AN AUTOMATA-THEORETIC APPROACH TO THE WORD PROBLEM
FOR w-TERMS OVER R

JORGE ALMEIDA AND MARC ZEITOUN

ABSTRACT. This paper studies the pseudovari®&yof all finite R-trivial semigroups. We give a representation of
pseudowords oveR by infinite trees, calledk-trees. Then we show that a pseudoword iscaterm if and only if its
associated tree is reguldre(, it can be folded into a finite graph), or equivalently, if theerm has a finite number of
tails. We give a linear algorithm to compute a compact regmttion of theR-tree forw-terms, which yields a linear
solution of the word problem fap-terms overR. We finally exhibit a basis for the-variety generated bR and we
show that there is no finite basis. Several results can be a@dfto recent work of Bloom and Choffrut on long words.

1. INTRODUCTION

The main contribution of this paper is the solution of a wordipem overR, the pseudovariety of all finit&-
trivial semigroups. This pseudovariety corresponds, larttierg’s correspondence, to disjoint unions of languages
of the form Aja; Afas ... a, A%, where theu,’s are letters and,; ¢ A;_; for 1 < i < n. Also, finite R-trivial
semigroups are the divisors of transition semigroups okthealledvery weakautomata, that is, automata whose
state set is partially ordered and the transition functioesinot decrease the state. They can even be characterized
as the divisors oéxtensivautomata, that is, very weak automata where the order ozsstatotal.

Given two terms built from letters of an alphabtsing the concatenation and thepower, we show how to
decide in linear time whether these terms coincide ovet-alenerated elements Bf with the usual interpretation
of thew-power in semigroups. We also characterize the set of pseardis—also known as implicit operations—
over R which can be represented by suckterms. SinceR satisfies the identity in-termsz~—! = zv, all

results of this paper can be formulated eitherdeterms, or forx-terms, wheres = {_-_,_«“~1} is the implicit
signature consisting of the semigroup multiplication anel tinary(w — 1)-power. We shall state most results
using the signaturé_- _, _“}, but this is mainly a matter of style.

The motivation of this work is tha-tameness property fdR. Historically, the notion of tameness was dis-
covered in attempting to find general decidability propetdf pseudovarieties which might be preserved under
taking semidirect product§l[5]. It remains open whethemwieslindeed play such a role, although under certain
finiteness hypotheses it has been shown to dblso [2].

Proving thex-tameness of a pseudovaridtyconsists in solving two subproblems. The first one isthgord
problem, for which this paper gives an efficient solutionformally, the second question is whether equation
systenﬂ with rational constraints having a solution in any semigraf V also have ainiform solution in -
terms, satisfying the same constraints. This property hagan to be robust and helpful for the solution of the
membership problem (seeg.[4], where thex-tameness oR is used to decide joins involvirig.) Moreover, ifV
enjoys it, therV has decidable pointlikes, an important property of pseadeties [ 2D].

Another motivation for this study comes from the related kvof S. Bloom and Ch. Choffru{[11]. Given
a finite setA, the collection of all finite or countably infinitel-labeled posets can be endowed with a binary
concatenation operation of posets _, and with a unaryw-power “. Bloom and Choffrut recently proved in{11]
that the Birkhoff variety generated by these algebras idingely based, and that it is defined by the following
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set of identities.

(z-y)-z=z-(y-2)

(x")¥ =a*¥, r>2

(zy)” = 2(yx)”
They also studied ordinal words, that is, labeled ordinAlmong them, they characterized labeled ordinals built
from letters ofA using the operations-__and “: these are exactly the ordinals of length less tharand having

a finite number of tails (suffixes, in some sense). Finallgythroved that the word problem for twatermsu, v
can be solved in timé&(|u|?|v|?), where|u| and|v| denote the lengths of andw.

Motivated by these results and by the fact that pseudoworeisoare labeled ordinal§]7], we show that:

— the word problem fow-termsu, v overR and on an alphabet can be solved in timé (| A|(|u| + |v])), using
automata-based techniques. More specifically, we can ctaripuanyw-termw« an automatord (u) of size
|Allu|. Two terms are equal ov& if and only if the associated automata recognize the sangeitage. Due to
the specific form of these automata, this can again be testatar time;

— a pseudoword oveR coincides with anv-term if and only if it has a finite number of distinguished féuds
(resp. factors);

— the variety ofu-semigroups generated Byis not finitely based,;

— we exhibit an infinite basis for this variety.

Although these results are very similar to thoselol [11],ittvelved word problems are different, and neither set
of results seems to directly imply the other one.

The paper is organized as follows. In Sectidn 2, we set up tation and we recall prerequisites on semi-
groups and pseudovarieties. In Secfidbn 3, we exhibit a gificondition for continuity of infinite products in
pro-R semigroups and we use it to associBtrees andR-automata to pseudowords oMRr These objects are
used in Sectiofl4 to solve the word problem éoterms overR and to derive several characterizations of pseu-
dowords having a representation asaterm. We then exhibit a canonical form forterms oveRR, which can be
exponentially larger than the original term, in terms of $iee of the alphabet, but remains polynomially small, for
a fixed alphabet, in terms of the size of the minirRahutomaton of thes-term. Sectiolllb presents a linear-time
algorithm to compute the canonid@lautomaton associated to arterm, defined in Sectidd 3, thus proving that
the complexity of the word problem fas-terms overR is linear. We introduce in Sectidil 6 a set of identities in
w-terms. We prove, by a rather involved argument with varieusls of nested inductions which uses several key
results from previous sections, that this set is a basishfewtvariety generated bR. We also show that this
w-variety is not finitely based. It should be noted that a reimerbasis folR was previously announced without
proofin [6]. It included our basis and two extra superflualeritities. Finally, we discuss some open problems in
Sectior¥.

2. PRELIMINARIES

We briefly recall notation in this section. We refer the raate[Z] for the notions of pseudovarieties, pro-
V semigroups and implicit signatures. We assume that theerdadgcquainted with these notions, and is also
familiar with the basics of automata theory. Se€ [16] fotanse.

2.1. Notation. Words. Throughout this paperd denotes a finite set. We writel| for its cardinality. The free
semigroup (resp. the free monoid) generatedibg denoted byd™ (resp. byA*). As usual, we writer* instead
of {«}*. The length of a word: € A* is denoted byz|. The empty word is denoted layor 1. The number of
occurrences of a letter € A in z is denoted byz|,. Finally, thecontente(z) of z is the smallest subsét of A
such thatr € B*. Given a languagé C A*, we denote by.! the languagé. U {1}.

Automata. We denote a (deterministic) automaton over an alphabley a tupleA = (V, 4, vy, F'), whereV is
the state set ofl, vo € V is its initial state,F' C V is its set of final states and: V' x A — V is its transition
function. We will often denote by.a the statei(v, a) reached fronv by reading letter:, when this state exists.
We denote by. L the set of all states reached franby reading a word of..

Functions. In the sequel, functions are assumed to be partial unlesswite stated. LeX, Y denote sets. I€
is a set of functions fronX to Y, and if X’ C X, thenwe se€(X') ={y €Y |3f € C,Tr € X',y = f(z)}.
For a functionf : X — Y, letdom(f) = {z € X | f(«x) is defined denote its domain. If,g : X — Y are
two functions and ift € X, then we writef (x) = g(x) to mean that belongs to doryf) if and only if it belongs
to don(g) and ifz € dom(f), thenf(z) = g(z). Finally, letF be a set of functions fronX to itself. Abusing



notation, we denote again By the set{a; ooy, | n > 0,; € F}. We will also often writef g instead of
fogandfg(x) instead off (g(x)).

Semigroups, Green relatiorR. Given a semigrous, we letS! be the semigroup itself if it is a monoid, or the
disjoint unionS W {1} wherel acts as a neutral element otherwise. Given an elemef finite semigroup (resp.
of a compact topological semigroup), the subsemigroup (b closed subsemigroup) generated lopntains
a unique idempotent, denoted By. The set of idempotents of a semigrofifis denoted by (.S).

For any semigroufy, we denote by<g C S x S the relation such that <« ¢ if and only if there exists
u € S' such thats = tu. The equivalence relatioR is defined bys R t < s <g ¢t andt < s. A semigroupS
is R-trivial if for all s,t € Swe haves Rt = s =t.

2.2. Background. PseudovarietiesA semigrouppseudovarietys a class of finite semigroups closed under tak-
ing subsemigroups, homomorphic images and finite direayets. In what followsy denotes a pseudovariety.

We denote bys the pseudovariety of all finite semigroups. Given a semigr§ue S, an element of S and
an integerk € Z, the sequencé™ **),, is defined for all sufficiently large and eventually stabilizes, that is it
converges in the discrete topology. We denote®y” its limit.

A semigroups is aperiodicif s¥ = s“*! for all s € S. We denote byA the pseudovariety of all finite
aperiodic semigroups. In the present paper, we focus ongbedwovarietyR of all finite R-trivial semigroups,
which is a subpseudovariety &f It is classical that a semigroupis in R if and only if for all s, ¢t € S we have
(st)¥ = (st)¥s.

Profinite and pro-V semigroups.In what follows, finite semigroups are all equipped with tligcdete topology.
We say that a clasi of homomorphisms from a semigrowpinto semigroupseparates pointg for all distinct
elements;, ¢ of S, there existd € H such thati(s) # h(t).

A topological semigroup is profinite semigrouggresp. apro-V semigroup if it is a projective limit of finite
semigroups (resp. of semigroups\®y. It is well known that profinite semigroups are 0-dimensibfand hence
totally disconnected). More precisely, a pvosemigroup is a compact semigroSpwhich isresidually inV in
the sense that the class of all continuous homomorphismsS$rinto members oV separates points.

Since, in a finite semigroug, the sequenc(as:"!”“)m‘k‘ converges fos € S andk € Z, the same is true
in every profinite semigroup. We denote the limit 8y"*. This extends the notation introduced above for finite
semigroups.

A profinite semigroupS is A-generatedf there exists a functiom : A — S such that the subsemigroup
generated by)(A) is dense inS. We say that) is the generating function. L& be the set of all subsets of
A. Then,(24,U) is a finite semigroup. Le§ be a profiniteA-generated semigroup, and ket A — S be the
generating function. We say théthas acontent functiorif there exists a continuous homomorphisms — 24
such thatn(a) = {a} forall a € A. If such a continuous homomorphism exists, then it is unidumay then
be defined by the condition that, fare A ands € S, a € ¢(s) if and only if there is some factorization efin
whichn(a) is one of the factors.

Given a finite setd and a pseudovariely, there is dree proV semigroup o, that is a prov semigroupS
endowed with a generating function A — S such that, for every functiop : A — T into a proV semigroup
T, there exists a (unique) continuous homomorphgsmS — T such thaty o . = ¢. It is immediate to verify
that such a prd/ semigroup is unique, up to isomorphism of topological semigs respecting the choice of
generators; we denoteit, V.

Thecanonical projection oV is the unique continuous homomorphigm: Q4S5 — Q4V determined by the
choice of generators.

Pseudowords and pseudoidentitiesThe elements of24S are namegseudowordgsometimes alsamplicit
operationsor profinite word$. For example, itz € Q4S, thenu® is again a pseudoword.

A formal equality of the formu = v with u,v € Q4S for some finite setd is called apseudoidentity It
is said to bevalid in a profinite semigroug and we writeS E v = v if p(u) = ¢(v) for every continuous
homomorphismp : Q4S — S. For instance, the pseudoidentity ™ = 2 is valid in any aperiodic semigroup.
Itis easy to check that the validity of a pseudoidentity imédisemigroup is preserved under taking homomorphic
images, closed subsemigroups and finite direct productscéithe class of all finite semigroups which verify all
members of a given sét of pseudoidentities is a pseudovariety, which is said tdéfeedby . Conversely, by
Reiterman’s Theorend [18] every pseudovariety is defineddnyesset of pseudoidentities.

In the language of pseudoidentities, earlier definitionpsdudovarieties which are important for this paper
may now be formulated as follows is defined byr“*! = % andR is defined by(zy)“z = (zy)~. Of course,



there are many other possible definitions of these pseuidiegrby means of pseudoidentities. For instaRcis,
also defined byzyz)“y = (xyz)“.

Implicit signatures and w-terms. An implicit signature is a set of pseudowords ovecontaining the semigroup
multiplicationab, also denoted-_. We will mainly work with the signaturé_-_, _“} consisting of the semigroup
multiplication and the unary-power. Anw-semigroup is an algebra over the signat{ire _, _“}. Each finite
semigroup has a natural interpretation asw.agsemigroup, by interpreting” as the unique idempotent of the
subsemigroup generated by

Given an alphabet, we denote by V the V-freew-semigroup over, that is, thes-subsemigroup of2 4S
generated byl. An w-term overV is an element of2 V. An w-identity overV is a pair ofw-terms ovelV and an
w-identityis anw-identity overS. We also denote by = v thew-identity (u, v).

We call anw-terman element of the free term algebra generated loyer the signatur¢_-_, _“}. Anw-term
over a pseudovariety has a (nonunique) representation asyaierm. Equality ofu-terms is denoted bs. Given
anw-termuw, its sizeor length|w| is defined inductively bya| = 1 fora € A, juv| = |u| + |v] and|u®| = |u|+ 1.

All these definitions can be reformulated for the canonitghaturex = {_- _,_“~1} consisting of the
semigroup multiplication, and the unafy — 1)-power. This way, we can defineterms andk-identities (over
V), and theV-free k-semigroup overl, denoted2 V. If V is aperiodic, then any-term coincides, if2 4V, with
thew-term obtained by replacing gl — 1)-powers byw. SinceR is aperiodic, our results can also be formulated
in terms of the signature.

A characterization of equality over R. The following is a simple unique factorization statememffgseudowords
which may be considered folklore. A proof is included for 8ake of completeness.

Proposition 2.1. Letx, y, z,t € Q4S anda, b € A be such thatay = zbt. Suppose that ¢ c(z) andb ¢ c(z).
If either

(a) c(z) =c(z),0r

(b) c(za) = c(zb),

thenx = z,a = b, andy = t.

Proof. Recall that the contentx) of z € Q45 is the projection ofr into 2. By projection into the free left-zero
semigroup on 2 letters, we see that an elemerf2 6 can only have one first letter. § € S, thenS! < S.
In casd(a)} substituting by 1 all letters of(x), we obtainay’ = b¢’ and soa = b by uniqueness of first letters.
In cas substituting 1 for all letters exceptandb, and assuming # b, from uniqueness of first letters we
conclude that either ¢ ¢(z) orb ¢ ¢(x), which is in contradiction witf{b)] Hence in both cases,= b, anda]]
holds.

Suppose next that # z. Then, there exists a positive integeand a continuous homomorphisgsm Q4S —
T, into the semigroup of all transformations ff, ..., n} (acting on{1,...,n} on the right) such thap(z) #
©(z). Without loss of generality, we may assume that

1) lo(x) =i # j = 1p(2)

with {7, 7} N {2,3} = 0 and that the image underof any letter fixe® and3. Sincea ¢ c(z) U ¢(z), we may
redefinep(a) without affectingl{ll) and we do so by letting(a) = 2 andjp(a) = 3. Thenly(zay) = 2 while
1p(2bt) = 3, in contradiction with the hypothesis thaty = zbt. Hencer = z.

Finally, suppose thaj # t. Then, for some, there exists a continuous homomorphismQ4S — T, such
that 1¢o(y) # 1¢(t) and the image undey of any letter fixe2. If we changep(a) so that2¢(a) = 1, then
2¢p(za) = 1 and s2p(zay) # 2¢(xat). Hencey = t. O

Following Propositioli.Z]1, we define theft basic factorizatiof w € Q4S5 as the unique tripléw;, a, w,.) €
Q4SS x A x Q45" such that
— W = W aw,,

— c(wa) = c(w),
—a ¢ c(w).
We denote by BF(w) the left basic factorization ab.

Lemma 2.2. Letw € Q%S and let(w;, a, w,.) be its left basic factorization. Then, andw, are x-terms (and in
particular, they arev-terms ovemR).

Proof. We prove the result by induction on the p&ifw), |w|) where24 x N is ordered lexicographically. If
w € A, the result holds. Ifv = z+~! and if the left basic factorization afis (z;, a, z,) with z;, z,, € Q5 R, then
the left basic factorization af; is (z;, a, z,w?), sincew = ¥~ = .22 = z.w?.



Forw = zy, two cases may arise. {z) = c(w), let (z;,a,x,) be the left basic factorization af. Then
the left basic factorization ofv is (z;, a,z,y). If c(z) # c(w), let (z¢, ag,yo) be the left basic factorization
of y with £ = |c(y)| — 1. Sincely| < |wl|, yo and z, are x-terms. Since:(z;) & c(y), one can repeat the
argument orx, to obtain the left basic factorization intermsz, = (z¢—1, a1, y1). An easy decreasing induction
gives a factorizationy = asy; - - - a1y1a0y0, With y; € Q4R and wherelagy, - - - aj+1Y5+1, a5, y;) IS a left basic
factorization. Lett be maximal such that{w) = ¢(z - asys - - - aryrar—1). Then the left basic factorization of
is (x - agye -+ - axYk, ak—1,Yu—1 - - - aoYo), Which only involves:-terms. O

Note that this result does adapt torterms. For instance, far € A, the left basic factorization af” € QS
is (a“~1,a,1), anda*~! does not belong t6S.

The main argument for the solution of the word problem d¥és given in [3] and may be phrased in the form
of the following theorem.

Theorem 2.3. Letv,w € Q4S. Letv = viavy andw = wiaws With a ¢ c(vyw;). If R | v = w, then
R = v1 = wy andR | v = wo. Moreover, let(v;, a, v,.) and (wy, b, w,-) be the left basic factorizations ofand
w, respectively. Then

REv=w)<= REvw=w, a=b, andR = v, = w,).

By TheorenfZB, there is a unique factorizationio€ Q4R as a triple(w;, a, w,) € QaR' x A x Q4R! such
thatw = wjaw,., c(wa) = c(w) anda ¢ c(w;). Further, it follows from Theore 2 3 that, i = pr(v) for a
certainv € Q45 andLBF(v) = (v, b, v,.), thenpr(v;) = wy, b = a, andpr(v,) = w,. We will therefore also
write LBF(w) = (wy, a, w,.) and call thisthe left basic factorization af.

3. PSEUDOWORDS OVERR AND R-AUTOMATA

A representation of pseudowords©f R by trees was given iri{7]. Here, we consider an alternatipeasen-
tation by automata ove0, 1}, whose states até-labeled. We then prove that two pseudowords dvare equal
if and only if their associated automata are equal.

3.1. Infinite products in pro- R semigroups. In order to defineR-automata, we study infinite products in piRo-
semigroups. Given a topological semigragipnd a sequendg,,),>o € SY, we denote by 1.~ s» the limit of

the sequence]_[fl\[:0 sn)n WhenN grows to infinity, if this limit exists. In this case, we alsaysthat[] -~ ; s
converges. The following well-known fact follows immedibt from [4, Lemma 2.1.1]. We include a proof for
the sake of completeness.

Lemma 3.1. Let S be a proR semigroup, and lets,,),,>o € SV. Then the infinite produdf[,~_, s, converges.

Proof. Lett, = Hi:o sn. SincesS' is proR, it suffices to check that for any continuous homomorphisnt —
U from S into a semigroud/ € R, h(tx) converges irlU. We haveh(ty11) <« h(tx), and sincdJ is finite, all
h(ty) except a finite number of them are in the safielass. SincédJ is R-trivial, we haveh(t,y1) = h(ty) for
k large enough, so the sequence convergésin O

We will use Lemmd3]11 without reference. We next study thetioaity of infinite products in praR semi-
groups.

Remark 3.2. Let S be a proR semigroup. Then, the mapping
ps sN—§
(5n>n20 — H Sn
n=0
is not necessarily continuous. For instance, consideE S such thake? = e, t2 # t, ete # e, and Iet(s%’“)) be

defined by
s =e ifj#k
sék) =1.
Clearly the sequenc(egf))k converges tde, e, e, . . .) but the sequence of products convergesto# e.

The following lemma states that infinite products in ft@emigroups having a content function can sometimes
be simplified. We will then exploit this simplification to géte continuity of the infinite product over a restricted
set of sequences in such semigroups.



Lemma 3.3. Let S be a proR semigroup with a content functian ands,t € S such thatc(s) D ¢(t). Then
st = sv.
Proof. Letn : A — S be a generating function with respect to which S — 24 is a content function. Since
is continuous and the subsemigroupgenerated by)(A) is dense inS, we may assume thatbelongs to the
subsemigroup ob generated by:(s). Moreover, since“a = s“b = s¥ impliess“ab = s*, we only need to
considert € ¢(s) so that there exist;, s2 € S such thats = s;ts2. Hence
st = (s1ts2)“t = (s1ts2)” = s,
where the middle equality is justified since finiketrivial semigroups satisfy the pseudoidentityyz)“y =
(zyz)“ and proR semigroups are residually R O
Now, instead of allowing arbitrary infinite products, we striain the sequences of products to obtain continuity
of infinite products. LefS be a profinite semigroup with a content functiariWe denote byA(S) the following
subset ofS™:
A(S) = {(sn) € SN |vn >0, c(s,) 2 c(sn+1)}.
We endowA (S) with the induced product topology, and we }gt be the restriction of the infinite product to
A(S).
ps A(S) — S

o0
(Sn)nZO — H Sn.
n=0

Proposition 3.4. Let S be anA-generated prdR semigroup with content function. Then the mappiggrom
A(S) into S is continuous.

In the following two statements, we first prove Proposifiol ®henS is finite.

Lemma 3.5. LetS € R be anA-generated semigroup with a content functipand letm = |S|. LetB C A and
80,81, -+ -, 8m € S suchthate(s;) = Bforall 0 < < m. Then, there exists an idempotersuch thate(e) = B
andsgsy - - - s,, € Se.

Proof. Sincem = |S|, by the pigeonhole principle, there existj such thad < i < j < mandsg---s; =
S0-"8; =80 " Si(5i+1 v Sj). Iterating this equality yieldSQ e Sm =S80 Si(5i+1 ce Sj)w8j+1 cSm-

Sincec(sit1 -+ 8;) = c(sj+1 -+ - sm) @and sinces' € Ris in particular a praR semigroup, we get by LemriaB.3
(Sig1---85)“(Sj41 - 8m) = (Sig1---55), SO0+~ Sm = So---Si(Sit1---5;)¥. Therefore, the idempotent
e = (siy1- - s;)* satisfies the claim of the lemma. O

Corollary 3.6. LetS € R be anA-generated semigroup with a content functioriet (s,,),>0 € A(S). Then

I s = Hfﬁzo si, wherekgs = |S||A| + 1. In particular, the functiorps from A(.S) into S is continuous.

Proof. By definition of A(S), we have4d D ¢(sg) 2 ¢(s1) 2 -+ 2 ¢(skg) # @. The choice ofks and the
pigeonhole principle imply that there ai€|+ 1 consecutive;'s amongso, 1, . - - , Sks, S&Ysy, - . . , S¢1|5|, having
the same content, sd@y. Hence LemmBz315 shows that there exist S ande € E(S) N ¢~!(B) such that

£+1]S] %)

00
[Isi=11s 11
n=0

n=0 n=0+]S|+1

oo
= se H s, by Lemmd3b
n=~0+|S|+1
oo
=se by Lemmd3B as is proR andc(e) 2 c( H sn)
n=~0+|S|+1

£+18|
= I s

n=0

The second assertion of the statement is now obvious. O

We now know thaips is continuous wherf € R. To achieve the proof of Propositign B.4, we show that
this property can be transferred to pRosemigroups. For that purpose, we use the next result whasd pses
well-known techniques and which is included for the sakeawfipleteness.



Lemma 3.7. Let S be a profinite semigroup and 16{ be a family of continuous homomorphisms fréhmto
finite semigroups. Assume tHHtseparates points, and thatif : S — 7; belongs td fori = 1,...,n, then
the homomorphisth : S — T x --- x T, defined byi(s) = (hi(s),. .., h,(s)) also belongs td{. LetC be a
closed subset &f. Then we have’ =, ., h~'h(C).

Proof. The inclusionC' C (1,4 h™*h(C) clearly holds. Let nows € S\ C. Since{ separates points there
exists for eacht € C'a homomorphisni; € 3 (which in fact also depends o) such thats ¢ h; 'h:(t). Since
C is closed ands is profinite,C' is compact, and we may extract from the open caveC |J, . hithe(t) a
finite coverC C (JI"_, h; 1ht (t;). Consider the continuous homomorphigm: S — Ty x --- x T,, defined by
hs(z) = (hey (z),. .. ,htn( )), whereh,, takes its values ifl;. Thenh; € 3 by the hypothesis of the lemma. If
somet € C were such thak(t) = hs(s) then, fort; such thatu, (t) = he, (¢;), we would have

hi,(s) = h, (t) = b, (L),

in contradiction with the choice of;,. Hences ¢ h;'h (C). Therefore | h=*h(C) € N h;'h(C) C
hed sES
C. O

Proof of Proposition[3.4. Let S be a proR semigroup. Let
H={hy:S—U|U €Randhy is a continuous homomorphigm

We know thatH separates points (cf. Subsection 2.2). ket: S — U be a homomorphism ¢f. We still denote
hy the homomorphism fron\(S) into A(U) induced byhy. Then, sincéiy is a continuous homomorphism,
the following diagram commutes:

A(S) S
hy hy
A(U) Pu v

Let C be a closed subset 6f. We have to show thaty'(C) is closed. NowJ{ satisfies both hypotheses of
Lemma3y, which yield§' = (), cqc by ho(C), so

ps (C) = p§1< N hﬁlhu(c))

hyeXH

() ps'hy hu(C)

hyeXH

= ﬂ hy'pythu(C),  since the above diagram commutes.
hyeXH

Since(C is closed in a profinite semigroup, it is also compact andetfoee, so is its image by the continuous
homomorphisnt,;. By Corollary[3®,py is continuous so each;; pUth(C) is closed. HenC@gl(C) is
closed. This concludes the proof of Proposifiod 3.4. O

PropositioZ34 will be used in the proof of TheorEm_8.21 beldVe can also use it to define the iterated
left basic factorization. Letv € Q4S. Letvy = w and define sequences w;, a; as follows: ifv; # ¢, then
(wi, a;, vi41) = LBF(v;). If for somep > 0, v, = ¢, then we seffw] = p. Otherwise, we pufw]| = co. By
definition of the left basic factorization, we have the follog equality if[w]] < co:

Twl—1

(2) w = H W; ;.
i=0

When[[w] < oo, the right hand side of12) is called titerated left basic factorization (on the rightf w € Q4S.
If w]] = oo, then for eacln > 0, we have the factorization

3) w= ([Jwiar) - vus
1=0

which can be viewed as an infinite product of a sequena®(in4S') by padding 1's at the right. Applyingg,
by Propositiof.3} we deduce that everye 4R has a factorization as ifil(2), even whm]| = oo (where we
takeco — 1 = o0). One can find in[[7] an alternative argument to justify the&idy @) when[[w] is infinite.



We denote by|w|| the maximal integen in @) such that altv;a; in this factorization have the same content
asw. If there is no such maximum, then we det| = co. We have by definitiofjw|| < [[w]] but, for instance,
[lab®]] = 1 while [[ab*]] = co. Note that

(4) if c(x) = c(y) thenllzy|| > [l + [|y[|-
This inequality may of course be strict, for instancecit= aba andy = bab, we have||z|| = |ly|| = 1 and
lzyll = 3.

Thecumulative conterdf w € Q4S, denoted(w) is the set of all letters € A such that there is a factorization
w = v With ||v|| = oo anda € ¢(v).

If we work instead withw € Q4R, using left basic factorizations withift 4R, we obtain similar notions of
iterated left basic factorizatiarw]], ||wl|, andé(w). In particular, from Theorei 2.3 it follows that,if€ Q4S
is such thapr(v) = w, then[[w]| = [[v]], [|lw| = ||v|| andc(w) = &(v). Furthermore, by the above remarld (2)
holds forw € Q4R, even for||w|| = co, and we still call its right hand side the iterated left bdaictorization of
w.

The next statement uses the functiisandc(-) to characterize idempotents over

Proposition 3.8. The following are equivalent fap € Q4S:
(a) REv? =1

(b) lol| = oo;

(¢) e(v) =¢w).

Proof. The equivalence betwefh) and[c)] follows directly from the definiton of(v). Let us provg{a)] < [(0)]

Suppose first that = pgr(v) is idempotent. By[l4), we havigo|| = ||w?| > 2|lw|| which implies thafjw|| = co.

Conversely, suppose thiat|| = oo, sayw = [[, w, With c(w,) = c(w). Lety : Q4R — S be a continuous

homomorphism into a finit&-trivial semigroupS with a content function. Thep(w) is an idempotent by

Lemmad3b an[3.3. Hene& = w since continuous homomorphisms into finketrivial semigroups with

content functions suffice to separate point§XafR. O
We proceed to examine further features of the function ||w]|.

Lemma 3.9. Letw = zy € Q4R with ¢(z) S ¢(w). Then||w|| < ||y + 1.

Proof. The resultis trivial if||y|| is infinite or if « is empty. Otherwise, proceed inductively @n(y)|, ||y||) under
the lexicographic ordering. Ife(y)| = 1, sayc(y) = {a}, thena ¢ c(z) andc(x) contains a letteb # a by
assumption, sgw|| = 1.

Assume thate(y)| > 1. Lety = uv wherew is minimal such that(u) = ¢(y), which means that = v’a,
where(v/, a, v) is the left basic factorization af. Write u = z¢ with 2z minimal such that(zz) = c(w). We
havew = xz - tv.

If c(tv) S c(w), then|w| = 1, and the result s trivial. So assume thét) = c(w), so that|w|| = ||tv]| + 1.
By definition of u andv, we havec(v) S c(y) or [[v]| = |ly|| — 1. In the first case, we haview|| = 2
and |yl = 1. In the other case, we havgv) = c(y). If c(t) & c(v), we have by induction hypothesis

ltoll < |lvl] +1 = |ly|l, so|lw]l < ||y|| + 1. If on the contrary(t) = ¢(v), then using:(tv) = c(w), we obtain
c(t) = c(v) = ¢(w). Sincec(v) = ¢(y), we gete(t) = c¢(y) = ¢(u). Sinceu = zt is the minimal prefix ofy such
thate(u) = c(y), t is the minimal prefix oftv such that(t) = c¢(y). Thereforelw| = |jv]|+ 2= |ly]|+1. O

Corollary 3.10. Letz = x; -z, € Q4S. Assume that(z;) S c(z) forall i = 1,...,r. Then|z|| < r. In
2

particular, R £ © = z°.
Proof. If r = 2, then one can easily verify thiiz|| = 1. Otherwise, LemmBR39 yields| < ||z2-- -z, +1
and||z|| < r follows by induction onr. O

3.2. R-automata andR-trees. In this subsection, we associate with a pseudowor 2 4R a (possibly infinite)

A U {e}-labeled binary tred(w) as follows. Let(w;, m,w,) be the left basic factorization af. The root of
T(w) is labeled bym, and the left and right subtrees are obtained by iteratirgdbnstruction onv; andw,.,
respectively. For instance, far = (ab*a)“, the left basic factorization af is (a, b, w1) with wy = ba(ab”a)*.
Then, the left basic factorization af; is (b“,a,w). We obtain the infinite tree shown in Figurk 1, called the
R-tree ofw. Informally, the word problem oveR 4R states that two pseudowords have the s&eee if and
only if they are equal. We formalize this result in this sutige. During the analysis of the algorithm for the
word problem ofu-terms (Sectiofil5), we will need a more compact represemtati theseR-trees, where several
vertices may have been identified. For that reason, we dBfingtomata. In the rest of the paper, we denot&by
the alphabef0, 1}.



FIGURE 1. TheR-tree of the pseudowor@b®a)“

Definition 3.11 (R-automaton) An A-labeledR-automatonis defined to be a tupld = (V, —,q, F, \) where
(V,—,q, F') is anonempty (and not necessarily finite) deterministio iutomaton over the alphati®t= {0,1},
andX : V. — AU {e} is atotal function. We further require the following coridits.

A.l. The final state setiB = A\~!(e).

A.2. There is no outgoing transition from.

A.3. Letv € V'\ F. Then bothy.0 andv.1 are defined.

AA4. Letve V\ F. Then

(5) A(v.B*) = A(v.0B*) W {A(v)}.
An R-treeis anR-automaton such that every state is reached from the isié by a unique path.

For anR-tree A = (V, —,q, F, \) andv € V, thesub-automaton ofl rooted atv is theR-automatond, =
(v.B*, —,v, F Nnv.B* \). If Ais anR-tree, we sapubtreanstead of sub-automaton.

With the convention that O-transitions go down to the leftile/l-transitions go to the right, conditidn 4.4
states that, from any state the alphabet labeling the states of the subtree rootecedethdescendant of is

exactly the alphabet labeling the subtree rootedrainus the label of.. This can be checked on Figudide 1, which
represents indeed attree.

Definition 3.12. We say that twdR-automataV;, —;, q;, F;, \;) (i = 0, 1) areisomorphicif there is a bijection
¢ : Vy — Vi suchthat, forall € V anda € B, A1 (p(v).a) = p(Ao(v.a)).

We denote byl the R-automaton with a single node labeledand byA 4 the set of allA-labeledR-automata
exceptl. Observe thafd5) implies thatvi« is defined, thera|, < |Al: each time we go left, we end up in an
R-subtree labeled by a smaller alphabet. Abusing slighttatian, we write\(A) instead ofA(V).

Remark 3.13. Let A be anR-automaton. Consider a logp % p; 2% .- 2% p, = po. Then,a; = 1 for
alli = 1,...,n. Indeed, ifa;, = 0 for somek, we would have\(px_1) € A(px—1.0{0,1}*), in contradiction

with ().

Definition 3.14 (equivalence oR-automata) Let k > 0. Two R-automatad; = (V;, —;,qi, Fi, \i), 1 = 0,1, are
k-equivalenif

(6) Va € {0,1}", |a| <k = Xo(q0.@) = M(q1.a).

Two R-automatad, and.A; areequivalenif they arek-equivalent for allk > 0. We write Ay ~j A, if Ay and
A, arek-equivalent and we let = [ ~.

By convention, [[6) means tha(qo.«c) and A1 (q;.«) are either both defined and equal or both undefined.
Figures[l andd2 give an example of equival@rautomata (downwards-left edges represent O-transitioms
downwards-right edges indicatetransitions).

Fact 3.15. EquivalentRk-trees are isomorphic.

Lemma 3.16. AnyR-automaton has a unique equivaldttree.

Proof. Let A = (V, —,q, F, \) be anR-automaton. We define aétreeT = (W, —, p, G, v) as follows. Take
W = {a € B* | q.ais defined. The initial state ofI ise. We setv(a) = A(q.a). The final state sef is

v~1(g). Finally, if g.c0 andg.al exist (that is, ifA(q.a) # ¢), then we define transitions 2 a0 anda 5 al



FIGURE 2. The minimalR-automaton of the pseudowofdb® a )~

in 7. By definition ofv, propertie§All t6 AW are transferred framto T. The uniqueness is straightforward by
Fac3.Ib. O
The unfoldingof A € A, is the uniqueR-tree A equivalent taAd. If A = (V,—, q, F,\) then we write

A=(V,—.q,FN.

Corollary 3.17. Let A, A’ beR-automata. Thed ~ A’ if and only it — A,

Let ||A|| = sup{k > 0| q.1% is defined € NU {oc}. If |A]| is finite, then we hava(q.1141) = . We let
Ap = A 140 (0 <i <|A| —1). TheR-tree A is pictured in the following figure.

Vo

A \v1
.

Definition 3.18(value of anR-automaton) Thevaluer(A) € Q4R! of anR-automatom is defined inductively
on\(A). If A =1, thenw(A) = 1. Otherwise,

lAlI-1

(7) m(A) = J[ =(Aw) - Aa.1%).

1=0
Observe that this correctly definesA), since by [b) A(Aj;;) & A(A), and since infinite products converge in
Q4R. Moreover,c(r(A)) = A(A). Also note thatr(A) depends only onz, by definition of ||.A| andA;, and
sinceX(q.1%) = A(q.1%).

3.3. Topology of R-automata. Letd : Ay x Ay — Ry be defined by

as g = {0 if Ay ~ Ay
DRI 9= (AvAY) i Ay o4 Ag, with r(Ar, As) = min{k > 0 | A; g Ao}

It is a routine exercise to establish the following obsdorat
Fact 3.19. The functiond is a pseudo-metric such thétA,, A>) = 0 if and only if A; and A, are equivalent.

Henced induces a distance ovér, /~. Abusing notation, we still denote this distanteThus,(A4/~,d) is
a metric space.

Remark 3.20. (a) Using the finiteness afi, one shows by a standard extraction argument that/~, d) is
compact.

(b) The functionAy — As x A x A4 which sends th&®-automatonA, with rootq, to (Aq.0, A(q),Aq.1) iS
continuous.

Sincen(A) only depends or;f, we may definer(A/~) = W(Z>. This leads to the following topological
representation o2 4R.
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Theorem 3.21. The mappingr : A4/~ — Q4R is a homeomorphism.

Proof. We prove thatr is continuous by induction on the size 4f If A is empty, then there is nothing to show.
We denote by 4 the set olR-automata over alphabets of size less than or equal Tthenr can be factorized as

Aa/~ 2 [(AA/N x A)U {1}]N ¥z, A(ﬁARl) 5L QuR!

where, lettingA = (V, —, q, F, \), the (partial) functiong), v¥» andy; are defined by

A, Ag.1% if0<i<|A|l-1
_ (Wﬂ))i:{( 9 Ma.19) <
1 otherwise;
- 1/12((7‘i)i20) = (Si)izo, Wheresi = W(.Ai)ai if r, = (.Ai, ai), andsi =1if r; = 1;

o0

= U3((si)iz0) = HSz

=0
N —
We endow[(AA/N x A) U {1}} andA(QARl) with the product topology. It then suffices to show tiat i,

andzs are continuous. Now, by RemdIk3[2{] each component af; is continuous. Continuity of follows
directly from the induction hypothesis. Finally, the coniity of «/5 is given by Propositiofi:31 4.

We now prove that the function is injective. LetA = (V, —,q, F, \) andA’ = (V', —' ', F’, \) be such
thatw(A) = w(A’). Since there is a unique-tree in each equivalence class, we can assumeAtaatd A’ are
R-trees. By[[lV), we have

lAl—1 . A" —1 4
(8) IT ~Aw) - Aa1)= J] =(Ap)-N(@.19.
1=0 =0

Observe that both sides &l (8) are precisely iterated lefichfactorizations. By Theorem 2.3, this factorization is
unique, sq|Al| = [|A’]], and for0 < i < [[A]|, m(Ap;)) = 7(Af;) andA(q.1%) = X'(q".1%). Since allA}; and A
areR-trees over smaller alphabets, the induction hypothesesgl|; = Afi]. HenceA = A'.

We prove thatr is surjective. Letw € Q4R. We construct amR-tree A such thatw = 7(A). We argue by
induction onc(w). If c(w) = {a}, thenw is entirely determined b{jw], and we take ford the uniqueR-tree
such that\(A) = {a} and||A| = Jw]. Otherwise, letv = HZ.”;"OTH w;a; be the iterated left basic factorization
of w. By definition, we have(w;) ; ¢(w) and the induction hypothesis givBstreesA; = (V;, —;,q;, Fi, Ai)
such thatw; = w(A;). We construcd = (V, —, q, F, \) as follows.

V{&J%w{vilizo} if [Tl = oc
WViw{v; | 0<i<[w]—-1}w{v.} if Jw]isfinite
A(vi) = a;, andA(ve) = €.

vi.0 = qi,

vi.l = vy if i < Jw] andvy,p-1.1 = ve.

The labeling and the transitions &4 are given by those ofl;. It is then straightforward to check thatis an
R-tree such that (A) = w.

To conclude the proof, it remains to observe that the coittinef 7—! follows from the compactness of
(Aa/~,d). 0

LetA; = (V;,—i,qi, Fi, \i), i = 0,1, beR-automata and let € A be such that\(17) C A(Vp) W {a}. We
denote by( Ay, a, A1) theR-automatord = (V, —, q, F, \) whereV = V5 W V] W{q}, with A(q) = a, 4.0 = qo,
g.1 = q1, and where the other transitions and labels are given bytbhd, and.A;.

If w € QaS, let T(w) be theR-tree representing—! (pr(w)). The proof of Theoreri-3.21 shows that, if
LBF(w) = (w;, m,w, ), then we havd (w) = (T(w;), m, T(w,.)).

By Theoren321, th&-automatad equivalent tdJ (w) are exactly those satisfying A) = w. If m(A) = w,
then we say thatl is anR-automaton ofu.

3.4. Wrappings of R-automata. For anR-automatord = (V, —,q, F, \) andv € V, we let|v] = 7(A,).
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Lemma 3.22. LetA = (V,—,q, F, \) be anR-automaton and let € V' \ F'. Then, the left basic factorization of
[v] is [v.0] - A(v) - [v.1]. Therefore, by uniqueness of the left basic factorizatiehave

Alvi) = Alv2)
[Vl] = [VQ] — [Vl.O] = [VQ.O]
[Vl.l] = [Vg.l].
Proof. If A = 1, then the result is true. Otherwise, we have by definifion= [v.0]A(v)[v.1]. Hence the result
follows fromc([v]) = ¢([v.0]) W {A(v)} (by 3)). O

Lemma3.2P justifies the following definition. Theappingof an R-automatond = (V, —,q, F, \) is the
R-automatonA] = ([V], —, [q], [F], v) defined by

- [V]={v]|veV}CQuR.

— [v].0 = [v.0] and[v].1 = [v.1].

— Finally,v([v]) = A(v).

Thus, the wrapping ofl is obtained by merging states representing the same pseudo®orw € Q,4S, we
define itswrappedR-automatoras.A(w) = [T(w)]. For instance, th&®-automaton of FigurEl2 is the wrapped
R-automaton ofab“a)“, as we have identified all states representing the same pweud!

We define thevalueof a pathqy > qi ~> -+ = gy, in an R-automatond as [}, (A\(q;), i) €
(A x {0,1})*. Thelanguagel(v) C (A x {0,1})* associated with a stateof A is the set of all values of paths
fromv to ¢, that is, the set of all values of successful pathglin The languagé (A) associated wittd is the
language associated with its root. Finally, the langua@e) associated withy € QS is L(w) = L(A(w)).

Lemma 3.23. Let Ay, A, beR-automata. 1f0(A;) = L(As), thenfrl = AZ

Proof. It suffices to note that for aR-automatonA, L(A) uniquely determines the set of maximal pathsiin
which in turn uniquely determineg. O

Proposition 3.24. Letv, w € Q4S. ThenR = v = w <= L(v) = L(w).

Proof. Assume thaR |= v = w. By Theoren:221, we hav&(v) = T(w), henceA(v) = A(w) andL(v) =
L(w). Conversely, ifC(v) = L(w), then by Lemmd=323, we havBv) = T(w), and by Theorenl 321,
REv=uw. O

4. THE WORD PROBLEM FORuv-TERMS OVERR

4.1. Tails of pseudowords. We define in this subsection several types of factors of pseadisw € Q2,4S. Let
fa(w) andm, (w) be defined inductively on the length afe {0, 1}* as follows.

fe(w) =w
(fao(w), ma(w), far (w)) = LBF(fo(w)).
The set oR-factorsof w is
F(w) = {fa(w) | a € {0, 1}*}
Note that¥ (F(w)) = F(w), since by definitionf,o = fo o fo @andfa1 = f1 0 fa.
The set ofrelative tailsof w is defined by
R(w) = {fa(w) [ a € {0,1}*1} = f1(F(w)).

Obviously, a relative tail is also aR-factor. Let nows,, (w) be defined inductively on the length afe {0,1}*
as follows:

9) se(w) =w
(10) $0a(W) = Sa (fO(w)) ~me(w) - fi(w)
(11) s10(w) = sa(f1(w)).

Note thate(s, (w)) C c(w). The set ofabsolute tailsor R-suffixef w is defined by
$(w) = {sa(w) | @ € {0,1}*}.

We will need the following technical results further retaif,, with ss.

12



Lemma 4.1. Letw be a pseudoword and lét be a positive integer. Then we have the following equalitfes
pseudowords:
(12) w = for(w) - mor—1(w) - sgr-11(w).
(13) sor1(w) = forer(w) - mor—1 (w) - sgr-11(w).
Proof. Note that, by definitions; = f;. Hence the equalitf{12) holds fér= 1. Similarly, using [ID) and{11),
a simple calculation shows th&f{13) holds for= 1. Assume inductively that, for a giveln > 1 and every
pseudowordy, the equalities[(l12) and{IL3) both hold. By the inductiondtinesis[[IP) and applying left basic
factorization tofy: (w), we deduce that
w = forrr (W)mor (w) fory (w) - mor-1(w) - spr-11 (W)

= for+1(w)mor (w)spr1 (w),
in view of (I3), which establisheBEl12) fér+ 1. It remains to show{d3) fok + 1. Applying (I0) witha: = 01
and [I3B) to the pseudoworfd(w), we obtain

sor+11(w) = sor1 (fo(w)) - me(w) - f1(w)

= for1(fo(w))mor-1 (fo(w))sor-11(fo(w)) - me(w) f1(w)

= forrr1(w)mor (w) - sor—11(fo(w))me (w) f1(w)

= for+r1(w) - mor (w) - Sor1 (w)

which completes the induction step. O
Lemma 4.2. Letw be any pseudoword and e {0, 1}*. Thenf;(so(w)) = sg(w) for somes € {0, 1}*.

Proof. Clearly fi(s-(w)) = fi1(w) = s1(w). Proceeding by induction om, assume thaf; (sqo(w)) = sg(w).
Then we have

(14) fi(s0a(w)) = fi[sa(fo(w))me (w) fr(w)].

The expression on the right side Bf114) reducegtav) = s;(w) in casec(sq (fo(w))) = e(fo(w)). Otherwise,
we use LemmBZl1 to pull out froffy (w) the shortest factor to complefg(soa (w)):

fi(w) = fror(w)mygr—1 (w)sor-11(f1(w)) = fior (w)mygr-1(w)s1or-11(w),

so that, for a suitabl&, f1(spa(w)) = s1gx-11(w). Finally, we have

fi(s1a(w)) = f1(sa(fi(w))) = sp(f1(w)) = s1p(w),
which establishes the induction step. O
Again, since the projection ift 4R of the left basic factorization af € Q4S gives the left basic factorization
of pr(w), all constructions and previous factorizations which wevgel in this subsection may be applied to
pseudowords oves. The following result however does assume aperiodicity.

Corollary 4.3. Letz,y € Q4R be such thaty® is an idempotent. Thefi-(zy*) C fi-(x)y* U S(y)y~.

Proof. Itis sufficient to show that the s¢t. (z)y* U 8(y)y“ is closed undef;, since this set containg/“. So
pick z in f«(z) U 8(y).

If ¢(2) & c(zy), then there ist > 1 such thate(z for (y)mer-1(y)) = c(zy®), andmgr-1(y) & c(2).
By equality [I2) of Lemm&3]1 applied 19 we deducdBF(zy.y~) = (zfox(y), mor-1(y), sor-11(y)y~). By
aperiodicity ofR and uniqueness of left basic factorization, we haB& (zy*) = LBF(zy.y*), hencef,(zy*) =
sor-11(y)y” € 8(y)y~.

Suppose next thai(z) = ¢(y) so thatfi(zy“) = f1(z)y“. Then, in case € fi-(z), we have agairfi(z) €
f1-(x) while, in casez = s, (y), LemmdZP guarantees that(z) = f1(sa(y)) = ss(y) for somegs € {0,1}*.
Hencef1(z) € f1-(x) US(y). O

4.2. Several characterizations ofw-terms. This subsection is devoted to the proof of the following tieso,
which gives several characterizations.eferms oveR and which may be regarded as a sort of periodicity result.
It should be compared witlh [11, Theorem 5.1], which showsdlaintcharacterizations for an ordinal word to be
represented by an-term.

Theorem 4.4. Letw € Q4R. The following conditions are equivalent:
(a) L(w) is rational.
(b) A(w) is finite.
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The sef{n(T(w)y) | v € V}is finite, wherel (w) = (V, —, ¢, F, ).
F(w) is finite.
R(w) is finite.
) S(w) is finite.
) w e Q4R.

Moreover, ifw € Q4R, then|F(w)| = |A(w)].

We say that an-termw is reducedif there is no subterm of of the formy“ z, with ¢(z) C ¢(y), and there is
no subterm of the fornjzy*)“, wherex may be empty, and with(z) C c¢(y).

Lemma 4.5. Letw be anw-term which defines an idempotent(dy R. Then there exist-termsz, y such that
w = zy*, |z| + |y| < |w| andzy* is reduced.

Proof. The rewriting rulesy*z — y* if ¢(z) C ¢(y), and(zy“z)¥ — ay* if c¢(xz) C c(y) do not change the
value of anw-term overR. Moreover, since they decrease the length, they form a Moeih system. Let be
a reducedv-term obtained fromw by applying rules of this system. Sineeis idempotent, so is. Moreover,
o] < Ju.

Letv = z7 - - x, wherex; is either a letter or a term of the forpy’. By Corollary[37ID, there existssuch
thatz; = y¢ andc(y;) = c(v). Sincev is reduced, we havé = r. Therefore, is of the formay“ (with
x1 -+ xp_1 = x andz, = y¥). Finally |z| + |y| < |v| < |w|. O
Proof of Theorem[Z3. [(a)]<[(6)] FromA(w), one constructs a finite automaton recognizir{gy) by adding as
a first component of any edge label the label of its origin. v@psely, one can transform the minimal automaton
of L C (A x {0,1})* into a state-labeled automaton whose associated langs&gehy removing the first
component from every edge label and labeling the origirestath it. These transformations obviously preserve
finiteness.

[(0)]=[(c)] comes from the definition ofl(w), whose states are the pseudowar3(w), ).

[(c)]=[(d)| follows directly from Lemm&322 applied @&(w).

(d)|=[(e)|is obvious sinc&(w) C F(w).

(e)|=|(f)|Assume thafR(w) is finite. We prove thad(w) is also finite by induction opA|. The result s trivial
if [A] = 0. Otherwise, le8,,(w) = {sa(w) | a € {0,1}"}. The inductive definitior§9)E11) of, gives

Snt1(R(w)) C 8n[fo(R(w))] - A+ fr(R(w)) U Sy [ f1(R(w))]
C 8[fo(R(w))] - A+ R(w) U 8, (R(w)).

Hence, proceeding by induction an§$,,(R(w)) is contained ir8 [ fo(R(w))] - A - R(w) U R(w) for everyn, and
therefore so iS(R(w)). Therefore,

S(w) € {w} US(fo(w)) - A-R(w ) 8(R(w ))
C {w} U [$[{fo(w)} U fo(Rw))] | - 4 R(w).
To prove the finiteness d¥(w), it remains to show tha® [fo( ) U fo(R (w))} is finite. Letu € {fo(w)} U
fo(R(w)). Sincec(fo(x)) S c(x) for all z, we havec(u) S c(w). Moreover,
R(F(w)) = [L1(F(F(w))) = f1(F(w)) = R(w).

In particular,R(u) C R(w), soR(u) is finite. Hence we can apply the induction hypothesig,tso8(u) is finite.
Therefore 8(w) is finite.
[(F=[(g)]Assume thas(w) is finite. We prove by induction ofe(w)| thatw is anw-term. Forc(w) = {a},

eitherw = a* orw is a word. Otherwise, leb = HZ.”;"Oﬂ_l w;a; be the iterated left basic factorizationof
Let0 < j < [[w]. We puty; = ]_[”“’TI Ywia;. Letu € 8$(w;). We claim thatua,v;,; € 8(w). We have
w; = frig(w), aj = myi (w) = me(fri (w )) andv;i1 = fri+1(w). Letu = so(w;). Then
ua;vj41 = sa(frio(w)) - mu(w) - froe: (w)
= sa(fo(f1i (w))) - me(f1s(w)) - f1(fri (w))
= 80a(f15 (w))
= sma(w) € 8(w).

Letu,u’ € 8(w;). We havea; ¢ c(uu’), so by Theoreli 213, ifia;v;11 = vw'ajvj+1, thenu = /. Hence
u — ua;jvj4+1 IS an injection froms (w;) to 8( ). SinceS(w) is finite by assumption, so B(w; ).
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We haver(w;) & c¢(w). By the induction hypothesis, all;’s arew-terms. This concludes the proof whgm]]
is finite. Assume now thdfw] is infinite. Letu, ; = Hfj’l wja; andu; = ug ;, SO thatw = u; -w;a; -viy1. By
definition,v; = f1:(w) € 8(w), so there exist > 0 andk > 0 such thaty,, = ve = ug Ve4i, SOV = ug Ve
Sincec(ve) = c(verk) C c(uek), we havey, = uf .. Thereforew = ugve = ueuy,, which is anv-term.

[g]=[d) Letw € Q4R. We proceed by induction ofic(w)|, |w|) under the lexicographic ordering. If
c(w) = {a}, thenF(w) is finite if w is a word or is the sefl, a“} if w ¢ AT.

Otherwise, we first claim that the s¢t- (w) is finite. Letw = Hiﬂ;”oﬂ_l w;a; be the iterated left basic fac-
torization ofw. If ||w]| is finite, then one can write) = wpag - - - wragv With a; € A, c(w;) = c(w) \ {a:},
c(v) & c¢(w). By LemmaZPyp is anw-term. By induction hypothesig; - (v) is finite. Hence, so ig- (w) =
fie(v) U{w;a; - - -wragv | © < k}. If on the contrary||w|| is infinite, themw is idempotent. By Lemmia4.5 one
can writew = xy* with zy* reduced and| + |y| < |w|. Since|y| < Jw| andc¢(y) C ¢(w), by the induction
hypothesis applied tg we deduce thaF(y) is finite. Since we have already shown tfiéj]=[(/)} we conclude
thatS(y) is also finite. By Corollar{r413, we havg- (w) = fi«(xy*) C fi-(z)y* U 8(y)y* which is finite by
the above and the induction hypothesis applied.t®his proves the claim.

Let¢ > 0 andk > 0 be such thafi .. (w) = f1.(w). Then we have the following equalities of pseudowords
overR:

fre(w) = weae - wesk—1a04k—1 freex (w)
= Weay -+ - Wegk—1044+k—1f1e (W)
= (weag - -wegp—1004k-1)" fre(w)
= (weap - Wetk—1a045-1)".

Thereforew = woag - - - we—1ae—1(weag - - - Wegp—1a04k—-1)“"

By the expression ab, we see that the s& = {wo, . .., wetx—1} containsfi-o(w). Now,F(w) = f1+(w)U
F(fr0(w)) C f1+(w) UF(W). Moreover,W is a finite set ofu-terms, each over a smaller alphabet tharBy
the induction hypothesi§;(W) is finite. Since we already know tht- (w) is finite, so isF(w). O

4.3. Canonical forms. Throughout this subsection, we use freely the fact thatefteblsic factorization of an
w-term produces factors which aketerms, hence-terms oveRR, as given by Lemma3.2.

Consider a finiteR-automatomd = (Q, —, q., F, A). Fora € {0,1}*, letq, = q..«, when it is defined, and
let Qo = qa.{0,1}*, F, = FN Q4 andAy = (Qa, —, das Fa, A).

We associate t@l a possibly emptyw-termw(A) by induction on|Q|. If Q@ = {q.}, thenq. is labeled: and
there are no transitions, so we sgtd) = 1. Otherwise, we distinguish two cases. If there is no agige q.,
then Ay andA; have fewer states thaf. We setw(A) = w(Ap) - A(qe) - w(A1). Otherwise, consider a loop

An+1

pn —— qe. By Remar{Z3IBq; = 1 foralli = 1,...,n + 1. Moreover,A;:, has
fewer states thar, by @). We setv(A) = {H?:OW(.Alio))\(qli)}

The canonical formcf(w) of a possibly emptyv-term w is defined to bev(A(w)). We say thatw is in
canonical formif w = cf (w). Observe thatf(w) is well defined since, by Theordm#.4(w) is finite. Note also
that, like A(w), cf(w) only depends on the interpretationwfin Q 4R!.

As an example, thB-automator4 of w = (ab”a) is given in FiguréP. There is a loop with two edges around
ge, Socf(w) = [w(Ao) - AM(qe) - w(A10) - A(q1)]* = [a- b - w(A1g) - a]*. Similarly, there is a loop with a single
edge aroundg, sow(A1p) = b, and finally,cf (w) = (abb¥a)* (hencew is not in canonical form).

We call a factor (i 4R) of the formua of a pseudoword fringy if c(ua) = c(w) anda ¢ c(u). Letw be an
w-term in canonical form. We define recursively an associatédrmw’ by letting:

— w' = wiaws If w = wiawse andw; a is a fringy factor ofw with a € A;
— w' =vja(vavia)? if w = v* andv = vy ave Whereva is a fringy factor ofv.
We will need the following technical result.

_ ay a Anp,
Qe =P0o — P1 — " —

Lemma 4.6. Letw be anw-term in canonical form. TheR = w' = w andw’ admits a unique factorization of
the form

(15) w' = ajuragus - - - apuy, With c(u;) € {ay,...,a;}
where thes; are the distinct letters that appear in. Moreover, in this factorization, eacly is in canonical form.

Proof. Each of the recursion steps in the definitionudfuses the previous recursion steps and perhaps the pseu-
doidentity(zy)“ = x(yx)“, which is valid inR. HenceR = w’ = w. Each of those steps also brings out a fringy
factor of a left factor of the previous step, which guarastdet inw’ all first occurrences of letters are found
outsidew-powers. The uniqueness of the factorization follows frtwe tiniqueness of left basic factorizations.
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It remains to show that eaal is in canonical form. Proceeding by induction @fw), we distinguish the two
cases in the definition af’. In casew = wiaw, andw;a is a fringy factor ofw with a € A, then bothw; and
ws are in canonical form by the definition of canonical form and= w/aw2. By uniqueness of the left basic
factorization, we havey| = ajug - - ap—1un—_1, @ = a,, andws = u,,. Now, it suffices to apply the induction
hypothesis tav, to conclude thatthe; (i = 1,...,n — 1) are in canonical form.

In casew = v¥ with v = viavs, a € A, andw;a a fringy factor ofv, we havew’ = v{a(vev1a)®, so that
v = a1uq - Gp—1Up—1, & = Ay, and(vevia)¥ = u,,. By definition of canonical form, since we assumés in
canonical formyp; is in canonical form and, must admit a factorization, = 216 - - - 2,-b,- in fringy factorsz;b;
of v, such that each of thg is in canonical form. This implies that, = (vev1a)* is also in canonical form. The
result now follows as in the previous case by applying thaiatibn hypothesis to; . O

We call [I%) thdeft expanded canonical form efand denote it byf’ (w). Forinstance, we havgabba)*)’ =
ab(b®aab)?, andcf’((ab¥a)?) = cf'((abb*a)*) =a-1-b- (b*aab)®.

Proposition 4.7. Letuy, . . ., u,, v, w bew-terms. Then
() REw=cf(w).
(b) REwv=wifandonly ifcf(v) = cf(w).
(e) If e(v) Ne(w) = 0 thencf(vw) = cf (v) cf’ (w).
(d) If wadmits a factorizationv = uq « - - U (Ut 1 -+ - up)*, Where
(i)  each of thev-termsu;, 1 < i < n, is a fringy factor of the produat; - - - u,,
(ii)  there exist no integeds > 0 and/, 1 < £ < n—m, suchthaR |= w1 Up = (Uma1 - Umie)”,
(1i1) R upm = up,
then
cf(w) = cf(u1) -+ f () (cF(Umt1) - - - cf(up))“.

Proof. Statementfa)| and[[0)] are a direct consequence of the very definitionuéfl) and(A), and of Theo-
rem321.

Letus sho Sinceu; is a fringy factor ofu, - - - u,, the rootr; of the R-automatom (u;) is not the end of
any edge, and the edge labeleffom r; leads to the final state. Consider tReautomatori® which is obtained
from the A(u;) by changing the edge labelédrom r; to make it end at; 1, fori = 1,...,n — 1, and atr,;, 41
fori = n. ThenB is equivalent to th&®-automatorA(w). Moreover, the minimization dB to obtain theA(w) is
done by identifying only states from differedf(u;). It does not change the path starting from the root following
edges labeled, since the hypothes an ensure that the statescannot be identified. The formula for
the canonical fornef (w) now follows directly from the definition.

It remains to provfc)] By[(a}} [0} and Lemm&4l6, we have
R | cf(vw) = cf(v) cf(w) = cf (v) cf’ (w).

Hence it suffices to show thaf(v) cf’(w) is in canonical form. Letv’ = cf’(w) and consider its factorization of
the form [I5). Then, by definition of canonical form and simgeis in canonical form by Lemnia4.6, we have

cf(vajurasug - - - apuy) = cf(vajurasus -+ Up—1)apty,.

Now the result follows by induction on. O

We shall prove in Sectidd 5 that the sizefw) is linear in that ofw. For our canonical forms, the situation
is not so favorable.

Proposition 4.8. Letw,, be the sequence afterms defined by

wy = (ajbi)”
Wn41 = (wna721+1b31+1)w

Thenw,, has lengthbn while its canonical form has length 3", forn > 1.

Proof. We start by introducing some auxiliary sequences-¢érms:

(16) Tro = to =1
17) t1 = (b1a?by)*
(18) Tni1 = Tnloy 1 bny1tng

(19) tn+1 = (bn-}—lrnan-i-l . an+1bi+1rn—1aibn . tnaiJrlbn-i—l)w-
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For convenience, also lety = 1. Let A,, = {a1,b1,...,an,b,}. By induction onn, one can easily verify that
¢(rn) = ¢(t,) = A,. From this observation it follows that each of theterms
rnai+1bn+17 bn-l—lrnan-i—l; an+1bi+1rn—1aibn7 tna721+1bn+1

has content4,,,; but, in each case, dropping the last letter produces-germ with smaller content. Combining
formulas [I8) and19), we obtain

(20) Pnt1 = Tnlp 1 bng1 (b 17n@s 1 bngt - bng17ndoy 1bpg1)” (n > 1),
We next claim that
(21) RE w, =1,

forall n > 0. This is obvious fon = 0. Forn = 1, using the fact thaR = (zy)¥ = x(yx)“, we have
Rl wy = (a20?)% = (aby - by)” = a3by(bratby)” =r1.
Assuming the claim true for a given > 1, and using also the fact thBt= (22?)“ = 2, we obtain
R wnyr = (wnaiﬂbiﬂ)w = (wnai+1bn+1 “bpg1)”
= wnap 1 bng1 (bpprwnap 1 bny1)?
= wna721+1bn+1(bn+1wna721+1bn+1 : bn+1wnai+1bn+1)“
= rp41

in view of (20), which establishes the claim.
The next step consists in proving by inductionrethat

(22) cf(rn) = cf (r,) = rn, and cf(t,,) = t,,

The cases: < 1 are immediate. One then checks that the hypotheses of Riopd&f(d)| hold form = 0,
n =3, U1 = bpp1TnGni1, Uz = Ang1b3 1 Tn—102by @Ndug = tya2 1 b,41. Therefore, from the factorization
(@I3), we obtain

f(tnt1) = (cF(bnr1mnantt) - cf(ans1b? 1 rn—1a5bn) - cf(tnas 1bni1))”
Assuming [ZR) fom — 1 andn, and using Propositidﬂ we deduce that
cf(tn1) = (bng1 f () @ng1 - @ns1b2 1y f (rp—1)aZby, - cf(tn)az 1 bpi1)”
= (bpy1Tnlnt1 - an+1bi+1rn_1aibn . tnaiﬂbn“)‘”
=tpt1-
Similarly, using the factorizationE{IL8) arld119), we obtai

_ 2 2 2 2
cf(rng1) = cf(rn)ag 1001 (bng17nlng1 - Gng1by 11050y - tnas 1 bng1)”

Tna721+1bn+1tn+1 = Tn+1
and
cf (rpy1) = Cfl(rna%+1bn+1tn+l) = cf'(rnai+1)bn+1tn+1
= cf’(rn)ai+1bn+1tn+1 =Tn4l1

This concludes the induction proof ¢f{22). Combining wl( and PropositiohZ(%)], we obtain the formula
cf(wy) = 7y

To finish the proof, it remains to compuite,|. From formulas[[l6)£(18) an@{P0), we obtain| = 8 and the
recurrence relatiofr,, ;1| = 3|r,,| + 12 (n > 1), which yields immediatelyr, | = 14.3"~! — 6. O

We may also have an exponential decrease in length in thengaéorm, even for a reduced-term.

Proposition 4.9. Define a sequence, by zp = 1, z,+1 = (2nan2,)*. Then each, is a reducedv-term of
length2”+! — 2 while its canonical form has lengt.

Proof. Letx,, be the sequence definedby= 1, z,+1 = (x,a,)*. Note thaRR verifies the following identities:

Zn+l = (Zn : anzn>w = Zn(anznzn>w = Zn(anzn>w = (Znan>w
where we use the fact that, is an idempotent oveR. By PropositiorlZZJd)| and[(c)]] we getcf(zn41) =
(cf(zp)an)® sincea, ¢ c(xz,). By induction onn one now immediately deduces thHasatisfiesz,, = x,, and
thatx,, = cf(x,,) = cf(z,). The calculation of the lengths is straightforward. O
One should stress that, although we have defined the cah@mitefor anw-termw, the canonical form is by
definition determined by the associated wrapRealitomatord (w). In the following result, we establish an upper
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bound for the size off(w) in terms of the size ofi(w). Denote bylA| the number of states of tHe-automaton
A.

Proposition 4.10. Letw be anw-term over an alphabet. Then the length off (w) is O(|A(w)[I4).

Proof. Consider the following number if), +cc]:

[ cf(w)] _
Uy, = SUP { AW w is anw-term and¢(w)| = n} .
We show that the sequente, )., is bounded by, which suffices to establish the proposition.

We first note thats; = 1 by just considering the possibilities farterms of conten{a}: if w = a™ then
| cf (w)| = |w| = m and|A(w)| = m + 1; if wis nota word, thefcf(w)| = |a*| = 2 and|A(w)| = 2.

Suppose that is anw-term withn = |c(w)| > 1. Letw = wpaop - - - wpagwi+1 Where thew; arew-terms
and theu; are letters such thafw;a;) = ¢(w), andk is as large as possible so that there is a simple pa{in)
labeled1” from the rootq. Note that, by definition of the canonical form, in the caserefjw/|| is finite, then its
value isk + 1 and

(23) cf(w) = cf(wo)ag - - - cf (wg ) ay cf (Wrt1);
otherwise,
(24) cf(w) = cf (wo)ag - - - cf (wi—1)ai—1 (cf(w;)a; -- -cf(wk)ak)w

for somei > 0. Note also thatlg;;o = A(w;) for j = 0,...,k and, in the case whetgo|| is finite, A, =
A(wg+1). By definition ofu,,_1, we have

| cf(wy)] < o1 |A(w;)[" ™ < g |A(w)]"

for0 < j < kandalso forj = k + 1 in case||w|| is finite. By [Z3) andI(24) and sinde+ 2 < |A(w)|, it follows
that, in both cases,

| cf(w)] < (k + 2)un—1]A(w) " + k41
< w1 @) + A (w)).

Henceu,, < up—1 + [A(w)[* ™" < u,—1 + 57=. Combining with the fact that, = 1, we conclude that,, < 2
for all n. O

5. ALINEAR-TIME ALGORITHM COMPUTING WRAPPEDR-AUTOMATA

In this section, we solve the word problem foiterms oveR. Letv andw be twow-terms, and letv;, m,,, v;.)
and(w;, m,,, w,) be their left basic factorizations, respectively. Sincendw arew-terms, so are;, v;., w;, wy,
and they are easy to compute, as well as the lettgrandm,,. From TheoreriiZl3, we know thRt= v = w is
equivalent ton, = m,, R = v; = w;, andR = v, = w,.. To check the last two identities, we could repeat this
process inductively, but theredspriori no guarantee for it to terminate. Hence, even if the leftdfsitorization
for w-terms is computable, it does not yield immediately an athor checking equality betweesnterms oveR.

The above inductive approach consists in fact in computiegRttrees ofv andw. It clearly gives a semi-
algorithm for deciding whether # w overR. When constructing thB-trees, if we could test whether the value
of a subtree has already been produced during the computdtien we would end up with a finite wrapped
R-automaton.

To construct the wrappeR-automata ot andw, we will in fact compute intermediate equivaldt¥automata,
which are not completely wrapped. We call them Rigraphs ofv andw. We will then show how to minimize
R-graphsin linear time, as already sketchedn [8], to obttaénwrapped-automata o andw, which we finally
compare. The overall complexity of the algorithmQs| A|(|v] + |w])).

Informal presentation of the algorithm. As explained above, each nodef the R-tree of a pseudoword can

be associated with a pseudowdvii overR: if (w;, m,w,) is the left basic factorization ab, then the root of

T(w) is associated withw, its left child withw; and its right child withw,.. If two nodes are associated with the

same pseudoword ov&; then we obtain the wrappdttautomaton by identifying all subtrees corresponding to

the same value, and we know that its finiteness charactesizesms oveR (see Theoreri4.4). Giventerms

v, w, we proceed as follows.

(a) We computeR-automataS(v) and G(w) equivalent toJ (v) and T (w), respectively, which, liked(v) and
A(w), are finite. Thesé&k-automata are calle®-graphs. We prove that one can compute them in time
O(A[ - (Jo| + [w]))-
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Note that theR-graphG(w) we shall obtain will not necessarily identiél subtrees labeled with a com-
mon value. This explains that thegraphs are not canonical: even if tweterms are equal oveR, their
R-graphs are not necessarily equal. Still, there are enadgftifications of isomorphic subtrees to end up
with a finite object.

(b) TheR-graphS(w) of w can be transformed in a finite automatéf{w) over A x {0, 1} suchthaR E v = w

if and only if A’(v) = A’(w). In fact, A’(w) is obtained fromA(w) just by assimilating the labels of the

states by the labels of the edges.

) The automatoril’ (w) can be constructed from in time O(|w||c(w)]).

(d) From[(c] and[[t}} we deduce that the word problem for twetermsv, w of Q4R can be solved in time
O(A - (o] + |w]))-

5.1. Notation and definitions. In this subsection, we set up simple but useful notation.A ke a finite alphabet
and letN, = N\ {0}. In order to distinguish occurrences of letters in a wordidf, we associate to eache A™*
awordzy € (A x N4)™ containing all original positions of letters af To this aim, we define a family of
functionspy, : AT — (4 x N, )* as follows.

pr(a) = (a,k+1) fora € A,
pr(ay) = pe(a)pri1(y) fora e Aandy € AT,

We letzy = po(z) € (AxN, ). Forinstancegbay = (a, 1)(b, 2)(a, 3). Abusing notation, we sometimes denote
the pair(a,i) € A x N4 by a; when this will not cause any confusion. Thus, we will alsotewibay = a1b2as.
Finally, we denote byr4 andmy the projections fronfA x N)* to A* andN*, respectively (heré\* means the
set of finite sequences of integers,, the free monoid ovel). If B C A, we denote byrp the projection from
(A x N)* to B* which acts asr4 on B x N and erases letters & \ A x N. Finally, we letcg = co 7 and
CN = CO TIN.

Consider two symbolsand| not belonging tod and letA;; = Aw {], [}. A well-parenthesizedord overA
is a word which does not conta|n as a factor and which can be reduced to the empty wdrg the rewriting
rules[] — e anda — ¢ fora € A. In other terms, the language of well-parenthesized woves 4 is generated
by the (non-ambiguous) context-free grammae [S]S | [S] | aS | a (a € A). We say thatr € (A[; x N)*
is well parenthesized if so i54,, (). We denote byDyck(A) (resp. byDyck(A x N.)) the language of well-
parenthesized words ovel; (resp. overd[; x Ny).

We define inductively theail t;(z) from positioni € N of a well-parenthesized word Let (z,y) € Dyck(A x
N, ) x Dyck(A4 x N4 )t andi > 0. Then we set

ti(e) =¢
ti(zy) = ti(y) fori ¢ en(x)
ti(aiy) =y forac A,i e N
ti([ihy) = [izhy
ti([kzliy) = ti(@) [k 2liy if k # i andi € ey(x)
ti([kziy) =y if k # i andi ¢ cy(x).

The case = 0 is special, we sety(x) = z. Observe that we do not restrict this definition to words irichha
position, likez, occurs at most once in the word. Thatisfor instance, may contain several letters of the form
(a, 1) for the same.

We define as well therefix up to lettera € A, p,(z), of a well-parenthesized word by setting, fory €
Dyck(A x Ny):

pa(e) =¢
Pa(2y) = zpa(y) ifacalz)
Palaiy) =€ fora e A,ie Ny
Pa([k2]1y) = pa() if a €ca(z).

The inductive definition immediately yields the followintement.

Fact5.1. Letz € Dyck(A x N4 )!, leta € A4, and leti > 0. Then
(a) ti(x) € Dyck(A x N4
(b) pa(z) € Dyck((A\ {a}) x Ny)'.
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For a well-parenthesized worde Dyck(A x N), a lettera € A, and an integet > 0, we let

(25) (i, a) = pa(ti(2)).

For the description of the algorithm, we representerms by well-parenthesized words by replacingowers
by pairs of brackets. To eaclttermw € Q4S, we associateord(w) € Dyck(A). Conversely, we associate to
x € Dyck(A) anw-termom(x) such thabm(word(w)) = w. Formally, letu,v € Q4S, z,y € Dyck(A4) and

a € Aand put:

word(a) = a om(a) =a
word(u - v) = word(u) word(v) om(zy) = om(x) om(y)
word(u) = [word(u)] om([z]) = (o0 m< ).
It will be convenientto use an end markgr¢ Apy. We letAy, = Aw{#}, A = AW {#}, and for ano-term

w on A, we define
w = (word(w#))n € Dyck(Ax x N4 ).

For instanceq(ab)<c = a1 [2a3basce#7 andma  (a(ab)<c) = alab]c. Finally, let
n=omoma, : Dyck(Ag x N;) — QRS.
From the very definitions, we have:

Fact 5.2. Let w be anw-term, andz, y € Dyck(A x N ). Then we have

(a) n(@) = w.
() nlxy) = n(z)n(y).
(¢) n(lkzle) = (n(x))“. 0

For anw-termw, we let
w(i,a) = n(w(,a)).
Note that by definitiomu (i, a) is anw-term anda ¢ c(w(i, a)).

A markerof a well-parenthesized word € Dyck(A x N, ) is a lettera; € c(x) with a ¢ {],[} such that
has a factorization = ya;z, with a ¢ ca(y), and whergy andz are (not necessarily well parenthesized) words
over (A x Np)*. Forinstancer; andb, are markers ofi; [4b2]2a3a; butas is not. Note that there arfe ()|
markers inx and that the first occurrence of a markegiin x uniquely determines the factorizatian= ya;z. The
principal markerof z is the unique market; of = such that this factorization satisfies(z) = ca(ya;).

5.2. The R-graph associated to anv-term. In this subsection we define tiRegraph§(w) of anw-termw. We
first need several technical but easy lemmas.

Lemma 5.3. Letz € Dyck(A x Ny ), and leta,b € A. Then,

b € ca(pa(x)) = pPo(Pa(x)) = po(z).

Proof. Assume thab € c4(p.(z)). Thena # b by Fac{&l (2). Proceed by induction pt:

— if |z| = 1, then the hypothesise c4(p,(z)) cannot hold.

— If x = yz with y € Dyck(A x N;) anda,b ¢ ca(y), then we geby(pa(z)) = v - po(pa(2)) andpy(z) =
Y- pu(2). Sinceb € ca(pa(x)) \ ca(y) = ca(y) Uca(pa(z)) \ ca(y) C ca(pa(z)), the result follows from the
induction hypothesis applied to

— If & = a;27, thenp, (x) = &, which contradictd € c(pa(2)).

If 2 = b;x’, thenpy(py(2)) = pu(z) = €.

Finally, assume that = [;y];z with y € Dyck(A x N1), anda € ca(y) orb € ca(y).

o If a € ca(y), thenpy(z) = pa(y), henceb € ca(pa(y)). By induction,py(pa(y)) = ps(y). Moreover,
) =

b € ca(pa(y)), SO in particulab € ca(y). Thereforep,(z) = py(y). Hence,py(pa(x Po(Pa(y)) =
Po(y) = po().

olfa ¢ caly)andd € ca(y), thenp,(z) = [kylipa(2), andps(z) = py(y). Hence,py(pa(z)) =
Po([kylipa(2)) = Pu(y) = po(z). U

Lemma5.4. Letx € Dyck(A x Ny ). If &k € en(pa(x)), thena € ca(tx(x)).
Proof. If z is a letter, the result is obvious. Otherwise we proceed biydtion and distinguish the following
cases.

—x = yz, |yl,|2| > 1, anda € ca(y). In this casep,(z) = pa(y), SOk € en(pa(y)). Sincely| < |z, the
induction hypothesis applies tpsoa € ca(tx(y)). Sincex = yz andk € ex(y), tr(x) = tk(y)z, we get
a € ca(ty(z)).
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— Ifx=yzly|,|z| > 1,anda € ca(z) \ ca(y). Inthis casep,(x) = ypa(z). If k& € en(y), thenty(z) = ti(y)z,
anda € ca(z) C ca(tu(y)z) = ca(ty(z)). Assume on the contrary that¢ cy(y). Sincek € en(po(z)) =
en(ypa(2)), we getk € en(pa(z)). The induction hypothesis applied tgyieldsa € c4(tx(2)) = ca(tx(z)).

—x = [y];- We havek € cn(pa(x)) = en(pa(y)). Sincely| < |z|, the induction hypothesis yields €
ca(tr(y)). Now, ti(z) = ti(y)z, hencer € c4(ti(z)). O

Lemma 5.5. Letx € Dyck(A x Ny ) and letk € ey(pq(z)). Then we have
tr(Pa(2)) = pa(tr(z)).

Proof. We proceed by induction gn:|. Again, we observe that the result holds:ifs a letter, and we distinguish
the following cases.

—z = yz, a € ca(y). We then havep,(x) = pa(y), SOtr(pa(z)) = tk(pa(y)). On the other handi <
en(pa(2)) = en(pa(y)) by hypothesis. Applying the induction hypothesigtave getty (p.(y)) = pa(tr(y)).
Finally, by Lemmd5la € ca(tr(y)) sincek € en(pa(z)) = en(pa(y)). This justifies the last equality in
Pa(ti(®)) = pa(te(y2)) = pa(te(y)2) = pa(te(y)). Hencety(pa(z)) = pa(ti(z)).

—x =yz,a € ca(z) \ ca(y). Inthis casep,(z) = ypa(2). If k € en(y), thenty(pa(z)) = te(y)pa(z) and
Pa(tk (7)) = Pa(tr(y)2) = te(y)Pa(z).

If on the contraryk € cn(pa(2)) \ en(y), thena € ca(ti(z)) by LemmdShts (po(z)) = ti(ypa(z)) =
tk(pa( )), andp, (tr(2)) = pa(tr(z)). The induction hypothesis applied t@ives the result.

—x = [iyl;, a € caly). Here,k € en(pa(z)) = en(pa(y)). By induction hypothesis, we hawg(p,(y))
pa(tk( )). Moreover,a € ca(tx(y)) by Lemmalml. Thereforey (po(z)) = tk(pa(y)) = paltr(y))
pa(tx(1)[i9]) = Palti(2)).

We can apply Lemmi@a3.5 to a word of the fofm

o

Corollary 5.6. Letw be anw-term and letk € cy(p.(w)). Then we have

t1(Pa(W)) = pa(tx(@)).

Lemma 5.7. Letz € Dyck(A) and letk € en(t;(zn)). Thenty(t;(zn)) = tr(an).

Proof. We proceed by induction o|. If z € AT, then the result is trivial.

— If zy = yz, with y, z € Dyck(A x N, ), theni (resp.k) cannot be in botlax(y) andey(z). Assume that the
statement is true foy andz.

o If i € en(2), thenk € en(ti(2n)) = en(ti(2)) and by induction hypothesisy (t;(zn)) = tx(ti(2)) =
tk(z) = tk(:L'N).

o If i,k € en(y) thent;(xn) = t;(y)z, and sincek ¢ cn(z), we havek € ex(t;(y)). By induction hypothesis
t(ti(y) = tely). Hencety(ti(z)) = te(ti(y2) = t(tiy)2) = t(t)z = t(y)z = tulyz) =
tk(:L'N).

o If i € en(y) andk € cn(z), we havet; (zy) = t;(y)z, andty (t;(xn)) = te(ti(v)2) = te(z) = tr(an).

— If ay = [1y]n, then ifi = 1, we havet;(zy) = zy and soty(t;(xy)) = ti(zy). Otherwise, we have
by definitiont;(xy) = t;(y)zy and sotg(t;(xyn)) = ti(ti(y)xy). Therefore, using the definitions and the
induction hypothesis,

o If ke cN(ti(y)), thentk(ti(mN)) =t (tl(y))acN = 1% (y)acN = tk(l‘N);

o if k Q_f CN(ti(y)), thentk(ti(zN)) = tk(:L'N). [l

Lemma 5.8. Letw be anw-term, leti > 0 anda € A. Assume thaly, is a marker ofw(i, a). Then

(@) py(W(i,a)) =w(i,b);

(b) tr(w(i,a)) =w(k,a).

Proof. [(a)] Letz = w(i,#), so that, by[26)15(i, a) = pa(z) andw(i,b) = py(x). Sinceby is a marker of
w(i,a),b € ca(pq(x)). By LemmdaB, we have, (p.(z)) = ps(z), thatisp,(w(i, a)) = w(i, b).

[@j]Sinceb;c € c(w(i,a)), b # a. We proceed by induction on the constructiomaf Also, b, is the only
letter of ¢y (k) in w. Hence ifw € A*, both sides ofb)] are the factor ofo starting aftetb;, and ending before
the next letter of: ;" (a). We have to show, (p, (t:(W))) = pa(tx(w)). Sincew(i, a) contains at least one letter,
i € en(pa(w)) and in view of Corollarf516, this is equivalenttp(t; (p,(@W))) = tk(pa (W)). Now, p,(w) is well
parenthesized by F4CH.1 (2), hence the result follows ftemmdLY. O

Any word z of the formw (i, a) satisfies the following condition:
(H(x)) Vb, b € A, VjieNp, (b,b €clz)=b=1V).

Jr7
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Indeed, we have(w(i, a)) C c(w), and foreach < j < [w|, there is exactly one letter af belonging toey, ' ().

Let ¥ be a set ofu-term identities. Recall that an identity = v is aconsequencef X if it belongs to the
fully invariant congruence on the algebra of alterms generated by. This congruence may be described as the
equivalence relation generated by all pairs of the f¢smit, s t), wheres, t arew-terms and = r is obtained
from an identity ofY by substituting the variables andy by appropriatevs-terms. We also say that deduces
u = v and we writeX - v = v. The next two statements derive some consequencigs of +~1}.

Lemma 5.9. Letz € Dyck(A x N..) satisfying(H () and suppose that; is a marker ofz. Then
(26) {t* =t ' Fp(z) = n(pa(2) - a; - ti(x)).

Proof. We proceed by induction ojx|. If |z| = 1, thenz = a;, n(z) = a, pa(z) = € = t;(x), hencel[2B) holds.

Otherwise,x = ya;z with ca(y) C ca(x) \ {a}. If y is well parenthesized, then so4s By definition of
y, a ¢ ca(y) so in this case,(z) = y. Furthermore, assume that cx(y). In this case, there is some letter
b; € c(y). By we would haver = b, in contradiction witha ¢ c4(y). Hencet;(z) = z. Therefore,[26)
can be written{t* = t“*1} I 5(z) = n(ya;z), which holds trivially.

Assume now thay is not well parenthesized. One can write= y"[;y’ andz = 2'];z” such that”, 2" €
Dyck(A x N3 )! andy’a;z’ € Dyck(A x Ny). Letw = y'a;2’. We havgw| < |z| — 2. Sincew is a factor ofz,
H(w) holds. Hence, we can apply the induction hypothesis.t®@incea; is a marker ofr, we havea ¢ c4(y)
hencen ¢ c4(y'). Henceua; is a marker ofw = y’a;2’, and by induction hypothesis

(27) {t* =t} Ep(w) = n(pa(w) - a; - ti(w)).
Sincey” is well parenthesized ande c4(w), a ¢ ca(y”), we also have

(28) Pa(l’) = pa(y”[kw]lzu) = yll ) pa(w)'
In the same way, using¢ cy(y) andi € cy(w)
(29) ti(2) = ti(y" [sw]iz") = ti(w)[pw]iz".

We now deduce the following sequencewsfdentities from{t~ = t~+1}:
{t* =t} F () = 0y [ew)i2”)

=n(y") - n(w)* - n(=") asy”, 2" € Dyck(4 x Ny)'
=n(y") - n(w) - n(w)* -n(z") usingt” = ¢+

=n(y") - n(pa(w) - a; - ti(w)) - n(w)” - n(z") by @)

=n(y") - n(pa(w)) - a-n(ti(w)) - n(w)“n(z") by FactdBll and5.2
=n(y"pa(w)) - a-n(ti(w)[xw)z") idem

= 1(pa(x)) - a - n(ti(v)) by (28) and[[2P)

= 1(pa(2) - ai - ti()). O

When applying Lemm@a®H.9 to words of the fom{:, a), we obtain the following formulation.

Corollary 5.10. Letw be anw-term. Then for every € cy(w) and everyu € ca(w), we have{tw = t*T1}

w(i,a) = w(i,b) - b-w(k,a) whereby is an arbitrary marker ofw(i, a).

Proof. Letz = w(i,a). Then we know by Lemmiad.8 thpi(z) = w(7, b) andty(z) = w(k, a). We thus have

to show that{t~ = t“+1} F n(x) = n(pp(x)) - b- n(te(x)), that is{t* = t“*1} = n(z) = nlpy(z) - by - tr()).

Since anyz of the formw (i, a) satisfies[I (z)), the result follows directly from Lemn{a3.9. O
The next variation is the basis to build up RegraphS(w).

Corollary 5.11. Letw be anw-term. Leti € Nanda € A. Letb, be the principal marker ai (i, a). Then, the
left basic factorization ofv (i, a) is (w(i, ), b, w(k, a)).

Proof. Letz = w(i,a), so thatr = ybyz, with c4(y) = ca(z) \ {b}. Since [A{z)) holds, by Lemm&X%I9 the
equatiom(z) = n(py(x)- by -tx(x)) is a consequence §f~ = t“+1}, henceitis valid irR. Sinceb ¢ ca(py(z)),
this proves thatn(py(x)), b, n(tx(x))) is the left basic factorization of(z) = w(¢, a). It remains to show that
(@) R=n(ps(w(i,a))) = w(i,b);

() REntr@(ia)) = wk,a).

Now, both properties follow from Lemnia’.8. O

In particular, we re-obtain, with the above alternativegirdhat there is a finite number of relative/absolute
tails for anw-term overR (which is part of Theorerfi4.4):
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Corollary 5.12. Letw € Q4R. Then

(a) each absolute tail of is of the formw(i, #);
(b) each relative tail ofw is of the formw(i, a), wherea € Ax.

In particular, there are at mogtw||c(w)| different tails.

Corollary[5T11 now makes it possible to construct the fiRitgraphS(w) = (V (w), E(w)) of w as follows.

— There is one staig(i, a) for each(i, a) € [0, |word(w)|] x (AU {#}). TheR-subautomaton fror(w) rooted

at stateq (i, a) will be anR-automaton of the-termw(i, a).

— The root of§(w) is q(0, #). In the sequel, we will not consider states which cannot belred from the root.
— Edges of§(w) are labeled by or 1: E(w) C V(w) x {0,1} x V(w). Letq(i, a) be a state ofj(w) and let

(u, m, v) be the left basic factorization af(i, a). Letb; be the principal marker afi(i, a). By Corollary{5.11,

uis equal tow(z, b) overR, andv is equal tow(j, a) overR. The two outgoing edges froq(i, a) areq(i, a) 5

q(i,b) andq(i, a) = q(j, a).

— Finally, the labeling of states is defined b (i, a)) = b, where the principal marker af(i, ) is of the form

b, or A(q(4,a)) = € if w(i, a) is empty.

The R-graph ofw = (ab“a)* is pictured in Figurd]3. We haweord(w) = [1a2[3b4]5a6]7. The principal
marker ofw(0, #) is b4, S0 the left son of the root correspondsit0, b) and its right child tay(4, #). Inside each
state, we have indicated, in addition to the labeling{byb, <}, the pair(i, a) corresponding to the-term that
the state represents. For instance, the root, labielegpresents (0, #).

FIGURE 3. TheR-graph of the pseudowor@b“ a)*

Using Corollany[5.11, we obtain:

Proposition 5.13. For everyw-termw, S(w) is an R-automaton and is equivalent t(w). Moreover,§(w) is
finite, of sizeD(|c(w)||w]).

In Figure[3, note that two pairs of states can be identifiedesin(0,b) = w(6,b) andw(0, #) = w(6, #).
Merging the states in both pairs produces exactly the wrdgsautomaton (which was shown on Figliie 2).

One equivalent way to determine which states have to be mésge push the labels of states, which are the
markers, on edges. We get a graph that we consider as a (ast@tator’ (w) on the alphabefo, 1} x A: the

state set off’(w) is the set of states §(w), the initial state o’ (w) is the root of§(w), and the transitions are

defined as follows. 19, is the marker ofw(, a), then we have two transitions frogii, a): q(i, a) 105, q(i,b)

andq(i, a) LN q(k,a). If q(i,a) is labeled by, then there is no outgoing transition from that state.

For instance, the automat&h((ab*a)“) is shown on FigurEl4.

By its definition, the wrappe&-automatonA(w) of w is obtained fromG(w) ~ T(w) by identifying states
from which one can read the same languages of labeled paththe®ther hand, the minimal automatdf(w)
of §'(w) is obtained fromS’(w) by identifying states from which the same language can bé. rézom that
observation, obtainingl(w) from A’(w) is again just a matter of transferring letters appearinghassecond
component of transitions i’ (w) back to states.

Proposition 5.14. The wrapped-automatomi (w) of w is obtained from the minimal automateii(w) of §' (w)

as follows:

— A(w) andA’(w) only differ by the labeling of the transitions (and the fdwtthe states ofl(w) are labeled).
That is, the state set of’ (w) is (in bijection with) the set of states of tReautomatonA(w), its initial state is
the root ofA(w), its final states are those labeled byn A(w);
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FIGURE 4. TheR-graph, viewed as an automatonfin 1} x A, for (ab¥a)®

— transitions ofA’(w) are obtained as follows from transitions df(w): for each transitionv = w of A(w),
(a,A(v)) . /
——= win A'(w).

It is obvious that one can obtafii(w) from G(w) andA(w) back fromA’(w) in linear time. Therefore, in
order to solve the)-word problem oveR in linear time, it remains:

— to compute§(w) in linear time. This is the purpose of Subsecfiod 5.3;

— to show tha§’(w) can be minimized in linear time. The reason why it works ieddy easily is that automata
§'(w) have a special form. For instance, we deduce from RearktBat3ll loops are labeled by letters of
the form(1,a). The linear-time minimization procedure is the topic|df,[@8hd has been sketched Iin [8]. For
the sake of completeness, we recall briefly the algorithmuibsgctiof 5H.

with « € {0, 1}, there is a transitiorv

5.3. Efficient computation of R-graphs. Computing theR-graph of anw-term w amounts to computing, for
each pair(i, a) the principal markeb;, of w(i, a). By definition of G(w), we know from Corollarf 5711 that the
two edges labeled by 0 and 1 fraq(, a) lead toq(i, b) andq(k, a), respectively. In this subsection, we assume
w is given and show that one can compute this information i tin|w| - |c(w)]).

The complication comes from nesting©fpowers. For instance, let = (ae(ba(cach)“dab))“e andi = 9
(the position of the third). Then, the principal marker af (i, #) is the first occurrence of, since

w(i, #) = cb(cach)® (ba(cach)”dab)® (ae(ba(cach)®”dab)*)e.

Since from a tree representation®f one can computeord(w) in time O(Jw|), we can assume that the
term is readily given byord(w). We assume that letters abrd(w) are stored in a random access array of size
|word(w)|. Thei™ cell of this array stores amif and only if thei™ letter ofword (w) is a;.

We assume that letters of are integers. Even ifi is not known, one can rename all letters other than the
brackets with names ifil, 2, ..., |c(w)|} in time O(|word(w)]| - log |c(w)]) = O(|w| - log|c(w)]), scanning the
word once. The factad (log |¢(w)|) comes from the fact that we must determine for each scanttedvehether it
has already been given a new name or not. So we assume thabwe(kn) and that we can allocatéw)-indexed
arrays.

We define forz € (A, x N)* the sequencérst(z) € (A x N)* of first occurrences of letters in. Let
x = yarz With c4(y) U {a} = ca(x) anda ¢ ca(y). Then first(x) = first(y)ax. E.Q. first(a1[2a3ba]sce#7) =
aybsce. Using Algorithm[d, one can compuftest(xz(i, #)) for every positioni > 0 carrying a letter fromA (in
fact, fromA U {[}) in O(|w||c(w)])-time.

We do not give a formal proof of the algorithm, which would ywtedious. Instead, we explain in detail how
it works. This should convince the reader of its correctness

We use a standard pseudocode syntax. The argurathe procedure is assumed to be of the fovand (w).
Note that we do not compuftést(x(0, #)), but it is easy to compute afterward @(|w||c(w)|)-time. We did
not declare some variables, namely, &, ¢, r owandl i ne. The variable ow denotes a list of positions in the
interval [1, |z|], and the variablé i ne denotes a list of pairs of the forfi,a) € [1,|z|] x A. The relevant
variables are the following:

— ¢ (undeclared) represents the current position,

— Sis a stack storing the pending opening brackets.

— wai t is an|Al-indexed array, andai t ( a) represents previous positiogigless than the current value 9f
for which we did not find the first occurrence of lettein =(j, #) yet. Such a positiop is still “waiting” for
ana.
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Algorithm 1 Computedirst(z(i, #)) for all ¢ > 0 carrying a letter ofd

procedure Table first(a: Word)

| ocal S: St ack

local wait: Array [1..|A] of lists of positions
local res: Array [1..|x|]] of lists of pairs (i,a)

1: for i—1to |z| do

2 if z[i ="[" then

3: push(S, 1)

4: for all a€ A do

5: prepend(wait[a], ) >[;1s "waiting" for 'd
6: end for

7. else if z[i ="]" then

8: mat chi ngOpen «— pop(S)

9: for all a€ A do

10: if wait[a] #Ni| and first(wait[a]) = matchi ngOpen then
11: renoveFirst(wait[a])

12: end if

13: end for

14: line — res[ mat chi ngOpen]

15: for k—1to |line| do

16: row «— wait[letter(line[k])]

17: wait[letter(line[k])] «— Nl

18: for £—1to |row do

19: append(res[row /] ], line[k])

20: end for

21 end for

22: el se > W read a letter fromA
23: row «— wait[ z[d]] > positions waiting for x[i]
24: for j—1to |row do

25: append (res[row j]], (¢ z[4]))

26: end for

27: wait[z[i]] « Nl

28: for all a€ A do

29: append (wait[a], 1)

30: end for

31 end if

32: end for
end procedure

— res is the result we should return at the end of the function. #irisarray indexed by the positionsoffrom
1 (first letter) to|x|. At the end of the algorithnt,es[ j] contains the list of letters dfrst(z(j, #)). Lettera;
is represented by the pdir, a).
The functionl et t er, used at lines 16 and 17, extracts from a fgair) the lettera. We also used auxiliary
functions on stackspush, pop) or lists, likeappend, pr epend, orfi rst, renoveFi r st, and|.| (for the
length), whose names are self-explanatory. We denotd bythe empty list.

The algorithm scans from left to right. Depending on the current letter, it digjuishes 3 cases:

— If the current letter is an opening bracket, the algoritlemembers it by pushing it on the staSKline 3). It
puts further at the beginning of each lishi t [ a] the position of that opening bracket, to indicate that this
position is now “waiting” for aru (lines 4-6).

— If the current letter belongs td (lines 23-30), it recovers imai t the positions which were waiting for the
current letterz[ ] , and appends the current letter with its positigi[ ¢] ), to all those waiting positions in
the resultr es. It then resetsvai t [ [ 7] ] to the empty list (line 27). Finally, it appends the curreasition
1 to all listswai t [ a] , since positiort, which we have just treated, now waits for all letters to bibeoted in

first(a(i, #)).
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— Finally, assume that the current letter is a closing brackeée first recover the matching opening bracket by
popping it off the staclS (line 8), and removing it from all listsvai t [ a] (lines 9-13). Due to the fact that
letters of A are appended to these lists (lines 28—-30) while openindkbta@re prepended to it (line 5), we
know that if the matching opening bracket occurs in aist t [ a] , it must in fact be the first element. This is
why we can use a®(1) callr emoveFi r st , which removes the first element of the list.

In the case of a closing bracket, it remains to treat the uyiderw-power. We have to take into account
that a position inside aw-power can view, as a first occurrence, a letter which presédi@ z, due to the
w-power. For instance, it = [1a2bs]4, then the firsta seen by position 3 ia;. We recover this infor-
mation when closing a bracket, helge In the example, the first seen inz(3,#) is also the firsta in
z(1,#). This is general: if a positiod inside thew-power still waits for lettera, the appropriate: is pre-
cisely that offirst(z(matchingOpen, #)), if it exists. Hence, to extend the sequence of first occuesrof
letters seen from a positiohinside thew-power, one just needs to add, in order, all letters alreauhearing
in first(x(matchingOpen, #)) but not yet appearing ifirst(z(¢, #)). After this operation, one also needs to
resetwai t [ a] toNi |, for all a occurring infirst(x(matchingOpen, #)). This is exactly what the algorithm
does at lines 14-21.

For instance withe = [1a2b3]4, One checks that, when readihg positions 2 and 3 are still waiting far,
and position 3 is waiting for & The wordfirst(xz(1, #)) seen from the matching opening bracket computed
when scanningy is a2bs. Therefore, we first add, to positions still waiting for am, that is, 2 and 3: we add
as (named(2, a) in the algorithm) tar es[ 2] andr es[ 3] . Then we resetai t [ a] toNi | . Finally we add
bs to positions waiting for & similarly and resetvai t [ 5] toNi | .

The algorithm is easily seen to run@(|w||c(w)|). Therefore:

Lemma5.15. Letw € Q4R. Algorithmd computes in tim@(|w||c(w)|) a table giving, for each such that there
existsa; € ¢(w) N A x N, the wordfirst(w (i, #)).

The O(|w]||c(w)|) precomputation of Lemma5ll5 yields &aK1) algorithm for computing both% and 5
edges from a state df (w). Indeed, from the wordirst(w(i,#)), one can immediately deduce the word
first(w(i, a)), which is the largest prefix dfrst(w(i, #)) not containing:. Then, if the last letter ofirst(w(, a))
is bx, then,by is the principal marker ofirst(w(i, a)) and we have ir§(w) edgesy(i, a) RN q(i,b) andq(, a) 4
q(k,a). Since the size of(w) is in O(|w|), we obtain the following theorem.

Theorem 5.16. One can construc§(w) in time O(|w| |c(w)]).

5.4. Wrapping and minimization. The purpose of this subsection is to describe an efficiewtrhgn to wrap a
finite R-automaton. As explained in Subsecfiod 5.2, giveRautomatori, one can construct a finite automaton
recognizingl(A) by simply adding as a first component of any edge label thd lafles origin. By definition

of the wrapping,A is wrapped if and only if this automaton is minimal. Convéysene can transform the
minimal automaton oL C ({0,1} x A)* into a wrapped state-labeled automaton whose associatgddge
is L by removing the first component from every edge label andliiladpe¢he origin state with it. Through this
straightforward translation, finding the wrapping#fis equivalent to minimizing its associated automaton.

The standard algorithms to minimize a deterministic autmmasuch as Hopcroft's ong15] have time com-
plexity O(mnlogn), wherem = |A| andn is the number of states. (Seie[17] 10] for recent presentwtod
complexity analyses.) For deterministic acyclic automBevuz [19] has described an algorithm working in time
O(m + d), whered is the number of transitions. It was originally designed aanpress dictionaries. A finitB-
automatorA is acyclic if and only if thev-term it describes does not involve tlsepower, in which case Revuz's
algorithm would directly apply to produce the desired wriagp

An important property of our automata is that their strongbyinected components are cycles, that is, any two
distinct loops are disjoint. The reason is again that anp isdabeled only by letters of the forff, «) and that
from any state, there is at most one such transition. It isvstio [9] how to minimize inO(m + d)-time automata
whose strongly connected components are cycles. For thefréss presentation, we explain the algorithm on
R-automata.

Compared with the acyclic case, there is an additional diffic in the acyclic version, a height function
measuring the longest path starting from each state is ctadpa the beginning of the algorithm. The situation is
then simple, in that the minimization can only identify sehaving the same height. If we do have cycles, such
paths can be infinite. However, since all cycles are disjouet can, after a preprocessing phase, treat separately
the states belonging to cycles and the other states. A hatnadog of Revuz’'s height function is obtained by
letting edges in cycles have weight zero.
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The algorithm involves a loop. At each iteration, the firsbgerssing stage rolls paths coming to a cycle if this
does not change the language. Consider for example a udoahaton with a single initial state,, one simple
path fromqq to q; labeledv and one cycle aroungl labeledu, as pictured in FigurEl5. i = v/u” with » > 0
andu’ a suffix ofu, then we do not change the language by rolling the simple @athnd the cycle, that is, by
only retaining the cycle and choosing as the new initiakstiaé unique statg, of the cycle such that, - v = q.

@y y y

(Before merging) (After merging)

FIGURE 5. Merging a path ending in a cycle

Because of this phenomenon, one cannot compute once foheight function which would assign weight 0
to edges of cycles and 1 to other edges: an edge which is notynle in the originaR-automaton could well
be rolled and its weight change from 1 to 0. This is the reashy @ur height (calledevelin the sequel) is not
precomputed. Rather, we compute on the fly the next sliceatdstve need to treat. In other words, since rolling
paths around cycles may change the level of states thatdieeahem, we have to recompute this level. We do
this only locally: we just update correctly levels of statesare about to treat, to remain linear.

The second step in the iteration of the main loop of the algoriis to minimize cycles one by one. The
important point here is that cycles can be represented bguler) words which take into account the labels (of
the states, if we work witliR-automata) and the fact that a state is final or not. Miningizrcycle is then exactly
finding the primitive root of this word, which can be perfordhim linear time with classical pattern-matching
algorithms.

The third and last step is to identify, at the current leviélequal cycles and all states not belonging to a cycle.
This can be done in linear time (with respect to the size afyatles and isolates states to be treated) using bucket
sort, exactly as in Revuz’s algorithm. Here is a more dedasleetch of the algorithm:

(a) Given a finiteR-automatonA, compute its strongly connected components with Tarjdg'srahm [22,[13,
10].

(b) Compute an initialevelfunction that measures, for each state, the maximum wefghpath to the terminal
state, assigning weigltto edges in cycles and weighto all other edges. This can be done efficiently by
a simple traversal of the graph that is further used to asaigwel value to each edge that is not in a cycle,
a value which is initialized to the level of the end state gluBoth these level functions will be updated in
the main loop of the algorithm as a result of rolling pathshwatl edges labeled around cycles to which
they lead. The level of edges serves as a mechanism to ptepaghigher levels changes coming from
identifications done at lower levels.

(¢) From this point on, we construct successive equivalenegiosls on sets of states which are approximations
to the congruence oA whose quotient determines the minimizegutomaton. We do so level by level, at
each stage suitably joining elements into equivalenceetasThe first step consists in putting the final state
into its own class.

(d) Thisis the main cycle in the algorithm. Proceed by increg#éneln > 1, as in the following loop. At the
end of leveln, all states processed in it will have level-valuand they will all be assigned to an equivalence
class, which remains unaltered at higher levels.

For each nonterminal state denote by0,, 1, the edges starting from labeled0, 1, respectively. If
level(0,) < n, thenlet{(v) denote the pair consisting of labg(v) of the stater and the clasf/0] containing
the state at the end of the edge

(i)  Call subroutind_evel(n) which returns the list' of states whose current level-valuenis

(1¢)  For each state i which lies in a cycle, put it in its own singleton class.

(7i1) Roll 1-labeled paths leading to cycles $haround the corresponding cycles by testing for each suc-
cessive state which is not in the cycle whethel(v) is defined and whether it coincides wiflw),
wherew is the unique state in the cycle such that for all sufficiefettgek, vi* = w1*. In the nega-
tive case, do not proceed with the test for statesich thaty € ul*. In the affirmative case, addto
the class ofv, as a result of which the edde becomes a cycle-edge and thus no longer contributes
to the level function; this leads us to redueesl(v) to n andlevel(e) ton + 1 for every edge: which
ends at state.

(iv)  Since the previous step may change the level functions rlogé leveln states that were previously
considered at higher levels, we call subroutireel(n) again. This will return an updated value f6r

27



which contains the previous value since the previous stéyp affects the level-values of states at
higher levels.

(v)  Foreach cycle” in S, do the following steps which suitably merge all equivakentasses of states
in the cycle according to their identification in the minimdR-automaton:

— compute the (circular) wortl’- whose letters are the successjye ) with w in C;

— compute the primitive rodi’/, of W¢; this can be done by computing the shortest bordefr 17
(i.e., the shortest nonempty word which is both a prefix and a suffi¥’e), such that,~ W is
also a border; that this computation can be performed iralitiene in terms of the length d¢
follows from the fact that the list of all borders can be congalwithin this time-complexity [14];

— compute the minimal conjugai& of W/,; this can be done in linear time in terms of the length
W, [12,[23];

— merge classes of states@haccording to the periodic repetition & in We.

(vi) To merge classes of states in different cyalesf S, start by lexicographically sorting the wor#z:
using bucket sor{113]. This determines in particular whigisles have the same worifs= V- and
their classes associated with corresponding positionsdme merged.

(vii) To merge the remaining statesn S into classes, start by lexicographically sorting (usinguaket
sort) their associated tripl€a(v), [v1], [v2]), wherevy, vo denote the ends of the eddks1,, respec-
tively. As in the previous step, this determines in paréewlhich states have the same associated
triples, and those that do are merged into the same class.

(viii) Increment: by 1 and proceed until a subroutine call returns the empty list.

To complete the description of the algorithm, it remaingidi¢ate what the subroutinevel(n) does. It starts by
updating the level-value of the beginning statef each edge such thatevel(e) = n according to the formula

max{level(e), level(f)} if eis notinacycle ande, f} = {0,,1,}

level(v) = :

max, level(z) otherwise
where the second maximum runs over all edgesth label0 which start in the cycle that contaimrsThen return
all states for which the new level-valueris
Theorem 5.17. The above algorithm minimizes a giverautomaton withs states in timeO(s).

Since theR-graph§(w) of anw-termw can be computed in linear time (TheorEm%.16) and computiag t
wrappedR-automaton just involves this minimization procedure, \agénishown our main result.

Theorem 5.18. The word problem fow-terms overR can be solved in timé&(mn), wherem is the number of
letters involved and is the maximum of the lengths of theterms to be tested.

6. THE EQUATIONAL THEORY OF THEw-VARIETY GENERATED BY R

LetR“ be thew-variety generated blg, that is, the Birkhoff variety generated by alsemigroupss, _-_, _“),

where(S, _- _) is a finiteR-trivial semigroup. By Birkhoff’s theorenR* is defined by a set af-identities. Let
¥ be the following set ofs-identities.

(30) (zy)* = (zy)“z = (zy)*z" = z(yz)*
(31) (2) (x¥)” =2,
(32) (2")¥ = a*, r>2.

This section is devoted to the proof of the following theorem

Theorem 6.1. (a) The sef is a basis forR.
(b) Thew-varietyR has no finite basis of identities.

The rest of this section is devoted to the proof of Thedrem Askumind(a)] we will first prove[(b)] which is
easier. First note that one can deduce aperiodicity ffom

Fact 6.2. By @0) and[(3R), one obtains - 2 = (z2)* = (zvx)%x = 2“1
Combining Corollanf5.710, fa€fd.2 we obtain the followirtgtement.

Corollary 6.3. Letw be anw-term, leti € ¢y(W), a € ca(w) and letb, be a marker ofw(i, ). Then
YFw(i,a) =w(i,b) b wlk,a). O
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Proof of Theorem[6.1 par assuming par By equational completeness, to prove tRétis not finitely
based it suffices to show that no finite subset afefines the varietR®. For this purpose, consider the semigroups
presented by

Sp = (a,e, f:al =1, eca=cf=e>=e, fa=fe=f>=1,
ae=e, af = f)
wherep is a positive integer. This semigroup is realized for ins&as the semigroup of transformations of the
set{1,...,p,p+ 1,p + 2}, wherea acts on{1, ..., p} as the cyclél, ..., p) and fixes the other two points, and

e and f are constant maps, respectively with valpes 1 andp + 2. In particular,S, hasp + 2 elements. O1f,,
we define a unary operatianby taking

(e) =e, 7(f) = f, 7(1) = e, 7(a") = f (k € Z\ pL),
which determines a unary semigro8ip = (S,,-, 7). Note thatr(a?) = 7(1) = e # f = 7(a) and soS,, fails
the identity(z?)“ = 2. Itis pure routine to verify tha8, satisfies the identities ifi.{BOL{31), aridl(32) for
relatively prime withp, which completes the proof of statem O
The proof of Theore will involve several technical lemmas establishing a nundfdormal conse-
quences of the sét of identities introduced in Sectidih 6. The first result is mprovement of Lemm@a33.3 for the
case ofu-terms but neither result seems to directly imply the other.

Lemma 6.4. Letu, v bew-terms such that(v) C ¢(u). ThenX - u¥v = u®.

Proof. We start by considering the case in whielis a variabler € ¢(u). If there is a factorization of the form
u = v'zu” (whereuw’ andu” may be empty), thel - v* = (v'zu”)* = v/ (zu” v ) = /' (zu"v)¥x = u“a.
Otherwise, there is a factorization of the form= v'w“v” such thatr € ¢(w). Then, by induction on the
construction of thes-termwu, we haveX - w* = w*z, which reduces the problem to the above case.

We then proceed by induction on the construction ofitkhermv. Note that
SF (zy)Y = z(yx)” = x(yz)?y” = (xy)“y”.

Hence, assuming inductively that we may deduce fkothe identitiesu” = u“v; (i = 1, 2), we may also deduce
the identities

u® = u“vy = u“viv9, and
u? = (u)¥ = (uv1)” = (u¥vr)vf = oy,
which completes the induction step and the proof. O

Lemma 6.5. For everyw-termu there is anw-termuo in reduced form such that - v = v.

Proof. We proceed by induction on the constructionweferms. First, it is easy to see that everyermu is of the
formu vy - - - upv¥u, 1 Where each; is a (possibly empty) word and eaghis anw-term where the maximum
number of nested-powers is smaller than in the originatterm. By the induction hypothesis, we may assume
that eachu-termu;, v; is in reduced form.

Suppose that some admits a factorization of the formy = zy* with ¢(z) C ¢(y). By Lemmd&H} implies
the identitiesvy = (zy“)¥ = zy“(zy¥)* = zy* and so we may replace’ by zy“ in the above expression,
wherezy* is already in reduced form by the assumption thas. Therefore, one may assume that eaglis in
reduced form.

Finally, applying again Lemma®.4, we may further assumerba:; admits a factorizatiom; = w}u; with
u; nonempty (and:! possibly empty) such thatu.) C c(v;_1); in caseu; = € andi > 1, we also assume that
c(v;) € ¢(vi—1). In this way, we obtain the desired reducedermv such that - u = v. O

The following is a partial cancellation law for the varietgfihed by>..

Lemma 6.6. Letu, v bew-terms such thatl implies the identity, = v and leta be a letter such that € c(u). Let
a; be amarkerinz anda; be a marker irv. ThenX implies the identities(0, a) = v(0, a) andu(i, #) = v(j, #).

Proof. By definition of a consequence of a set of identities, it saffito assume thét, v) = (s{t, srt), where
s, t arew-terms and = r is obtained from an identity of by substituting the variables andy by appropriate
w-terms.

If the letter « appears ins, then it appears its as a markewy, u(0,a) = s(0,a) = v(0,a), u(i,#) =
s(k,#) 0t, andou(j, #) = s(k,#)rt, from which it follows that the identity.(0,a) = v(0,a) is trivial and
Y+ u(i,#) = v(j,#). At the other end, if the letter does not occursn/ or r, thena is a markeray, in ¢,
u(0,a) = s (t(0,a)), v(0,a) = s (t(0,a)), andu(i, #) = t(k, #) = v(j, #) and the result follows similarly.
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It remains to treat the case where the lettetoes not occur i3 but it occurs in/, and so also in. We may
then as well assume thatind¢ are empty terms, that is = ¢ andv = r. So, we take each of the identities from
¥, consider the lettex, andy if present, asv-terms, which produces an identity = v, and compute in each
case the terms(0, a), v(0,a), u(i, #), andv(j, #). This is a routine calculation which is included for the sake
of completeness.

For the identities in[{30), suppose first thate c(x). If v andv both belong to{ (zy)*, (zy)“z, (zy)“z*},
theni = j andu(0,a) = x(0,a) = v(0,a), while for z = w,v, we havez(i,#) = z(i — 1,#)y z (where
the —1 accounts for the opening parenthesis)n Sinceu = v is an identity of¥ and: = j, we have indeed
¥+ u(i, #) = v(j,#) in this case. In the other case, if one of the temnw v, sayu, is equal tox(yz)* andv
belongstd (xy)¥, (xy)“z, (zy)“z*}, theni = j—1,u(0,a) = 2(0,a) = v(0,a), whileu(i, #) = x(i, #)(yx)*
and againp(j,#) = z(j — 1, #)yv = z(i,#)yv. Therefore, we hav®& + u(i,#) = x(i, #)(yx)¥ =
(i, #)yx(yx)” = x(i, #)yu = x(i, #)yv = v(j, #), S0 that the conclusion of the lemma is also verified.

Suppose nextthat ¢ ¢(x). Thenin all cases = j, u(0,a) = 2(y(0,a)) = v(0,a), and forz = u, v, we have
z(i,#) = y(i — |T| — 1, #) z so that the conclusion of the lemmais trivial in this case.

Finally, for the one-variable identitief{[31) arld1(32), e for instance that = z*. In both cases, we
haveu(0,a) = z(0,a) = v(0,a) andv(j,#) = x=(j — 1,#)z*. For (31), we obtain = j + 1, u(i, #) =
x(j — 1,#) 2% ()~ while, for the identity [3R); = j andu(i, #) = x(j — 1,#) 2"~ (z")*. Thus we require
the identitiesr” = z¢(z¥)* = 2"~ !(z")“, which are easily shown to be consequences.of O

We say thats; - - - u, is aX-fringy decompositionf anw-termuw if eachw; is a fringy factor ofu; - - - uy and
YFu=wuy---ug.

We will show that if anw-term«* is in reduced form, then one can deduce frina factorizationu; us of
u, such that for some > 0 ands > 1, u"u; and(uqu;)® haveX-fringy decompositions. Consider for instance
u = (a?b?)“c%d? (which is thew-term w, from PropositiorZ18, up to a renaming of the letters). Obsly,

Y F u = uyus With u; = (a?b?)¥c?d, anduy = d. Furthermore, botl; = u%u; and (uquy)? admitX-fringy
decompositions.

Lemma 6.7. Letu be anw-term such that,* is in reduced form. Then there atetermsu, uo, whereu, is not
empty (andue may be empty) and integers> 0, s > 1 such thaty F u = wjus and thew-termsu"u; and
(uguq)® admit X-fringy decompositions. Moreovar; and u, may be chosen so that the maximum number of
nesteduv-powers in each of them does not exceed that maximum for

Proof. By Corollary[511, there are sequendes),,, of positions inu®, and(a,,),, of letters inu®, such that
io = 1, vp = u¥(in,an)ay, is a fringy factor ofu® and(ay,,in+1) € A x Ny is a marker ofu® (i,,, #). Note
that, sinceu® starts with an opening parenthesis,> 1 for all n > 0. Since the sequend¢, ),, takes its values
in a finite set, there are positive integersn such that» < m andi,, = i,, (and therefore,,, = a,,, sincei,
uniquely determines,,). Sinceu® is reduceds is not an idempotent if2 4R and we may assume, without loss
of generality (increasing: if necessary), that, 1 — 1 is the position of the first occurrence @f in u, where the
—1 accounts for the opening parenthesisith We letu; = u(0, an)a, andus = u(in+1 — 1,#). Note thatu,

is not empty. Then, we have - u = ujus by Corollary[6.38, and the last sentence in the statementedtinma
is also guaranteed.

Let » be the number of indiceg € {0,...,n — 1} ands be the number of indiceg € {n,...,m — 1} in
both cases such thafu(i; — 1, #)) # c(u). These numbers count how many times we have to wrap around the
w-power to get the next fringy factor, respectively beforegeeto the index. and from then on until we get to the
indexm. By Corollary[6.8, we may deduce frolithe equalities:"u, = v - - - v, and(ugu1)® = Vpg1 -« U
Observe that the latter equality implies thag 0, sincen + 1 < m and none of the;’s is empty. O

In the former exampla? = [1 [2a3a4b5b6]76809d10d11]12#13 erIdS

vo = (a®V))¥c?d, ap=d, i1 =10, c(u(9,#))={d},

vy = d(a*b?)¥c, ay=c, ia=28, c(u(7,#)) ={cd},

ve = cd®a®b, az=>b, i3=5 c(u(4,#)) ={a,b,cd},

v3 = b(a?b*)*c?d, az=d, i4 =11,
and since the 10-th letter is the first occurrencelpthere is no need to continue. &o0= 1, m = 4, u; =
(a®b*)“c?d, uz = d, r = 0, s = 2. Note that the terms;, v, v3 andv, are exactly those appearing in the

canonical form ofws obtained in the proof of Propositidn#.8 (namelyi3b,, barias, ayb3ryaib, andt,a3b,,
respectively. See equatiofisi18) and (19)).
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It is immediately verified thaR = X. Conversely, ifu = v is an identity which is valid irR“, then the
pseudoidentity, = v is valid in R. Therefore, establishing Theor@@ amounts to proving the following
theorem:

Theorem 6.8. Letuw andv be twow-terms. Then
(33) REu=v = SFu=nv.

Proof. We proceed by induction on the common contentuaindv. In casec(u) = c(v) = (), the result is
obvious. We now assume that it holds foraltermsu, v whose content has less thaelements. The proof will
be broken into several intermediate results which in turly maolve other induction schemes, so we will refer to
this induction hypothesis as (IH).

Note that (IH) implies that ifw is anw-term with |c(w)| < p thenX F w = cf(w). Indeed, this follows
from (33) using Propositi We will show this property remains valid far-terms which involvey letters.

Proposition 6.9. Letu be anw-term with|c(u)| = p. Assuming (IH), theX: implies the identitys = cf(u).

Proof. Let £(u) be the sequence of integers whogh term counts, in a factorization ef into w-powers and
letters, the number of factors which asepowers with the maximum numberof nestedv-powers. For instance,
for thew-termu = ((xy)¥z)“t(a¥)zy(zt)*, we haveS(u) = (3,1,2,0,0,...). Given two distinct sequences
(m;); and(n;); of nonnegative integers with only finitely many nonzero mstrwe write(m;); < (n;); if, for
the largest such thatm; # n;, we havem,; < n;. Note that this defines a well-ordering of the set of all such
sequences. Indeed, this is clearly a total ordering andrdyypdng all null components, the set of elements below
one given sequence is identified with the set of elementsbatoelement of a lexicographic product of finitely
many copies oN, which is well known to be well ordered.

The proof proceeds by induction @ifw). If u is a word, then: = cf(u) and so the trivial identitys = cf (u)
is a consequence aI. Suppose next thal - v = cf(v) for everyw-termv such thatt(v) < &(u). We need
another embedded intermediate result, namely the follgwirmplement of Propositidn4.7 about canonical forms
of w-terms.

The cumulative conten#(w) of anw-termw is the set of all letters, such there is some factorizatioan =
wiw§ws With a € ¢(wz) ande(ws) C c(ws). Note that the cumulative content of aftermw coincides with the
cumulative content of the pseudoword defineddby

Proposition 6.10. Letv, w bew-terms and let: be a letter.

(a) If vis afringy factor ofvw, thenX b cf (vw) = cf (v) cf (w).

() If u = v¥ for somew-termuw, with v* reduced, and® F 2 = cf(z) for everyw-term z with £(z) < £(u),
thenX - cf(u) = w.

(¢) Ifaé¢c(v)andX F z = cf(z) for everyw-termz with £(z) < &(w), thenX F cf (vaw) =

(d) Ifa¢ &v)andX F z = cf(z) for everyw-termz with {(z) < &(w), thenX - cf (vaw) =

(v) - a-cf(w).
(v) - a - cf(w).

Proof. For the proof o we consider two cases, namely whether the initial staté (efw) is the end of an
edge or not. By definition of the canonical form, in the negatiase we have the equalityoftermscf (vw) =
cf(v) cf(w). Otherwise, again by definition of the canonical formy is an idempotent oveR. Sincev is a
fringy factor of vw, we haved(vw) = éw) andc(v) = ¢(vw) = c(w), hencew is an idempotent oveR. Let
q be the initial state of th&-automatonA (vw). Then the automaton obtained frofifvw) by replacing the root
with q.1 is theR-automatonA(w). Hencecf(vw) = (cf(v)u)* for somew-termw in canonical form such that
cf(w) = (ucf(v))¥ and so we have

Y F cf(vw) = (cf(v)u)® = cf(v)(ucf(v))* = cf(v) cf (w),
which prove§(a)}

Suppose next that is anw-term as ir@ Applying Lemmd&lJ ta”, we obtain twau-termswvy, vy and two
integers: > 0, s > 1 such that: - v = vy v, and thew-termsv” v, and(vqv1)* admitX-fringy decompositions:

YhEov'vr =ur Uy
Y F (vov1)® = g1 Un
By simple applications of identities deduced frainwe obtain
(34) Shu=v"=v"0" =0 (v1v2)” = v vy (vav1)* = vrvl((vgvl)s)w,

where the last equality is justified singe> 1, by Lemmd&lr. Lef be the set all integers such thad) < k <
min(m,n —m) andR & wy,—r = un—g; letp = min I if I # &, andp = 0 otherwise.
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We claim thats - u = w1 -+ - tpm—p(Um—p+1 - - un—p)*”. Indeed, forali = 1,...,n, we have(u;) < &(u),
and therefore, by the hypothesi Y F cf(u;) = u;. By definition ofp, we have furtheR = w,—k = wn—k
for k > p, hencecf(uy—x) = cf (un—i) by PropositioZJb)}} Hence, fork > p, ¥ b up—i = cf(um—i) =
cf(un_k) = Up—Fk, and

Shu=muy U (Umpr - un)®

= U1 Um—p(Um—pt1 ** * Un—p)“Un—pt+1 - - Uy, applyingp times [3D)
= U Um—p(Um—pt1 - Un—p)” using Lemm&%l4, since
c(u;) = c(uy) for1 <i,j <n.
This proves the claim. Let
(=min{i>m—p+1|3k>1L,REUn_pr1- Unp = Um—ps1---u)"}.

Sinces (tm—pt1 - Un—p), E((Um—ps1 - - ur)¥) < &(u), we obtain, using again the hypothesif{®} that de-
duCeSum —pi1 -+ Un—p = (Um—pt+1 - ue)*. Therefore, usind(32); deduces = uy - - Up—p(Umn—pt1 - - Ue)*.
In particular, sincer satisfies>], both sides of this identity have the same canonical forme €an apply Propo-
sition[ZJ(d)] to obtaincf(u) = cf (u1) - - - cf (wp—p) (cF(Um—p+1) - - - cf(ue))* (note that hypothes§s)|and(iiz)]
of PropositiorZ{d)| hold by the choice o and/, respectively). Finally, sincE + u; = cf(u;) fori =1,...,n,
we conclude that + cf (u) = u1 - - Um—p(Um—pt1 - - - ug)* = u, Which provefD)]

The proof o is rather more complicated. It proceeds by inductioni¢m). The case wheg(w) is the
constant zero sequence occurs whee= ¢ and thus it follows directly from the definition of canonidalm as
cf(va) = cf(v)a. Thus, we assume that # . Leti be such that; is the first occurrence aof in vaw, by, be the
principal marker ofvaw, andc, be the principal marker afaw(i, #) (which exists sinceaw(i, #) =g w # ¢€).
If i = k, then the desired result, namely that- cf (vaw) = cf(v) a cf(w), follows directly from{{a)] So we may
assume that < k and therefore we havie< k < ¢. Letw; = (vaw)(4,b), wa = (vaw)(k, ¢) in casek < ¢, and
ws = (vaw) (L, #).

By Lemma6.b, without loss of generality, we may assume thafactorizationv = xoyyzy - - - Y& Tm IS in
reduced form, where the; are possibly empty words and tlye arew-terms. For a marked, in w, consider
the first factorzz; or yy, from left to right, that involves the lettet. If this first factor isz; and the factorization
r; = x%dr is such thad ¢ c(z}), then clearlyé(zoyy'z: - - - y¥'’;) and&(xy, ;w541 - - - yjzm) are both
smaller than¢(w) and so we may apply the hypothesisfof| to both. On the other hand, if the first factor
containingd is y;, then by Corollary'613 there ate-termsy’; andy, whose maximum number of nested
powers does not exceed thatygf such that: i y; = y’dy? andd ¢ y;. In this case, we obtain

YEw=aoyymr - yi w1y dyiyi g Y,
using the identityr(yx)” = (zy)*, whereé(voyt e - y5_17;-1y;) < {(w) and&((yjyid)z; - - yomrm) <
&(w). Moreover, equality occurs in this latter inequality if aodly if j = 1 andxzy = . We will apply these
observations to the markers andcy.
The preceding paragraph guarantees in particulagthat) < £(w) so that we may apply the hypothesi
to obtain

(35) Y F cf(vawy) = cf (v) acf (wy).
In casek = ¢, we haveR | w = wbws, thereforecf (vaw) = cf (vaw,bws) and
Y F cf(vaw) = cf (vawbws) = cf (vawy) bcf(ws) by[(a)]
= cf(v) acf(wy) bef(ws) by (38)
= cf(v) a cf (w1 bws) by[(a)]
= cf(v) acf(w).

Suppose next thdt < ¢. In this case, we havR = w = wybwycws, socf (vaw) = cf (vaw, bwaycws) and
Y F cf(vaw) = cf (vawbwacws) = cf (vawy) b cf (wacws) by[(a)]
= cf(v) acf(wy) b cf (wacws) by (39)
Hence, to conclude the proof thatt cf (vaw) = cf(v) a cf(w), it suffices to show that
(36) Y Fcf(wy) b cf(wecws) = cf (w).
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In caset (wocws) < &(w), the induction hypothesis yields136) directly. On the ottend, by the above observa-
tions withd = b, otherwise we may assume tl§gtvscws) = {(w) and thatry = € andb € ¢(y1).

We now distinguish two cases according to whether ornat c(y;). Sincec, is the principal marker
of taw (i, #) andw = zoy{xy - - - Y%, Tm iS in reduced form, in case € ¢(y1) it follows thatw = y%. Hence,
in the notation introduced for the above observations, with b, and using LemmB8.6, the s8tdeduces the
identitiesw; = v} andwscws = y{yy. Sinceé(y)) < {(w), which yieldsY - cf(y}) = y; using this time the
induction hypothesis, this allows us to obtain the follogvdonsequences a&f:

Sk cf(wi) b cf (wacws) = cf(y1) b cf(y1'yy)

", 1

= cf(yy) b cf((y1y10)*) usingz(yx)” = (zy)”

= y1b(y{y1b)* by induction hypothesis, and [{§)] applied to(y{'y}b)~
=y usingz(yz)” = (zy)* and b yibyy =y

= cf(yt) by[(%]

= cf(w),

which establishe$B6) in this case (observe, for the thjrdhdity, that we may assume that/y;b) is reduced).

To conclude the proof dfc]] it remains to consider the casg = ¢, b € ¢(y1), ¢ ¢ c(y1). In this case, we
deduce using Lemnia®.6 that- w; = y] andX - wy = yiy¥wh = (y)y}b)“w) for somew-termw,. The
above observations applieddo= ¢ show that; ((y;yib)“w}) < &(w). Sincec(y1) = ¢(y;y1b), observe that the
principal marker of(y{ vy} b)~w} c w3 also corresponds to the displayed occurrence of the lettddfe now obtain
the following consequences bf.

Yk cf(wy) b cf(wacws) = cf(yy) b cf((y] y b)) wh cws)
cf (y1) b cf((yYy1b)“w3) ¢ cf(ws) by[(a]]
= cf (y} b (y{y;b)“wh) ¢ cf(w3) by the hypothesis
sinced((y1'y1b)“ws) < §(w)

= cf(y7wy) ¢ cf(ws) usingz(yz)” = (zy)”
= cf (yfwh cws) by[(a)]
= cf(w),

which proves[(3b) and completes the induction step for tbefmf

To prove[(d)} we letx(v,a,w) = (Jc(vaw)|,|c(v)|, [|v]]) and we order such triples lexicographically. We
proceed by induction oR(v, a, w), assuming that properffyl)| holds for all triples(v’, o', w’) with x (v/, o', w") <
x(v,a,w).

We first assume that(va) & c(vaw). Then, by Corollarf 813 there existtermsw,, w, and a letteh such

thatvaw, b is a fringy factor ofvaw, bws andX F wybwe = w. Theny(v, a, w1) < x(v, a,w) which yields
Y F cf(vaw) = cf(vaw ) bcf(ws) by[(a)]
= cf(v) acf(wy) bef(we) by the induction hypothesis
= cf(v) acf(w) by[(c)l

Hence we may assume théta) = c(vaw). In casen ¢ c(v), we may applf{c)] directly to obtain the desired
result. Hence we will assume thatc ¢(v), in which case the principal marker ofiw is found withinv. By
Corollary[6:3 there exist-termsvy, v2 and a letteb such that, b is a fringy factor ofv; bvy andX + vibve = v.
Sincea € c(v) \ ¢(v), we have|v|| < oo by Propositiori:318 and eithevs) & c(v) or [lvz|| < [[v]|. In either
case, we find that(vs, a, w) < x(v, a, w) while &(v2) C &(v), so thata ¢ ¢(v2). This allows us to show that

Y F cf(vaw) = cf(v1)bcf(v2aw) by[(a)]
= cf(v1)bcf(ve)acf(w) by the induction hypothesis
= cf(v)acf(w) by[(a)]

This completes the induction step and the proof of PropodfiLT0. O
Back to the proof of Propositidn 8.9, without loss of genigyalve may assume thatis reduced, noting that
the reduction, which is performed using identities frahby Lemmd&.b, does not affect the canonical form by

Propositior ZJ)| nor does it increase the value &fu). Thenu is of the formu = wov{uy - - - vu, where

the u; are words, which may be empty, and theare w-terms. Sinceu is reduced, each nonempty with
i > 0 must start with a lettea; which does not belong t&(v;). If there is anyi > 1 such that; # e then,
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applying the induction hypothesis on the paramétere obtain that: implies the identitiesiyvuy - - - vy =
cf(uovfur - - vf) andu; vy uiyr - - vfur = cf (08 uiqr -+ vFuy) and so also the identity = cf(u) by
Propositiormm In caseugy # ¢, the induction hypothesis similarly implies thatallows us to deduce the
identity v{u; - - - vug = cf(vfus - - - v¥ur), from which the identityy = cf(u) follows. It remains to treat the
case in whichy; = ¢ for all 4, that isu = vf - - - v is a product ofu-powers.

The case when is a singlew-power is given by Propositidﬁ@ We proceed by considering the case
k > 2. Then we apply Lemm@a8.7 w; (which is reduced) to obtain-termsw, , w, and positive integers, s
such that + vs = wyws and there ar&-fringy decompositions of5w, and (wewq)®. Then, as in[(34) we
obtain

YFu=2v7 - of =vPviwr - (wawr)¥vg - vf.
Since each of the factors = v{v5w; andy = (wow)¥v§ - - - v¢ has a smalle¢-value thanu by Lemmd&Y,
we may apply the induction hypothesis to deduce Bhanplies the identities: = cf(z) andy = cf(y). Now
viws is a product of fringy factors oy’ andw is reduced. Hence is of the formz = za for some letter such
thata ¢ c(z): indeedc(z) = é(vhw,) sincew is reduced and sg(z) = 0 since|[viw: || < oo; now, if a € &(z)
thena € &(z), in contradiction with what we have just shown. By ProposifE.I§{d)] and Propositiof.2{7) it
follows that
Y Fcf(u) = cf(zy) = cf(z) cf(y) = 2y = u,

which completes the induction step and the proof of Projuord@.9. O

Back to the proof of Theorein 8.8, note that, by Proposm two w-terms coincide irR if and only if
their canonical forms are equal. HenceRif= v = v for two w-termsu, v involving p letters, then® F « =
cf(u) = cf(v) = v by PropositiorL619. This proves the induction step for (llHil@oncludes the proof of the
theorem. O

7. OPEN PROBLEMS

We have exhibited a very efficient algorithm to solve the wprdblem forw-terms overR. The algorithm
has essentially three stages: (1) to constru®-automaton for each of the-terms; (2) to wrap these automata;
and (3) to compare the wrapped automata. We observe thatweehsained algorithms with optimal asymptotic
complexity for each of these stages. But, we have not shoairthlere is no other, asymptotically more efficient,
algorithm to solve the problem and we do not know if there is.on

There are several related algorithmic questions.eierms and their wrappelR-automata representations. Of
course, if we work withu-terms, it is trivial to compute products andpowers since we can just do it graphically.
However, if instead we are given their wrappRehutomata representations, then it is not at all obvious toow
efficiently obtain the wrappeB-automata for the product or the-power since it appears that, in general these
operations may completely change the structure of the divantomata.

The difficulty here is that the only natural way we have présério build anw-term from a wrappe®-
automaton, whose wrapp&dautomaton is the given one, is through the constructioh@ttnonical form, which
we have shown can have exponential length in terms of theositee alphabet (Propositidn4.8). On the other
hand, if we fix the alphabet then, by Proposition #.10, the sizthe canonical form is bounded by a polynomial
function of the size of th&-automaton. By definition of the canonical form, it may be goned within the same
time bound. So, if we are given wrappBeautomata over a fixed alphabet, we can compute efficientigrms
of which they are the wrappdgtautomata and concatenate them or take thgdowers. Then, by applying the
algorithms of Subsectiois®.3 dndl5.4, we may compute thepedR-automaton of the thus computeeterms.
By Theorem§5.16 arld 5117, the overall cost of this algorithpolynomial in the size of the giveR-automata.
However, the above bound for the complexity of the stagegorithm computing representativeterms becomes
exponential if we do not bound the alphabet. We do not knowtldrethe upper bound of Propositibn4.10 is
optimal. Here are some related questions:

(a) is there a polynomial asymptotic upper bound for the sizerofvaerm whose wrappe&-automaton is
given?

(b) inthe affirmative case, can we compute it efficiently?

(¢) find tight lower and upper bounds for the number of states efwthappedR-automata representing the
“product” or the ‘w-power” of given wrapped®-automata.

Another direction which seems to be worth investigatinghis following. There is a pseudovariety which
is closely related wittR to which it should be possible to extend the consideratiantis paper. That is the
pseudovarietyDA, which consists of all finite semigroups whose regular elehare idempotents. For this
pseudovariety, there is a tool corresponding to the lefidh@astorization which was introduced ihl[1], namely
what in that paper is called a “basic boundary factorizdtidrhis consists in locating, from both sides, the last
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letter to occur for the first time, with possible coincidemeeross-over. The similarity between the nature of the
two factorizations suggests that indeed the same techmicuad work in that case. We have not attempted to
carry out this program.
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