
AN AUTOMATA-THEORETIC APPROACH TO THE WORD PROBLEM
FOR ω-TERMS OVER R

JORGE ALMEIDA AND MARC ZEITOUN

ABSTRACT. This paper studies the pseudovarietyR of all finite R-trivial semigroups. We give a representation of
pseudowords overR by infinite trees, calledR-trees. Then we show that a pseudoword is anω-term if and only if its
associated tree is regular (i.e., it can be folded into a finite graph), or equivalently, if theω-term has a finite number of
tails. We give a linear algorithm to compute a compact representation of theR-tree forω-terms, which yields a linear
solution of the word problem forω-terms overR. We finally exhibit a basis for theω-variety generated byR and we
show that there is no finite basis. Several results can be compared to recent work of Bloom and Choffrut on long words.

1. INTRODUCTION

The main contribution of this paper is the solution of a word problem overR, the pseudovariety of all finiteR-
trivial semigroups. This pseudovariety corresponds, in Eilenberg’s correspondence, to disjoint unions of languages
of the formA∗

0a1A
∗
1a2 . . . anA

∗
n, where theai’s are letters andai /∈ Ai−1 for 1 ≤ i ≤ n. Also, finiteR-trivial

semigroups are the divisors of transition semigroups of theso-calledvery weakautomata, that is, automata whose
state set is partially ordered and the transition function does not decrease the state. They can even be characterized
as the divisors ofextensiveautomata, that is, very weak automata where the order on states is total.

Given two terms built from letters of an alphabetA using the concatenation and theω-power, we show how to
decide in linear time whether these terms coincide over allA-generated elements ofR, with the usual interpretation
of theω-power in semigroups. We also characterize the set of pseudowords—also known as implicit operations—
over R which can be represented by suchω-terms. SinceR satisfies the identity inω-termsxω−1 = xω , all
results of this paper can be formulated either forω-terms, or forκ-terms, whereκ = {_ · _, _ω−1} is the implicit
signature consisting of the semigroup multiplication and the unary(ω − 1)-power. We shall state most results
using the signature{_ · _, _ω}, but this is mainly a matter of style.

The motivation of this work is theκ-tameness property forR. Historically, the notion of tameness was dis-
covered in attempting to find general decidability properties of pseudovarieties which might be preserved under
taking semidirect products [5]. It remains open whether it does indeed play such a role, although under certain
finiteness hypotheses it has been shown to do so [2].

Proving theκ-tameness of a pseudovarietyV consists in solving two subproblems. The first one is theκ-word
problem, for which this paper gives an efficient solution. Informally, the second question is whether equation
systems1 with rational constraints having a solution in any semigroup of V also have auniform solution inκ-
terms, satisfying the same constraints. This property has proven to be robust and helpful for the solution of the
membership problem (seee.g.[4], where theκ-tameness ofR is used to decide joins involvingR.) Moreover, ifV
enjoys it, thenV has decidable pointlikes, an important property of pseudovarieties [5, 20].

Another motivation for this study comes from the related work of S. Bloom and Ch. Choffrut [11]. Given
a finite setA, the collection of all finite or countably infiniteA-labeled posets can be endowed with a binary
concatenation operation of posets _·_, and with a unaryω-power _ω. Bloom and Choffrut recently proved in [11]
that the Birkhoff variety generated by these algebras is notfinitely based, and that it is defined by the following

2000Mathematics Subject Classification.20M05, 20M07, 20M35.
Key words and phrases.Semigroup, pseudovariety, word problem, automata minimization, pseudoword, omega-term, identity basis.
This work was done in part while the authors were visiting theCentro Internacional de Matemática, in Coimbra, Portugal. Financial sup-

port ofFundação Calouste Gulbenkian(FCG), FCT,Faculdade de Ciências da Universidade de Lisboa(FCUL) andReitoria da Universidade
do Portois gratefully acknowledged. This work was also partly supported by the PESSOAFrench-Portuguese project Egide-Grices 11113YM
Automata, profinite semigroups and symbolic dynamics.
Jorge Almeida:Work supported, in part, byFundação para a Ciência e a Tecnologia(FCT) through theCentro de Matemática da Universi-
dade do Porto, by the FCT and POCTI approved project POCTI/ 32817/MAT/2000 which is partly funded by the European Community Fund
FEDER, and by the INTAS grant #99-1224.

1Strictly speaking, if the equations are given by arbitraryκ-terms, the property is named completeκ-tameness, whereasκ-tameness stands
for a restricted class of equations.

1

set of identities.










(x · y) · z = x · (y · z)

(xr)ω = xω , r ≥ 2

(xy)ω = x(yx)ω

They also studied ordinal words, that is, labeled ordinals.Among them, they characterized labeled ordinals built
from letters ofA using the operations _·_ and _ω: these are exactly the ordinals of length less thanωω and having
a finite number of tails (suffixes, in some sense). Finally, they proved that the word problem for twoω-termsu, v
can be solved in timeO(|u|2|v|2), where|u| and|v| denote the lengths ofu andv.

Motivated by these results and by the fact that pseudowords overR are labeled ordinals [7], we show that:

– the word problem forω-termsu, v overR and on an alphabetA can be solved in timeO
(

|A|(|u|+ |v|)
)

, using
automata-based techniques. More specifically, we can compute for anyω-termu an automatonA(u) of size
|A||u|. Two terms are equal overR if and only if the associated automata recognize the same language. Due to
the specific form of these automata, this can again be tested in linear time;

– a pseudoword overR coincides with anω-term if and only if it has a finite number of distinguished suffixes
(resp. factors);

– the variety ofω-semigroups generated byR is not finitely based;
– we exhibit an infinite basis for this variety.

Although these results are very similar to those of [11], theinvolved word problems are different, and neither set
of results seems to directly imply the other one.

The paper is organized as follows. In Section 2, we set up the notation and we recall prerequisites on semi-
groups and pseudovarieties. In Section 3, we exhibit a sufficient condition for continuity of infinite products in
pro-R semigroups and we use it to associateR-trees andR-automata to pseudowords overR. These objects are
used in Section 4 to solve the word problem forω-terms overR and to derive several characterizations of pseu-
dowords having a representation as anω-term. We then exhibit a canonical form forω-terms overR, which can be
exponentially larger than the original term, in terms of thesize of the alphabet, but remains polynomially small, for
a fixed alphabet, in terms of the size of the minimalR-automaton of theω-term. Section 5 presents a linear-time
algorithm to compute the canonicalR-automaton associated to anω-term, defined in Section 3, thus proving that
the complexity of the word problem forω-terms overR is linear. We introduce in Section 6 a set of identities in
ω-terms. We prove, by a rather involved argument with variouslevels of nested inductions which uses several key
results from previous sections, that this set is a basis for theω-variety generated byR. We also show that this
ω-variety is not finitely based. It should be noted that a recursive basis forR was previously announced without
proof in [6]. It included our basis and two extra superfluous identities. Finally, we discuss some open problems in
Section 7.

2. PRELIMINARIES

We briefly recall notation in this section. We refer the reader to [2] for the notions of pseudovarieties, pro-
V semigroups and implicit signatures. We assume that the reader is acquainted with these notions, and is also
familiar with the basics of automata theory. See [16] for instance.

2.1. Notation. Words. Throughout this paper,A denotes a finite set. We write|A| for its cardinality. The free
semigroup (resp. the free monoid) generated byA is denoted byA+ (resp. byA∗). As usual, we writex∗ instead
of {x}∗. The length of a wordx ∈ A∗ is denoted by|x|. The empty word is denoted byε or 1. The number of
occurrences of a lettera ∈ A in x is denoted by|x|a. Finally, thecontentc(x) of x is the smallest subsetB of A
such thatx ∈ B∗. Given a languageL ⊆ A∗, we denote byL1 the languageL ∪ {1}.

Automata. We denote a (deterministic) automaton over an alphabetA by a tupleA = 〈V, δ, v0, F 〉, whereV is
the state set ofA, v0 ∈ V is its initial state,F ⊆ V is its set of final states andδ : V × A → V is its transition
function. We will often denote byv.a the stateδ(v, a) reached fromv by reading lettera, when this state exists.
We denote byv.L the set of all states reached fromv by reading a word ofL.

Functions. In the sequel, functions are assumed to be partial unless otherwise stated. LetX,Y denote sets. IfC
is a set of functions fromX to Y , and ifX ′ ⊆ X , then we setC(X ′) = {y ∈ Y | ∃f ∈ C, ∃x ∈ X ′, y = f(x)}.

For a functionf : X → Y , let dom(f) = {x ∈ X | f(x) is defined} denote its domain. Iff, g : X → Y are
two functions and ifx ∈ X , then we writef(x) = g(x) to mean thatx belongs to dom(f) if and only if it belongs
to dom(g) and if x ∈ dom(f), thenf(x) = g(x). Finally, letF be a set of functions fromX to itself. Abusing

2

notation, we denote again byF∗ the set{α1 ◦ · · · ◦ αn | n ≥ 0, αi ∈ F}. We will also often writefg instead of
f ◦ g andfg(x) instead off(g(x)).

Semigroups, Green relationR. Given a semigroupS, we letS1 be the semigroupS itself if it is a monoid, or the
disjoint unionS⊎{1}where1 acts as a neutral element otherwise. Given an elements of a finite semigroup (resp.
of a compact topological semigroup), the subsemigroup (resp. the closed subsemigroup) generated bys contains
a unique idempotent, denoted bysω. The set of idempotents of a semigroupS is denoted byE(S).

For any semigroupS, we denote by�R ⊆ S × S the relation such thats �R t if and only if there exists
u ∈ S1 such thats = tu. The equivalence relationR is defined bys R t ⇔ s �R t andt �R s. A semigroupS
is R-trivial if for all s, t ∈ S we haves R t⇒ s = t.

2.2. Background. Pseudovarieties.A semigrouppseudovarietyis a class of finite semigroups closed under tak-
ing subsemigroups, homomorphic images and finite direct products. In what follows,V denotes a pseudovariety.

We denote byS the pseudovariety of all finite semigroups. Given a semigroup S ∈ S, an elements of S and
an integerk ∈ Z, the sequence(sn!+k)n is defined for all sufficiently largen and eventually stabilizes, that is it
converges in the discrete topology. We denote bysω+k its limit.

A semigroupS is aperiodic if sω = sω+1 for all s ∈ S. We denote byA the pseudovariety of all finite
aperiodic semigroups. In the present paper, we focus on the pseudovarietyR of all finite R-trivial semigroups,
which is a subpseudovariety ofA. It is classical that a semigroupS is in R if and only if for all s, t ∈ S we have
(st)ω = (st)ωs.

Profinite and pro-V semigroups.In what follows, finite semigroups are all equipped with the discrete topology.
We say that a classH of homomorphisms from a semigroupS into semigroupsseparates pointsif for all distinct
elementss, t of S, there existsh ∈ H such thath(s) 6= h(t).

A topological semigroup is aprofinite semigroup(resp. apro-V semigroup) if it is a projective limit of finite
semigroups (resp. of semigroups ofV). It is well known that profinite semigroups are 0-dimensional (and hence
totally disconnected). More precisely, a pro-V semigroup is a compact semigroupS which is residually inV in
the sense that the class of all continuous homomorphisms fromS into members ofV separates points.

Since, in a finite semigroupS, the sequence(sn!+k)n>|k| converges fors ∈ S andk ∈ Z, the same is true
in every profinite semigroup. We denote the limit bysω+k. This extends the notation introduced above for finite
semigroups.

A profinite semigroupS is A-generatedif there exists a functionη : A → S such that the subsemigroup
generated byη(A) is dense inS. We say thatη is the generating function. Let2A be the set of all subsets of
A. Then,(2A,∪) is a finite semigroup. LetS be a profiniteA-generated semigroup, and letη : A → S be the
generating function. We say thatS has acontent functionif there exists a continuous homomorphismc : S → 2A

such thatcη(a) = {a} for all a ∈ A. If such a continuous homomorphism exists, then it is unique. It may then
be defined by the condition that, fora ∈ A ands ∈ S, a ∈ c(s) if and only if there is some factorization ofs in
whichη(a) is one of the factors.

Given a finite setA and a pseudovarietyV, there is afree pro-V semigroup onA, that is a pro-V semigroupS
endowed with a generating functionι : A → S such that, for every functionϕ : A → T into a pro-V semigroup
T , there exists a (unique) continuous homomorphismϕ̂ : S → T such thatϕ̂ ◦ ι = ϕ. It is immediate to verify
that such a pro-V semigroup is unique, up to isomorphism of topological semigroups respecting the choice of
generators; we denote itΩAV.

Thecanonical projection onV is the unique continuous homomorphismpV : ΩAS→ ΩAV determined by the
choice of generators.

Pseudowords and pseudoidentities.The elements ofΩAS are namedpseudowords(sometimes alsoimplicit
operationsor profinite words). For example, ifu ∈ ΩAS, thenuω is again a pseudoword.

A formal equality of the formu = v with u, v ∈ ΩAS for some finite setA is called apseudoidentity. It
is said to bevalid in a profinite semigroupS and we writeS |= u = v if ϕ(u) = ϕ(v) for every continuous
homomorphismϕ : ΩAS→ S. For instance, the pseudoidentityxω+1 = xω is valid in any aperiodic semigroup.
It is easy to check that the validity of a pseudoidentity in a finite semigroup is preserved under taking homomorphic
images, closed subsemigroups and finite direct products. Hence the class of all finite semigroups which verify all
members of a given setΣ of pseudoidentities is a pseudovariety, which is said to bedefinedby Σ. Conversely, by
Reiterman’s Theorem [18] every pseudovariety is defined by some set of pseudoidentities.

In the language of pseudoidentities, earlier definitions ofpseudovarieties which are important for this paper
may now be formulated as follows:A is defined byxω+1 = xω andR is defined by(xy)ωx = (xy)ω . Of course,

3

there are many other possible definitions of these pseudovarieties by means of pseudoidentities. For instance,R is
also defined by(xyz)ωy = (xyz)ω.

Implicit signatures and ω-terms. An implicit signature is a set of pseudowords overA containing the semigroup
multiplicationab, also denoted _·_. We will mainly work with the signature{_·_, _ω} consisting of the semigroup
multiplication and the unaryω-power. Anω-semigroup is an algebra over the signature{_ · _, _ω}. Each finite
semigroup has a natural interpretation as anω-semigroup, by interpretingsω as the unique idempotent of the
subsemigroup generated bys.

Given an alphabetA, we denote byΩωAV theV-freeω-semigroup overA, that is, theω-subsemigroup ofΩAS

generated byA. An ω-term overV is an element ofΩωAV. An ω-identity overV is a pair ofω-terms overV and an
ω-identityis anω-identity overS. We also denote byu = v theω-identity(u, v).

We call anω-terman element of the free term algebra generated byA over the signature{_·_, _ω}. An ω-term
over a pseudovarietyV has a (nonunique) representation as anω-term. Equality ofω-terms is denoted by≡. Given
anω-termw, its sizeor length|w| is defined inductively by|a| = 1 for a ∈ A, |uv| = |u|+ |v| and|uω| = |u|+1.

All these definitions can be reformulated for the canonical signatureκ = {_ · _, _ω−1} consisting of the
semigroup multiplication, and the unary(ω − 1)-power. This way, we can defineκ-terms andκ-identities (over
V), and theV-freeκ-semigroup overA, denotedΩκAV. If V is aperiodic, then anyκ-term coincides, inΩAV, with
theω-term obtained by replacing all(ω−1)-powers byω. SinceR is aperiodic, our results can also be formulated
in terms of the signatureκ.

A characterization of equality overR. The following is a simple unique factorization statement for pseudowords
which may be considered folklore. A proof is included for thesake of completeness.

Proposition 2.1. Letx, y, z, t ∈ ΩAS anda, b ∈ A be such thatxay = zbt. Suppose thata /∈ c(x) andb /∈ c(z).
If either

(a) c(x) = c(z), or
(b) c(xa) = c(zb),

thenx = z, a = b, andy = t.

Proof. Recall that the contentc(x) of x ∈ ΩAS is the projection ofx into 2A. By projection into the free left-zero
semigroup on 2 letters, we see that an element ofΩAS can only have one first letter. IfS ∈ S, thenS1 ∈ S.
In case(a), substituting by 1 all letters ofc(x), we obtainay′ = bt′ and soa = b by uniqueness of first letters.
In case(b), substituting 1 for all letters excepta andb, and assuminga 6= b, from uniqueness of first letters we
conclude that eithera /∈ c(z) or b /∈ c(x), which is in contradiction with(b). Hence in both cases,a = b, and(a)
holds.

Suppose next thatx 6= z. Then, there exists a positive integern and a continuous homomorphismϕ : ΩAS→
Tn into the semigroup of all transformations of{1, . . . , n} (acting on{1, . . . , n} on the right) such thatϕ(x) 6=
ϕ(z). Without loss of generality, we may assume that

(1) 1ϕ(x) = i 6= j = 1ϕ(z)

with {i, j} ∩ {2, 3} = ∅ and that the image underϕ of any letter fixes2 and3. Sincea /∈ c(x) ∪ c(z), we may
redefineϕ(a) without affecting (1) and we do so by lettingiϕ(a) = 2 andjϕ(a) = 3. Then1ϕ(xay) = 2 while
1ϕ(zbt) = 3, in contradiction with the hypothesis thatxay = zbt. Hencex = z.

Finally, suppose thaty 6= t. Then, for somen, there exists a continuous homomorphismϕ : ΩAS → Tn such
that 1ϕ(y) 6= 1ϕ(t) and the image underϕ of any letter fixes2. If we changeϕ(a) so that2ϕ(a) = 1, then
2ϕ(xa) = 1 and so2ϕ(xay) 6= 2ϕ(xat). Hencey = t. �

Following Proposition 2.1, we define theleft basic factorizationof w ∈ ΩAS as the unique triple(wl, a, wr) ∈
ΩAS1 ×A× ΩAS1 such that

– w = wlawr,
– c(wla) = c(w),
– a /∈ c(wl).

We denote byLBF(w) the left basic factorization ofw.

Lemma 2.2. Letw ∈ ΩκAS and let(wl, a, wr) be its left basic factorization. Thenwl andwr areκ-terms (and in
particular, they areω-terms overR).

Proof. We prove the result by induction on the pair(c(w), |w|) where2A × N is ordered lexicographically. If
w ∈ A, the result holds. Ifw = xω−1 and if the left basic factorization ofx is (xl, a, xr) with xl, xr ∈ ΩκAR, then
the left basic factorization ofw is (xl, a, xrw

2), sincew = xω−1 = x.xω−2 = x.w2.

4

Forw = xy, two cases may arise. Ifc(x) = c(w), let (xl, a, xr) be the left basic factorization ofx. Then
the left basic factorization ofw is (xl, a, xry). If c(x) 6= c(w), let (zℓ, a0, y0) be the left basic factorization
of y with ℓ = |c(y)| − 1. Since|y| < |w|, y0 and zℓ areκ-terms. Sincec(zℓ) $ c(y), one can repeat the
argument onzℓ to obtain the left basic factorization inκ-termszℓ = (zℓ−1, a1, y1). An easy decreasing induction
gives a factorizationy = aℓyℓ · · · a1y1a0y0, with yi ∈ ΩκAR and where(aℓyℓ · · · aj+1yj+1, aj, yj) is a left basic
factorization. Letk be maximal such thatc(w) = c(x · aℓyℓ · · ·akykak−1). Then the left basic factorization ofw
is (x · aℓyℓ · · · akyk, ak−1, yk−1 · · · a0y0), which only involvesκ-terms. �

Note that this result does adapt forω-terms. For instance, fora ∈ A, the left basic factorization ofaω ∈ ΩωAS

is (aω−1, a, 1), andaω−1 does not belong toΩωAS.
The main argument for the solution of the word problem overR is given in [3] and may be phrased in the form

of the following theorem.

Theorem 2.3. Let v, w ∈ ΩAS. Let v = v1av2 andw = w1aw2 with a /∈ c(v1w1). If R |= v = w, then
R |= v1 = w1 andR |= v2 = w2. Moreover, let(vl, a, vr) and(wl, b, wr) be the left basic factorizations ofv and
w, respectively. Then

(R |= v = w)⇐⇒ (R |= vl = wl, a = b, and R |= vr = wr).

By Theorem 2.3, there is a unique factorization ofw ∈ ΩAR as a triple(wl, a, wr) ∈ ΩAR1×A×ΩAR1 such
thatw = wlawr, c(wla) = c(w) anda /∈ c(wl). Further, it follows from Theorem 2.3 that, ifw = pR(v) for a
certainv ∈ ΩAS andLBF(v) = (vl, b, vr), thenpR(vl) = wl, b = a, andpR(vr) = wr. We will therefore also
write LBF(w) = (wl, a, wr) and call thisthe left basic factorization ofw.

3. PSEUDOWORDS OVERR AND R-AUTOMATA

A representation of pseudowords ofΩAR by trees was given in [7]. Here, we consider an alternative represen-
tation by automata over{0, 1}, whose states areA-labeled. We then prove that two pseudowords overR are equal
if and only if their associated automata are equal.

3.1. Infinite products in pro- R semigroups. In order to defineR-automata, we study infinite products in pro-R

semigroups. Given a topological semigroupS and a sequence(sn)n≥0 ∈ SN, we denote by
∏∞
n=0 sn the limit of

the sequence(
∏N

n=0 sn)N whenN grows to infinity, if this limit exists. In this case, we also say that
∏∞
n=0 sn

converges. The following well-known fact follows immediately from [7, Lemma 2.1.1]. We include a proof for
the sake of completeness.

Lemma 3.1. LetS be a pro-R semigroup, and let(sn)n≥0 ∈ SN. Then the infinite product
∏∞
n=0 sn converges.

Proof. Let tk =
∏k

n=0 sn. SinceS is pro-R, it suffices to check that for any continuous homomorphismh : S →
U from S into a semigroupU ∈ R, h(tk) converges inU . We haveh(tk+1) �R h(tk), and sinceU is finite, all
h(tk) except a finite number of them are in the sameR-class. SinceU is R-trivial, we haveh(tk+1) = h(tk) for
k large enough, so the sequence converges inU . �

We will use Lemma 3.1 without reference. We next study the continuity of infinite products in pro-R semi-
groups.

Remark 3.2. Let S be a pro-R semigroup. Then, the mapping

pS : SN −→ S

(sn)n≥0 7−→
∞
∏

n=0

sn

is not necessarily continuous. For instance, considere, t ∈ S such thate2 = e, t2 6= t, ete 6= e, and let(s(k)n) be
defined by

{

s
(k)
j = e if j 6= k

s
(k)
k = t.

Clearly the sequence(s(k)n)k converges to(e, e, e, . . .) but the sequence of products converges toete 6= e.

The following lemma states that infinite products in pro-R semigroups having a content function can sometimes
be simplified. We will then exploit this simplification to getthe continuity of the infinite product over a restricted
set of sequences in such semigroups.

5

Lemma 3.3. Let S be a pro-R semigroup with a content functionc, ands, t ∈ S such thatc(s) ⊇ c(t). Then
sωt = sω.

Proof. Let η : A → S be a generating function with respect to whichc : S → 2A is a content function. Sincec
is continuous and the subsemigroup ofS generated byη(A) is dense inS, we may assume thatt belongs to the
subsemigroup ofS generated byc(s). Moreover, sincesωa = sωb = sω impliessωab = sω, we only need to
considert ∈ c(s) so that there exists1, s2 ∈ S such thats = s1ts2. Hence

sωt = (s1ts2)
ωt = (s1ts2)

ω = sω,

where the middle equality is justified since finiteR-trivial semigroups satisfy the pseudoidentity(xyz)ωy =
(xyz)ω and pro-R semigroups are residually inR. �

Now, instead of allowing arbitrary infinite products, we constrain the sequences of products to obtain continuity
of infinite products. LetS be a profinite semigroup with a content functionc. We denote by∆(S) the following
subset ofSN:

∆(S) =
{

(sn) ∈ SN | ∀n ≥ 0, c(sn) ⊇ c(sn+1)
}

.

We endow∆(S) with the induced product topology, and we letpS be the restriction of the infinite product to
∆(S).

pS : ∆(S) −→S

(sn)n≥0 7−→
∞
∏

n=0

sn.

Proposition 3.4. Let S be anA-generated pro-R semigroup with content function. Then the mappingpS from
∆(S) into S is continuous.

In the following two statements, we first prove Proposition 3.4 whenS is finite.

Lemma 3.5. LetS ∈ R be anA-generated semigroup with a content functionc, and letm = |S|. LetB ⊆ A and
s0, s1, . . . , sm ∈ S such thatc(si) = B for all 0 ≤ i ≤ m. Then, there exists an idempotente such thatc(e) = B
ands0s1 · · · sm ∈ Se.

Proof. Sincem = |S|, by the pigeonhole principle, there existi, j such that0 ≤ i < j ≤ m ands0 · · · si =
s0 · · · sj = s0 · · · si(si+1 · · · sj). Iterating this equality yieldss0 · · · sm = s0 · · · si(si+1 · · · sj)ωsj+1 · · · sm.

Sincec(si+1 · · · sj) = c(sj+1 · · · sm) and sinceS ∈ R is in particular a pro-R semigroup, we get by Lemma 3.3
(si+1 · · · sj)ω(sj+1 · · · sm) = (si+1 · · · sj)ω, sos0 · · · sm = s0 · · · si(si+1 · · · sj)ω . Therefore, the idempotent
e = (si+1 · · · sj)ω satisfies the claim of the lemma. �

Corollary 3.6. LetS ∈ R be anA-generated semigroup with a content functionc. Let (sn)n≥0 ∈ ∆(S). Then
∏∞
n=0 si =

∏kS

n=0 si, wherekS = |S||A|+ 1. In particular, the functionpS from∆(S) into S is continuous.

Proof. By definition of∆(S), we haveA ⊇ c(s0) ⊇ c(s1) ⊇ · · · ⊇ c(skS
) 6= ∅. The choice ofkS and the

pigeonhole principle imply that there are|S|+1 consecutivesi’s amongs0, s1, . . . , skS
, saysℓ, . . . , sℓ+|S|, having

the same content, sayB. Hence Lemma 3.5 shows that there exists ∈ S ande ∈ E(S) ∩ c−1(B) such that

∞
∏

n=0

si =

ℓ+|S|
∏

n=0

sn

∞
∏

n=ℓ+|S|+1

sn

= se
∞
∏

n=ℓ+|S|+1

sn by Lemma 3.5

= se by Lemma 3.3 asS is pro-R andc(e) ⊇ c
(

∞
∏

n=ℓ+|S|+1

sn

)

=

ℓ+|S|
∏

n=0

sn.

The second assertion of the statement is now obvious. �

We now know thatpS is continuous whenS ∈ R. To achieve the proof of Proposition 3.4, we show that
this property can be transferred to pro-R semigroups. For that purpose, we use the next result whose proof uses
well-known techniques and which is included for the sake of completeness.

6

Lemma 3.7. Let S be a profinite semigroup and letH be a family of continuous homomorphisms fromS into
finite semigroups. Assume thatH separates points, and that ifhi : S → Ti belongs toH for i = 1, . . . , n, then
the homomorphismh : S → T1 × · · · × Tn defined byh(s) = (h1(s), . . . , hn(s)) also belongs toH. LetC be a
closed subset ofS. Then we haveC =

⋂

h∈H
h−1h(C).

Proof. The inclusionC ⊆
⋂

h∈H
h−1h(C) clearly holds. Let nows ∈ S \ C. SinceH separates points there

exists for eacht ∈ C a homomorphismht ∈ H (which in fact also depends ons) such thats /∈ h−1
t ht(t). Since

C is closed andS is profinite,C is compact, and we may extract from the open coverC ⊆
⋃

t∈C h
−1
t ht(t) a

finite coverC ⊆
⋃n
i=1 h

−1
ti
hti(ti). Consider the continuous homomorphismhs : S → T1 × · · · × Tn defined by

hs(x) = (ht1(x), . . . , htn(x)), wherehti takes its values inTi. Thenhs ∈ H by the hypothesis of the lemma. If
somet ∈ C were such thaths(t) = hs(s) then, forti such thathti(t) = hti(ti), we would have

hti(s) = hti(t) = hti(ti),

in contradiction with the choice ofhti . Hences /∈ h−1
s hs(C). Therefore

⋂

h∈H

h−1h(C) ⊆
⋂

s∈S

h−1
s hs(C) ⊆

C. �

Proof of Proposition 3.4. Let S be a pro-R semigroup. Let

H = {hU : S → U | U ∈ R andhU is a continuous homomorphism}.

We know thatH separates points (cf. Subsection 2.2). LethU : S → U be a homomorphism ofH. We still denote
hU the homomorphism from∆(S) into ∆(U) induced byhU . Then, sincehU is a continuous homomorphism,
the following diagram commutes:

∆(S) S

∆(U) U

pS

pU

hU hU

Let C be a closed subset ofS. We have to show thatp−1
S (C) is closed. Now,H satisfies both hypotheses of

Lemma 3.7, which yieldsC =
⋂

hU∈H
h−1
U hU (C), so

p−1
S (C) = p−1

S

(

⋂

hU∈H

h−1
U hU (C)

)

=
⋂

hU∈H

p−1
S h−1

U hU (C)

=
⋂

hU∈H

h−1
U p−1

U hU (C), since the above diagram commutes.

SinceC is closed in a profinite semigroup, it is also compact and therefore, so is its image by the continuous
homomorphismhU . By Corollary 3.6,pU is continuous so eachh−1

U p−1
U hU (C) is closed. Hencep−1

S (C) is
closed. This concludes the proof of Proposition 3.4. �

Proposition 3.4 will be used in the proof of Theorem 3.21 below. We can also use it to define the iterated
left basic factorization. Letw ∈ ΩAS. Let v0 = w and define sequencesvi, wi, ai as follows: ifvi 6= ε, then
(wi, ai, vi+1) = LBF(vi). If for somep > 0, vp = ε, then we setVwW = p. Otherwise, we putVwW = ∞. By
definition of the left basic factorization, we have the following equality ifVwW <∞:

(2) w =

VwW−1
∏

i=0

wiai.

WhenVwW <∞, the right hand side of (2) is called theiterated left basic factorization (on the right)of w ∈ ΩAS.
If VwW =∞, then for eachn ≥ 0, we have the factorization

(3) w =
(

n
∏

i=0

wiai

)

· vn+1

which can be viewed as an infinite product of a sequence in∆(ΩAS1) by padding 1’s at the right. ApplyingpR,
by Proposition 3.4 we deduce that everyw ∈ ΩAR has a factorization as in (2), even whenVwW =∞ (where we
take∞− 1 =∞). One can find in [7] an alternative argument to justify the equality (2) whenVwW is infinite.

7

We denote by‖w‖ the maximal integern in (3) such that allwiai in this factorization have the same content
asw. If there is no such maximum, then we set‖w‖ = ∞. We have by definition‖w‖ ≤ VwW but, for instance,
‖abω‖ = 1 while VabωW =∞. Note that

(4) if c(x) = c(y) then‖xy‖ ≥ ‖x‖+ ‖y‖.

This inequality may of course be strict, for instance ifx = aba andy = bab, we have‖x‖ = ‖y‖ = 1 and
‖xy‖ = 3.

Thecumulative contentofw ∈ ΩAS, denoted~c(w) is the set of all lettersa ∈ A such that there is a factorization
w = uv with ‖v‖ =∞ anda ∈ c(v).

If we work instead withw ∈ ΩAR, using left basic factorizations withinΩAR, we obtain similar notions of
iterated left basic factorization, VwW, ‖w‖, and~c(w). In particular, from Theorem 2.3 it follows that, ifv ∈ ΩAS

is such thatpR(v) = w, thenVwW = VvW, ‖w‖ = ‖v‖ and~c(w) = ~c(v). Furthermore, by the above remark, (2)
holds forw ∈ ΩAR, even for‖w‖ =∞, and we still call its right hand side the iterated left basicfactorization of
w.

The next statement uses the functions‖·‖ and~c(·) to characterize idempotents overR.

Proposition 3.8. The following are equivalent forw ∈ ΩAS:

(a) R |= v2 = v;
(b) ‖v‖ =∞;
(c) c(v) = ~c(v).

Proof. The equivalence between(b) and(c) follows directly from the definiton of~c(v). Let us prove(a)⇔ (b).
Suppose first thatw = pR(v) is idempotent. By (4), we have‖w‖ = ‖w2‖ ≥ 2‖w‖ which implies that‖w‖ =∞.
Conversely, suppose that‖w‖ = ∞, sayw =

∏∞
n=0 wn with c(wn) = c(w). Letϕ : ΩAR → S be a continuous

homomorphism into a finiteR-trivial semigroupS with a content function. Thenϕ(w) is an idempotent by
Lemmas 3.5 and 3.3. Hencew2 = w since continuous homomorphisms into finiteR-trivial semigroups with
content functions suffice to separate points ofΩAR. �

We proceed to examine further features of the functionw 7→ ‖w‖.

Lemma 3.9. Letw = xy ∈ ΩAR with c(x) $ c(w). Then‖w‖ ≤ ‖y‖+ 1.

Proof. The result is trivial if‖y‖ is infinite or if x is empty. Otherwise, proceed inductively on(|c(y)|, ‖y‖) under
the lexicographic ordering. If|c(y)| = 1, sayc(y) = {a}, thena /∈ c(x) andc(x) contains a letterb 6= a by
assumption, so‖w‖ = 1.

Assume that|c(y)| > 1. Let y = uv whereu is minimal such thatc(u) = c(y), which means thatu = u′a,
where(u′, a, v) is the left basic factorization ofy. Write u = zt with xz minimal such thatc(xz) = c(w). We
havew = xz · tv.

If c(tv) $ c(w), then‖w‖ = 1, and the result is trivial. So assume thatc(tv) = c(w), so that‖w‖ = ‖tv‖+ 1.
By definition of u andv, we havec(v) $ c(y) or ‖v‖ = ‖y‖ − 1. In the first case, we have‖w‖ = 2

and ‖y‖ = 1. In the other case, we havec(v) = c(y). If c(t) $ c(v), we have by induction hypothesis
‖tv‖ ≤ ‖v‖ + 1 = ‖y‖, so‖w‖ ≤ ‖y‖ + 1. If on the contraryc(t) = c(v), then usingc(tv) = c(w), we obtain
c(t) = c(v) = c(w). Sincec(v) = c(y), we getc(t) = c(y) = c(u). Sinceu = zt is the minimal prefix ofy such
thatc(u) = c(y), t is the minimal prefix oftv such thatc(t) = c(y). Therefore,‖w‖ = ‖v‖+ 2 = ‖y‖+ 1. �

Corollary 3.10. Let x = x1 · · ·xr ∈ ΩAS. Assume thatc(xi) $ c(x) for all i = 1, . . . , r. Then‖x‖ < r. In
particular,R 6|= x = x2.

Proof. If r = 2, then one can easily verify that‖x‖ = 1. Otherwise, Lemma 3.9 yields‖x‖ ≤ ‖x2 · · ·xr‖ + 1
and‖x‖ < r follows by induction onr. �

3.2. R-automata andR-trees. In this subsection, we associate with a pseudowordw ∈ ΩAR a (possibly infinite)
A ∪ {ε}-labeled binary treeT(w) as follows. Let(wl,m,wr) be the left basic factorization ofw. The root of
T(w) is labeled bym, and the left and right subtrees are obtained by iterating this construction onwl andwr,
respectively. For instance, forw = (abωa)ω, the left basic factorization ofw is (a, b, w1) with w1 = bωa(abωa)ω.
Then, the left basic factorization ofw1 is (bω, a, w). We obtain the infinite tree shown in Figure 1, called the
R-tree ofw. Informally, the word problem overΩAR states that two pseudowords have the sameR-tree if and
only if they are equal. We formalize this result in this subsection. During the analysis of the algorithm for the
word problem ofω-terms (Section 5), we will need a more compact representation of theseR-trees, where several
vertices may have been identified. For that reason, we defineR-automata. In the rest of the paper, we denote byB
the alphabet{0, 1}.

8

b

a a

ε ε b

ε b

ε · · · b

a

ε ε

a

b

ε b

· · ·ε

· · ·

FIGURE 1. TheR-tree of the pseudoword(abωa)ω

Definition 3.11 (R-automaton). An A-labeledR-automatonis defined to be a tupleA = 〈V,→, q, F, λ〉 where
〈V,→, q, F 〉 is a nonempty (and not necessarily finite) deterministic trim automaton over the alphabetB = {0, 1},
andλ : V → A ∪ {ε} is a total function. We further require the following conditions.

A.1. The final state set isF = λ−1(ε).
A.2. There is no outgoing transition fromF .
A.3. Letv ∈ V \ F . Then bothv.0 andv.1 are defined.
A.4. Letv ∈ V \ F . Then

(5) λ(v.B∗) = λ(v.0B∗) ⊎ {λ(v)}.

An R-tree is anR-automaton such that every state is reached from the initialstate by a unique path.

For anR-treeA = 〈V,→, q, F, λ〉 andv ∈ V , thesub-automaton ofA rooted atv is theR-automatonAv =
〈v.B∗,→, v, F ∩ v.B∗, λ〉. If A is anR-tree, we saysubtreeinstead of sub-automaton.

With the convention that 0-transitions go down to the left while 1-transitions go to the right, condition A.4
states that, from any statev, the alphabet labeling the states of the subtree rooted at the left descendant ofv is
exactly the alphabet labeling the subtree rooted atv minus the label ofv. This can be checked on Figure 1, which
represents indeed anR-tree.

Definition 3.12. We say that twoR-automata〈Vi,→i, qi, Fi, λi〉 (i = 0, 1) areisomorphicif there is a bijection
ϕ : V0 → V1 such that, for allv ∈ V anda ∈ B, λ1(ϕ(v).a) = ϕ(λ0(v.a)).

We denote by1 theR-automaton with a single node labeledε, and byAA the set of allA-labeledR-automata
except1. Observe that (5) implies that ifv.α is defined, then|α|0 ≤ |A|: each time we go left, we end up in an
R-subtree labeled by a smaller alphabet. Abusing slightly notation, we writeλ(A) instead ofλ(V).

Remark 3.13. Let A be anR-automaton. Consider a loopp0
a1−→ p1

a2−→ · · ·
an−−→ pn = p0. Then,ai = 1 for

all i = 1, . . . , n. Indeed, ifak = 0 for somek, we would haveλ(pk−1) ∈ λ(pk−1.0{0, 1}∗), in contradiction
with (5).

Definition 3.14(equivalence ofR-automata). Let k ≥ 0. Two R-automataAi = 〈Vi,→i, qi, Fi, λi〉, i = 0, 1, are
k-equivalentif

(6) ∀α ∈ {0, 1}∗, |α| ≤ k =⇒ λ0(q0.α) = λ1(q1.α).

Two R-automataA0 andA1 areequivalentif they arek-equivalent for allk ≥ 0. We writeA0 ∼k A1 if A0 and
A1 arek-equivalent and we let∼ =

⋂

∼k.

By convention, (6) means thatλ0(q0.α) andλ1(q1.α) are either both defined and equal or both undefined.
Figures 1 and 2 give an example of equivalentR-automata (downwards-left edges represent 0-transitionsand
downwards-right edges indicate1-transitions).

Fact 3.15. EquivalentR-trees are isomorphic.

Lemma 3.16. AnyR-automaton has a unique equivalentR-tree.

Proof. Let A = 〈V,→, q, F, λ〉 be anR-automaton. We define anR-treeT = 〈W,→, p, G, ν〉 as follows. Take
W =

{

α ∈ B∗ | q.α is defined
}

. The initial state ofT is ε. We setν(α) = λ(q.α). The final state setG is

ν−1(ε). Finally, if q.α0 andq.α1 exist (that is, ifλ(q.α) 6= ε), then we define transitionsα
0
−→ α0 andα

1
−→ α1

9

b

a
0

a1

1

ε

0
1

b
0

0
1

FIGURE 2. The minimalR-automaton of the pseudoword(abωa)ω

in T. By definition ofν, properties A.1 to A.4 are transferred fromA to T. The uniqueness is straightforward by
Fact 3.15. �

The unfoldingof A ∈ AA is the uniqueR-tree
→

A equivalent toA. If A = 〈V,→, q, F, λ〉 then we write
→

A = 〈
→

V ,→,
→
q ,

→

F , λ〉.

Corollary 3.17. LetA,A′ beR-automata. ThenA ∼ A′ if and only if
→

A =
→

A′.

Let ‖A‖ = sup{k ≥ 0 |
→
q .1k is defined} ∈ N ∪ {∞}. If ‖A‖ is finite, then we haveλ(

→
q .1‖A‖) = ε. We let

A[i] =
→

A →

q .1i0
(0 ≤ i ≤ ‖A‖ − 1). TheR-tree

→

A is pictured in the following figure.

A[0]

v0

A[1]

v1

· · ·

Definition 3.18(value of anR-automaton). Thevalueπ(A) ∈ ΩAR1 of anR-automatonA is defined inductively
onλ(A). If A = 1, thenπ(A) = 1. Otherwise,

(7) π(A) =

‖A‖−1
∏

i=0

π(A[i]) · λ(q.1
i).

Observe that this correctly definesπ(A), since by (5),λ(A[i]) $ λ(A), and since infinite products converge in

ΩAR. Moreover,c(π(A)) = λ(A). Also note thatπ(A) depends only on
→

A, by definition of‖A‖ andA[i], and

sinceλ(q.1i) = λ(
→
q .1i).

3.3. Topology ofR-automata. Let d : AA × AA → R+ be defined by

d(A1,A2) =

{

0 if A1 ∼ A2

2−r(A1,A2) if A1 6∼ A2, with r(A1,A2) = min{k ≥ 0 | A1 6∼k A2}.

It is a routine exercise to establish the following observation.

Fact 3.19. The functiond is a pseudo-metric such thatd(A1,A2) = 0 if and only if A1 andA2 are equivalent.

Hence,d induces a distance overAA/∼. Abusing notation, we still denote this distanced. Thus,(AA/∼, d) is
a metric space.

Remark 3.20. (a) Using the finiteness ofA, one shows by a standard extraction argument that(AA/∼, d) is
compact.

(b) The functionAA → AA × A × AA which sends theR-automatonA, with root q, to (Aq.0, λ(q),Aq.1) is
continuous.

Sinceπ(A) only depends on
→

A , we may defineπ(A/∼) = π(
→

A). This leads to the following topological
representation ofΩAR.

10

Theorem 3.21. The mappingπ : AA/∼ −→ ΩAR is a homeomorphism.

Proof. We prove thatπ is continuous by induction on the size ofA. If A is empty, then there is nothing to show.
We denote byAA the set ofR-automata over alphabets of size less than or equal ton. Thenπ can be factorized as

AA/∼
ψ1
−−→

[

(AA/∼×A) ∪ {1}
]N ψ2
−−→ ∆

(

ΩAR1
)

ψ3
−−→ ΩAR1

where, lettingA = 〈V,→, q, F, λ〉, the (partial) functionsψ1, ψ2 andψ3 are defined by

–
(

ψ1(A)
)

i
=

{

(

A[i], λ(q.1
i)

)

if 0 ≤ i ≤ ‖A‖ − 1

1 otherwise;
– ψ2

(

(ri)i≥0

)

= (si)i≥0, wheresi = π(Ai)ai if ri = (Ai, ai), andsi = 1 if ri = 1;

– ψ3

(

(si)i≥0

)

=

∞
∏

i=0

si.

We endow
[

(AA/∼×A) ∪ {1}
]N

and∆
(

ΩAR1
)

with the product topology. It then suffices to show thatψ1, ψ2

andψ3 are continuous. Now, by Remark 3.20(b), each component ofψ1 is continuous. Continuity ofψ2 follows
directly from the induction hypothesis. Finally, the continuity ofψ3 is given by Proposition 3.4.

We now prove that the functionπ is injective. LetA = 〈V,→, q, F, λ〉 andA′ = 〈V ′,→′, q′, F ′, λ′〉 be such
thatπ(A) = π(A′). Since there is a uniqueR-tree in each equivalence class, we can assume thatA andA′ are
R-trees. By (7), we have

(8)
‖A‖−1
∏

i=0

π(A[i]) · λ(q.1
i) =

‖A
′‖−1
∏

i=0

π(A′
[i]) · λ

′(q′.1i).

Observe that both sides of (8) are precisely iterated left basic factorizations. By Theorem 2.3, this factorization is
unique, so‖A‖ = ‖A′‖, and for0 ≤ i < ‖A‖, π(A[i]) = π(A′

[i]) andλ(q.1i) = λ′(q′.1i). Since allA[i] andA′
[i]

areR-trees over smaller alphabets, the induction hypothesis givesA[i] = A′
[i]. HenceA = A′.

We prove thatπ is surjective. Letw ∈ ΩAR. We construct anR-treeA such thatw = π(A). We argue by
induction onc(w). If c(w) = {a}, thenw is entirely determined byVwW, and we take forA the uniqueR-tree
such thatλ(A) = {a} and‖A‖ = VwW. Otherwise, letw =

∏VwW−1
i=0 wiai be the iterated left basic factorization

of w. By definition, we havec(wi) $ c(w) and the induction hypothesis givesR-treesAi = (Vi,→i, qi, Fi, λi)
such thatwi = π(Ai). We constructA = 〈V,→, q, F, λ〉 as follows.

V =

{

⊎

Vi ⊎ {vi | i ≥ 0} if VwW =∞
⊎

Vi ⊎ {vi | 0 ≤ i ≤ VwW− 1} ⊎ {vε} if VwW is finite

λ(vi) = ai, andλ(vε) = ε.

vi.0 = qi,

vi.1 = vi+1 if i < VwW andvVwW−1.1 = vε.

The labeling and the transitions onVi are given by those ofAi. It is then straightforward to check thatA is an
R-tree such thatπ(A) = w.

To conclude the proof, it remains to observe that the continuity of π−1 follows from the compactness of
(AA/∼, d). �

Let Ai = 〈Vi,→i, qi, Fi, λi〉, i = 0, 1, beR-automata and leta ∈ A be such thatλ(V1) ⊆ λ(V0) ⊎ {a}. We
denote by(A0, a,A1) theR-automatonA = 〈V,→, q, F, λ〉 whereV = V0 ⊎ V1 ⊎ {q}, with λ(q) = a, q.0 = q0,
q.1 = q1, and where the other transitions and labels are given by those ofA0 andA1.

If w ∈ ΩAS, let T(w) be theR-tree representingπ−1(pR(w)). The proof of Theorem 3.21 shows that, if
LBF(w) = (wl,m,wr), then we haveT(w) = (T(wl),m,T(wr)).

By Theorem 3.21, theR-automataA equivalent toT(w) are exactly those satisfyingπ(A) = w. If π(A) = w,
then we say thatA is anR-automaton ofw.

3.4. Wrappings of R-automata. For anR-automatonA = 〈V,→, q, F, λ〉 andv ∈ V , we let[v] = π(Av).

11

Lemma 3.22. LetA = 〈V,→, q, F, λ〉 be anR-automaton and letv ∈ V \F . Then, the left basic factorization of
[v] is [v.0] · λ(v) · [v.1]. Therefore, by uniqueness of the left basic factorization,we have

[v1] = [v2] =⇒











λ(v1) = λ(v2)

[v1.0] = [v2.0]

[v1.1] = [v2.1].

Proof. If A = 1, then the result is true. Otherwise, we have by definition[v] = [v.0]λ(v)[v.1]. Hence the result
follows from c([v]) = c([v.0]) ⊎ {λ(v)} (by (5)). �

Lemma 3.22 justifies the following definition. Thewrappingof anR-automatonA = 〈V,→, q, F, λ〉 is the
R-automaton[A] = 〈[V],→, [q], [F], ν〉 defined by

– [V] = {[v] | v ∈ V } ⊆ ΩAR.
– [v].0 = [v.0] and[v].1 = [v.1].
– Finally,ν([v]) = λ(v).

Thus, the wrapping ofA is obtained by merging states representing the same pseudoword. Forw ∈ ΩAS, we
define itswrappedR-automatonasA(w) = [T(w)]. For instance, theR-automaton of Figure 2 is the wrapped
R-automaton of(abωa)ω , as we have identified all states representing the same pseudoword.

We define thevalueof a pathq0
α0−→ q1

α1−→ · · ·
αn−−→ qn+1 in an R-automatonA as

∏n

i=0(λ(qi), αi) ∈
(A× {0, 1})∗. ThelanguageL(v) ⊆ (A× {0, 1})∗ associated with a statev of A is the set of all values of paths
from v to ε, that is, the set of all values of successful paths inAv. The languageL(A) associated withA is the
language associated with its root. Finally, the languageL(w) associated withw ∈ ΩAS is L(w) = L(A(w)).

Lemma 3.23. LetA1,A2 beR-automata. IfL(A1) = L(A2), then
→

A1 =
→

A2.

Proof. It suffices to note that for anR-automatonA, L(A) uniquely determines the set of maximal paths inA,

which in turn uniquely determines
→

A. �

Proposition 3.24. Letv, w ∈ ΩAS. ThenR |= v = w ⇐⇒ L(v) = L(w).

Proof. Assume thatR |= v = w. By Theorem 3.21, we haveT(v) = T(w), henceA(v) = A(w) andL(v) =
L(w). Conversely, ifL(v) = L(w), then by Lemma 3.23, we haveT(v) = T(w), and by Theorem 3.21,
R |= v = w. �

4. THE WORD PROBLEM FORω-TERMS OVERR

4.1. Tails of pseudowords. We define in this subsection several types of factors of pseudowordsw ∈ ΩAS. Let
fα(w) andmα(w) be defined inductively on the length ofα ∈ {0, 1}∗ as follows.

fε(w) = w
(

fα0(w),mα(w), fα1(w)
) def

= LBF(fα(w)).

The set ofR-factorsof w is
F(w) =

{

fα(w) | α ∈ {0, 1}∗
}

.

Note thatF(F(w)) = F(w), since by definitionfα0 = f0 ◦ fα andfα1 = f1 ◦ fα.

The set ofrelative tailsof w is defined by

R(w) =
{

fα(w) | α ∈ {0, 1}∗1
}

= f1(F(w)).

Obviously, a relative tail is also anR-factor. Let nowsα(w) be defined inductively on the length ofα ∈ {0, 1}∗

as follows:

sε(w) = w(9)

s0α(w) = sα
(

f0(w)
)

·mε(w) · f1(w)(10)

s1α(w) = sα
(

f1(w)
)

.(11)

Note thatc(sα(w)) ⊆ c(w). The set ofabsolute tails, or R-suffixesof w is defined by

S(w) =
{

sα(w) | α ∈ {0, 1}∗
}

.

We will need the following technical results further relatingfα with sβ .

12

Lemma 4.1. Letw be a pseudoword and letk be a positive integer. Then we have the following equalitiesof
pseudowords:

w = f0k(w) ·m0k−1(w) · s0k−11(w).(12)

s0k1(w) = f0k1(w) ·m0k−1(w) · s0k−11(w).(13)

Proof. Note that, by definition,s1 = f1. Hence the equality (12) holds fork = 1. Similarly, using (10) and (11),
a simple calculation shows that (13) holds fork = 1. Assume inductively that, for a givenk ≥ 1 and every
pseudowordw, the equalities (12) and (13) both hold. By the induction hypothesis (12) and applying left basic
factorization tof0k(w), we deduce that

w = f0k+1(w)m0k (w)f0k1(w) ·m0k−1(w) · s0k−11(w)

= f0k+1(w)m0k (w)s0k1(w),

in view of (13), which establishes (12) fork + 1. It remains to show (13) fork + 1. Applying (10) withα = 0k1
and (13) to the pseudowordf0(w), we obtain

s0k+11(w) = s0k1(f0(w)) ·mε(w) · f1(w)

= f0k1(f0(w))m0k−1 (f0(w))s0k−11(f0(w)) ·mε(w)f1(w)

= f0k+11(w)m0k (w) · s0k−11(f0(w))mε(w)f1(w)

= f0k+11(w) ·m0k(w) · s0k1(w)

which completes the induction step. �

Lemma 4.2. Letw be any pseudoword andα ∈ {0, 1}∗. Thenf1(sα(w)) = sβ(w) for someβ ∈ {0, 1}∗.

Proof. Clearlyf1(sε(w)) = f1(w) = s1(w). Proceeding by induction onα, assume thatf1(sα(w)) = sβ(w).
Then we have

(14) f1(s0α(w)) = f1[sα(f0(w))mε(w)f1(w)].

The expression on the right side of (14) reduces tof1(w) = s1(w) in casec(sα(f0(w))) = c(f0(w)). Otherwise,
we use Lemma 4.1 to pull out fromf1(w) the shortest factor to completef0(s0α(w)):

f1(w) = f10k(w)m10k−1 (w)s0k−11(f1(w)) = f10k(w)m10k−1 (w)s10k−11(w),

so that, for a suitablek, f1(s0α(w)) = s10k−11(w). Finally, we have

f1(s1α(w)) = f1(sα(f1(w))) = sβ(f1(w)) = s1β(w),

which establishes the induction step. �

Again, since the projection inΩAR of the left basic factorization ofw ∈ ΩAS gives the left basic factorization
of pR(w), all constructions and previous factorizations which we derived in this subsection may be applied to
pseudowords overS. The following result however does assume aperiodicity.

Corollary 4.3. Letx, y ∈ ΩAR be such thatxyω is an idempotent. Thenf1∗(xyω) ⊆ f1∗(x)yω ∪ S(y)yω.

Proof. It is sufficient to show that the setf1∗(x)yω ∪ S(y)yω is closed underf1, since this set containsxyω. So
pick z in f1∗(x) ∪ S(y).

If c(z) $ c(zyω), then there isk ≥ 1 such thatc(zf0k(y)m0k−1(y)) = c(zyω), andm0k−1(y) /∈ c(z).
By equality (12) of Lemma 4.1 applied toy, we deduceLBF(zy.yω) = (zf0k(y),m0k−1(y), s0k−11(y)y

ω). By
aperiodicity ofR and uniqueness of left basic factorization, we haveLBF(zyω) = LBF(zy.yω), hencef1(zyω) =
s0k−11(y)y

ω ∈ S(y)yω.
Suppose next thatc(z) = c(y) so thatf1(zyω) = f1(z)y

ω. Then, in casez ∈ f1∗(x), we have againf1(z) ∈
f1∗(x) while, in casez = sα(y), Lemma 4.2 guarantees thatf1(z) = f1(sα(y)) = sβ(y) for someβ ∈ {0, 1}∗.
Hencef1(z) ∈ f1∗(x) ∪ S(y). �

4.2. Several characterizations ofω-terms. This subsection is devoted to the proof of the following theorem,
which gives several characterizations ofω-terms overR and which may be regarded as a sort of periodicity result.
It should be compared with [11, Theorem 5.1], which shows similar characterizations for an ordinal word to be
represented by anω-term.

Theorem 4.4. Letw ∈ ΩAR. The following conditions are equivalent:

(a) L(w) is rational.
(b) A(w) is finite.

13

(c) The set{π(T(w)v) | v ∈ V } is finite, whereT(w) = 〈V,→, q, F, λ〉.
(d) F(w) is finite.
(e) R(w) is finite.
(f) S(w) is finite.
(g) w ∈ ΩωAR.

Moreover, ifw ∈ ΩωAR, then|F(w)| = |A(w)|.

We say that anω-termw is reducedif there is no subterm ofw of the formyωz, with c(z) ⊆ c(y), and there is
no subterm of the form(xyω)ω, wherex may be empty, and withc(x) ⊆ c(y).

Lemma 4.5. Letw be anω-term which defines an idempotent inΩAR. Then there existω-termsx, y such that
w = xyω , |x|+ |y| < |w| andxyω is reduced.

Proof. The rewriting rulesyωz → yω if c(z) ⊆ c(y), and(xyωz)ω → xyω if c(xz) ⊆ c(y) do not change the
value of anω-term overR. Moreover, since they decrease the length, they form a Noetherian system. Letv be
a reducedω-term obtained fromw by applying rules of this system. Sincew is idempotent, so isv. Moreover,
|v| ≤ |w|.

Let v = x1 · · ·xr wherexi is either a letter or a term of the formyωi . By Corollary 3.10, there existsi such
that xi = yωi andc(yi) = c(v). Sincev is reduced, we havei = r. Therefore,v is of the formxyω (with
x1 · · ·xr−1 = x andxr = yω). Finally |x|+ |y| < |v| ≤ |w|. �

Proof of Theorem 4.4. (a)⇔ (b) FromA(w), one constructs a finite automaton recognizingL(w) by adding as
a first component of any edge label the label of its origin. Conversely, one can transform the minimal automaton
of L ⊆ (A × {0, 1})∗ into a state-labeled automaton whose associated language is L, by removing the first
component from every edge label and labeling the origin state with it. These transformations obviously preserve
finiteness.

(b)⇔ (c) comes from the definition ofA(w), whose states are the pseudowordsπ(T(w)v).
(c)⇔ (d) follows directly from Lemma 3.22 applied toT(w).
(d)⇒ (e) is obvious sinceR(w) ⊆ F(w).
(e)⇒ (f) Assume thatR(w) is finite. We prove thatS(w) is also finite by induction on|A|. The result is trivial

if |A| = 0. Otherwise, letSn(w) = {sα(w) | α ∈ {0, 1}n
}

. The inductive definition (9)–(11) ofsα gives

Sn+1(R(w)) ⊆ Sn
[

f0(R(w))
]

· A · f1(R(w)) ∪ Sn
[

f1(R(w))
]

⊆ S
[

f0(R(w))
]

·A · R(w) ∪ Sn
(

R(w)
)

.

Hence, proceeding by induction onn, Sn(R(w)) is contained inS
[

f0(R(w))
]

·A ·R(w) ∪R(w) for everyn, and
therefore so isS(R(w)). Therefore,

S(w) ⊆ {w} ∪ S(f0(w)) ·A ·R(w) ∪ S(R(w))

⊆ {w} ∪
[

S
[

{f0(w)} ∪ f0(R(w))
]

]

·A ·R(w) ∪ R(w).

To prove the finiteness ofS(w), it remains to show thatS
[

f0(w) ∪ f0(R(w))
]

is finite. Letu ∈ {f0(w)} ∪
f0(R(w)). Sincec(f0(x)) $ c(x) for all x, we havec(u) $ c(w). Moreover,

R(F(w)) = f1(F(F(w))) = f1(F(w)) = R(w).

In particular,R(u) ⊆ R(w), soR(u) is finite. Hence we can apply the induction hypothesis tou, soS(u) is finite.
Therefore,S(w) is finite.

(f)⇒ (g) Assume thatS(w) is finite. We prove by induction on|c(w)| thatw is anω-term. Forc(w) = {a},
eitherw = aω orw is a word. Otherwise, letw =

∏VwW−1
i=0 wiai be the iterated left basic factorization ofw.

Let 0 ≤ j < VwW. We putvj =
∏VwW−1
i=j wiai. Let u ∈ S(wj). We claim thatuajvj+1 ∈ S(w). We have

wj = f1j0(w), aj = m1j (w) = mε(f1j (w)) andvj+1 = f1j+1(w). Letu = sα(wj). Then

uajvj+1 = sα(f1j0(w)) ·m1j (w) · f1j+1(w)

= sα(f0(f1j (w))) ·mε(f1j (w)) · f1(f1j (w))

= s0α(f1j (w))

= s1j0α(w) ∈ S(w).

Let u, u′ ∈ S(wj). We haveaj /∈ c(uu′), so by Theorem 2.3, ifuajvj+1 = u′ajvj+1, thenu = u′. Hence
u 7→ uajvj+1 is an injection fromS(wj) to S(w). SinceS(w) is finite by assumption, so isS(wj).

14

We havec(wj) $ c(w). By the induction hypothesis, allwj ’s areω-terms. This concludes the proof whenVwW

is finite. Assume now thatVwW is infinite. Letuℓ,k =
∏ℓ+k−1
i=ℓ wiai andui = u0,i, so thatw = ui ·wiai ·vi+1. By

definition,vi = f1i(w) ∈ S(w), so there existℓ ≥ 0 andk > 0 such thatvℓ+k = vℓ = uℓ,kvℓ+k, sovℓ = uωℓ,kvℓ.
Sincec(vℓ) = c(vℓ+k) ⊆ c(uℓ,k), we havevℓ = uωℓ,k. Therefore,w = uℓvℓ = uℓu

ω
ℓ,k, which is anω-term.

(g)⇒ (d) Let w ∈ ΩωAR. We proceed by induction on(|c(w)|, |w|) under the lexicographic ordering. If
c(w) = {a}, thenF(w) is finite if w is a word or is the set{1, aω} if w /∈ A+.

Otherwise, we first claim that the setf1∗(w) is finite. Letw =
∏VwW−1
i=0 wiai be the iterated left basic fac-

torization ofw. If ‖w‖ is finite, then one can writew = w0a0 · · ·wkakv with ai ∈ A, c(wi) = c(w) \ {ai},
c(v) $ c(w). By Lemma 2.2,v is anω-term. By induction hypothesis,f1∗(v) is finite. Hence, so isf1∗(w) =
f1∗(v) ∪ {wiai · · ·wkakv | i ≤ k}. If on the contrary,‖w‖ is infinite, thenw is idempotent. By Lemma 4.5 one
can writew = xyω with xyω reduced and|x| + |y| < |w|. Since|y| < |w| andc(y) ⊆ c(w), by the induction
hypothesis applied toy we deduce thatF(y) is finite. Since we have already shown that(d)⇒ (f), we conclude
thatS(y) is also finite. By Corollary 4.3, we havef1∗(w) = f1∗(xyω) ⊆ f1∗(x)yω ∪ S(y)yω which is finite by
the above and the induction hypothesis applied tox. This proves the claim.

Let ℓ ≥ 0 andk > 0 be such thatf1ℓ+k(w) = f1ℓ(w). Then we have the following equalities of pseudowords
overR:

f1ℓ(w) = wℓaℓ · · ·wℓ+k−1aℓ+k−1f1ℓ+k(w)

= wℓaℓ · · ·wℓ+k−1aℓ+k−1f1ℓ(w)

= (wℓaℓ · · ·wℓ+k−1aℓ+k−1)
ωf1ℓ(w)

= (wℓaℓ · · ·wℓ+k−1aℓ+k−1)
ω.

Thereforew = w0a0 · · ·wℓ−1aℓ−1(wℓaℓ · · ·wℓ+k−1aℓ+k−1)
ω .

By the expression ofw, we see that the setW = {w0, . . . , wℓ+k−1} containsf1∗0(w). Now,F(w) = f1∗(w)∪
F(f1∗0(w)) ⊆ f1∗(w) ∪ F(W). Moreover,W is a finite set ofω-terms, each over a smaller alphabet thanw. By
the induction hypothesis,F(W) is finite. Since we already know thatf1∗(w) is finite, so isF(w). �

4.3. Canonical forms. Throughout this subsection, we use freely the fact that the left basic factorization of an
ω-term produces factors which areκ-terms, henceω-terms overR, as given by Lemma 2.2.

Consider a finiteR-automatonA = 〈Q,→, qε, F, λ〉. Forα ∈ {0, 1}∗, let qα = qε.α, when it is defined, and
letQα = qα.{0, 1}∗, Fα = F ∩Qα andAα = 〈Qα,→, qα, Fα, λ〉.

We associate toA a possibly emptyω-termω(A) by induction on|Q|. If Q = {qε}, thenqε is labeledε and
there are no transitions, so we setω(A) = 1. Otherwise, we distinguish two cases. If there is no edgep → qε,
thenA0 andA1 have fewer states thanA. We setω(A) = ω(A0) · λ(qε) · ω(A1). Otherwise, consider a loop

qε = p0
a1−→ p1

a2−→ · · ·
an−−→ pn

an+1
−−−→ qε. By Remark 3.13,ai = 1 for all i = 1, . . . , n+ 1. Moreover,A1i0 has

fewer states thanA, by (5). We setω(A) =
[

∏n
i=0 ω(A1i0)λ(q1i)

]ω

.

The canonical formcf(w) of a possibly emptyω-term w is defined to beω(A(w)). We say thatw is in
canonical formif w ≡ cf(w). Observe thatcf(w) is well defined since, by Theorem 4.4,A(w) is finite. Note also
that, likeA(w), cf(w) only depends on the interpretation ofw in ΩAR1.

As an example, theR-automatonA ofw = (abωa)ω is given in Figure 2. There is a loop with two edges around
qε, socf(w) = [ω(A0) · λ(qε) · ω(A10) · λ(q1)]

ω = [a · b · ω(A10) · a]ω. Similarly, there is a loop with a single
edge aroundq10, soω(A10) = bω, and finally,cf(w) = (abbωa)ω (hencew is not in canonical form).

We call a factor (inΩAR) of the formua of a pseudowordw fringy if c(ua) = c(w) anda /∈ c(u). Letw be an
ω-term in canonical form. We define recursively an associatedω-termw′ by letting:

– w′ = w′
1aw2 if w ≡ w1aw2 andw1a is a fringy factor ofw with a ∈ A;

– w′ = v′1a(v2v1a)
ω if w ≡ vω andv ≡ v1av2 wherev1a is a fringy factor ofv.

We will need the following technical result.

Lemma 4.6. Letw be anω-term in canonical form. ThenR |= w′ = w andw′ admits a unique factorization of
the form

(15) w′ ≡ a1u1a2u2 · · · anun with c(ui) ⊆ {a1, . . . , ai}

where theai are the distinct letters that appear inw. Moreover, in this factorization, eachui is in canonical form.

Proof. Each of the recursion steps in the definition ofw′ uses the previous recursion steps and perhaps the pseu-
doidentity(xy)ω = x(yx)ω , which is valid inR. HenceR |= w′ = w. Each of those steps also brings out a fringy
factor of a left factor of the previous step, which guarantees that inw′ all first occurrences of letters are found
outsideω-powers. The uniqueness of the factorization follows from the uniqueness of left basic factorizations.

15

It remains to show that eachui is in canonical form. Proceeding by induction onc(w), we distinguish the two
cases in the definition ofw′. In casew ≡ w1aw2 andw1a is a fringy factor ofw with a ∈ A, then bothw1 and
w2 are in canonical form by the definition of canonical form andw′ ≡ w′

1aw2. By uniqueness of the left basic
factorization, we havew′

1 ≡ a1u1 · · · an−1un−1, a = an, andw2 ≡ un. Now, it suffices to apply the induction
hypothesis tow1 to conclude that theui (i = 1, . . . , n− 1) are in canonical form.

In casew ≡ vω with v ≡ v1av2, a ∈ A, andv1a a fringy factor ofv, we havew′ ≡ v′1a(v2v1a)
ω, so that

v′1 ≡ a1u1 · · · an−1un−1, a = an, and(v2v1a)
ω ≡ un. By definition of canonical form, since we assumew is in

canonical form,v1 is in canonical form andv2 must admit a factorizationv2 ≡ z1b1 · · · zrbr in fringy factorszibi
of v, such that each of thezi is in canonical form. This implies thatun ≡ (v2v1a)

ω is also in canonical form. The
result now follows as in the previous case by applying the induction hypothesis tov1. �

We call (15) theleft expanded canonical form ofw and denote it bycf′(w). For instance, we have((abbωa)ω)′ =
ab(bωaab)ω, andcf′((abωa)ω) = cf′((abbωa)ω) = a · 1 · b · (bωaab)ω.

Proposition 4.7. Letu1, . . . , un, v, w beω-terms. Then

(a) R |= w = cf(w).
(b) R |= v = w if and only ifcf(v) ≡ cf(w).
(c) If c(v) ∩ c(w) = ∅ thencf(vw) ≡ cf(v) cf′(w).
(d) If w admits a factorizationw ≡ u1 · · ·um(um+1 · · ·un)ω, where

(i) each of theω-termsui, 1 ≤ i ≤ n, is a fringy factor of the productu1 · · ·un,
(ii) there exist no integersk ≥ 0 andℓ, 1 ≤ ℓ < n−m, such thatR |= um+1 · · ·un = (um+1 · · ·um+ℓ)

k,
(iii) R 6|= um = un,

then

cf(w) ≡ cf(u1) · · · cf(um)(cf(um+1) · · · cf(un))
ω .

Proof. Statements(a) and(b) are a direct consequence of the very definition ofω(A) andπ(A), and of Theo-
rem 3.21.

Let us show(d). Sinceui is a fringy factor ofu1 · · ·un, the rootri of theR-automatonA(ui) is not the end of
any edge, and the edge labeled1 from ri leads to the final state. Consider theR-automatonB which is obtained
from theA(ui) by changing the edge labeled1 from ri to make it end atri+1, for i = 1, . . . , n − 1, and atrm+1

for i = n. ThenB is equivalent to theR-automatonA(w). Moreover, the minimization ofB to obtain theA(w) is
done by identifying only states from differentA(ui). It does not change the path starting from the root following
edges labeled1, since the hypotheses(ii) and(iii) ensure that the statesri cannot be identified. The formula for
the canonical formcf(w) now follows directly from the definition.

It remains to prove(c). By (a), (b), and Lemma 4.6, we have

R |= cf(vw) = cf(v) cf(w) = cf(v) cf ′(w).

Hence it suffices to show thatcf(v) cf′(w) is in canonical form. Letw′ = cf′(w) and consider its factorization of
the form (15). Then, by definition of canonical form and sinceun is in canonical form by Lemma 4.6, we have

cf(va1u1a2u2 · · · anun) ≡ cf(va1u1a2u2 · · ·un−1)anun.

Now the result follows by induction onn. �

We shall prove in Section 5 that the size ofA(w) is linear in that ofw. For our canonical forms, the situation
is not so favorable.

Proposition 4.8. Letwn be the sequence ofω-terms defined by

w1 = (a2
1b

2
1)
ω

wn+1 = (wna
2
n+1b

2
n+1)

ω.

Thenwn has length5n while its canonical form has length≥ 3n, for n ≥ 1.

Proof. We start by introducing some auxiliary sequences ofω-terms:

r0 = t0 = 1(16)

t1 = (b1a
2
1b1)

ω(17)

rn+1 = rna
2
n+1bn+1tn+1(18)

tn+1 = (bn+1rnan+1 · an+1b
2
n+1rn−1a

2
nbn · tna

2
n+1bn+1)

ω.(19)

16

For convenience, also letw0 = 1. LetAn = {a1, b1, . . . , an, bn}. By induction onn, one can easily verify that
c(rn) = c(tn) = An. From this observation it follows that each of theω-terms

rna
2
n+1bn+1, bn+1rnan+1, an+1b

2
n+1rn−1a

2
nbn, tna

2
n+1bn+1

has contentAn+1 but, in each case, dropping the last letter produces anω-term with smaller content. Combining
formulas (18) and (19), we obtain

(20) rn+1 = rna
2
n+1bn+1(bn+1rna

2
n+1bn+1 · bn+1rna

2
n+1bn+1)

ω (n ≥ 1).

We next claim that

(21) R |= wn = rn

for all n ≥ 0. This is obvious forn = 0. Forn = 1, using the fact thatR |= (xy)ω = x(yx)ω , we have

R |= w1 = (a2
1b

2
1)
ω = (a2

1b1 · b1)
ω = a2

1b1(b1a
2
1b1)

ω = r1.

Assuming the claim true for a givenn ≥ 1, and using also the fact thatR |= (x2)ω = xω, we obtain

R |= wn+1 = (wna
2
n+1b

2
n+1)

ω = (wna
2
n+1bn+1 · bn+1)

ω

= wna
2
n+1bn+1(bn+1wna

2
n+1bn+1)

ω

= wna
2
n+1bn+1(bn+1wna

2
n+1bn+1 · bn+1wna

2
n+1bn+1)

ω

= rn+1

in view of (20), which establishes the claim.
The next step consists in proving by induction onn that

(22) cf(rn) ≡ cf′(rn) ≡ rn and cf(tn) ≡ tn,

The casesn ≤ 1 are immediate. One then checks that the hypotheses of Proposition 4.7(d) hold form = 0,
n = 3, u1 = bn+1rnan+1, u2 = an+1b

2
n+1rn−1a

2
nbn andu3 = tna

2
n+1bn+1. Therefore, from the factorization

(19), we obtain

cf(tn+1) ≡ (cf(bn+1rnan+1) · cf(an+1b
2
n+1rn−1a

2
nbn) · cf(tna

2
n+1bn+1))

ω

Assuming (22) forn− 1 andn, and using Proposition 4.7(c), we deduce that

cf(tn+1) ≡ (bn+1 cf′(rn)an+1 · an+1b
2
n+1 cf′(rn−1)a

2
nbn · cf(tn)a2

n+1bn+1)
ω

≡ (bn+1rnan+1 · an+1b
2
n+1rn−1a

2
nbn · tna

2
n+1bn+1)

ω

≡ tn+1.

Similarly, using the factorizations (18) and (19), we obtain

cf(rn+1) ≡ cf(rn)a2
n+1bn+1(bn+1rnan+1 · an+1b

2
n+1rn−1a

2
nbn · tna

2
n+1bn+1)

ω

≡ rna
2
n+1bn+1tn+1 ≡ rn+1

and

cf′(rn+1) ≡ cf′(rna
2
n+1bn+1tn+1) ≡ cf′(rna

2
n+1)bn+1tn+1

≡ cf′(rn)a2
n+1bn+1tn+1 ≡ rn+1.

This concludes the induction proof of (22). Combining with (21) and Proposition 4.7(b), we obtain the formula
cf(wn) ≡ rn.

To finish the proof, it remains to compute|rn|. From formulas (16)–(18) and (20), we obtain|r1| = 8 and the
recurrence relation|rn+1| = 3|rn|+ 12 (n ≥ 1), which yields immediately|rn| = 14.3n−1 − 6. �

We may also have an exponential decrease in length in the canonical form, even for a reducedω-term.

Proposition 4.9. Define a sequencezn by z0 = 1, zn+1 = (znanzn)
ω. Then eachzn is a reducedω-term of

length2n+1 − 2 while its canonical form has length2n.

Proof. Letxn be the sequence defined byx0 = 1, xn+1 = (xnan)
ω . Note thatR verifies the following identities:

zn+1 = (zn · anzn)
ω = zn(anznzn)

ω = zn(anzn)
ω = (znan)

ω

where we use the fact thatzn is an idempotent overR. By Proposition 4.7(d) and (c), we getcf(xn+1) =
(cf(xn)an)ω sincean /∈ c(xn). By induction onn one now immediately deduces thatR satisfieszn = xn and
thatxn ≡ cf(xn) ≡ cf(zn). The calculation of the lengths is straightforward. �

One should stress that, although we have defined the canonical form for anω-termw, the canonical form is by
definition determined by the associated wrappedR-automatonA(w). In the following result, we establish an upper

17

bound for the size ofcf(w) in terms of the size ofA(w). Denote by|A| the number of states of theR-automaton
A.

Proposition 4.10. Letw be anω-term over an alphabetA. Then the length ofcf(w) isO(|A(w)||A|).

Proof. Consider the following number in[0,+∞]:

un = sup

{

| cf(w)|

|A(w)|n
: w is anω-term and|c(w)| = n

}

.

We show that the sequence(un)n is bounded by2, which suffices to establish the proposition.
We first note thatu1 = 1 by just considering the possibilities forω-terms of content{a}: if w = am then

| cf(w)| = |w| = m and|A(w)| = m+ 1; if w is not a word, then| cf(w)| = |aω| = 2 and|A(w)| = 2.
Suppose thatw is anω-term withn = |c(w)| > 1. Let w = w0a0 · · ·wkakwk+1 where thewi areω-terms

and theai are letters such thatc(wiai) = c(w), andk is as large as possible so that there is a simple path inA(w)
labeled1k from the rootq. Note that, by definition of the canonical form, in the case where‖w‖ is finite, then its
value isk + 1 and

(23) cf(w) = cf(w0)a0 · · · cf(wk)ak cf(wk+1);

otherwise,

(24) cf(w) = cf(w0)a0 · · · cf(wi−1)ai−1

(

cf(wi)ai · · · cf(wk)ak
)ω

for somei ≥ 0. Note also thatAq1j0 = A(wj) for j = 0, . . . , k and, in the case where‖w‖ is finite, Aq1k =
A(wk+1). By definition ofun−1, we have

| cf(wj)| ≤ un−1|A(wj)|
n−1 ≤ un−1|A(w)|n−1

for 0 ≤ j ≤ k and also forj = k + 1 in case‖w‖ is finite. By (23) and (24) and sincek + 2 ≤ |A(w)|, it follows
that, in both cases,

| cf(w)| ≤ (k + 2)un−1|A(w)|n−1 + k + 1

≤ un−1|A(w)|n + |A(w)|.

Henceun ≤ un−1 + |A(w)|1−n ≤ un−1 + 1
2n−1 . Combining with the fact thatu1 = 1, we conclude thatun ≤ 2

for all n. �

5. A LINEAR-TIME ALGORITHM COMPUTING WRAPPEDR-AUTOMATA

In this section, we solve the word problem forω-terms overR. Letv andw be twoω-terms, and let(vl,mv, vr)
and(wl,mw, wr) be their left basic factorizations, respectively. Sincev andw areω-terms, so arevl, vr, wl, wr,
and they are easy to compute, as well as the lettersmv andmw. From Theorem 2.3, we know thatR |= v = w is
equivalent tomv = mw, R |= vl = wl, andR |= vr = wr. To check the last two identities, we could repeat this
process inductively, but there isa priori no guarantee for it to terminate. Hence, even if the left basic factorization
for ω-terms is computable, it does not yield immediately an algorithm checking equality betweenω-terms overR.

The above inductive approach consists in fact in computing theR-trees ofv andw. It clearly gives a semi-
algorithm for deciding whetherv 6= w overR. When constructing theR-trees, if we could test whether the value
of a subtree has already been produced during the computation, then we would end up with a finite wrapped
R-automaton.

To construct the wrappedR-automata ofv andw, we will in fact compute intermediate equivalentR-automata,
which are not completely wrapped. We call them theR-graphs ofv andw. We will then show how to minimize
R-graphs in linear time, as already sketched in [8], to obtainthe wrappedR-automata ofv andw, which we finally
compare. The overall complexity of the algorithm isO(|A|(|v| + |w|)).

Informal presentation of the algorithm. As explained above, each nodev of theR-tree of a pseudowordw can
be associated with a pseudoword[v] overR: if (wl,m,wr) is the left basic factorization ofw, then the root of
T(w) is associated withw, its left child withwl and its right child withwr. If two nodes are associated with the
same pseudoword overR, then we obtain the wrappedR-automaton by identifying all subtrees corresponding to
the same value, and we know that its finiteness characterizesω-terms overR (see Theorem 4.4). Givenω-terms
v, w, we proceed as follows.

(a) We computeR-automataG(v) andG(w) equivalent toT(v) andT(w), respectively, which, likeA(v) and
A(w), are finite. TheseR-automata are calledR-graphs. We prove that one can compute them in time
O(|A| · (|v|+ |w|)).

18

Note that theR-graphG(w) we shall obtain will not necessarily identifyall subtrees labeled with a com-
mon value. This explains that theR-graphs are not canonical: even if twoω-terms are equal overR, their
R-graphs are not necessarily equal. Still, there are enough identifications of isomorphic subtrees to end up
with a finite object.

(b) TheR-graphG(w) ofw can be transformed in a finite automatonA′(w) overA×{0, 1} such thatR |= v = w
if and only if A′(v) = A′(w). In fact,A′(w) is obtained fromA(w) just by assimilating the labels of the
states by the labels of the edges.

(c) The automatonA′(w) can be constructed fromw in timeO(|w||c(w)|).
(d) From (c) and(b), we deduce that the word problem for twoω-termsv, w of ΩωAR can be solved in time

O(|A| · (|v|+ |w|)).

5.1. Notation and definitions. In this subsection, we set up simple but useful notation. LetA be a finite alphabet
and letN+ = N\{0}. In order to distinguish occurrences of letters in a word ofA+, we associate to eachx ∈ A+

a wordxN ∈ (A × N+)+ containing all original positions of letters ofx. To this aim, we define a family of
functionspk : A+ → (A× N+)+ as follows.

pk(a) = (a, k + 1) for a ∈ A,

pk(ay) = pk(a)pk+1(y) for a ∈ A andy ∈ A+.

We letxN = p0(x) ∈ (A×N+)+. For instance,abaN = (a, 1)(b, 2)(a, 3). Abusing notation, we sometimes denote
the pair(a, i) ∈ A × N+ by ai when this will not cause any confusion. Thus, we will also writeabaN = a1b2a3.
Finally, we denote byπA andπN the projections from(A × N)∗ toA∗ andN∗, respectively (here,N∗ means the
set of finite sequences of integers,i.e., the free monoid overN). If B ⊆ A, we denote byπB the projection from
(A × N)∗ to B∗ which acts asπA onB × N and erases letters ofB \ A × N. Finally, we letcB = c ◦ πB and
cN = c ◦ πN.

Consider two symbols] and[not belonging toA and letA[] = A ⊎ {], [}. A well-parenthesizedword overA[]

is a word which does not contain[] as a factor and which can be reduced to the empty wordε by the rewriting
rules[]→ ε anda→ ε for a ∈ A. In other terms, the language of well-parenthesized words overA[] is generated
by the (non-ambiguous) context-free grammarS → [S]S | [S] | aS | a (a ∈ A). We say thatx ∈ (A[] × N)+

is well parenthesized if so isπA[]
(x). We denote byDyck(A) (resp. byDyck(A × N+)) the language of well-

parenthesized words overA[] (resp. overA[] × N+).
We define inductively thetail ti(x) from positioni ∈ N of a well-parenthesized wordx. Let (x, y) ∈ Dyck(A×

N+)× Dyck(A× N+)1 andi > 0. Then we set

ti(ε) = ε

ti(xy) = ti(y) for i /∈ cN(x)

ti(aiy) = y for a ∈ A, i ∈ N

ti([ix]ly) = [ix]ly

ti([kx]ly) = ti(x)[kx]ly if k 6= i andi ∈ cN(x)

ti([kx]iy) = y if k 6= i andi /∈ cN(x).

The casei = 0 is special, we sett0(x) = x. Observe that we do not restrict this definition to words in which a
position, likei, occurs at most once in the word. That is,x, for instance, may contain several letters of the form
(a, i) for the samei.

We define as well theprefix up to lettera ∈ A, pa(x), of a well-parenthesized word by setting, forx, y ∈
Dyck(A× N+):

pa(ε) = ε

pa(xy) = xpa(y) if a /∈ cA(x)

pa(aiy) = ε for a ∈ A, i ∈ N+

pa([kx]ly) = pa(x) if a ∈ cA(x).

The inductive definition immediately yields the following statement.

Fact 5.1. Let x ∈ Dyck(A× N+)1, leta ∈ A, and leti ≥ 0. Then

(a) ti(x) ∈ Dyck(A× N+)1.
(b) pa(x) ∈ Dyck((A \ {a})× N+)1.

19

For a well-parenthesized wordx ∈ Dyck(A× N+), a lettera ∈ A, and an integeri ≥ 0, we let

(25) x(i, a) = pa(ti(x)).

For the description of the algorithm, we representω-terms by well-parenthesized words by replacingω-powers
by pairs of brackets. To eachω-termw ∈ ΩωAS, we associateword(w) ∈ Dyck(A). Conversely, we associate to
x ∈ Dyck(A) anω-termom(x) such thatom(word(w)) = w. Formally, letu, v ∈ ΩωAS, x, y ∈ Dyck(A) and
a ∈ A and put:

word(a) = a om(a) = a
word(u · v) = word(u) word(v) om(xy) = om(x) om(y)
word(uω) = [word(u)] om([x]) = (om(x))ω .

It will be convenient to use an end marker# /∈ A[]. We letA# = A⊎{#},A[#] = A[]⊎{#}, and for anω-term
w onA, we define

w = (word(w#))N ∈ Dyck(A# × N+).

For instance,a(ab)ωc = a1[2a3b4]5c6#7 andπA[]
(a(ab)ωc) = a[ab]c. Finally, let

η = om ◦ πA[]
: Dyck(A# × N+)→ ΩωAS.

From the very definitions, we have:

Fact 5.2. Letw be anω-term, andx, y ∈ Dyck(A× N+). Then we have

(a) η(w) = w.
(b) η(xy) = η(x)η(y).
(c) η([kx]ℓ) = (η(x))ω . �

For anω-termw, we let
w(i, a) = η(w(i, a)).

Note that by definition,w(i, a) is anω-term anda /∈ c(w(i, a)).
A markerof a well-parenthesized wordx ∈ Dyck(A × N+) is a letterai ∈ c(x) with a /∈ {], [} such thatx

has a factorizationx = yaiz, with a /∈ cA(y), and wherey andz are (not necessarily well parenthesized) words
over(A[] × N+)∗. For instancea1 andb2 are markers ofa1[4b2]2a3a1 buta3 is not. Note that there are|cA(x)|
markers inx and that the first occurrence of a markerai in x uniquely determines the factorizationx = yaiz. The
principal markerof x is the unique markerai of x such that this factorization satisfiescA(x) = cA(yai).

5.2. The R-graph associated to anω-term. In this subsection we define theR-graphG(w) of anω-termw. We
first need several technical but easy lemmas.

Lemma 5.3. Letx ∈ Dyck(A× N+), and leta, b ∈ A. Then,

b ∈ cA(pa(x)) =⇒ pb(pa(x)) = pb(x).

Proof. Assume thatb ∈ cA(pa(x)). Thena 6= b by Fact 5.1 (2). Proceed by induction on|x|:

– if |x| = 1, then the hypothesisb ∈ cA(pa(x)) cannot hold.
– If x = yz with y ∈ Dyck(A × N+) anda, b /∈ cA(y), then we getpb(pa(x)) = y · pb(pa(z)) andpb(x) =
y · pb(z). Sinceb ∈ cA(pa(x)) \ cA(y) = cA(y)∪ cA(pa(z)) \ cA(y) ⊆ cA(pa(z)), the result follows from the
induction hypothesis applied toz.

– If x = aix
′, thenpa(x) = ε, which contradictsb ∈ cA(pa(x)).

– If x = bix
′, thenpb(pa(x)) = pb(x) = ε.

– Finally, assume thatx = [ky]lz with y ∈ Dyck(A× N+), anda ∈ cA(y) or b ∈ cA(y).

◦ If a ∈ cA(y), thenpa(x) = pa(y), henceb ∈ cA(pa(y)). By induction,pb(pa(y)) = pb(y). Moreover,
b ∈ cA(pa(y)), so in particularb ∈ cA(y). Therefore,pb(x) = pb(y). Hence,pb(pa(x)) = pb(pa(y)) =
pb(y) = pb(x).
◦ If a /∈ cA(y) and b ∈ cA(y), then pa(x) = [ky]lpa(z), and pb(x) = pb(y). Hence,pb(pa(x)) =

pb([ky]lpa(z)) = pb(y) = pb(x). �

Lemma 5.4. Letx ∈ Dyck(A× N+). If k ∈ cN(pa(x)), thena ∈ cA(tk(x)).

Proof. If x is a letter, the result is obvious. Otherwise we proceed by induction and distinguish the following
cases.

– x = yz, |y|, |z| ≥ 1, anda ∈ cA(y). In this case,pa(x) = pa(y), sok ∈ cN(pa(y)). Since|y| < |x|, the
induction hypothesis applies toy soa ∈ cA(tk(y)). Sincex = yz andk ∈ cN(y), tk(x) = tk(y)z, we get
a ∈ cA(tk(x)).

20

– If x = yz |y|, |z| ≥ 1, anda ∈ cA(z)\ cA(y). In this case,pa(x) = ypa(z). If k ∈ cN(y), thentk(x) = tk(y)z,
anda ∈ cA(z) ⊆ cA(tk(y)z) = cA(tk(x)). Assume on the contrary thatk /∈ cN(y). Sincek ∈ cN(pa(x)) =
cN(ypa(z)), we getk ∈ cN(pa(z)). The induction hypothesis applied toz yieldsa ∈ cA(tk(z)) = cA(tk(x)).

– x = [iy]j . We havek ∈ cN(pa(x)) = cN(pa(y)). Since|y| < |x|, the induction hypothesis yieldsa ∈
cA(tk(y)). Now, tk(x) = tk(y)x, hencea ∈ cA(tk(x)). �

Lemma 5.5. Letx ∈ Dyck(A× N+) and letk ∈ cN(pa(x)). Then we have

tk(pa(x)) = pa(tk(x)).

Proof. We proceed by induction on|x|. Again, we observe that the result holds ifx is a letter, and we distinguish
the following cases.

– x = yz, a ∈ cA(y). We then havepa(x) = pa(y), so tk(pa(x)) = tk(pa(y)). On the other hand,k ∈
cN(pa(x)) = cN(pa(y)) by hypothesis. Applying the induction hypothesis toy, we gettk(pa(y)) = pa(tk(y)).
Finally, by Lemma 5.4,a ∈ cA(tk(y)) sincek ∈ cN(pa(x)) = cN(pa(y)). This justifies the last equality in
pa(tk(x)) = pa(tk(yz)) = pa(tk(y)z) = pa(tk(y)). Hencetk(pa(x)) = pa(tk(x)).

– x = yz, a ∈ cA(z) \ cA(y). In this case,pa(x) = ypa(z). If k ∈ cN(y), thentk(pa(x)) = tk(y)pa(z) and
pa(tk(x)) = pa(tk(y)z) = tk(y)pa(z).

If on the contraryk ∈ cN(pa(z)) \ cN(y), thena ∈ cA(tk(z)) by Lemma 5.4,tk(pa(x)) = tk(ypa(z)) =
tk(pa(z)), andpa(tk(x)) = pa(tk(z)). The induction hypothesis applied toz gives the result.

– x = [iy]j , a ∈ cA(y). Here,k ∈ cN(pa(x)) = cN(pa(y)). By induction hypothesis, we havetk(pa(y)) =
pa(tk(y)). Moreover,a ∈ cA(tk(y)) by Lemma 5.4. Therefore,tk(pa(x)) = tk(pa(y)) = pa(tk(y)) =
pa(tk(y)[iy]j) = pa(tk(x)). �

We can apply Lemma 5.5 to a word of the formw.

Corollary 5.6. Letw be anω-term and letk ∈ cN(pa(w)). Then we have

tk(pa(w)) = pa(tk(w)).

Lemma 5.7. Letx ∈ Dyck(A) and letk ∈ cN(ti(xN)). Thentk(ti(xN)) = tk(xN).

Proof. We proceed by induction on|x|. If x ∈ A+, then the result is trivial.

– If xN = yz, with y, z ∈ Dyck(A × N+), theni (resp.k) cannot be in bothcN(y) andcN(z). Assume that the
statement is true fory andz.

◦ If i ∈ cN(z), thenk ∈ cN(ti(xN)) = cN(ti(z)) and by induction hypothesis,tk(ti(xN)) = tk(ti(z)) =
tk(z) = tk(xN).
◦ If i, k ∈ cN(y) thenti(xN) = ti(y)z, and sincek /∈ cN(z), we havek ∈ cN(ti(y)). By induction hypothesis

tk(ti(y)) = tk(y). Hencetk(ti(xN)) = tk(ti(yz)) = tk(ti(y)z) = tk(ti(y))z = tk(y)z = tk(yz) =
tk(xN).
◦ If i ∈ cN(y) andk ∈ cN(z), we haveti(xN) = ti(y)z, andtk(ti(xN)) = tk(ti(y)z) = tk(z) = tk(xN).

– If xN = [1y]n, then if i = 1, we haveti(xN) = xN and sotk(ti(xN)) = tk(xN). Otherwise, we have
by definition ti(xN) = ti(y)xN and sotk(ti(xN)) = tk(ti(y)xN). Therefore, using the definitions and the
induction hypothesis,

◦ if k ∈ cN(ti(y)), thentk(ti(xN)) = tk(ti(y))xN = tk(y)xN = tk(xN);
◦ if k /∈ cN(ti(y)), thentk(ti(xN)) = tk(xN). �

Lemma 5.8. Letw be anω-term, leti ≥ 0 anda ∈ A. Assume thatbk is a marker ofw(i, a). Then

(a) pb(w(i, a)) = w(i, b);
(b) tk(w(i, a)) = w(k, a).

Proof. (a). Let x = w(i,#), so that, by (25),w(i, a) = pa(x) andw(i, b) = pb(x). Sincebk is a marker of
w(i, a), b ∈ cA(pa(x)). By Lemma 5.3, we havepb(pa(x)) = pb(x), that ispb(w(i, a)) = w(i, b).

(b) Sincebk ∈ c(w(i, a)), b 6= a. We proceed by induction on the construction ofw. Also, bk is the only
letter ofc−1

N
(k) in w. Hence ifw ∈ A∗, both sides of(b) are the factor ofw starting afterbk and ending before

the next letter ofc−1
A (a). We have to showtk(pa(ti(w))) = pa(tk(w̄)). Sincew(i, a) contains at least one letter,

i ∈ cN(pa(w)) and in view of Corollary 5.6, this is equivalent totk(ti(pa(w))) = tk(pa(w)). Now,pa(w) is well
parenthesized by Fact 5.1 (2), hence the result follows fromLemma 5.7. �

Any wordx of the formw(i, a) satisfies the following condition:

(H(x)) ∀b, b′ ∈ A, ∀j ∈ N+, (bj, b
′
j ∈ c(x) =⇒ b = b′).

21

Indeed, we havec(w(i, a)) ⊆ c(w), and for each1 ≤ j ≤ |w|, there is exactly one letter ofw belonging toc−1
N

(j).

Let Σ be a set ofω-term identities. Recall that an identityu = v is a consequenceof Σ if it belongs to the
fully invariant congruence on the algebra of allω-terms generated byΣ. This congruence may be described as the
equivalence relation generated by all pairs of the form(s ℓ t, s r t), wheres, t areω-terms andℓ = r is obtained
from an identity ofΣ by substituting the variablesx andy by appropriateω-terms. We also say thatΣ deduces
u = v and we writeΣ ⊢ u = v. The next two statements derive some consequences of{tω = tω+1}.

Lemma 5.9. Letx ∈ Dyck(A× N+) satisfying(H(x)) and suppose thatai is a marker ofx. Then

(26) {tω = tω+1} ⊢ η(x) = η(pa(x) · ai · ti(x)).

Proof. We proceed by induction on|x|. If |x| = 1, thenx = ai, η(x) = a, pa(x) = ε = ti(x), hence (26) holds.
Otherwise,x = yaiz with cA(y) ⊆ cA(x) \ {a}. If y is well parenthesized, then so isz. By definition of

y, a /∈ cA(y) so in this casepa(x) = y. Furthermore, assume thati ∈ cN(y). In this case, there is some letter
bi ∈ c(y). By (H(x)) we would havea = b, in contradiction witha /∈ cA(y). Hence,ti(x) = z. Therefore, (26)
can be written{tω = tω+1} ⊢ η(x) = η(yaiz), which holds trivially.

Assume now thaty is not well parenthesized. One can writey = y′′[ky
′ andz = z′]lz

′′ such thaty′′, z′′ ∈
Dyck(A× N+)1 andy′aiz′ ∈ Dyck(A× N+). Letw = y′aiz

′. We have|w| ≤ |x| − 2. Sincew is a factor ofx,
H(w) holds. Hence, we can apply the induction hypothesis tow. Sinceai is a marker ofx, we havea /∈ cA(y)
hencea /∈ cA(y′). Henceai is a marker ofw = y′aiz

′, and by induction hypothesis

(27) {tω = tω+1} ⊢ η(w) = η(pa(w) · ai · ti(w)).

Sincey′′ is well parenthesized anda ∈ cA(w), a /∈ cA(y′′), we also have

(28) pa(x) = pa(y
′′[kw]lz

′′) = y′′ · pa(w).

In the same way, usingi /∈ cN(y) andi ∈ cN(w)

(29) ti(x) = ti(y
′′[kw]lz

′′) = ti(w)[kw]lz
′′.

We now deduce the following sequence ofω-identities from{tω = tω+1}:

{tω = tω+1} ⊢ η(x) = η(y′′[kw]lz
′′)

= η(y′′) · η(w)ω · η(z′′) asy′′, z′′ ∈ Dyck(A× N+)1

= η(y′′) · η(w) · η(w)ω · η(z′′) usingtω = tω+1

= η(y′′) · η(pa(w) · ai · ti(w)) · η(w)ω · η(z′′) by (27)

= η(y′′) · η(pa(w)) · a · η(ti(w)) · η(w)ωη(z′′) by Facts 5.1 and 5.2

= η(y′′pa(w)) · a · η(ti(w)[kw]lz
′′) idem

= η(pa(x)) · a · η(ti(x)) by (28) and (29)

= η(pa(x) · ai · ti(x)). �

When applying Lemma 5.9 to words of the formw(i, a), we obtain the following formulation.

Corollary 5.10. Letw be anω-term. Then for everyi ∈ cN(w) and everya ∈ cA(w), we have{tω = tω+1} ⊢
w(i, a) = w(i, b) · b · w(k, a) wherebk is an arbitrary marker ofw(i, a).

Proof. Let x = w(i, a). Then we know by Lemma 5.8 thatpb(x) = w(i, b) andtk(x) = w(k, a). We thus have
to show that{tω = tω+1} ⊢ η(x) = η(pb(x)) · b · η(tk(x)), that is{tω = tω+1} ⊢ η(x) = η(pb(x) · bk · tk(x)).
Since anyx of the formw(i, a) satisfies (H(x)), the result follows directly from Lemma 5.9. �

The next variation is the basis to build up theR-graphG(w).

Corollary 5.11. Letw be anω-term. Leti ∈ N anda ∈ A#. Letbk be the principal marker ofw(i, a). Then, the
left basic factorization ofw(i, a) is (w(i, b), b, w(k, a)).

Proof. Let x = w(i, a), so thatx = ybkz, with cA(y) = cA(x) \ {b}. Since (H(x)) holds, by Lemma 5.9 the
equationη(x) = η(pb(x)·bk ·tk(x)) is a consequence of{tω = tω+1}, hence it is valid inR. Sinceb /∈ cA(pb(x)),
this proves that(η(pb(x)), b, η(tk(x))) is the left basic factorization ofη(x) = w(i, a). It remains to show that

(a) R |= η(pb(w(i, a))) = w(i, b);
(b) R |= η(tk(w(i, a))) = w(k, a).

Now, both properties follow from Lemma 5.8. �

In particular, we re-obtain, with the above alternative proof, that there is a finite number of relative/absolute
tails for anω-term overR (which is part of Theorem 4.4):

22

Corollary 5.12. Letw ∈ ΩωAR. Then

(a) each absolute tail ofw is of the formw(i,#);
(b) each relative tail ofw is of the formw(i, a), wherea ∈ A#.

In particular, there are at most|w||c(w)| different tails.

Corollary 5.11 now makes it possible to construct the finiteR-graphG(w) = (V (w), E(w)) of w as follows.

– There is one stateq(i, a) for each(i, a) ∈ [0, |word(w)|]× (A∪ {#}). TheR-subautomaton fromG(w) rooted
at stateq(i, a) will be anR-automaton of theω-termw(i, a).

– The root ofG(w) is q(0,#). In the sequel, we will not consider states which cannot be reached from the root.
– Edges ofG(w) are labeled by0 or 1: E(w) ⊆ V (w) × {0, 1} × V (w). Let q(i, a) be a state ofG(w) and let

(u,m, v) be the left basic factorization ofw(i, a). Let bj be the principal marker ofw(i, a). By Corollary 5.11,

u is equal tow(i, b) overR, andv is equal tow(j, a) overR. The two outgoing edges fromq(i, a) areq(i, a)
0
→

q(i, b) andq(i, a)
1
→ q(j, a).

– Finally, the labeling of states is defined byλ(q(i, a)) = b, where the principal marker ofw(i, a) is of the form
bk, orλ(q(i, a)) = ε if w(i, a) is empty.

The R-graph ofw = (abωa)ω is pictured in Figure 3. We haveword(w) = [1a2[3b4]5a6]7. The principal
marker ofw(0,#) is b4, so the left son of the root corresponds toq(0, b) and its right child toq(4,#). Inside each
state, we have indicated, in addition to the labeling by{a, b, ε}, the pair(i, a) corresponding to theω-term that
the state represents. For instance, the root, labeledb, representsw(0,#).

b0,#

a0,b

0

a4,#

1

ε

0
1

b4,a

0

0
1

b6,#

1

1

a6,b

0

1

0

FIGURE 3. TheR-graph of the pseudoword(abωa)ω

Using Corollary 5.11, we obtain:

Proposition 5.13. For everyω-termw, G(w) is anR-automaton and is equivalent toT(w). Moreover,G(w) is
finite, of sizeO(|c(w)||w|).

In Figure 3, note that two pairs of states can be identified sincew(0, b) = w(6, b) andw(0,#) = w(6,#).
Merging the states in both pairs produces exactly the wrapped R-automaton (which was shown on Figure 2).

One equivalent way to determine which states have to be merged is to push the labels of states, which are the
markers, on edges. We get a graph that we consider as a (usual)automatonG′(w) on the alphabet{0, 1}×A: the
state set ofG′(w) is the set of states ofG(w), the initial state ofG′(w) is the root ofG(w), and the transitions are

defined as follows. Ifbk is the marker ofw(i, a), then we have two transitions fromq(i, a): q(i, a)
(0,b)
−−−→ q(i, b)

andq(i, a)
(1,b)
−−−→ q(k, a). If q(i, a) is labeled byε, then there is no outgoing transition from that state.

For instance, the automatonG′((abωa)ω) is shown on Figure 4.
By its definition, the wrappedR-automatonA(w) of w is obtained fromG(w) ∼ T(w) by identifying states

from which one can read the same languages of labeled paths. On the other hand, the minimal automatonA′(w)
of G′(w) is obtained fromG′(w) by identifying states from which the same language can be read. From that
observation, obtainingA(w) from A′(w) is again just a matter of transferring letters appearing as the second
component of transitions inA′(w) back to states.

Proposition 5.14. The wrappedR-automatonA(w) ofw is obtained from the minimal automatonA′(w) of G′(w)
as follows:

– A(w) andA′(w) only differ by the labeling of the transitions (and the fact that the states ofA(w) are labeled).
That is, the state set ofA′(w) is (in bijection with) the set of states of theR-automatonA(w), its initial state is
the root ofA(w), its final states are those labeled byε in A(w);

23

0,#

0,b

(0,b)
4,#

(1,b)

ε

(0,a)

(1,a)

4,a

(0,a)

(0,b)

(1,b)

6,#
(1,a)

(1,b)

6,b
(0,a)

(1,a)

(0,b)

FIGURE 4. TheR-graph, viewed as an automaton on{0, 1} ×A, for (abωa)ω

– transitions ofA′(w) are obtained as follows from transitions ofA(w): for each transitionv
α
−→ w of A(w),

with α ∈ {0, 1}, there is a transitionv
(α,λ(v))
−−−−−→ w in A′(w).

It is obvious that one can obtainG′(w) from G(w) andA(w) back fromA′(w) in linear time. Therefore, in
order to solve theω-word problem overR in linear time, it remains:

– to computeG(w) in linear time. This is the purpose of Subsection 5.3;
– to show thatG′(w) can be minimized in linear time. The reason why it works relatively easily is that automata

G′(w) have a special form. For instance, we deduce from Remark 3.13that all loops are labeled by letters of
the form(1, a). The linear-time minimization procedure is the topic of [9], and has been sketched in [8]. For
the sake of completeness, we recall briefly the algorithm in Subsection 5.4.

5.3. Efficient computation of R-graphs. Computing theR-graph of anω-termw amounts to computing, for
each pair(i, a) the principal markerbk of w(i, a). By definition ofG(w), we know from Corollary 5.11 that the
two edges labeled by 0 and 1 fromq(i, a) lead toq(i, b) andq(k, a), respectively. In this subsection, we assume
w is given and show that one can compute this information in timeO(|w| · |c(w)|).

The complication comes from nesting ofω-powers. For instance, letw = (ae(ba(cacb)ωdab)ω)ωe andi = 9
(the position of the thirda). Then, the principal marker ofw(i,#) is the first occurrence ofe, since

w(i,#) = cb(cacb)ω(ba(cacb)ωdab)ω(ae(ba(cacb)ωdab)ω)ωe.

Since from a tree representation ofw, one can computeword(w) in timeO(|w|), we can assume that theω-
term is readily given byword(w). We assume that letters ofword(w) are stored in a random access array of size
|word(w)|. Theith cell of this array stores ana if and only if theith letter ofword(w) is ai.

We assume that letters ofA are integers. Even ifA is not known, one can rename all letters other than the
brackets with names in{1, 2, . . . , |c(w)|} in timeO(|word(w)| · log |c(w)|) = O(|w| · log |c(w)|), scanning the
word once. The factorO(log |c(w)|) comes from the fact that we must determine for each scanned letter whether it
has already been given a new name or not. So we assume that we knowc(w) and that we can allocatec(w)-indexed
arrays.

We define forx ∈ (A[#] × N)+ the sequencefirst(x) ∈ (A × N)∗ of first occurrences of letters inx. Let
x = yakz with cA(y) ∪ {a} = cA(x) anda /∈ cA(y). Then,first(x) = first(y)ak. E.g., first(a1[2a3b4]5c6#7) =
a1b4c6. Using Algorithm 1, one can computefirst(x(i,#)) for every positioni > 0 carrying a letter fromA (in
fact, fromA ∪ {[}) in O(|w||c(w)|)-time.

We do not give a formal proof of the algorithm, which would be very tedious. Instead, we explain in detail how
it works. This should convince the reader of its correctness.

We use a standard pseudocode syntax. The argumentx of the procedure is assumed to be of the formword(w).
Note that we do not computefirst(x(0,#)), but it is easy to compute afterward inO(|w||c(w)|)-time. We did
not declare some variables, namelyi, j, k, ℓ, row andline. The variablerow denotes a list of positions in the
interval [1, |x|], and the variableline denotes a list of pairs of the form(i, a) ∈ [1, |x|] × A. The relevant
variables are the following:

– i (undeclared) represents the current position,
– S is a stack storing the pending opening brackets.
– wait is an|A|-indexed array, andwait(a) represents previous positionsj (less than the current value ofi)

for which we did not find the first occurrence of lettera in x(j,#) yet. Such a positionj is still “waiting” for
ana.

24

Algorithm 1 Computesfirst(x(i,#)) for all i > 0 carrying a letter ofA

procedure Table_first(x: Word)
local S: Stack
local wait: Array [1..|A|] of lists of positions
local res: Array [1..|x|] of lists of pairs (i, a)

1: for i← 1 to |x| do
2: if x[i] = ’[’ then
3: push(S, i)
4: for all a ∈ A do
5: prepend(wait[a], i) ⊲ [i is "waiting" for ’a’
6: end for
7: else if x[i] = ’]’ then
8: matchingOpen ← pop(S)
9: for all a ∈ A do
10: if wait[a] 6= Nil and first(wait[a]) = matchingOpen then
11: removeFirst(wait[a])
12: end if
13: end for
14: line ← res[matchingOpen]
15: for k ← 1 to |line| do
16: row ← wait[letter(line[k])]
17: wait[letter(line[k])] ← Nil
18: for ℓ← 1 to |row| do
19: append(res[row[ℓ]], line[k])
20: end for
21: end for
22: else ⊲ We read a letter from A
23: row ← wait[x[i]] ⊲ positions waiting for x[i]
24: for j ← 1 to |row| do
25: append (res[row[j]], (i, x[i]))
26: end for
27: wait[x[i]] ← Nil
28: for all a ∈ A do
29: append (wait[a], i)
30: end for
31: end if
32: end for

end procedure

– res is the result we should return at the end of the function. It isan array indexed by the positions ofx, from
1 (first letter) to|x|. At the end of the algorithm,res[j] contains the list of letters offirst(x(j,#)). Letterai
is represented by the pair(i, a).

The functionletter, used at lines 16 and 17, extracts from a pair(i, a) the lettera. We also used auxiliary
functions on stacks (push, pop) or lists, likeappend, prepend, or first, removeFirst, and|.| (for the
length), whose names are self-explanatory. We denote byNil the empty list.

The algorithm scansx from left to right. Depending on the current letter, it distinguishes 3 cases:

– If the current letter is an opening bracket, the algorithm remembers it by pushing it on the stackS (line 3). It
puts further at the beginning of each listwait[a] the position of that opening bracket, to indicate that this
position is now “waiting” for ana (lines 4–6).

– If the current letter belongs toA (lines 23–30), it recovers inwait the positions which were waiting for the
current letterx[i], and appends the current letter with its position,(i, x[i]), to all those waiting positions in
the resultres. It then resetswait[x[i]] to the empty list (line 27). Finally, it appends the current position
i to all listswait[a], since positioni, which we have just treated, now waits for all letters to be collected in
first(x(i,#)).

25

– Finally, assume that the current letter is a closing bracket. We first recover the matching opening bracket by
popping it off the stackS (line 8), and removing it from all listswait[a] (lines 9–13). Due to the fact that
letters ofA are appended to these lists (lines 28–30) while opening brackets are prepended to it (line 5), we
know that if the matching opening bracket occurs in a listwait[a], it must in fact be the first element. This is
why we can use anO(1) call removeFirst, which removes the first element of the list.

In the case of a closing bracket, it remains to treat the underlying ω-power. We have to take into account
that a position inside anω-power can view, as a first occurrence, a letter which precedes it in x, due to the
ω-power. For instance, ifx = [1a2b3]4, then the firsta seen by position 3 isa2. We recover this infor-
mation when closing a bracket, here]4. In the example, the firsta seen inx(3,#) is also the firsta in
x(1,#). This is general: if a positionℓ inside theω-power still waits for lettera, the appropriatea is pre-
cisely that offirst(x(matchingOpen,#)), if it exists. Hence, to extend the sequence of first occurrences of
letters seen from a positionℓ inside theω-power, one just needs to add, in order, all letters already appearing
in first(x(matchingOpen,#)) but not yet appearing infirst(x(ℓ,#)). After this operation, one also needs to
resetwait[a] to Nil, for all a occurring infirst(x(matchingOpen,#)). This is exactly what the algorithm
does at lines 14–21.

For instance withx = [1a2b3]4, one checks that, when reading]4, positions 2 and 3 are still waiting fora,
and position 3 is waiting for ab. The wordfirst(x(1,#)) seen from the matching opening bracket computed
when scanning]4 is a2b3. Therefore, we first adda2 to positions still waiting for ana, that is, 2 and 3: we add
a2 (named(2, a) in the algorithm) tores[2] andres[3]. Then we resetwait[a] to Nil. Finally we add
b3 to positions waiting for ab similarly and resetwait[b] to Nil.

The algorithm is easily seen to run inO(|w||c(w)|). Therefore:

Lemma 5.15. Letw ∈ ΩωAR. Algorithm 1 computes in timeO(|w||c(w)|) a table giving, for eachi such that there
existsai ∈ c(w) ∩A× N, the wordfirst(w(i,#)).

TheO(|w||c(w)|) precomputation of Lemma 5.15 yields anO(1) algorithm for computing both
0
→ and

1
→

edges from a state ofV (w). Indeed, from the wordfirst(w(i,#)), one can immediately deduce the word
first(w(i, a)), which is the largest prefix offirst(w(i,#)) not containinga. Then, if the last letter offirst(w(i, a))

is bk, then,bk is the principal marker offirst(w(i, a)) and we have inG(w) edgesq(i, a)
0
→ q(i, b) andq(i, a)

1
→

q(k, a). Since the size ofG(w) is inO(|w|), we obtain the following theorem.

Theorem 5.16. One can constructG(w) in timeO(|w| |c(w)|).

5.4. Wrapping and minimization. The purpose of this subsection is to describe an efficient algorithm to wrap a
finite R-automaton. As explained in Subsection 5.2, given anR-automatonA, one can construct a finite automaton
recognizingL(A) by simply adding as a first component of any edge label the label of its origin. By definition
of the wrapping,A is wrapped if and only if this automaton is minimal. Conversely, one can transform the
minimal automaton ofL ⊆ ({0, 1} × A)∗ into a wrapped state-labeled automaton whose associated language
is L by removing the first component from every edge label and labeling the origin state with it. Through this
straightforward translation, finding the wrapping ofA is equivalent to minimizing its associated automaton.

The standard algorithms to minimize a deterministic automaton, such as Hopcroft’s one [15] have time com-
plexity O(mn log n), wherem = |A| andn is the number of states. (See [17, 10] for recent presentations and
complexity analyses.) For deterministic acyclic automata, Revuz [19] has described an algorithm working in time
O(m + d), whered is the number of transitions. It was originally designed to compress dictionaries. A finiteR-
automatonA is acyclic if and only if theω-term it describes does not involve theω-power, in which case Revuz’s
algorithm would directly apply to produce the desired wrapping.

An important property of our automata is that their stronglyconnected components are cycles, that is, any two
distinct loops are disjoint. The reason is again that any loop is labeled only by letters of the form(1, a) and that
from any state, there is at most one such transition. It is shown in [9] how to minimize inO(m+d)-time automata
whose strongly connected components are cycles. For the rest of this presentation, we explain the algorithm on
R-automata.

Compared with the acyclic case, there is an additional difficulty: in the acyclic version, a height function
measuring the longest path starting from each state is computed at the beginning of the algorithm. The situation is
then simple, in that the minimization can only identify states having the same height. If we do have cycles, such
paths can be infinite. However, since all cycles are disjoint, we can, after a preprocessing phase, treat separately
the states belonging to cycles and the other states. A natural analog of Revuz’s height function is obtained by
letting edges in cycles have weight zero.

26

The algorithm involves a loop. At each iteration, the first processing stage rolls paths coming to a cycle if this
does not change the language. Consider for example a usual automaton with a single initial stateq0, one simple
path fromq0 to q1 labeledv and one cycle aroundq1 labeledu, as pictured in Figure 5. Ifv = u′ur with r ≥ 0
andu′ a suffix ofu, then we do not change the language by rolling the simple patharound the cycle, that is, by
only retaining the cycle and choosing as the new initial state the unique stateq2 of the cycle such thatq2 ·v = q1.

q0 q1 q2
v = u′ur

u′
q1 q2

u′

(Before merging) (After merging)

FIGURE 5. Merging a path ending in a cycle

Because of this phenomenon, one cannot compute once for all aheight function which would assign weight 0
to edges of cycles and 1 to other edges: an edge which is not in acycle in the originalR-automaton could well
be rolled and its weight change from 1 to 0. This is the reason why our height (calledlevel in the sequel) is not
precomputed. Rather, we compute on the fly the next slice of states we need to treat. In other words, since rolling
paths around cycles may change the level of states that lie above them, we have to recompute this level. We do
this only locally: we just update correctly levels of stateswe are about to treat, to remain linear.

The second step in the iteration of the main loop of the algorithm is to minimize cycles one by one. The
important point here is that cycles can be represented by (circular) words which take into account the labels (of
the states, if we work withR-automata) and the fact that a state is final or not. Minimizing a cycle is then exactly
finding the primitive root of this word, which can be performed in linear time with classical pattern-matching
algorithms.

The third and last step is to identify, at the current level, all equal cycles and all states not belonging to a cycle.
This can be done in linear time (with respect to the size of allcycles and isolates states to be treated) using bucket
sort, exactly as in Revuz’s algorithm. Here is a more detailed sketch of the algorithm:

(a) Given a finiteR-automatonA, compute its strongly connected components with Tarjan’s algorithm [22, 13,
10].

(b) Compute an initiallevelfunction that measures, for each state, the maximum weight of a path to the terminal
state, assigning weight0 to edges in cycles and weight1 to all other edges. This can be done efficiently by
a simple traversal of the graph that is further used to assigna level value to each edge that is not in a cycle,
a value which is initialized to the level of the end state plus1. Both these level functions will be updated in
the main loop of the algorithm as a result of rolling paths with all edges labeled1 around cycles to which
they lead. The level of edges serves as a mechanism to propagate to higher levels changes coming from
identifications done at lower levels.

(c) From this point on, we construct successive equivalence relations on sets of states which are approximations
to the congruence onA whose quotient determines the minimizedR-automaton. We do so level by level, at
each stage suitably joining elements into equivalence classes. The first step consists in putting the final state
into its own class.

(d) This is the main cycle in the algorithm. Proceed by increasing leveln ≥ 1, as in the following loop. At the
end of leveln, all states processed in it will have level-valuen and they will all be assigned to an equivalence
class, which remains unaltered at higher levels.

For each nonterminal statev, denote by0v, 1v the edges starting fromv labeled0, 1, respectively. If
level(0v) ≤ n, then letζ(v) denote the pair consisting of labelλ(v) of the statev and the class[v0] containing
the state at the end of the edge0v.

(i) Call subroutineLevel(n) which returns the listS of states whose current level-value isn.
(ii) For each state inS which lies in a cycle, put it in its own singleton class.
(iii) Roll 1-labeled paths leading to cycles inS around the corresponding cycles by testing for each suc-

cessive statev which is not in the cycle whetherζ(v) is defined and whether it coincides withζ(w),
wherew is the unique state in the cycle such that for all sufficientlylargek, v1k = w1k. In the nega-
tive case, do not proceed with the test for statesu such thatv ∈ u1∗. In the affirmative case, addv to
the class ofw, as a result of which the edge1v becomes a cycle-edge and thus no longer contributes
to the level function; this leads us to reducelevel(v) ton andlevel(e) to n+ 1 for every edgee which
ends at statev.

(iv) Since the previous step may change the level functions, lowering to leveln states that were previously
considered at higher levels, we call subroutineLevel(n) again. This will return an updated value forS

27

which contains the previous value since the previous step only affects the level-values of states at
higher levels.

(v) For each cycleC in S, do the following steps which suitably merge all equivalence classes of states
in the cycle according to their identification in the minimizedR-automaton:

– compute the (circular) wordWC whose letters are the successiveζ(w) with w in C;
– compute the primitive rootW ′

C ofWC ; this can be done by computing the shortest borderu ofWC

(i.e., the shortest nonempty word which is both a prefix and a suffix of WC), such thatu−1WC is
also a border; that this computation can be performed in linear time in terms of the length ofWC

follows from the fact that the list of all borders can be computed within this time-complexity [14];
– compute the minimal conjugateVC of W ′

C ; this can be done in linear time in terms of the length
W ′
C [12, 21];

– merge classes of states inC according to the periodic repetition ofVC in WC .

(vi) To merge classes of states in different cyclesC of S, start by lexicographically sorting the wordsVC
using bucket sort [13]. This determines in particular whichcycles have the same wordsV = VC and
their classes associated with corresponding positions inV are merged.

(vii) To merge the remaining statesv in S into classes, start by lexicographically sorting (using a bucket
sort) their associated triples(λ(v), [v1], [v2]), wherev1, v2 denote the ends of the edges0v, 1v, respec-
tively. As in the previous step, this determines in particular which states have the same associated
triples, and those that do are merged into the same class.

(viii) Incrementn by 1 and proceed until a subroutine call returns the empty list.

To complete the description of the algorithm, it remains to indicate what the subroutineLevel(n) does. It starts by
updating the level-value of the beginning statev of each edgee such thatlevel(e) = n according to the formula

level(v) =

{

max{level(e), level(f)} if e is not in a cycle and{e, f} = {0v, 1v}
maxx level(x) otherwise

where the second maximum runs over all edgesx with label0 which start in the cycle that containsv. Then return
all states for which the new level-value isn.

Theorem 5.17. The above algorithm minimizes a givenR-automaton withs states in timeO(s).

Since theR-graphG(w) of anω-termw can be computed in linear time (Theorem 5.16) and computing the
wrappedR-automaton just involves this minimization procedure, we have shown our main result.

Theorem 5.18. The word problem forω-terms overR can be solved in timeO(mn), wherem is the number of
letters involved andn is the maximum of the lengths of theω-terms to be tested.

6. THE EQUATIONAL THEORY OF THEω-VARIETY GENERATED BY R

LetRω be theω-variety generated byR, that is, the Birkhoff variety generated by allω-semigroups(S, _·_, _ω),
where(S, _ · _) is a finiteR-trivial semigroup. By Birkhoff’s theorem,Rω is defined by a set ofω-identities. Let
Σ be the following set ofω-identities.

(Σ)











(xy)ω = (xy)ωx = (xy)ωxω = x(yx)ω(30)

(xω)ω = xω ,(31)

(xr)ω = xω, r ≥ 2.(32)

This section is devoted to the proof of the following theorem.

Theorem 6.1. (a) The setΣ is a basis forR.
(b) Theω-varietyR has no finite basis of identities.

The rest of this section is devoted to the proof of Theorem 6.1. Assuming(a), we will first prove(b) which is
easier. First note that one can deduce aperiodicity fromΣ.

Fact 6.2. By (30) and (32), one obtainsΣ ⊢ xω = (xx)ω = (xx)ωx = xω+1.

Combining Corollary 5.10, fact 6.2 we obtain the following statement.

Corollary 6.3. Letw be anω-term, leti ∈ cN(w), a ∈ cA(w) and letbk be a marker ofw(i, a). Then

Σ ⊢ w(i, a) = w(i, b) · b · w(k, a). �

28

Proof of Theorem 6.1 part(b), assuming part(a). By equational completeness, to prove thatRω is not finitely
based it suffices to show that no finite subset ofΣ defines the varietyRω. For this purpose, consider the semigroups
presented by

Sp = 〈a, e, f : ap = 1, ea = ef = e2 = e, fa = fe = f2 = f,

ae = e, af = f〉

wherep is a positive integer. This semigroup is realized for instance as the semigroup of transformations of the
set{1, . . . , p, p+ 1, p+ 2}, wherea acts on{1, . . . , p} as the cycle(1, . . . , p) and fixes the other two points, and
e andf are constant maps, respectively with valuesp+ 1 andp+ 2. In particular,Sp hasp+ 2 elements. OnSp,
we define a unary operationτ by taking

τ(e) = e, τ(f) = f, τ(1) = e, τ(ak) = f (k ∈ Z \ pZ),

which determines a unary semigroupSp = (Sp, ·, τ). Note thatτ(ap) = τ(1) = e 6= f = τ(a) and soSp fails
the identity(xp)ω = xω. It is pure routine to verify thatSp satisfies the identities in (30), (31), and (32) forr
relatively prime withp, which completes the proof of statement(b). �

The proof of Theorem 6.1(a) will involve several technical lemmas establishing a number of formal conse-
quences of the setΣ of identities introduced in Section 6. The first result is an improvement of Lemma 3.3 for the
case ofω-terms but neither result seems to directly imply the other.

Lemma 6.4. Letu, v beω-terms such thatc(v) ⊆ c(u). ThenΣ ⊢ uωv = uω.

Proof. We start by considering the case in whichv is a variablex ∈ c(u). If there is a factorization of the form
u ≡ u′xu′′ (whereu′ andu′′ may be empty), thenΣ ⊢ uω = (u′xu′′)ω = u′(xu′′u′)ω = u′(xu′′u′)ωx = uωx.
Otherwise, there is a factorization of the formu = u′wωu′′ such thatx ∈ c(w). Then, by induction on the
construction of theω-termu, we haveΣ ⊢ wω = wωx, which reduces the problem to the above case.

We then proceed by induction on the construction of theω-termv. Note that

Σ ⊢ (xy)ω = x(yx)ω = x(yx)ωyω = (xy)ωyω.

Hence, assuming inductively that we may deduce fromΣ the identitiesuω = uωvi (i = 1, 2), we may also deduce
the identities

uω = uωv2 = uωv1v2, and

uω = (uω)ω = (uωv1)
ω = (uωv1)

ωvω1 = uωvω1 ,

which completes the induction step and the proof. �

Lemma 6.5. For everyω-termu there is anω-termv in reduced form such thatΣ ⊢ u = v.

Proof. We proceed by induction on the construction ofω-terms. First, it is easy to see that everyω-termu is of the
form u1v

ω
1 · · ·unv

ω
nun+1 where eachui is a (possibly empty) word and eachvi is anω-term where the maximum

number of nestedω-powers is smaller than in the originalω-term. By the induction hypothesis, we may assume
that eachω-termui, vi is in reduced form.

Suppose that somevi admits a factorization of the formvi = xyω with c(x) ⊆ c(y). By Lemma 6.4,Σ implies
the identitiesvωi = (xyω)ω = xyω(xyω)ω = xyω and so we may replacevωi by xyω in the above expression,
wherexyω is already in reduced form by the assumption thatvi is. Therefore, one may assume that eachvωi is in
reduced form.

Finally, applying again Lemma 6.4, we may further assume that noui admits a factorizationui = u′iu
′′
i with

u′i nonempty (andu′′i possibly empty) such thatc(u′i) ⊆ c(vi−1); in caseui = ε andi > 1, we also assume that
c(vi) * c(vi−1). In this way, we obtain the desired reducedω-termv such thatΣ ⊢ u = v. �

The following is a partial cancellation law for the variety defined byΣ.

Lemma 6.6. Letu, v beω-terms such thatΣ implies the identityu = v and leta be a letter such thata ∈ c(u). Let
ai be a marker inu andaj be a marker inv. ThenΣ implies the identitiesu(0, a) = v(0, a) andu(i,#) = v(j,#).

Proof. By definition of a consequence of a set of identities, it suffices to assume that(u, v) = (s ℓ t, s r t), where
s, t areω-terms andℓ = r is obtained from an identity ofΣ by substituting the variablesx andy by appropriate
ω-terms.

If the letter a appears ins, then it appears ins as a markerak, u(0, a) ≡ s(0, a) ≡ v(0, a), u(i,#) ≡
s(k,#) ℓ t, andv(j,#) ≡ s(k,#) r t, from which it follows that the identityu(0, a) = v(0, a) is trivial and
Σ ⊢ u(i,#) = v(j,#). At the other end, if the letter does not occur ins, ℓ or r, thena is a markerak in t,
u(0, a) ≡ s ℓ (t(0, a)), v(0, a) ≡ s r (t(0, a)), andu(i,#) ≡ t(k,#) ≡ v(j,#) and the result follows similarly.

29

It remains to treat the case where the lettera does not occur ins but it occurs inℓ, and so also inr. We may
then as well assume thats andt are empty terms, that isu ≡ ℓ andv ≡ r. So, we take each of the identities from
Σ, consider the letterx, andy if present, asω-terms, which produces an identityu = v, and compute in each
case the termsu(0, a), v(0, a), u(i,#), andv(j,#). This is a routine calculation which is included for the sake
of completeness.

For the identities in (30), suppose first thata ∈ c(x). If u andv both belong to{(xy)ω, (xy)ωx, (xy)ωxω},
then i = j andu(0, a) ≡ x(0, a) ≡ v(0, a), while for z = u, v, we havez(i,#) ≡ x(i − 1,#) y z (where
the−1 accounts for the opening parenthesis inz). Sinceu = v is an identity ofΣ andi = j, we have indeed
Σ ⊢ u(i,#) = v(j,#) in this case. In the other case, if one of the termsu or v, sayu, is equal tox(yx)ω andv
belongs to{(xy)ω, (xy)ωx, (xy)ωxω}, theni = j−1,u(0, a) ≡ x(0, a) ≡ v(0, a), whileu(i,#) ≡ x(i,#)(yx)ω

and again,v(j,#) ≡ x(j − 1,#) y v ≡ x(i,#) y v. Therefore, we haveΣ ⊢ u(i,#) = x(i,#)(yx)ω =
x(i,#)yx(yx)ω = x(i,#)yu = x(i,#)yv = v(j,#), so that the conclusion of the lemma is also verified.

Suppose next thata /∈ c(x). Then in all casesi = j, u(0, a) ≡ x(y(0, a)) ≡ v(0, a), and forz = u, v, we have
z(i,#) = y(i− |x| − 1,#) z so that the conclusion of the lemma is trivial in this case.

Finally, for the one-variable identities (31) and (32), assume for instance thatv = xω. In both cases, we
haveu(0, a) ≡ x(0, a) ≡ v(0, a) andv(j,#) ≡ x(j − 1,#)xω . For (31), we obtaini = j + 1, u(i,#) ≡
x(j − 1,#)xω(xω)ω while, for the identity (32),i = j andu(i,#) = x(j − 1,#)xr−1(xr)ω. Thus we require
the identitiesxω = xω(xω)ω = xr−1(xr)ω, which are easily shown to be consequences ofΣ. �

We say thatu1 · · ·uk is aΣ-fringy decompositionof anω-termu if eachui is a fringy factor ofu1 · · ·uk and
Σ ⊢ u = u1 · · ·uk.

We will show that if anω-termuω is in reduced form, then one can deduce fromΣ a factorizationu1u2 of
u, such that for somer ≥ 0 ands ≥ 1, uru1 and(u2u1)

s haveΣ-fringy decompositions. Consider for instance
u = (a2b2)ωc2d2 (which is theω-termw2 from Proposition 4.8, up to a renaming of the letters). Obviously,
Σ ⊢ u = u1u2 with u1 = (a2b2)ωc2d, andu2 = d. Furthermore, bothu1 = u0u1 and(u2u1)

2 admitΣ-fringy
decompositions.

Lemma 6.7. Letu be anω-term such thatuω is in reduced form. Then there areω-termsu1, u2, whereu1 is not
empty (andu2 may be empty) and integersr ≥ 0, s ≥ 1 such thatΣ ⊢ u = u1u2 and theω-termsuru1 and
(u2u1)

s admit Σ-fringy decompositions. Moreover,u1 andu2 may be chosen so that the maximum number of
nestedω-powers in each of them does not exceed that maximum foru.

Proof. By Corollary 5.11, there are sequences(in)n, of positions inuω, and(an)n, of letters inuω, such that
i0 = 1, vn = uω(in, an)an is a fringy factor ofuω and(an, in+1) ∈ A × N+ is a marker ofuω(in,#). Note
that, sinceuω starts with an opening parenthesis,in > 1 for all n > 0. Since the sequence(in)n takes its values
in a finite set, there are positive integersn,m such thatn < m andin = im (and thereforean = am, sincein
uniquely determinesan). Sinceuω is reduced,u is not an idempotent inΩAR and we may assume, without loss
of generality (increasingm if necessary), thatin+1− 1 is the position of the first occurrence ofan in u, where the
−1 accounts for the opening parenthesis inuω. We letu1 = u(0, an)an andu2 = u(in+1 − 1,#). Note thatu1

is not empty. Then, we haveΣ ⊢ u = u1u2 by Corollary 6.3, and the last sentence in the statement of the lemma
is also guaranteed.

Let r be the number of indicesj ∈ {0, . . . , n − 1} ands be the number of indicesj ∈ {n, . . . ,m − 1} in
both cases such thatc(u(ij − 1,#)) 6= c(u). These numbers count how many times we have to wrap around the
ω-power to get the next fringy factor, respectively before weget to the indexn and from then on until we get to the
indexm. By Corollary 6.3, we may deduce fromΣ the equalitiesuru1 = v0 · · · vn and(u2u1)

s = vn+1 · · · vm.
Observe that the latter equality implies thats 6= 0, sincen+ 1 ≤ m and none of thevi’s is empty. �

In the former example,uω = [1[2a3a4b5b6]7c8c9d10d11]12#13 yields

v0 = (a2b2)ωc2d, a0 = d, i1 = 10, c(u(9,#)) = {d},

v1 = d(a2b2)ωc, a1 = c, i2 = 8, c(u(7,#)) = {c, d},

v2 = cd2a2b, a2 = b, i3 = 5, c(u(4,#)) = {a, b, c, d},

v3 = b(a2b2)ωc2d, a3 = d, i4 = i1,

and since the 10-th letter is the first occurrence ofd, there is no need to continue. Son = 1, m = 4, u1 =
(a2b2)ωc2d, u2 = d, r = 0, s = 2. Note that the termsv1, v2, v3 andv4 are exactly those appearing in the
canonical form ofw2 obtained in the proof of Proposition 4.8 (namelyr1a

2
2b2, b2r1a2, a2b

2
2r0a

2
1b1 andt1a

2
2b2,

respectively. See equations (18) and (19)).

30

It is immediately verified thatR |= Σ. Conversely, ifu = v is an identity which is valid inRω, then the
pseudoidentityu = v is valid in R. Therefore, establishing Theorem 6.1(a) amounts to proving the following
theorem:

Theorem 6.8. Letu andv be twoω-terms. Then

(33) R |= u = v =⇒ Σ ⊢ u = v.

Proof. We proceed by induction on the common content ofu andv. In casec(u) = c(v) = ∅, the result is
obvious. We now assume that it holds for allω-termsu, v whose content has less thanp elements. The proof will
be broken into several intermediate results which in turn may involve other induction schemes, so we will refer to
this induction hypothesis as (IH).

Note that (IH) implies that ifw is anω-term with |c(w)| < p thenΣ ⊢ w = cf(w). Indeed, this follows
from (33) using Proposition 4.7(a). We will show this property remains valid forω-terms which involvep letters.

Proposition 6.9. Letu be anω-term with|c(u)| = p. Assuming (IH), thenΣ implies the identityu = cf(u).

Proof. Let ξ(u) be the sequence of integers whosenth term counts, in a factorization ofu into ω-powers and
letters, the number of factors which areω-powers with the maximum numbern of nestedω-powers. For instance,
for theω-termu = ((xy)ωz)ωt(xω)ωxy(zt)ω, we haveξ(u) = (3, 1, 2, 0, 0, . . .). Given two distinct sequences
(mi)i and(ni)i of nonnegative integers with only finitely many nonzero entries, we write(mi)i < (ni)i if, for
the largesti such thatmi 6= ni, we havemi < ni. Note that this defines a well-ordering of the set of all such
sequences. Indeed, this is clearly a total ordering and, by dropping all null components, the set of elements below
one given sequence is identified with the set of elements below an element of a lexicographic product of finitely
many copies ofN, which is well known to be well ordered.

The proof proceeds by induction onξ(u). If u is a word, thenu ≡ cf(u) and so the trivial identityu = cf(u)
is a consequence ofΣ. Suppose next thatΣ ⊢ v = cf(v) for everyω-term v such thatξ(v) < ξ(u). We need
another embedded intermediate result, namely the following complement of Proposition 4.7 about canonical forms
of ω-terms.

The cumulative content~c(w) of anω-termw is the set of all lettersa such there is some factorizationw =
w1w

ω
2w3 with a ∈ c(w2) andc(w3) ⊆ c(w2). Note that the cumulative content of anω-termw coincides with the

cumulative content of the pseudoword defined byw.

Proposition 6.10. Letv, w beω-terms and leta be a letter.

(a) If v is a fringy factor ofvw, thenΣ ⊢ cf(vw) = cf(v) cf(w).
(b) If u = vω for someω-termv, with vω reduced, andΣ ⊢ z = cf(z) for everyω-termz with ξ(z) < ξ(u),

thenΣ ⊢ cf(u) = u.
(c) If a /∈ c(v) andΣ ⊢ z = cf(z) for everyω-termz with ξ(z) < ξ(w), thenΣ ⊢ cf(vaw) = cf(v) · a · cf(w).
(d) If a /∈ ~c(v) andΣ ⊢ z = cf(z) for everyω-termz with ξ(z) < ξ(w), thenΣ ⊢ cf(vaw) = cf(v) · a · cf(w).

Proof. For the proof of(a), we consider two cases, namely whether the initial state ofA(vw) is the end of an
edge or not. By definition of the canonical form, in the negative case we have the equality ofω-termscf(vw) ≡
cf(v) cf(w). Otherwise, again by definition of the canonical form,vw is an idempotent overR. Sincev is a
fringy factor ofvw, we have~c(vw) = ~c(w) andc(v) = c(vw) = c(w), hencew is an idempotent overR. Let
q be the initial state of theR-automatonA(vw). Then the automaton obtained fromA(vw) by replacing the root
with q.1 is theR-automatonA(w). Hencecf(vw) ≡ (cf(v)u)ω for someω-termu in canonical form such that
cf(w) ≡ (u cf(v))ω and so we have

Σ ⊢ cf(vw) = (cf(v)u)ω = cf(v)(u cf(v))ω = cf(v) cf(w),

which proves(a).

Suppose next thatu is anω-term as in(b). Applying Lemma 6.7 tovω , we obtain twoω-termsv1, v2 and two
integersr ≥ 0, s ≥ 1 such thatΣ ⊢ v = v1v2 and theω-termsvrv1 and(v2v1)

s admitΣ-fringy decompositions:

Σ ⊢ vrv1 = u1 · · ·um

Σ ⊢ (v2v1)
s = um+1 · · ·un

By simple applications of identities deduced fromΣ, we obtain

(34) Σ ⊢ u = vω = vrvω = vr(v1v2)
ω = vrv1(v2v1)

ω = vrv1
(

(v2v1)
s
)ω
,

where the last equality is justified sinces ≥ 1, by Lemma 6.7. LetI be the set all integersk such that0 ≤ k <
min(m,n−m) andR 6|= um−k = un−k; let p = min I if I 6= ∅, andp = 0 otherwise.

31

We claim thatΣ ⊢ u = u1 · · ·um−p(um−p+1 · · ·un−p)ω. Indeed, for alli = 1, . . . , n, we haveξ(ui) < ξ(u),
and therefore, by the hypothesis of(b), Σ ⊢ cf(ui) = ui. By definition ofp, we have furtherR |= um−k = un−k
for k > p, hencecf(um−k) ≡ cf(un−k) by Proposition 4.7(b). Hence, fork > p, Σ ⊢ um−k = cf(um−k) ≡
cf(un−k) = un−k, and

Σ ⊢ u = u1 · · ·um(um+1 · · ·un)
ω

= u1 · · ·um−p(um−p+1 · · ·un−p)
ωun−p+1 · · ·un applyingp times (30)

= u1 · · ·um−p(um−p+1 · · ·un−p)
ω using Lemma 6.4, since

c(ui) = c(uj) for 1 ≤ i, j ≤ n.

This proves the claim. Let

ℓ = min{i ≥ m− p+ 1 | ∃k ≥ 1,R |= um−p+1 · · ·un−p = (um−p+1 · · ·ui)
k}.

Sinceξ(um−p+1 · · ·un−p), ξ((um−p+1 · · ·uℓ)k) < ξ(u), we obtain, using again the hypothesis of(b), thatΣ de-
ducesum−p+1 · · ·un−p = (um−p+1 · · ·uℓ)

k. Therefore, using (32),Σ deducesu = u1 · · ·um−p(um−p+1 · · ·uℓ)
ω .

In particular, sinceR satisfiesΣ, both sides of this identity have the same canonical form. One can apply Propo-
sition 4.7(d) to obtaincf(u) ≡ cf(u1) · · · cf(um−p)(cf(um−p+1) · · · cf(uℓ))ω (note that hypotheses(ii) and(iii)
of Proposition 4.7(d) hold by the choice ofp andℓ, respectively). Finally, sinceΣ ⊢ ui = cf(ui) for i = 1, . . . , n,
we conclude thatΣ ⊢ cf(u) = u1 · · ·um−p(um−p+1 · · ·uℓ)ω = u, which proves(b).

The proof of(c) is rather more complicated. It proceeds by induction onξ(w). The case whenξ(w) is the
constant zero sequence occurs whenw = ε and thus it follows directly from the definition of canonicalform as
cf(va) ≡ cf(v)a. Thus, we assume thatw 6= ε. Let i be such thatai is the first occurrence ofa in vaw, bk be the
principal marker ofvaw, andcℓ be the principal marker ofvaw(i,#) (which exists sincevaw(i,#) =R w 6= ε).
If i = k, then the desired result, namely thatΣ ⊢ cf(vaw) = cf(v) a cf(w), follows directly from(a). So we may
assume thati < k and therefore we havei < k ≤ ℓ. Letw1 = (vaw)(i, b), w2 = (vaw)(k, c) in casek < ℓ, and
w3 = (vaw)(ℓ,#).

By Lemma 6.5, without loss of generality, we may assume that the factorizationw = x0y
ω
1 x1 · · · y

ω
mxm is in

reduced form, where thexj are possibly empty words and theyj areω-terms. For a markerdq in w, consider
the first factor,xj or yωj , from left to right, that involves the letterd. If this first factor isxj and the factorization
xj = x′jdx

′′
j is such thatd /∈ c(x′j), then clearlyξ(x0y

ω
1 x1 · · · yωj x

′
j) andξ(x′′j y

ω
j+1xj+1 · · · yωmxm) are both

smaller thanξ(w) and so we may apply the hypothesis of(c) to both. On the other hand, if the first factor
containingd is yj, then by Corollary 6.3 there areω-termsy′j andy′′j , whose maximum number of nestedω-
powers does not exceed that ofyj , such thatΣ ⊢ yj = y′jdy

′′
j andd /∈ y′j . In this case, we obtain

Σ ⊢ w = x0y
ω
1 x1 · · · y

ω
j−1xj−1y

′
j · d · y

′′
j y

ω
j xj · · · y

ω
mxm

= x0y
ω
1 x1 · · · y

ω
j−1xj−1y

′
j · d · (y

′′
j y

′
jd)

ωxj · · · y
ω
mxm

using the identityx(yx)ω = (xy)ω , whereξ(x0y
ω
1 x1 · · · y

ω
j−1xj−1y

′
j) < ξ(w) andξ((y′′j y

′
jd)

ωxj · · · y
ω
mxm) ≤

ξ(w). Moreover, equality occurs in this latter inequality if andonly if j = 1 andx0 = ε. We will apply these
observations to the markersbk andcℓ.

The preceding paragraph guarantees in particular thatξ(w1) < ξ(w) so that we may apply the hypothesis of(c)
to obtain

(35) Σ ⊢ cf(vaw1) = cf(v) a cf(w1).

In casek = ℓ, we haveR |= w = w1bw3, thereforecf(vaw) = cf(vaw1bw3) and

Σ ⊢ cf(vaw) = cf(vaw1bw3) = cf(vaw1) b cf(w3) by (a)

= cf(v) a cf(w1) b cf(w3) by (35)

= cf(v) a cf(w1bw3) by (a)

= cf(v) a cf(w).

Suppose next thatk < ℓ. In this case, we haveR |= w = w1bw2cw3, socf(vaw) = cf(vaw1bw2cw3) and

Σ ⊢ cf(vaw) = cf(vaw1bw2cw3) = cf(vaw1) b cf(w2cw3) by (a)

= cf(v) a cf(w1) b cf(w2cw3) by (35).

Hence, to conclude the proof thatΣ ⊢ cf(vaw) = cf(v) a cf(w), it suffices to show that

(36) Σ ⊢ cf(w1) b cf(w2cw3) = cf(w).

32

In caseξ(w2cw3) < ξ(w), the induction hypothesis yields (36) directly. On the other hand, by the above observa-
tions withd = b, otherwise we may assume thatξ(w2cw3) = ξ(w) and thatx0 = ε andb ∈ c(y1).

We now distinguish two cases according to whether or notc ∈ c(y1). Sincecℓ is the principal marker
of vaw(i,#) andw = x0y

ω
1 x1 · · · yωmxm is in reduced form, in casec ∈ c(y1) it follows thatw = yω1 . Hence,

in the notation introduced for the above observations, withd = b, and using Lemma 6.6, the setΣ deduces the
identitiesw1 = y′1 andw2cw3 = y′′1y

ω
1 . Sinceξ(y′1) < ξ(w), which yieldsΣ ⊢ cf(y′1) = y′1 using this time the

induction hypothesis, this allows us to obtain the following consequences ofΣ:

Σ ⊢ cf(w1) b cf(w2cw3) = cf(y′1) b cf(y′′1y
ω
1)

= cf(y′1) b cf((y′′1y
′
1b)

ω) usingx(yx)ω = (xy)ω

= y′1b(y
′′
1y

′
1b)

ω by induction hypothesis, and by(b) applied to(y′′1y
′
1b)

ω

= yω1 usingx(yx)ω = (xy)ω andΣ ⊢ y′1by
′′
1 = y1

= cf(yω1) by (b)

= cf(w),

which establishes (36) in this case (observe, for the third equality, that we may assume that(y′′1y
′
1b)

ω is reduced).
To conclude the proof of(c), it remains to consider the casex0 = ε, b ∈ c(y1), c /∈ c(y1). In this case, we

deduce using Lemma 6.6 thatΣ ⊢ w1 = y′1 andΣ ⊢ w2 = y′′1y
ω
1 w

′
2 = (y′′1 y

′
1b)

ωw′
2 for someω-termw′

2. The
above observations applied tod = c show thatξ((y′′1 y

′
1b)

ωw′
2) < ξ(w). Sincec(y1) = c(y′′1y

′
1b), observe that the

principal marker of(y′′1y
′
1b)

ωw′
2 cw3 also corresponds to the displayed occurrence of the letterc. We now obtain

the following consequences ofΣ:

Σ ⊢ cf(w1) b cf(w2cw3) = cf(y′1) b cf((y′′1 y
′
1b)

ωw′
2 cw3)

= cf(y′1) b cf((y′′1 y
′
1b)

ωw′
2) c cf(w3) by (a)

= cf(y′1 b (y′′1y
′
1b)

ωw′
2) c cf(w3) by the hypothesis of(c)

sinceξ((y′′1 y
′
1b)

ωw′
2) < ξ(w)

= cf(yω1 w
′
2) c cf(w3) usingx(yx)ω = (xy)ω

= cf(yω1 w
′
2 cw3) by (a)

= cf(w),

which proves (36) and completes the induction step for the proof of (c).

To prove(d), we letχ(v, a, w) = (|c(vaw)|, |c(v)|, ‖v‖) and we order such triples lexicographically. We
proceed by induction onχ(v, a, w), assuming that property(d) holds for all triples(v′, a′, w′) with χ(v′, a′, w′) <
χ(v, a, w).

We first assume thatc(va) $ c(vaw). Then, by Corollary 6.3 there existω-termsw1, w2 and a letterb such
thatvaw1b is a fringy factor ofvaw1bw2 andΣ ⊢ w1bw2 = w. Thenχ(v, a, w1) < χ(v, a, w) which yields

Σ ⊢ cf(vaw) = cf(vaw1) b cf(w2) by (a)

= cf(v) a cf(w1) b cf(w2) by the induction hypothesis

= cf(v) a cf(w) by (c).

Hence we may assume thatc(va) = c(vaw). In casea /∈ c(v), we may apply(c) directly to obtain the desired
result. Hence we will assume thata ∈ c(v), in which case the principal marker ofvaw is found withinv. By
Corollary 6.3 there existω-termsv1, v2 and a letterb such thatv1b is a fringy factor ofv1bv2 andΣ ⊢ v1bv2 = v.
Sincea ∈ c(v) \ ~c(v), we have‖v‖ < ∞ by Proposition 3.8 and eitherc(v2) $ c(v) or ‖v2‖ < ‖v‖. In either
case, we find thatχ(v2, a, w) < χ(v, a, w) while~c(v2) ⊆ ~c(v), so thata /∈ ~c(v2). This allows us to show that

Σ ⊢ cf(vaw) = cf(v1)b cf(v2aw) by (a)

= cf(v1)b cf(v2)a cf(w) by the induction hypothesis

= cf(v)a cf(w) by (a).

This completes the induction step and the proof of Proposition 6.10. �

Back to the proof of Proposition 6.9, without loss of generality, we may assume thatu is reduced, noting that
the reduction, which is performed using identities fromΣ by Lemma 6.5, does not affect the canonical form by
Proposition 4.7(b) nor does it increase the value ofξ(u). Thenu is of the formu = u0v

ω
1 u1 · · · vωk uk where

the ui are words, which may be empty, and thevi areω-terms. Sinceu is reduced, each nonemptyui with
i > 0 must start with a letterai which does not belong to~c(vi). If there is anyi ≥ 1 such thatui 6= ε then,

33

applying the induction hypothesis on the parameterξ, we obtain thatΣ implies the identitiesu0v
ω
1 u1 · · · vωi =

cf(u0v
ω
1 u1 · · · vωi) anduivωi+1ui+1 · · · vωk uk = cf(uiv

ω
i+1ui+1 · · · vωk uk) and so also the identityu = cf(u) by

Proposition 6.10(d). In caseu0 6= ε, the induction hypothesis similarly implies thatΣ allows us to deduce the
identity vω1 u1 · · · vωk uk = cf(vω1 u1 · · · vωk uk), from which the identityu = cf(u) follows. It remains to treat the
case in whichui = ε for all i, that isu = vω1 · · · v

ω
k is a product ofω-powers.

The case whenu is a singleω-power is given by Proposition 6.10(b). We proceed by considering the case
k ≥ 2. Then we apply Lemma 6.7 tovω2 (which is reduced) to obtainω-termsw1, w2 and positive integersr, s
such thatΣ ⊢ v2 = w1w2 and there areΣ-fringy decompositions ofvr2w1 and(w2w1)

s. Then, as in (34) we
obtain

Σ ⊢ u = vω1 · · · v
ω
k = vω1 v

r
2w1 · (w2w1)

ωvω3 · · · v
ω
k .

Since each of the factorsx = vω1 v
r
2w1 andy = (w2w1)

ωvω3 · · · v
ω
k has a smallerξ-value thanu by Lemma 6.7,

we may apply the induction hypothesis to deduce thatΣ implies the identitiesx = cf(x) andy = cf(y). Now
vr2w1 is a product of fringy factors ofvω2 andu is reduced. Hencex is of the formx = za for some lettera such
thata /∈ ~c(z): indeed~c(x) = ~c(vr2w1) sinceu is reduced and so~c(x) = ∅ since‖vr2w1‖ < ∞; now, if a ∈ ~c(z)
thena ∈ ~c(x), in contradiction with what we have just shown. By Proposition 6.10(d) and Proposition 4.7(b), it
follows that

Σ ⊢ cf(u) = cf(xy) = cf(x) cf(y) = xy = u,

which completes the induction step and the proof of Proposition 6.9. �

Back to the proof of Theorem 6.8, note that, by Proposition 4.7(b), two ω-terms coincide inR if and only if
their canonical forms are equal. Hence, ifR |= u = v for two ω-termsu, v involving p letters, thenΣ ⊢ u =
cf(u) = cf(v) = v by Proposition 6.9. This proves the induction step for (IH) and concludes the proof of the
theorem. �

7. OPEN PROBLEMS

We have exhibited a very efficient algorithm to solve the wordproblem forω-terms overR. The algorithm
has essentially three stages: (1) to construct anR-automaton for each of theω-terms; (2) to wrap these automata;
and (3) to compare the wrapped automata. We observe that we have obtained algorithms with optimal asymptotic
complexity for each of these stages. But, we have not shown that there is no other, asymptotically more efficient,
algorithm to solve the problem and we do not know if there is one.

There are several related algorithmic questions onω-terms and their wrappedR-automata representations. Of
course, if we work withω-terms, it is trivial to compute products andω-powers since we can just do it graphically.
However, if instead we are given their wrappedR-automata representations, then it is not at all obvious howto
efficiently obtain the wrappedR-automata for the product or theω-power since it appears that, in general these
operations may completely change the structure of the givenR-automata.

The difficulty here is that the only natural way we have presented to build anω-term from a wrappedR-
automaton, whose wrappedR-automaton is the given one, is through the construction of the canonical form, which
we have shown can have exponential length in terms of the sizeof the alphabet (Proposition 4.8). On the other
hand, if we fix the alphabet then, by Proposition 4.10, the size of the canonical form is bounded by a polynomial
function of the size of theR-automaton. By definition of the canonical form, it may be computed within the same
time bound. So, if we are given wrappedR-automata over a fixed alphabet, we can compute efficientlyω-terms
of which they are the wrappedR-automata and concatenate them or take theirω-powers. Then, by applying the
algorithms of Subsections 5.3 and 5.4, we may compute the wrappedR-automaton of the thus computedω-terms.
By Theorems 5.16 and 5.17, the overall cost of this algorithmis polynomial in the size of the givenR-automata.
However, the above bound for the complexity of the stage in algorithm computing representativeω-terms becomes
exponential if we do not bound the alphabet. We do not know whether the upper bound of Proposition 4.10 is
optimal. Here are some related questions:

(a) is there a polynomial asymptotic upper bound for the size of an ω-term whose wrappedR-automaton is
given?

(b) in the affirmative case, can we compute it efficiently?
(c) find tight lower and upper bounds for the number of states of the wrappedR-automata representing the

“product” or the “ω-power” of given wrappedR-automata.

Another direction which seems to be worth investigating is the following. There is a pseudovariety which
is closely related withR to which it should be possible to extend the considerations in this paper. That is the
pseudovarietyDA, which consists of all finite semigroups whose regular elements are idempotents. For this
pseudovariety, there is a tool corresponding to the left basic factorization which was introduced in [1], namely
what in that paper is called a “basic boundary factorization”. This consists in locating, from both sides, the last

34

letter to occur for the first time, with possible coincidenceor cross-over. The similarity between the nature of the
two factorizations suggests that indeed the same techniques could work in that case. We have not attempted to
carry out this program.

REFERENCES

[1] J. Almeida, A syntactical proof of locality of DA, Int. J.Algebra Comput. 6 (1996) 165–177.
[2] J. Almeida, Finite semigroups: An introduction to an unified theory of pseudovarieties, in: G. Gomes, J.-E. Pin, P. Silva (Eds.), Proceed-

ings of Semigroups, Algorithms, Automata and Languages, World Scientific, 2002, pp. 3–64.
[3] J. Almeida, A. Azevedo, The join of the pseudovarieties of R–trivial andL–trivial monoids, J. Pure Appl. Algebra 60 (1989) 129–137.
[4] J. Almeida, J. C. Costa, M. Zeitoun, Tameness of pseudovariety joins involvingR, Monatshefte für Mathematik 146 (2) (2005) 89–111.
[5] J. Almeida, B. Steinberg, Syntactic and global semigroup theory: a synthesis approach, in: Algorithmic problems ingroups and semi-

groups (Lincoln, NE, 1998), Trends Math., Birkhäuser Boston, Boston, MA, 2000, pp. 1–23.
[6] J. Almeida, B. Steinberg, On the decidability of iterated semidirect products with applications to complexity, Proc. London Math. Soc.

(2) 80 (2000) 50–74.
[7] J. Almeida, P. Weil, Free profiniteR-trivial monoids, Int. J. Algebra Comput. 7 (5) (1997) 625–671.
[8] J. Almeida, M. Zeitoun, The equational theory ofω-terms for finiteR-trivial semigroups, in: M. Branco, G. Gomes (Eds.), Proceedings

of Semigroups and Languages, World Scientific, Singapore, 2004, pp. 1–23.
[9] J. Almeida, M. Zeitoun, A linear time algorithm for minimizing disjoint-loop automata, submitted.

[10] D. Beauquier, J. Berstel, Ph. Chrétienne, Éléments d’Algorithmique, Masson, 1992, in French.
http://www-igm.univ-mlv.fr/~berstel/Elements/Elements.pdf.

[11] S. Bloom, Christian. Choffrut, Long words, the theory of concatenation and omega power, Theoret. Comput. Sci. 259 (2001) 533–548.
[12] K. S. Booth, Lexicographically least circular substrings, Inform. Process. Lett. 10 (1980) 240–242.
[13] T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, McGraw-Hill Higher Education, 2001.
[14] M. Crochemore, W. Rytter, Text Algorithms, The Clarendon Press Oxford University Press, New York, 1994, with a preface by Zvi Galil.
[15] J. E. Hopcroft, Ann log n algorithm for minimizing states in a finite automaton, in: Z.Kohavi (Ed.), Theory of machines and computa-

tions (Proc. Internat. Sympos., Technion, Haifa, 1971), Academic Press, New York, 1971, pp. 189–196.
[16] J. E. Hopcroft, J. D. Ullman, Introduction to automata theory, languages, and computation, Addison-Wesley, Reading, Mass., 1979.
[17] T. Knuutila, Re-describing an algorithm by Hopcroft, Theoret. Comput. Sci. 250 (2001) 333–363.
[18] J. Reiterman, The Birkhoff theorem for finite algebras,Algebra Universalis 14 (1982) 1–10.
[19] D. Revuz, Minimisation of acyclic deterministic automata in linear time, Theoret. Comput. Sci. 92 (1992) 181–189.
[20] J. Rhodes, B. Steinberg, Pointlike sets, hyperdecidability and the identity problem for finite semigroups, Int. J.Algebra Comput. 9 (3-4)

(1999) 475–481, dedicated to the memory of Marcel-Paul Schützenberger.
[21] Y. Shiloach, Fast canonization of circular strings, J.Algorithms 2 (1981) 107–121.
[22] R. E. Tarjan, Depth first search and linear graph algorithms, SIAM Journal on Computing 1 (2) (1972) 146–160.

CENTRO DEMATEMÁTICA E DEP. MAT. PURA, FACULDADE DE CIÊNCIAS,, UNIVERSIDADE DO PORTO, RUA DO CAMPO ALEGRE,
687, 4169-007 PORTO, PORTUGAL.

LIAFA, U NIVERSITÉ PARIS 7 & CNRS UMR 7089., CURRENT AFFILIATION: LABRI, UNIVERSITÉ BORDEAUX 1 & CNRS
UMR 5800., 351COURS DE LAL IBÉRATION, 33405 TALENCE CEDEX, FRANCE.

35

http://www-igm.univ-mlv.fr/~berstel/Elements/Elements.pdf

	1. Introduction
	2. Preliminaries
	2.1. Notation
	2.2. Background

	3. Pseudowords over R and R -automata
	3.1. Infinite products in pro-R semigroups
	3.2. R -automata and R -trees
	3.3. Topology of R -automata
	3.4. Wrappings of R -automata

	4. The word problem for omega-terms over R
	4.1. Tails of pseudowords
	4.2. Several characterizations of omega-terms
	4.3. Canonical forms

	5. A linear-time algorithm computing wrapped R -automata
	5.1. Notation and definitions
	5.2. The R -graph associated to an omega-term
	5.3. Efficient computation of R -graphs
	5.4. Wrapping and minimization

	6. The equational theory of the omega-variety generated by R
	7. Open problems
	References

