

d

dt
(g(t) · B)t=0 = dB(ψ).

Thus the infinitesimal deformation space is H1 of the complex

0 → A0(X ,Ad(E ))
dB−→ A1(X ,Ad(E ))

dB−→ A2(X ,Ad(E )) → 0.

Note that F (B) = dB ◦ dB = 0 means that this is in fact a complex.
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Deformation theory

Deformation theory of Hitchin’s equations

In a similar way, one calculates the deformation theory of Hitchin’s
equations for a pair (A, φ):

F (A) + [φ, τ(φ)] = 0,

∂̄Aφ = 0,

where A is a unitary connection on a fixed smooth principal H-bundle
EH → X and φ ∈ A1,0(X ,EH(mC)).

The linearized equations are:

dA(Ȧ)− [φ̇, τ(φ)]− [φ, τ(φ̇)] = 0,

∂̄Aφ̇+ [Ȧ0,1, φ] = 0,

for Ȧ ∈ A1(X ,Eh(h)) and φ̇ ∈ A1,0(X ,EH(mC)).
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Deformation theory

Deformation theory of Hitchin’s equations – 2
The infinitesimal action of ψ ∈ A0(X ,EH(h)) = Lie(GH) is

(A, φ) 7→ (dAψ, [φ, ψ]).

Thus the deformation theory of Hitchin’s equations is governed by the
(elliptic) complex

C •
g (A, φ) : A0(X ,EH(h))

d0−→ A1(X ,EH(h))⊕ A1,0(X ,EH(mC))

d1−→ A2(X ,EH(h))⊕ A1,1(X ,EH(mC)),

where the maps are
d0(ψ) = (dAψ, [φ, ψ])

and
d1(ψ) = (dA(Ȧ)− [φ̇, τ(φ)]− [φ, τ(φ̇)], ∂̄Aφ̇+ [Ȧ0,1, φ]).

The fact that (A, φ) is a solution to the equations guarantees that
d1 ◦ d0 = 0.

() 35 / 66

Deformation theory

Deformation theory of Hitchin’s equations – 3

Denote by H i (C •
g(A, φ)) the cohomology groups of the gauge theory

deformation complex C •
g(A, φ).

Theorem
Assume that H0(C •

g(A, φ)) = H2(C •
g(A, φ)) = 0 and that (A, φ) has no

non-trivial automorphisms. Then Mgauge is smooth at [A, φ] and the
tangent space is

T[A,φ]Mgauge ∼= H1(C •
g(A, φ)).
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Deformation theory

Metric on Mgauge

The fact that the structure group of EH is the maximal compact H ⊆ G
means that the vector bundles EH(hC) and EH(mC) have induced
hermitean metrics. Thus a hermitean metric can be defined on Mgauge by

〈(Ȧ1, φ̇1), (Ȧ2, φ̇2)〉 = i

∫
X
(〈Ȧ0,1

1 , Ȧ0,1
2 〉+ 〈φ̇1, φ̇2〉),

where we are combining with conjugation on the form component in the
second factors. This turns out to be Kähler with respect to I .

When G is a complex group there is another complex structure on
H1(C •

g(A, φ)) coming from the complex structure on G :

J : H1(C •
g(A, φ)) → H1(C •

g(A, φ)), J2 = −1.

Note that IJ = −JI . Then K = IJ is a complex structure and I , J and K
satisfy the identities of the quaternions.
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Deformation theory

The moduli space as a hyper-Kähler quotient – 1
For simplicity, consider the case of Higgs vector bundles (V , φ).

Thus we are considering solutions (A, φ) to Hitchin’s equations, where A is
a unitary connection on V and φ ∈ A1,0(X ,End0(V )).

Using the correspondence between unitary connections and ∂̄-operators,
the space C of pairs (A, φ) is an affine space modeled on the tangent space
at (A, φ):

T(A,φ)C ∼= A0,1(X ,End0(V ))⊕ A1,0(X ,End0(V )).

There is a Kähler metric on C (as above), given by:

〈(α1, φ̇1), (α2, φ̇2)〉 = i

∫
X

tr(α∗1α2 + φ̇1φ̇
∗
2).

There is also a complex symplectic form on C, defined by:

Ω(α1, φ̇1), (α2, φ̇2) =

∫
X

tr(φ̇1α2 − φ̇2α1).
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Deformation theory

The moduli space as a hyper-Kähler quotient – 2
Let ω1 be the Kähler form of the hermitean metric on C just defined and
write Ω = ω2 + iω3.

One can then show:

I ω1, ω2 and ω3 are the Kähler forms of a hyper-Kähler metric on C,
with respect to complex structures I , J and K respectively.

The action of the gauge group GH is hamiltonian for all three Kähler forms
and the corresponding moment maps are:

µ1(A, φ) = F (A) + [φ, φ∗]

(µ2 + iµ3)(A, φ) = ∂̄Aφ.

Thus Hitchin’s equations are equivalent to the simultaneous vanishing of
the three moment maps.

Theorem (Hitchin [10])

The almost complex structures I , J and K are integrable and form a
hyper-Kähler structure on Mgauge.
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Deformation theory

Deformation theory of G -Higgs bundles

Next we consider the deformation theory of a G -Higgs bundle (E , φ) as an
algebraic (or holomorphic) object.

Consider the complex of sheaves (we identify a bundle with its sheaf of
holomorphic sections):

C •(E , φ) : E (hC) → E (mC)⊗ K

ψ 7→ [φ, ψ] = ad(φ)(ψ).

Hypercohomology of a complex of sheaves F• : · · · → F i → F i+1 → . . .
is calculated as follows:

1. Create a double complex by taking vertically over each F i your
favourite resolution for calculating sheaf cohomology.

2. The ith hypercohomology group Hi (F•) is the ith cohomology group
of the resulting total complex.
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Deformation theory

Deformation theory of G -Higgs bundles – 2

Theorem
The infinitesimal deformation space of (E , φ) is canonically isomorphic to
the first hypercohomology group H1(C •(E , φ)).

This can be proved in several ways:

I Use Dolbeault resolution and differential geometry;

I Use Čech cohomology to represent an infinitesimal deformation of
(E , φ) as an object over Spec(C[ε]/(ε2)).

Hypercohomology enjoys nice properties, such as a long exact sequence
associated to a short exact sequence of complexes. This gives a long exact
sequence:

0 → H0(C •(E , φ)) → H0(E (hC))
ad(φ)−−−→ H0(E (mC)⊗ K )

→ H1(C •(E , φ)) → H1(E (hC))
ad(φ)−−−→ H1(E (mC)⊗ K )

→ H2(C •(E , φ)) → 0.

(9.1)
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Deformation theory

Comparison of deformation theories

For a proper understanding of many aspects (hyper-Kähler structure,
Morse theory) of the geometry of the moduli space of Higgs bundles, one
needs to consider the moduli space as the gauge theory moduli space
Mgauge. On the other hand, the formulation of the deformation theory in
terms of hypercohomology is very convenient. Fortunately:

Proposition

At a smooth point of the moduli space, there is a natural isomorphism of
infinitesimal deformation spaces

H1(C •
g(A, φ)) ∼= H1(C •(E , φ)),

where the holomorphic structure on the Higgs bundle (E , φ) is given by ∂̄A.

Fix the notation M(X ,G ) when we want to blur the distinction between
the Dolbeault and the gauge theory moduli spaces.
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Deformation theory

Serre duality

This is an important tool for the study of the deformation theory of Higgs
bundles.

Observation: There is a non-degenerate quadratic form on gC = hC ⊕mC,
invariant under the adjoint action of HC and such that the direct sum
decomposition is orthogonal. It follows that

E (hC) ∼= E (hC)∗, E (mC) ∼= E (mC)∗.

The dual complex of C •(E , φ) : E (hC) → E (mC)⊗ K is therefore

C •(E , φ)∗ : E (mC)⊗ K−1 → E (hC).

Serre duality for hypercohomology says that

Hi (C •(E , φ)) ∼= H2−i (C •(E , φ)∗ ⊗ K )∗.
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Deformation theory

The complex symplectic form

Consider the case of G complex. Then mC = hC and Serre duality tells us
that

H1(C •(E , φ)) ∼= H1(C •(E , φ))∗.

Proposition

This duality defines a complex symplectic form Ω on the moduli space of
G-Higgs bundles for complex G.

Remark
The complex symplectic form Ω is of course the same as the one
previously defined from the gauge theory point of view.
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Deformation theory

The moduli space of stable G -bundles
Assume that G is complex.

Let M(X ;G ) denote the moduli space of semistable principal G -bundles.

Let E be a principal holomorphic G -bundle. The infinitesimal deformation
space of E is

H1(X ,E (gC))

Since E (gC) ∼= E (gC)∗, Serre duality says that

H1(X ,E (gC))∗ = H0(X ,E (gC)⊗ K ).

In other words, if E is stable as a G -bundle then a G -Higgs bundle (E , φ)
represents a cotangent vector to the moduli space M(X ,G ). It follows
that there is an inclusion

T ∗M(X ,G ) ↪→MDol(X ,G ).

Proposition

The complex symplectic form Ω on MDol restricts to the standard
complex symplectic form on the cotangent bundle T ∗M(X ,G ).
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The Hitchin map

Invariant polynomials and the Hitchin map
Let p1, . . . , pk be a basis of the invariant polynomials on g; write
di = deg(pi ). The Hitchin map on M(X ,G ) is defined by:

H : M(X ,G ) →
k⊕

i=1

H0(X ,Kdi ),

(E , φ) 7→
(
pi (φ)

)k

i=1
.

Example

If G = SL(2,C), a G -Higgs bundle is (V , φ) with rk(V ) = 2, det(V ) = O
and φ ∈ H0(X ,End0(V )). The Hitchin map is simply:

H(V , φ) = det(φ) ∈ H0(X ,K 2).

Important observation:

dim(
k⊕

i=1

H0(X ,Kdi )) =
∑

(2di − 1)(g − 1) = (g − 1) dim G .
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The Hitchin map

The Hitchin map for SL(2, R)
Recall: an SL(2,R)-Higgs bundle is given by (L, β, γ), with
β ∈ H0(X , L2K ) and γ ∈ H0(X , L−2K ).

The Hitchin map is

H(L, β, γ) = βγ ∈ H0(X ,K 2).

Consider the case of deg(L) = g − 1, then γ = 1, L2 = K and
H(L, β, 1) = β. Thus, fixing the square root L of K ,

H0(X ,K 2) →M(X ,SL(2,R)),

β 7→ (L, β, 1)

gives a section of H. This identifies

Mg−1,L(X ,SL(2,R)) ∼= H0(X ,K 2)

and shows that Teichmüller space Mg−1,L(X ,SL(2,R)) is homeomorphic
to a euclidean space of dimension 6g − 6.
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Integrable systems

The Hitchin system

Assume that G is complex. Since dimM(X ,G ) = (2g − 2) dim G , the
Hitchin space H =

⊕k
i=1 H0(X ,Kdi ) has dimension

n := dimH = 1
2 dimM(X ,G ).

Proposition

The n functions defined by the Hitchin map Poisson commute.

This can be proved by considering M(X ,G ) as an (infinite dimensional)
symplectic quotient.

Finally, it can be shown that the generic fibre of H is an abelian variety of
dimension 1

2 dimM(X ,G ), on which the Hamiltonian vector fields of the n
Poisson commuting functions are linear. In other words:

The Hitchin map H : M(X ,G ) → H
is an algebraically completely integrable system.

As an illustration, we shall do the case G = SL(2,C) in a bit more detail.
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Integrable systems

SL(2, C)-Higgs bundles and spectral curves

(Following Beauville–Narasimhan–Ramanan [1])

Consider the Hitchin map

H : M(X ,SL(2,C) → H0(X ,K 2),

(V , φ) 7→ det(φ).

Idea: Think of the characteristic polynomial χφ(y) = det(φ) + y2 as a
section on the total space of π : K → X and express (V , φ) in terms of
abelian data on the spectral curve: {χ(φ) = 0}.

I Let S = P(O ⊕ K )
π−→ X be the fibrewise compactification of K .

I Let O(1) → S be the hyperplane bundle along the fibres.

I Let x , y ∈ H0(S ,O(1)) be the sections given by projecting on K and
O, respectively; i.e., [x : y ] are homogeneous coordinates on the fibres
of S → X .
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Integrable systems

The spectral curve – 2

The characteristic polynomial of φ can now be viewed as the section

χ(φ) = π∗ det(φ) · y2 + x2 ∈ H0(S , π∗K 2 ⊗O(2)).

The spectral curve Xχ(φ) ⊆ S is defined as the zero locus of χ(φ).

When Xχ(φ) is integral, we have a ramified double cover:

π : Xχ(φ) → X ,

with ramification divisor D = div(det(φ)). If D has no multiple points,
Xχ(φ) is smooth.

Note: The restriction of y to Xχ(φ) is nowhere vanishing. Thus O(1)|Xχ(φ)

is trivial and we can view x ∈ H0(Xχ(φ), π
∗KX ); the two values of x are

the square roots of det(φ).
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Integrable systems

The spectral curve – 3

Assume Xχ(φ) is smooth. There is a line bundle M → Xχ(φ) such that

V = π∗M and φ = π∗x ,

where we interpret x ∈ H0(X ,End(M)⊗ π∗KX ). One way to define M is
note that M(−D) is the kernel

0 → M(−D) → π∗V
π∗φ−x−−−−→ π∗(V ⊗ KX ).

Let σ : Xχ(φ) → Xχ(φ) be the involution interchanging the sheets of the
double cover. Then

M ⊗ σ∗M ∼= π∗ det(V ) = O

because det(V ) = O.
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Integrable systems

The Prym variety

The Prym variety of a double cover Xs → X is

{L : L⊗ σ∗L ∼= O} ⊆ Jac(X ).

Since M ⊗ σ∗M ∼= O, it follows that M is in the Prym of the spectral
cover.

Conversely, given s ∈ H0(X ,K 2), one can define the spectral curve
Xs → X as above and, for M with M ⊗ σ∗M ∼= O,

(V , φ) := π∗(M, x)

defines an SL(2,C)-Higgs bundle, which turns out to be stable,
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Integrable systems

Algebraically completely integrable systems
Thus we have

Theorem
The fibre of the Hitchin map M(X ,SL(2,C) → H0(X ,K 2) over an s with
simple zeros is isomorphic to the Prym variety of the spectral curve
Xs → X.

It follows that the hamiltonian vector fields associated to the Poisson
commuting coordinate functions of H are linear.

Theorem
The Hitchin map H : M(X ,SL(2,C)) → H0(X ,K 2) is an algebraically
completely integrable system.

Generalizations:

I Replace SL(2,C) with any semisimple group.

I Replace KX with KX (D) – this makes M into a Poisson manifold.

For (much) more on integrable systems see, e.g., Hitchin [11], Bottacin
[2], Markman [15], Donagi–Markman [5].
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Topology of the Higgs moduli space

The circle action on the moduli space

An essential aspect of the moduli space of Higgs bundles is that there is
an action of C∗:

C∗ ×MDol(X ,G ) →MDol(X ,G ),(
λ, (E , φ)

)
7→ (E , λφ).

From the gauge theory point of view, to preserve solutions to Hitchin’s
equations, one restricts to the compact S1 ⊆ C∗.

Proposition

The S1-action (A, φ) 7→ (A, e iθφ) on Mgauge(X ,G ) is hamiltonian with
respect to the Kähler form ω1 associated to the complex structure I .
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Topology of the Higgs moduli space

Geometry of hamiltonian circle actions

Let (M, ω) be a Kähler manifold with a hamiltonian circle action. A
moment map for the action is f̃ : M → R such that

∇(f̃ ) = I · Z ,

where Z ∈ X (M) is the vector field generating the circle action and I is
the complex structure on M.

Theorem (Frankel [7])

Let f̃ : M → R be a proper moment map for a Hamiltonian circle action
on a Kähler manifold M. Then f̃ is a perfect Bott–Morse function.

A Bott–Morse function is an f̃ whose critical points form submanifolds
Ni ⊆ M such that the Hessian of f̃ defines a non-degenerate quadratic
form on the normal bundle to each Ni in M.

The index λi of Ni is the the dimension of the negative weightspace of the
Hessian.
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Topology of the Higgs moduli space

Bott–Morse theory

A Bott–Morse function f̃ is perfect when the Betti numbers of M are
given by

Pt(M) :=
∑

t j dim(H j(M)) =
∑

i

tλi Pt(Ni ).

Proposition

(1) The critical points of f̃ are the fixed points of the circle action.

(2) The eigenvalue l subspace for the Hessian of f̃ is the same as the
weight −l subspace for the infinitesimal circle action on the tangent space.
Thus the Morse index of f̃ at a critical point equals the dimension of the
positive weight space of the circle action on the tangent space.
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Topology of the Higgs moduli space

Bott–Morse theory on the moduli space of Higgs bundles
For simplicity, we consider the case of Higgs vector bundles (V , φ) (Recall:
(rk(V ), deg(V )) = 1 implies that M is smooth.)

Proposition

A Higgs bundle (V , φ) is fixed under the circle action if and only if it is a
complex variation of Hodge structure, i.e., V = V1 ⊕ · · · ⊕ Vr , with
φi = φ|Vi

: Vi → Vi+1 ⊗ K .

This is proved by letting the Vi be the eigenbundles of the isomorphism

(V , φ)
∼=−→ (V , λφ) for λ which is not a root of unity.

Remark

1. Let (V , φ) be a complex variation of Hodge structure. Then φ is
nilpotent, so H(V , φ) = 0, where H : M(X ,G ) → H is the Hitchin
map. It follows that the fixed locus of the circle action is contained in
the nilpotent cone H−1(0).

2. The fixed loci of S1 and C∗ coincide on MDol.
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Topology of the Higgs moduli space

Weights of the circle action

Recall the deformation complex

C •(V , φ) : End(V )
ad(φ)−−−→ End(V )⊗ K .

The decomposition V =
⊕

Vi induces a decomposition
C •(V , φ) =

⊕
l C

•
l (V , φ), where, letting End(V )l =

⊕
l=j−i Hom(Vi ,Vj),

C •
l (V , φ) : End(V )l

ad(φ)−−−→ End(V )l+1 ⊗ K .

This gives a decomposition H1(C •(V , φ)) ∼=
⊕

l H1(C •
l (V , φ)) of the

infinitesimal deformation space.

Proposition

The subspace H1(C •
l (V , φ)) is the weight −l subspace of the infinitesimal

S1-action on M.
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Topology of the Higgs moduli space

The Morse function
The moment map for the S1-action on M = Mgauge is given by

f̃ [(A, φ)] = −1
2‖φ‖

2 = −i

∫
X

tr(φφ∗).

We find it more natural to work with the positive function

f ([A, φ]) := 1
2‖φ‖

2.

Keeping track of the signs we have the following.

Proposition

The eigenvalue l subspace of the Hessian of f at a complex variation of
Hodge structure (V , φ) is

T(V ,φ)Ml
∼= H1(C •(V , φ)−l).
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Topology of the Higgs moduli space

Morse indices – 1

The Riemann–Roch Theorem allows to calculate the Euler characteristic

χ(C •(V , φ)l) =
∑

(−1)i dim Hi (C •(V , φ)l).

Recall the long exact sequence hypercohomology sequence (9.1):

0 → H0(C •(V , φ)) → H0(End(V ))
ad(φ)−−−→ H0(End(V )⊗ K )

→ H1(C •(V , φ)) → H1(End(V ))
ad(φ)−−−→ H1(End(V ))⊗ K )

→ H2(C •(V , φ)) → 0.

From this we immediately get that End(V , φ) = H0(C •(V , φ)).
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Topology of the Higgs moduli space

Vanishing of hypercohomology
Analogously to the case of vector bundles:

(V , φ) stable =⇒ H0(C •(V , φ)) = C,

i.e., ”stable implies simple”. Note also:
H0(C •(V , φ)0) = H0(C •(V , φ)) = C
Now, as noted before, C •(V , φ)∗ ∼= C •(V , φ)⊗ K−1. Thus, Serre duality
of complexes implies that

H2(X ,C •(V , φ)) ∼= H0(X ,C •(V , φ))∗ = C.

Applying duality to the complexes C •(V , φ)l , we see

C •(V , φ)∗l = C •(V , φ)−l−1 ⊗ K−1

=⇒ Hi (C •(V , φ)l) ∼= H2−i (C •(V , φ)−l−1)
∗

=⇒ T(V ,φ)Ml
∼= (T(V ,φ)M1−l)

∗.
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Topology of the Higgs moduli space

Morse indices – 2

With all this at our disposal, we obtain:

Proposition

The Morse index at a fixed point (V , φ) =
⊕

(Vi , φi ) is

1
2λ = −

∑
l>0

χ(C •(V , φ)l),

which can be calculated explicitly in terms of the ranks and degrees of the
Vi using Riemann–Roch.

Remark
This essentially works for any group G (real or complex). Care must be
taken with stability and vanishing of hypercohomology.

() 62 / 66



Topology of the Higgs moduli space

Morse indices – 3
Important observations:

I The dimension of the critical submanifold through
⊕

(Vi , φi ) is
dim H1(C •(V , φ)0).

I (For complex G ): By duality,

H1(
⊕
l>0

C •(V , φ)l) ∼= H1(
⊕
l<0

C •(V , φ)l)
∗.

In particular, the Morse index of the critical submanifold N ⊆M is

λ = dimM− 2 dimN .

Remark
The main difficulty in determining the Betti numbers of M lies in
determining the Betti numbers of the moduli spaces of complex variation
of Hodge structure (the critical submanifolds). This has only been carried
out for rank 2 and 3. On the other hand, using number theoretic methods,
the mixed Hodge polynomial of M has been determined by Hausel and
Rodriguez-Villegas [9].
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Topology of the Higgs moduli space

The downwards Morse flow

Restrict to the case of Higgs vector bundles (V , φ) with det(V ) fixed and
(deg(V ), rk(V )) = 1.

Let {Nλ}λ∈A denote the critical submanifolds Nλ ⊆M of the Morse
function. In particular, N0 ⊆M denotes the moduli space of stable
bundles.

I The downwards Morse flow Dλ of Nλ is the set of points which flow
to Nλ at time −∞ under the gradient flow of the Morse function.

I The downwards Morse flow is
⋃

Dλ

Our calculation of Morse indices shows that

dim(
⋃

Dλ) =
1

2
dimM.
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Topology of the Higgs moduli space

Laumon’s Theorem, following Hausel

We shall relate this to the C∗-action (t, x) 7→ t · x for t ∈ C∗ and x ∈M.
Fact: Dλ = {x ∈M : limt→∞ t · x ∈ Nλ}
From this it follows that:

Proposition (Hausel [8])

The downwards Morse flow coincides with the nilpotent cone H−1(0).

Since the nilpotent cone is coisotropic, it follows from our calculation of
the dimension that

Theorem (Laumon [14])

The nilpotent cone is Lagrangian in M.
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Further reading

I Some basic references on the foundations of the theory are: Corlette
[4], Donaldson [6], Hitchin [10, 11, 12], Simpson[16, 17, 18, 19].

I For an example of the recent interest of Higgs bundles in physics see,
e.g., Kapustin–Witten [13].
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