VB-algebroids and representation theory of Lie algebroids

Alfonso Gracia-Saz (joint with Rajan Mehta)

to appear in Advances in Mathematics

July 10, 2009

■ Let $A \to M$ be a Lie algebroid (LA) with anchor $\rho_A : A \to TM$. Let $E \rightarrow M$ be a vector bundle (VB).

■ Let $A \to M$ be a Lie algebroid (LA) with anchor $\rho_A : A \to TM$. Let $E \to M$ be a vector bundle (VB).

Definitions:

■ An A–connection on E is a smooth map ∇ such that:

$$\nabla: \Gamma(A) \times \Gamma(E) \to \Gamma(E)$$
$$(X , s) \mapsto \nabla_X s$$

- $\nabla_X s$ is $\mathcal{C}^{\infty}(M)$ -linear on X,
- $\nabla_X(fs) = f \nabla_X s + \rho_A(X)(f)s \text{ for } f \in \mathcal{C}^{\infty}(M).$

■ Let $A \to M$ be a Lie algebroid (LA) with anchor $\rho_A : A \to TM$. Let $E \to M$ be a vector bundle (VB).

Definitions:

- - $\nabla_X s$ is $\mathcal{C}^{\infty}(M)$ -linear on X,
- The *curvature* of ∇ is the map $F \in \Lambda^2\Gamma(A^*) \otimes \operatorname{End}(E)$ defined by

$$F_{X,Y} = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}$$

An A-representation on E, or a flat A-connection on E, is a connection with zero curvature.

- Let $A \to M$ be a Lie algebroid (LA) with anchor $\rho_A : A \to TM$. Let $E \to M$ be a vector bundle (VB).
- Definitions:
 - - $\nabla_X s$ is $\mathcal{C}^{\infty}(M)$ -linear on X,
 - The *curvature* of ∇ is the map $F \in \Lambda^2\Gamma(A^*) \otimes \operatorname{End}(E)$ defined by

$$F_{X,Y} = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}$$

- An A-representation on E, or a flat A-connection on E, is a connection with zero curvature.
- **Problem:** There is no adjoint representation.

Algebroid cohomology

- Let $A \to M$ be a LA. Define A-forms: $\Omega^p(A) = \Lambda^p \Gamma(A^*)$.
- Define $d_A: \Omega^p(A) \to \Omega^{p+1}(A)$ by $d_A\omega(X_0,\ldots,X_p)=\sum_i(-1)^i\,\rho_A(X_i)\cdot\omega(\ldots,\widehat{X}_i,\ldots)$ for $X_i \in \Gamma(A)$ $+\sum_{i< i}(-1)^{i+j}\,\omega([X_i,X_j],X_0,\ldots,\widehat{X}_i,\ldots,\widehat{X}_j,\ldots)$ $\omega \in \Omega^p(A)$
 - When A = TM, this is de Rham cohomology,

Algebroid cohomology

- Let $A \to M$ be a LA. Define A-forms: $\Omega^p(A) = \Lambda^p \Gamma(A^*)$.
- Define $d_A: \Omega^p(A) \to \Omega^{p+1}(A)$ by $d_A\omega(X_0,\ldots,X_p)=\sum_i(-1)^i \rho_A(X_i)\cdot\omega(\ldots,\widehat{X}_i,\ldots)$ for $X_i \in \Gamma(A)$ $\omega \in \Omega^p(A)$

$$+\sum_{i\leq j}(-1)^{i+j}\,\omega([X_i,X_j],X_0,\ldots,\widehat{X}_i,\ldots,\widehat{X}_j,\ldots)\qquad \omega\in\Omega^p(A)$$

- When A = TM, this is de Rham cohomology,
- It satisfies $d_A^2 = 0$,
- and a Leibnitz rule; for $\omega_1, \omega_2 \in \Omega(A)$,

$$d_A(\omega_1 \wedge \omega_2) = d_A \omega_1 \wedge \omega_2 + (-1)^{|\omega_1|} \omega_1 \wedge d_A \omega_2. \tag{1}$$

Algebroid cohomology

- Let $A \to M$ be a LA. Define A-forms: $\Omega^p(A) = \Lambda^p \Gamma(A^*)$.
- Define $d_A: \Omega^p(A) \to \Omega^{p+1}(A)$ by $d_A\omega(X_0,\ldots,X_p)=\sum_i(-1)^i \rho_A(X_i)\cdot\omega(\ldots,\widehat{X}_i,\ldots)$ for $X_i \in \Gamma(A)$ $+\sum_{i}(-1)^{i+j}\,\omega([X_i,X_j],X_0,\ldots,\widehat{X}_i,\ldots,\widehat{X}_j,\ldots)$ $\omega \in \Omega^p(A)$
 - When A = TM, this is de Rham cohomology,
 - It satisfies $d_A^2 = 0$,
 - and a Leibnitz rule; for $\omega_1, \omega_2 \in \Omega(A)$,

$$d_A(\omega_1 \wedge \omega_2) = d_A \omega_1 \wedge \omega_2 + (-1)^{|\omega_1|} \omega_1 \wedge d_A \omega_2. \tag{1}$$

Thm: Let $A \to M$ be a VB.

- Lie algebroid structures on $A \rightarrow M$, and
- degree 1 operators d on $\Omega^{\bullet}(A)$ satisfying (1) and such that $d^2 = 0$.

Algebroid cohomology, with values in a vector bundle

- Let $A \to M$ be a LA. Let $E \to M$ be a VB. Define *E*–valued *A*–forms: $\Omega^p(A; E) := \Omega^p(A) \otimes_{\mathcal{C}^{\infty}(M)} \Gamma(E)$.
- Let ∇ be an A-connection on E.

$$\nabla: \Omega^0(A; E) \to \Omega^1(A; E).$$

Algebroid cohomology, with values in a vector bundle

- Let $A \to M$ be a LA. Let $E \to M$ be a VB. Define *E-valued A-forms*: $\Omega^p(A; E) := \Omega^p(A) \otimes_{\mathcal{C}^{\infty}(M)} \Gamma(E)$.
- Let ∇ be an A-connection on E.

 $\nabla: \Omega^0(A; E) \to \Omega^1(A; E)$. Consider it as a map $D: \Omega^p(A; E) \to \Omega^{p+1}(A; E).$ It can be extended to satisfying a Leibnitz rule; for $\alpha \in \Omega(A)$, $\omega \in \Omega(A; E)$:

$$D(\alpha \wedge \omega) = (d_A \alpha) \wedge \omega + (-1)^{|\alpha|} \alpha \wedge (D\omega). \tag{2}$$

Algebroid cohomology, with values in a vector bundle

- Let $A \to M$ be a LA. Let $E \to M$ be a VB. Define E-valued A-forms: $\Omega^p(A; E) := \Omega^p(A) \otimes_{\mathcal{C}^{\infty}(M)} \Gamma(E)$.
- Let ∇ be an A-connection on E.

Consider it as a map $\nabla: \Omega^0(A;E) \to \Omega^1(A;E)$. It can be extended to $D: \Omega^p(A;E) \to \Omega^{p+1}(A;E)$. satisfying a Leibnitz rule; for $\alpha \in \Omega(A), \omega \in \Omega(A;E)$:

$$D(\alpha \wedge \omega) = (d_A \alpha) \wedge \omega + (-1)^{|\alpha|} \alpha \wedge (D\omega). \tag{2}$$

- **Thm:** There is a one-to-one correspondence between:
 - A-connections ∇ on E, and
 - degree 1 operators D on $\Omega^{\bullet}(A; E)$ satisfying (2).

Moreover, ∇ is flat iff $D^2 = 0$.

Def: Let $A \rightarrow M$ be a LA. Let $E \to M$ be a VB. An A-representation on E is a degree 1 operator D on $\Omega^{\bullet}(A; E)$ satisfying (2) and such that $D^2 = 0$.

$$\Omega^n(A;E) = \Omega^n(A) \otimes \Gamma(E)$$

■ **Def:** Let $A \to M$ be a LA. Let $\mathcal{E} \to M$ be a \mathbb{Z} -graded VB: $\mathcal{E} = \bigoplus_{n \in \mathbb{Z}} E^n$. An A-superrepresentation on \mathcal{E} is a degree 1 operator D on $\Omega^{\bullet}(A; \mathcal{E})$ satisfying (2) and such that $D^2 = 0$.

$$\Omega^n(A;\mathcal{E}) = \bigoplus_{p+q=n} \Omega^p(A) \otimes \Gamma(E^q)$$

6 / 15

■ **Def:** Let $A \rightarrow M$ be a LA.

Let
$$\mathcal{E} \to M$$
 be a \mathbb{Z} -graded VB: $\mathcal{E} = \bigoplus_{n \in \mathbb{Z}} E^n$.

An A-superrepresentation on \mathcal{E} is a degree 1 operator D on $\Omega^{\bullet}(A; \mathcal{E})$ satisfying (2) and such that $D^2 = 0$.

for D on Ω (A, C) satisfying (2) and such that D = 0

$$\Omega^n(A;\mathcal{E}) = \bigoplus_{p+q=n} \Omega^p(A) \otimes \Gamma(E^q)$$

Notes:

- When $\mathcal{E} = E^0$, we recover representations.
- When A = TM, these are Quillen's flat superconnections.
- Superrepresentations are called representations up to homotopy by Arias Abad and Crainic.

Example: case $\mathcal{E} = E^0 \oplus E^1$

A degree 1 operator on $\Omega(A; \mathcal{E})$ has four homogeneous components:

$$D = D^0 + D^1 + \partial + \Omega.$$

$$\blacksquare \ D^1: \ \Omega^p(A,E^1) \to \Omega^{p+1}(A,E^1) \qquad \quad \blacksquare \ \Omega: \ \Omega^p(A,E^1) \to \Omega^{p+2}(A,E^0)$$

7 / 15

Example: case $\mathcal{E} = E^0 \oplus E^1$

A degree 1 operator on $\Omega(A; \mathcal{E})$ has four homogeneous components:

$$D = D^0 + D^1 + \partial + \Omega.$$

$$\blacksquare \ D^1: \ \Omega^p(A,E^1) \to \Omega^{p+1}(A,E^1) \qquad \quad \blacksquare \ \Omega: \ \Omega^p(A,E^1) \to \Omega^{p+2}(A,E^0)$$

Thm: An *A*–superrepresentation on $E^0 \oplus E^1$ is equivalent to:

- *A*–connections ∇^i on E^i , for i = 0, 1,
- **a** morphism of VBs $\partial: E^0 \to E^1$,
- a $C^{\infty}(M)$ -linear operator $\Omega \in \Lambda^2\Gamma(A^*) \otimes \operatorname{Hom}(E^1, E^0)$

satisfying, for $X, Y \in \Gamma(A)$, and with F^i the curvature of ∇^i :

$$\begin{array}{ll} \partial \circ \nabla_X^0 = \nabla_X^1 \circ \partial & F_{X,Y}^0 = \Omega_{X,Y} \circ \partial \\ D^0 \Omega + \Omega D^1 = 0 & F_{X,Y}^1 = \partial \circ \Omega_{X,Y} \end{array}$$

The adjoint superrepresentation

Let $A \rightarrow M$ be a LA.

Choose a TM-connection on A

$$\tilde{\nabla}: \Gamma(TM) \times \Gamma(A) \to \Gamma(A)$$

Then we can define an A-superrepresentation on $\mathcal{E} = A[0] \oplus TM[1]$:

The adjoint superrepresentation

Let $A \rightarrow M$ be a LA.

Choose a TM-connection on A

$$\tilde{\nabla}: \Gamma(TM) \times \Gamma(A) \to \Gamma(A)$$

Then we can define an *A*–superrepresentation on $\mathcal{E} = A[0] \oplus TM[1]$:

$$lacksquare
abla^0: \Gamma(A) imes \Gamma(A)
ightarrow \Gamma(A) \qquad \qquad
abla^0_X Y := [X,Y]_A + \tilde{
abla}_{
ho_A(Y)} X$$

$$\partial: A \to TM$$
 $\partial = -\rho_A$

$$\Omega_{X,Y}\phi = [\tilde{\nabla}_{\phi}X, Y]_A - [X, \tilde{\nabla}_{\phi}Y]_A - \tilde{\nabla}_{\phi}[X, Y]_A - \tilde{\nabla}_{\nabla_X^1 \phi}Y + \tilde{\nabla}_{\nabla_Y^1 \phi}X$$
for $X, Y \in \Gamma(A), \quad \phi \in \Gamma(TM)$.

The adjoint superrepresentation

Let $A \rightarrow M$ be a LA.

Choose a TM-connection on A

$$\tilde{\nabla}: \Gamma(TM) \times \Gamma(A) \to \Gamma(A)$$

Then we can define an *A*–superrepresentation on $\mathcal{E} = A[0] \oplus TM[1]$:

$$lacksquare
abla^0: \Gamma(A) imes \Gamma(A)
ightarrow \Gamma(A) \qquad \qquad
abla^0_X Y := [X,Y]_A + \tilde{
abla}_{
ho_A(Y)} X$$

$$\partial: A \to TM \qquad \qquad \partial = -\rho_A$$

$$\Omega_{X,Y}\phi = [\tilde{\nabla}_{\phi}X, Y]_A - [X, \tilde{\nabla}_{\phi}Y]_A - \tilde{\nabla}_{\phi}[X, Y]_A - \tilde{\nabla}_{\nabla_X^1\phi}Y + \tilde{\nabla}_{\nabla_Y^1\phi}X$$
for $X, Y \in \Gamma(A), \quad \phi \in \Gamma(TM)$.

It depends on the choice of ∇ . **Problem:**

3.- Double vector bundles

■ **Def 1**: A *double vector bundle* (DVB) is a "vector bundle-object" in the category of vector bundles.

3.- Double vector bundles

- **Def 1**: A double vector bundle (DVB) is a "vector bundle-object" in the category of vector bundles.
- **Def 2:** A DVB is a commutative diagram like this one, where every edge is a vector bundle, together with compatibility conditions.

3.- Double vector bundles

- **Def 1**: A *double vector bundle* (DVB) is a "vector bundle-object" in the category of vector bundles.
- **Def 2:** A DVB is a commutative diagram like this one, where every edge is a vector bundle, together with compatibility conditions.

Examples: Let $A, E, C \rightarrow M$ be VBs. Then the following are DVBs:

$$T^*A \cong T^*A^* \longrightarrow A^*$$

$$\downarrow \qquad \qquad \downarrow$$

$$A \longrightarrow M$$

- **Lemma/Def:** Let *D* be a DVB.
 - Define $C := \ker q_A^D \cap \ker q_F^D$.
 - ightharpoonup C o M is naturally a VB, called the *core*.

- **Lemma/Def:** Let *D* be a DVB.
 - Define $C := \ker q_A^D \cap \ker q_E^D$.
 - $C \rightarrow M$ is naturally a VB, called the *core*.
 - A decomposition of D is an isomorphism of DVBs $D \xrightarrow{\cong} A \times E \times C.$

- **Lemma/Def:** Let *D* be a DVB.
 - Define $C := \ker q_A^D \cap \ker q_E^D$.
 - $C \rightarrow M$ is naturally a VB, called the *core*.
 - A decomposition of D is an isomorphism of DVBs $D \xrightarrow{\cong} A \times E \times C$

■ **Lemma:** Every DVB has a decomposition, but not a canonical one.

- **Lemma/Def:** Let *D* be a DVB.
 - Define $C := \ker q_A^D \cap \ker q_E^D$.
 - $C \rightarrow M$ is naturally a VB, called the *core*.
 - A decomposition of D is an isomorphism of DVBs $D \xrightarrow{\cong} A \times F \times C$

- **Lemma:** Every DVB has a decomposition, but not a canonical one.
- **Example:** Consider the DVB TA, for any VB $A \xrightarrow{q} M$:

- decompositions of TA, and
- \blacksquare TM-connections on A.

Def 1: A VB-algebroid is a "vector-bundle-object" in the category of Lie algebroids.

- **Def 1**: A VB-algebroid is a "vector-bundle-object" in the category of Lie algebroids.
- **Def 2:** A VB-algebroid is a commutative diagram like this one, where:
 - vertical arrows are VBs,
 - horizontal arrows are LAs,
 - plus compatibility conditions.

- **Def 1**: A VB-algebroid is a "vector-bundle-object" in the category of Lie algebroids.
- **Def 2:** A VB-algebroid is a commutative diagram like this one, where:
 - vertical arrows are VBs.
 - horizontal arrows are LAs,
 - plus compatibility conditions.
- **Examples:** Let $E \to M$ be a VB, and $A \to M$ be a LA. Then the following are VB-algebroids:

- **Def 1**: A VB-algebroid is a "vector-bundle-object" in the category of Lie algebroids.
- **Def 2:** A VB-algebroid is a commutative diagram like this one, where:
 - vertical arrows are VBs.
 - horizontal arrows are LAs,
 - plus compatibility conditions.
- **Examples:** Let $E \to M$ be a VB, and $A \to M$ be a LA. Then the following are VB-algebroids:

- **Def 1**: A VB-algebroid is a "vector-bundle-object" in the category of Lie algebroids.
- **Def 2:** A VB-algebroid is a commutative diagram like this one, where:
 - vertical arrows are VBs,
 - horizontal arrows are LAs,
 - plus compatibility conditions.

Examples: Let $E \to M$ be a VB, and $A \to M$ be a LA. Then the following are VB-algebroids:

■ Thm: [GS, MEHTA]

Let $A \to M$ be a LA. Let $E, C \to M$ be VBs.

- $\mathbf{V}\mathcal{B}$ -algebroid structures on the DVB $A \times E \times C$, and
- *A*–superrepresentations on $C[0] \oplus E[1]$.

■ **Thm:** [GS, MEHTA]

Let $A \to M$ be a LA. Let $E, C \to M$ be VBs.

- VB-algebroid structures on the DVB $A \times E \times C$, and
- *A*–superrepresentations on $C[0] \oplus E[1]$.
- Cor: [GS, MEHTA]
 - Defining a VB-algebroid structure on the DVB D is, ...

■ **Thm:** [GS, MEHTA]

Let $A \rightarrow M$ be a LA. Let $E, C \rightarrow M$ be VBs.

- VB-algebroid structures on the DVB $A \times E \times C$, and
- $A \times E \times C$, and $C \setminus C$ A—superrepresentations on $C[0] \oplus E[1]$. $A \longrightarrow A$
- Cor: [GS, MEHTA]
 - Defining a VB-algebroid structure on the DVB D is, ...
 - \blacksquare ... after choosing a decomposition of D, ...

■ Thm: [GS, MEHTA]

Let $A \to M$ be a LA. Let $E, C \to M$ be VBs.

There is a one-to-one correspondence between:

- $\mathbf{V}\mathcal{B}$ -algebroid structures on the DVB $A \times E \times C$, and
- *A*–superrepresentations on $C[0] \oplus E[1]$.

- Cor: [GS, MEHTA]
 - Defining a VB-algebroid structure on the DVB D is, ...
 - \blacksquare ... after choosing a decomposition of D, \ldots

 $D \xrightarrow{\cong} A \times E \times C$

$$D \xrightarrow{\cong} A \times E \times C$$

• ... equivalent to defining an A-superrepresentation on $C[0] \oplus E[1]$.

Conclusions

Analogy:

VB-algebroid linear map choice of decomposition choice of basis superrepresentation matrix

Conclusions

Analogy:

$$\mathcal{VB}$$
-algebroid \longleftrightarrow linear map choice of decomposition \longleftrightarrow choice of basis superrepresentation \longleftrightarrow matrix

Conclusion: VB-algebroids are the *intrinsic* objects that correspond to superrepresentations of Lie algebroids on two consecutive degrees.

Conclusions

Analogy:

$$\mathcal{VB}$$
-algebroid \longleftrightarrow linear map choice of decomposition \longleftrightarrow choice of basis superrepresentation \longleftrightarrow matrix

- **Conclusion:** VB-algebroids are the *intrinsic* objects that correspond to superrepresentations of Lie algebroids on two consecutive degrees.
- The adjoint superrepresentation.

The adjoint superrepresentation of the LA $A \rightarrow M$ corresponds to the VB-algebroid TA

After choosing a decomposition of TA (or, equivalently, a TM-connection on A) it is described by an A-superrepresentation on $A[0] \oplus TM[1]$.

Thanks

Thanks.

