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Motivation from Physics
Classical Particles

The theory of classical point particles is a theory of 0-dimensional
objects which can be described by:

• paths in a smooth manifold X,

• a closed non-degenerate 2-form ω on X called the symplectic
structure and,

• a set of smooth functions on X called observables .

The symplectic structure ω makes the set of observables into a
Poisson algebra .



Motivation from Physics
Classical Strings

The classical theory of strings is a theory of 1-dimensional objects .
Previous work suggests that it can be described by:

• surfaces, or world-sheets in a smooth (finite dimensional)
manifold X,

• a closed, non-degenerate 3-form ω called the 2-plectic
structure and,

• a set of 1-forms on X called observables .



Motivation from Physics
Classical Strings

The classical theory of strings is a theory of 1-dimensional objects .
Previous work suggests that it can be described by:

• surfaces, or world-sheets in a smooth (finite dimensional)
manifold X,

• a closed, non-degenerate 3-form ω called the 2-plectic
structure and,

• a set of 1-forms on X called observables .

ω makes the observables into a Lie 2-algebra .

This is a kind of categorification of a Lie algebra, or a Lie algebra up
to homotopy .



2-plectic Geometry
2-plectic Structure

A 2-plectic structure on a smooth manifold X is a smooth 3-form ω

that is closed and non-degenerate :

dω = 0,

∀v ∈ TxX ω(v, ·, ·) = 0 ⇒ v = 0.

ω is also referred to as a multisymplectic 3-form .



2-plectic Geometry
2-plectic Structure

A 2-plectic structure on a smooth manifold X is a smooth 3-form ω

that is closed and non-degenerate :

dω = 0,

∀v ∈ TxX ω(v, ·, ·) = 0 ⇒ v = 0.

ω is also referred to as a multisymplectic 3-form .

Multisymplectic geometry goes back as far as Weyl’s work on the
calculus of variations, and is still undergoing much development.

For example: Cantrijn, Ibort, and DeLeón (1998), Gotay, Isenberg,
Marsden, and Montgomery (1998), Forger, Paufler, and Römer
(2004), Hélein and Kouneiher (2004).



2-plectic Geometry
Examples of 2-plectic Manifolds

Example 1

Let M be a smooth manifold. Let X be the bundle Λ2T∗M
π
→ M.

Then X has a canonical 2-form :

θ(v1, v2) = x(dπ(v1), dπ(v2)),

where v1, v2 are tangent vectors at the point x ∈ X.



2-plectic Geometry
Examples of 2-plectic Manifolds

Example 1

Let M be a smooth manifold. Let X be the bundle Λ2T∗M
π
→ M.

Then X has a canonical 2-form :

θ(v1, v2) = x(dπ(v1), dπ(v2)),

where v1, v2 are tangent vectors at the point x ∈ X.

ω = dθ is a 2-plectic structure on X



2-plectic Geometry
Examples of 2-plectic Manifolds

Example 2

Any compact simple Lie group G is a 2-plectic manifold with
2-plectic form:

νk(v1, v2, v3) = k〈v1, [v2, v3]〉

where vi are tangent vectors in g, 〈·, ·〉 is the Killing form, and k is
non-zero.

• νk is invariant under left and right translations and therefore
closed.

• νk is non-degenerate since g is simple.



2-plectic Geometry
Hamiltonian 1-forms

Let (X, ω) be a 2-plectic manifold. From the non-degeneracy of ω we
have an injective map

TxX → Λ2T∗

x X

v 7→ ω(v, ·, ·).

(Not an isomorphism in general.)
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Let (X, ω) be a 2-plectic manifold. A 1-form α on X is Hamiltonian if
there exists a vector field vα on X such that

dα = −ω(vα, ·, ·).

We denote the vector space of Hamiltonian 1-forms as Ham (X).



2-plectic Geometry
Hamiltonian 1-forms

Let (X, ω) be a 2-plectic manifold. From the non-degeneracy of ω we
have an injective map

TxX → Λ2T∗

x X

v 7→ ω(v, ·, ·).

(Not an isomorphism in general.)

Definition
Let (X, ω) be a 2-plectic manifold. A 1-form α on X is Hamiltonian if
there exists a vector field vα on X such that

dα = −ω(vα, ·, ·).

We denote the vector space of Hamiltonian 1-forms as Ham (X).

We say vα is the Hamiltonian vector field corresponding to α.



2-plectic Geometry
The bracket on Ham (X)

We can define a bracket of Hamiltonian 1-forms similar to the
Poisson bracket of functions in the symplectic case:

Definition
Given α, β ∈ Ham (X), the bracket {α, β} is the 1-form given by

{α, β} = ω(vα, vβ , ·).



2-plectic Geometry
The bracket on Ham (X)

We can define a bracket of Hamiltonian 1-forms similar to the
Poisson bracket of functions in the symplectic case:

Definition
Given α, β ∈ Ham (X), the bracket {α, β} is the 1-form given by

{α, β} = ω(vα, vβ , ·).

Ham (X) is closed under the bracket , but...

(Ham (X) , {·, ·}) is not a Lie algebra .



2-plectic Geometry
The bracket on Ham (X)

The bracket {·, ·} is antisymmetric :

{α, β} = ω(vα, vβ , ·) = −ω(vβ , vα, ·) = −{β, α} ,



2-plectic Geometry
The bracket on Ham (X)

The bracket {·, ·} is antisymmetric :

{α, β} = ω(vα, vβ , ·) = −ω(vβ , vα, ·) = −{β, α} ,

but does not satisfy the Jacobi identity :

{α, {β, γ}} + dJα,β,γ = {{α, β} , γ} + {β, {α, γ}} ,

where Jα,β,γ = ω(vα, vβ , vγ).

The identity holds only “up to” an exact 1-form .



Lie 2-algebras
Definition of a Lie 2-algebra

Definition (Baez-Crans)
A Lie 2-algebra is a 2-term chain complex of vector spaces

L = (L0
d
← L1) equipped with the following structure:

• a antisymmetric chain map [·, ·] : L ⊗ L → L called the bracket ,

• an antisymmetric chain homotopy J : L ⊗ L ⊗ L → L from the
chain map

x ⊗ y ⊗ z 7−→ [x, [y, z]],

to the chain map

x ⊗ y ⊗ z 7−→ [[x, y], z] + [y, [x, z]]

called the Jacobiator .



Lie 2-algebras
Definition of a Lie 2-algebra

In addition, the Jacobiator is required to satisfy:

[x, J(y, z, w)] + J(x, [y, z], w) + J(x, z, [y, w]) + [J(x, y, z), w]

+[z, J(x, y, w)] = J(x, y, [z, w]) + J([x, y], z, w)

+[y, J(x, z, w)] + J(y, [x, z], w) + J(y, z, [x, w]).

See Baez and Crans (arXiv:math/0307263)



Lie 2-algebras
Definition of a Lie 2-algebra

In addition, the Jacobiator is required to satisfy:

[x, J(y, z, w)] + J(x, [y, z], w) + J(x, z, [y, w]) + [J(x, y, z), w]

+[z, J(x, y, w)] = J(x, y, [z, w]) + J([x, y], z, w)

+[y, J(x, z, w)] + J(y, [x, z], w) + J(y, z, [x, w]).

See Baez and Crans (arXiv:math/0307263)

Another name for a Lie 2-algebra is a 2-term L∞ or sh Lie algebra.



Lie 2-algebras from 2-plectic Structures
The Chain Complex

Given a 2-plectic manifold (X, ω), we can construct a Lie 2-algebra
with the underlying 2-term complex:

L = Ham (X)
d
← C∞ (X)

Ham (X) is the space of degree 0 chains, C∞ (X) is the space of
degree 1 chains, and d is the exterior derivative of functions.



Lie 2-algebras from 2-plectic Structures
The Chain Complex

Given a 2-plectic manifold (X, ω), we can construct a Lie 2-algebra
with the underlying 2-term complex:

L = Ham (X)
d
← C∞ (X)

Ham (X) is the space of degree 0 chains, C∞ (X) is the space of
degree 1 chains, and d is the exterior derivative of functions.

Note that any exact form is Hamiltonian , with 0 as its Hamiltonian
vector field.

The bracket {·, ·} can be extended from Ham (X) ⊗ Ham (X) to L ⊗ L
by setting it to the zero map in all degrees other than 0.



Lie 2-algebras from 2-plectic Structures
The Lie 2-algebra of Hamiltonian 1-forms

Theorem
If (X, ω) is a 2-plectic manifold, there is a Lie 2-algebra L(X, ω) where:

• the space of 0-chains is Ham (X),

• the space of 1-chains is C∞ (X),

• the differential is the exterior derivative d : C∞ (X) → Ham (X),

• the bracket is {·, ·},

• the Jacobiator is the linear map
J : Ham (X) ⊗ Ham (X) ⊗ Ham (X) → C∞ (X) defined by
Jα,β,γ = ω(vα, vβ , vγ).



Lie 2-algebras from 2-plectic Structures
Some Remarks

Dmitry Roytenberg has extended the Baez-Crans definition to include
Lie 2-algebras whose brackets only satisfy antisymmetry up to
isomorphism . (Roytenberg arXiv:0712.3461 [math.QA])
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Any 2-plectic manifold also gives rise to a Lie-2 algebra L′(X, ω)
whose bracket satisfies the Jacobi identity but satisfies antisymmetry
up to an exact 1-form .
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Lie 2-algebras from 2-plectic Structures
Some Remarks

Dmitry Roytenberg has extended the Baez-Crans definition to include
Lie 2-algebras whose brackets only satisfy antisymmetry up to
isomorphism . (Roytenberg arXiv:0712.3461 [math.QA])

Any 2-plectic manifold also gives rise to a Lie-2 algebra L′(X, ω)
whose bracket satisfies the Jacobi identity but satisfies antisymmetry
up to an exact 1-form .

L′(X, ω) has the same underlying chain complex as L(X, ω):

Ham (X)
d
← C∞ (X). Its bracket is defined by:

{α, β}
′

= Lvα
β.

{α, β}
′

= −{β, α}
′

+ d (α(vβ) + β(vα)) .



Lie 2-algebras from 2-plectic Structures
Some Remarks

{α, β} and {α, β}
′ are related by an exact 1-form :

{α, β}
′

= {α, β} + dβ(vα).
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Lie 2-algebras from 2-plectic Structures
Some Remarks

{α, β} and {α, β}
′ are related by an exact 1-form :

{α, β}
′

= {α, β} + dβ(vα).

Roughly, a Lie 2-algebra homomorphism is a chain map that
preserves the bracket only up to “coherent chain homotopy”.

The Lie 2-algebra L′(X, ω) is isomorphic to L(X, ω) (in the sense of
Roytenberg).

Note that the brackets {·, ·} and {·, ·}
′ are equal in the case of

symplectic geometry .



Compact Simple Lie Groups
The 2-plectic Structure

Now we consider Lie 2-algebras on compact simple Lie groups.

Let G be a compact simple Lie group with Lie algebra g. Let 〈·, ·〉 be
the Killing form on g and k 6= 0.

Then (G, νk) is a 2-plectic manifold with 2-plectic form

νk(v1, v2, v3) = k〈v1, [v2, v3]〉

where vi are tangent vectors in g.



Compact Simple Lie Groups
The 2-plectic Structure

Now we consider Lie 2-algebras on compact simple Lie groups.

Let G be a compact simple Lie group with Lie algebra g. Let 〈·, ·〉 be
the Killing form on g and k 6= 0.

Then (G, νk) is a 2-plectic manifold with 2-plectic form

νk(v1, v2, v3) = k〈v1, [v2, v3]〉

where vi are tangent vectors in g.

Let g
∗ be the set of left invariant 1-forms on G.

Let Ham (G)
L be the set of left invariant Hamiltonian 1-forms .



Compact Simple Lie Groups
Left-Invariant Hamiltonian 1-forms

Theorem
Every left invariant 1-form on (G, νk) is Hamiltonian. That is,
Ham (G)

L
= g

∗.

If α is a left-invariant Hamiltonian 1-form, then its Hamiltonian vector
field vα is an element of the Lie algebra g and:

α = k〈vα, ·〉.

Since the left-invariant smooth functions are constants, we have a
2-term chain complex:

LG = g
∗ d=0
←− R.



Compact Simple Lie Groups
Lie 2-algebras

The bracket {α, β} = k〈vα, [vβ , ·]〉 of any two left invariant
Hamiltonian 1-forms is left invariant .



Compact Simple Lie Groups
Lie 2-algebras

The bracket {α, β} = k〈vα, [vβ , ·]〉 of any two left invariant
Hamiltonian 1-forms is left invariant .

Theorem
If G is a compact simple Lie group with Lie algebra g and k 6= 0, there
is a Lie 2-algebra L(G, k) where:

• the space of 0-chains is g
∗,

• the space of 1-chains is R,

• the differential is the zero map d = 0,

• the bracket is {·, ·},

• the Jacobiator is the linear map J : g
∗ ⊗ g

∗ ⊗ g
∗ → R defined by

Jα,β,γ = k〈vα, [vβ , vγ ]〉.



Compact Simple Lie Groups
The string Lie 2-algebra

Given a simple Lie algebra g and k ∈ R we can construct a Lie
2-algebra gk called the string Lie 2-algebra where

• the space of 0-chains is g,

• the differential is the zero map d = 0,

• the space of 1-chains is R,

• the bracket is the Lie bracket [·, ·] in degree 0 and trivial
otherwise,

• the Jacobiator is the 3-cocycle j(x, y, z) = k〈x, [y, z]〉 ∈ H3 (g, R).



Compact Simple Lie Groups
The string Lie 2-algebra

Given a simple Lie algebra g and k ∈ R we can construct a Lie
2-algebra gk called the string Lie 2-algebra where

• the space of 0-chains is g,

• the differential is the zero map d = 0,

• the space of 1-chains is R,

• the bracket is the Lie bracket [·, ·] in degree 0 and trivial
otherwise,

• the Jacobiator is the 3-cocycle j(x, y, z) = k〈x, [y, z]〉 ∈ H3 (g, R).

Theorem
If G is a compact simple Lie group with Lie algebra g and k 6= 0, the
Lie 2-algebra L(G, k) is isomorphic to gk.



Future work

• n-plectic?

• Can we extend our Lie 2-algebra to something like a Poisson
algebra?

• Quantization
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