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Abstract

Profinite semigroups may be described shortly as projective limits of finite semigroups.
They come about naturally by studying pseudovarieties of finite semigroups which in
turn serve as a classifying tool for rational languages. Of particular relevance are rela-
tively free profinite semigroups which for pseudovarieties play the role of free algebras
in the theory of varieties. Combinatorial problems on rational languages translate into
algebraic-topological problems on profinite semigroups. The aim of these lecture notes is
to introduce these topics and to show how they intervene in the most recent developments
in the area.

1 Introduction

With the advent of electronic computers in the 1950’s, the study of simple formal models
of computers such as automata was given a lot of attention. The aims were multiple: to
understand the limitations of machines, to determine to what extent they might come to
replace humans, and later to obtain efficient schemes to organize computations. One of the
simplest models that quickly emerged is the finite automaton which, in algebraic terms is
basically the action of a finitely generated free semigroup on a finite set of states and thus
leads to a finite semigroup of transformations of the states [48], 61].

In the 1960’s, the connection with finite semigroups was first explored to obtain com-
putability results [79] and in parallel a decomposition theory of finite computing devices
inspired in the theory of groups and the complexity of such decompositions [51} [62], again
led to develop the theory of finite semigroups [21], which had not previously deserved any
specific attention from specialists on semigroups.

In the early 1970’s, both trends, the former more combinatorial and more directly con-
cerned with applications in computer science, the latter more algebraic, continued to flourish
with various results that nowadays are seen as pioneering. In the mid-1970’s, S. Eilenberg,
in part with the collaboration of M. P. Schiitzenberger and B. Tilson [35] [36] laid the foun-
dations for a theory which was already giving signs of being potentially quite rich. One of
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the cornerstones of their work is the notion of a pseudovariety of semigroups and a corre-
spondence between such pseudovarieties and varieties of rational languages which provided a
systematic framework and a program for the classification of rational languages.

The next ten years or so were rich in the execution of Eilenberg’s program [53] [64] [65]
which in turn led to deep problems such as the identification of the levels of J. Brzozowski’s
concatenation hierarchy of star-free languages [29] while various steps forward were taken in
the understanding of the Krohn-Rhodes group complexity of finite semigroups [73, [71), 47].

In the beginning of the 1980’s, the author was exploring connections of the theory of
pseudovarieties with Universal Algebra to draw information on the lattice of pseudovarieties
of semigroups and to compute some operators on pseudovarieties (see [3] for results and ref-
erences). The heart of the combinatorial work was done at manipulating identities and so
when J. Reiterman [70] showed that it was possible to define pseudovarieties by pseudoiden-
tities, which are identities in an enlarged signature whose interpretation in finite semigroups
is natural, this immediately appeared to be a powerful tool to explore. Reiterman introduced
pseudoidentities as formal equalities of implicit operations, and defined a metric structure
on sets of implicit operations but no algebraic structure. There is indeed a natural algebraic
structure and the interplay between topological and algebraic structure turns out to be very
rich and very fruitful.

Thus, the theory of finite semigroups and applications led to the study of profinite semi-
groups, particularly those that are free relative to a pseudovariety. These structures play the
role of free algebras for varieties in the context of profinite algebras, which already explains
the interest in them. When the first concrete new applications of this approach started to
appear (see [3] for results and references), other researchers started to consider it too and
nowadays it is viewed as an important tool which has found applications across all aspects
of the theory of pseudovarieties.

The aim of these notes is to introduce this area of research, essentially from scratch, and
to survey a significant sample of the most important recent developments. In Section [2] we
show how the study of finite automata and rational languages leads to study pseudovarieties
of finite semigroups and monoids, including some of the key historical results.

Section [3| explains how relatively free profinite semigroups are found naturally in trying
to construct free objects for pseudovarieties, which is essentially the original approach of B.
Banaschewski [26] in his independent proof that pseudoidentities suffice to define pseudovari-
eties. The theory is based here on projective limits but there are other alternative approaches
[3,[7]. Section [3|also lays the foundations of the theory of profinite semigroups which are fur-
ther developed in Section [4, where the operational aspect is explored. Section [4] also includes
the recent idea of using iteration of implicit operations to produce new implicit operations.
Subsection presents for the first time a proof that the monoid of continuous endomor-
phisms of a finitely generated profinite semigroup is profinite so that implicit operations on
finite monoids also have natural interpretations in that monoid.

The remaining sections are dedicated to a reasonably broad survey, without proofs, of how
the general theory introduced earlier can be used to solve problems. Section [5| sketches the
proof of 1. Simon’s characterization of piecewise testable languages in terms of the solution of
the word problem for free pro-J semigroups. Section [6] presents an introduction to the notion
of tame pseudovarieties which is a sophisticated tool to handle decidability questions which
extends the approach of C. J. Ash to the “Type II conjecture” of J. Rhodes, as presented
in the seminal paper [22]. The applications of this approach can be found in Sections m
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and [§]in the computation of several pseudovarieties obtained by applying natural operators
to known pseudovarieties. The difficulty in this type of calculation is that it is known that
those operators do not preserve decidability [1, [72), 24]. The notion of tameness came about
precisely in trying to find a stronger form of decidability which would be preserved or at least
guarantee decidability of the operator image [15].

Finally, Section [9] introduces some very recent developments in the investigation of con-
nections between free profinite semigroups and Symbolic Dynamics. The idea to explore such
connections eventually evolved from the need to build implicit operations through iteration
in order to prove that the pseudovariety of finite p-groups is tame [6]. Once a connection
with Symbolic Dynamics emerged several applications were found but only a small aspect is
surveyed in Section [0 namely that which appears to have a potential to lead to applications
of profinite semigroups to Symbolic Dynamics.

2 Automata and languages

An abstraction of the notion of an automaton is that of a semigroup S acting on a set (), whose
members are called the states of the automaton. The action is given by a homomorphism
¢ : S — Bg into the semigroup of all binary relations on the set @), which we view as acting
on the right. If all binary relations in ¢(S) have domain @, then one talks about a complete
automaton, as opposed to a partial automaton in the general situation. If all elements
of ¢(S) are functions, then the automaton is said to be deterministic. The semigroup ¢(S) is
called the transition semigroup of the automaton. In some contexts it is better to work with
monoids, and then one assumes the acting semigroup S to be a monoid and the action to be
given by a monoid homomorphism ¢.

Usually, a set of generators A of the acting semigroup S is fixed and so the action homo-
morphism ¢ is completely determined by its restriction to A. In case both ) and A are finite
sets, the automaton is said to be finite. Of course the restriction that @ is finite is sufficient
to ensure that the transition semigroup of the automaton is finite.

To be used as a recognition device, one fixes for an automaton a set I of initial states
and a set F' of final states. Moreover, in Computer Science one is interested in recognizing
sets of words (or strings) over an alphabet A, so that the acting semigroup is taken to be the
semigroup AT freely generated by A, consisting of all non-empty words in the letters of the
alphabet A. The language recognized by the automaton is then the following set of words:

L={we A" :pw)n( x F)#0}. (2.1)

If the empty word 1 is also relevant, then one works instead in the monoid context and one
considers the free monoid A*, the formula for the language recognized being then suit-
ably adapted. Whether one works with monoids or with semigroups is often just a matter
of personal preference, although there are some instances in which the two theories are not
identical. Most results in these notes may be formulated in both settings and we will some-
times switch from one to the other without warning. Parts of the theory may be extended to
a much a more general universal algebraic context (see [3| [7] and M. Steinby’s lecture notes
in this volume).
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For an example, consider the automaton described by the following picture

a

where we have two states, 1 and 2, the former being both initial and final, and two acting
letters, a and b, the action being determined by the two partial functions associated with
a and b, respectively @ : 1 + 2 and b : 2 — 1. The language of {a,b}* recognized by this
automaton consists of all words of the form (ab)* with k& > 0 which are labels of paths starting
and ending at state 1. This is the submonoid generated by the word ab, which is denoted
(ab)*.

In terms of the action homomorphism, the language L of is the inverse image of
a specific set of binary relations on ). We say that a language L C AT is recognized by a
homomorphism 1) : AT — S into a semigroup S if there exists a subset P C S such that
L = ¢~ P or, equivalently, if L = ¢»~1¢)L. We also say that a language is recognized by a
finite semigroup S if it is recognized by a homomorphism into S. By the very definition of
recognition by a finite automaton, every language which is recognized by such a device is also
recognized by a finite semigroup.

Conversely, if L = 1~ %L for a homomorphism 1 : AT — S into a finite semigroup,
then one can construct an automaton recognizing L as follows: for the set of states take S,
the monoid obtained from S by adjoining an identity if S is not a monoid and S otherwise;
for the action take the composition of ) with the right reqular representation, namely the
homomorphism ¢ : AT — Bg which sends each word w to right translation by v (w), that
is the function s — sy (w). This proves the following theorem and, by adding the innocuous
assumption that v is onto, it also shows that every language which is recognized by a finite
automaton is also recognized by a finite complete deterministic automaton with only one
initial state (the latter condition being usually taken as part of the definition of deterministic
automaton).

2.1 Theorem (Myhill [61]) A language L is recognized by a finite automaton if and only
if it is recognized by a finite semigroup. ]

In particular, the complement A" \ L of a language L C A" recognized by a finite
automaton is also recognized by a finite automaton since a homomorphism into a finite
semigroup recognizing a language also recognizes its complement.

A language L C A* is said to be rational (or regular) if it may be expressed in terms
of the empty language and the languages of the form {a} with a € A by applying a finite
number of times the binary operations of taking the union L U K of two languages L and
K or their concatenation LK = {uv : u € L,v € K}, or the unary operation of taking the
submonoid L* generated by L; such an expression is called a rational expression of L. For
example, if letters stand for elementary tasks a computer might do, union and concatenation
correspond to performing tasks respectively in parallel or in series, while the star operation
corresponds to iteration. The following result makes an important connection between this
combinatorial concept and finite automata. Its proof can be found in any introductory text
to automata theory such as Perrin [63].
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2.2 Theorem (Kleene [48]) A language L over a finite alphabet is rational if and only if
it 1s recognized by some finite automaton.

An immediate corollary which is not evident from the definition is that the set of rational
languages L C A* is closed under complementation and, therefore it constitutes a Boolean
subalgebra of the algebra P(A™) of all languages over A.

Rational languages and finite automata play a crucial role in both Computer Science
and current applications of computers, since many very efficient algorithms, for instance for
dealing with large texts use such entities [34]. This already suggests that studying finite semi-
groups should be particularly relevant for Computer Science. We present next one historical
example showing how this relevance may be explored.

The star-free languages over an alphabet A constitute the smallest Boolean subalgebra
closed under concatenation of the algebra of all languages over A which contains the empty
language and the languages of the form {a} with a € A. In other words, this definition
may be formulated as that of rational languages but with the star operation replaced by
complementation. Plus-free languages L C AT are defined similarly.

On the other hand we say that a finite semigroup S is aperiodic if all its subsemigroups
which are groups (in this context called simply subgroups) are trivial. Equivalently, the cyclic
subgroups of S should be trivial, which translates in terms of universal laws to stating that
S should satisfy some identity of the form z"+!

The connection between these two concepts, which at first sight have nothing to do with
each other, is given by the following remarkable theorem.

="

2.3 Theorem (Schiitzenberger [79]) A language over a finite alphabet is star-free if and
only if it is recognized by a finite aperiodic monoid.

Eilenberg [36] has given a general framework in which Schiitzenberger’s theorem becomes
an instance of a general correspondence between families of rational languages and finite
monoids. To formulate this correspondence, we first introduce some important notions.

The syntactic congruence of a subset L of a semigroup S is the largest congruence pr,
on S which saturates L in the sense that L is a union of congruence classes. The existence of
such a congruence may be easily established even for arbitrary subsets of universal algebras
[3, Section 3.1]. For semigroups, it is easy to see that it is the congruence pr defined by
w pr, v if, for all z,y € S, zuy € L if and only if zvy € L, that is if u and v appear as factors
of members of L precisely in the same context. The quotient semigroup S/py, is called the
syntactic semigroup of L and it is denoted Synt L; the natural homomorphism S — S/py, is
called the syntactic homomorphism of L.

The syntactic semigroup Synt L of a rational language L C A™ is the smallest semigroup S
which recognizes L. Indeed all semigroups of minimum size which recognize L are isomorphic.
To prove this, one notes that a homomorphism 1) : AT — S recognizing L may as well be taken
to be onto, in which case S is determined up to isomorphism by a congruence on A™, namely
the kernel congruence ker ) which identifies two words if they have the same image under .
The assumption that ¢ recognizes L translates in terms of this congruence by stating that
ker ¢ saturates L and so ker is contained in py. Noting that rationality really played no
role in the argument, this proves the following result where we say that a semigroup S divides
a semigroup 7' and we write S < T if S is a homomorphic image of some subsemigroup of 7.
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2.4 Proposition A language L C A" is recognized by a semigroup S if and only if Synt L
divides S. ]

The syntactic semigroup of a rational language L may be effectively computed from
a rational expression for the language. Namely, one can efficiently compute the minimal
automaton of L [63], which is the complete deterministic automaton recognizing L with the
minimum number of states; the syntactic semigroup is then the transition semigroup of the
minimal automaton.

Given a finite semigroup S, one may choose a finite set A and an onto homomorphism
@ : AT — S: for instance, one can take A = S and let ¢ be the homomorphism which extends
the identity funtion A — S. For each s € S, let Ly = ¢~ 's. Since ¢ is an onto homomorphism
which recognizes Lg, there is a homomorphism s : S — Synt L such that the composite
function 15 0 ¢ : AT — Synt L, is the syntactic homomorphism of Ls. The functions
induce a homomorphism ¢ : S — [[,cqSynt L, which is injective since 1(t) = 1s(s) means
that there exist u,v € A" such that ¢(u) = s, p(v) = t and u pr, v, which implies that
v € Lg since u € Ls; and so t = s. As we did at the beginning of the section, we may turn
¢ : AT — S into an automaton which recognizes each of the languages Lg and from this any
proof of Kleene’s Theorem will yield a rational expression for each L;. Hence we have the
following result.

2.5 Proposition For every finite semigroup S one may effectively compute rational lan-
guages L1, ..., L, over a finite alphabet A which are recognized by S and such that S divides
H?:l Synt Ll O

It turns out there are far too many finite semigroups for a classification up to isomorphism
to be envisaged [78]. Instead, from the work of Schiitzenberger and Eilenberg eventually
emerged [36] 37] the classification of classes of finite semigroups called pseudovarieties. These
are the (non-empty) closure classes for the three natural algebraic operators in this context,
namely taking homomorphic images, subsemigroups and finite direct products. For example,
the classes A, of all finite aperiodic semigroups, and G, of all finite groups, are pseudovarieties
of semigroups.

On the language side, the properties of a language may depend on the alphabet on which
it is considered. To take into account the alphabet, one defines a variety of rational languages
to be a correspondence V associating to each finite alphabet A a Boolean subalgebra V(A™)
of P(A™) such that

(1) if L € V(A") and a € A then the quotient languages a 'L = {w : aw € L} and
La=! = {w : wa € L} belong to V(A") (closure under quotients);

(2) if p : AT — BT is a homomorphism and L € V(B™) then the inverse image ¢ 'L
belongs to V(A™) (closure under inverse homomorphic images).

For example, the correspondence which associates with each finite alphabet the set of all
plus-free languages over it is a variety of rational languages. The correspondence between
varieties of rational languages and pseudovarieties is easily described in terms of the syntactic
semigroup as follows:

e associate with each variety of rational languages V the pseudovariety V generated by
all syntactic semigroups Synt L with L € V(A™);
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e agsociate with each pseudovariety V of finite semigroups the correspondence

V:A— V(AT ={LC A" :SyntL € V}
= {L C A" : L is recognized by some S € V}

Since intersections of non-empty families of pseudovarieties are again pseudovarieties,
pseudovarieties of semigroups constitute a complete lattice for the inclusion ordering. Simi-
larly, one may order varieties of languages by putting V < W if V(AT) C W(A™) for every
finite alphabet A. Then every non-empty family of varieties (V;);e; admits the infimum V
given by V(AT) = (,c; Vi(AT) and so again the varieties of rational languages constitute a
complete lattice.

2.6 Theorem (Eilenberg [36]) The above two correspondences are mutual inverse isomor-
phisms between the lattice of varieties of rational languages and the lattice of pseudovarieties
of finite semigroups.

Schiitzenberger’s Theorem provides an instance of this correspondence, but of course this
by no means says that that theorem follows from Eilenberg’s Theorem. See M. V. Volkov’s
lecture notes in this volume and Section [5| for another important “classical” instance of Eilen-
berg’s correspondence, namely Simon’s Theorem relating the variety of so-called piecewise
testable languages with the pseudovariety J of finite semigroups in which every principal
ideal admits a unique element as a generator. See Eilenberg [36] and Pin [65] for many more
examples.

2.7 Example An elementary example which is easy to treat here is the correspondence
between the variety N of finite and cofinite languages and the pseudovariety N of all finite
nilpotent semigroups. We say that a semigroup S is nilpotent if there exists a positive integer
n such that all products of n elements of S are equal; the least such n is called the nilpotency
index of S. The common value of all sufficiently long products in a nilpotent semigroup
must of course be zero. If the alphabet A is finite, the finite semigroup S is nilpotent with
nilpotency index n, and the homomorphism ¢ : AT — S recognizes the language L, then
either ¢ does not contain zero, so that L must consist of words of length smaller than n,
which implies L is finite, or L contains zero and then every word of length at least n must
lie in L, so that the complement of L is finite.

Since N is indeed a pseudovariety and the correspondence N associating with a finite
alphabet A the set of all finite and cofinite languages L C AT is a variety of rational languages,
by Eilenberg’s Theorem to prove the converse it suffices to show that every singleton language
{w} over a finite alphabet A is recognized by a finite nilpotent semigroup. Now, given a finite
alphabet A and a positive integer n, the set I,, of all words of length greater than n is an ideal
of the free semigroup A" and the Rees quotient A™/I,,, in which all words of I,, are identified
to a zero element, is a member of N. If w ¢ I,,, that is if the length |w]| of w satisfies |w| < n,
then the quotient homomorphism A+t — A™ /I, recognizes {w}. Hence we have N < N via
Eilenberg’s correspondence.

Eilenberg’s correspondence gave rise to a lot of research aimed at identifying pseudovari-
eties of finite semigroups corresponding to combinatorially defined varieties of rational lan-
guages and, conversely, varieties of rational languages corresponding to algebraically defined
pseudovarieties of finite semigroups.
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Another aspect of the research is explained in part by the different character of the two
directions of Eilenberg’s correspondence. The pseudovariety V associated with a variety V
of rational languages is defined in terms of generators. Nevertheless, Proposition [2.5| shows
how to recover from a given semigroup S € V an expression for S as a divisor of a product of
generators so that a finite semigroup S belongs to V if and only if the languages computed
from S according to Proposition belong to V.

On the other hand, if we could effectively test membership in V, then we could effectively
determine if a rational language L C AT belongs to V(A™): we would simply compute the
syntactic semigroup of L and test whether it belongs to V, the answer being also the answer
to the question whether L € V(A™1). This raises the most common problem encountered in
finite semigroup theory: given a pseudovariety V defined in terms of generators, determine
whether it has a decidable membership problem. A pseudovariety with this property is said
to be decidable. Since for instance for each set P of primes, the pseudovariety consisting of all
finite groups G such that the prime factors of |G| belong to P determines P, a simple counting
argument shows that there are too many pseudovarieties for all of them to be decidable. For
natural constructions of undecidable pseudovarieties from decidable ones see [1, [24].

For the reverse direction, given a pseudovariety V one is often interested in natural and
combinatorially simple generators for the associated variety V of rational languages. These
generators are often defined in terms of Boolean operations: for each finite alphabet A a
“natural” generating subset for the Boolean algebra V(A™) should be identified. For instance,
alanguage L C AT is piecewise testable if and only if it is a Boolean combination of languages
of the form A*a1 A* - - - ap,A* with aq,...,a, € A. We will run again into this kind of question
in Subsection [3.3] where it will be given a simple topological formulation.

3 Free objects

A basic difficulty in dealing with pseudovarieties of finite algebraic structures is that in general
they do not have free objects. The reason is quite simple: free objects tend to be infinite.

As a simple example, consider the pseudovariety N of all finite nilpotent semigroups. For
a finite alphabet A and a positive integer n, denoting again by I,, the set of all words of length
greater than n, the Rees quotient A™ /I, belongs to N. In particular, there are arbitrarily
large A-generated finite nilpotent semigroups and therefore there can be none which is free
among them. In general, there is an A-generated free member of a pseudovariety V if and
only if up to isomorphism there are only finitely many A-generated members of V, and most
interesting pseudovarieties of semigroups fail this condition.

In universal algebraic terms, we could consider the free objects in the variety generated
by V. This variety is defined by all identities which are valid in V and for instance for N
there are no such nontrivial semigroup identities: in the notation of the preceding paragraph,
AT /T, satisfies no nontrivial identities in at most |A| variables in which both sides have length
at most n. This means that if we take free objects in the algebraic sense then we loose a lot of
information since in particular all pseudovarieties containing N will have the same associated
free objects.

Let us go back and try to understand better what is meant by a free object. The idea is
to take a structure which is just as general as it needs to be in order to be more general than
all A-generated members of a given pseudovariety V. Let us take two A-generated members
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of V, say given by functions ¢; : A — S; such that ¢;(A) generates S; (i = 1,2). Let T be the
subsemigroup of the product generated by all pairs of the form (¢1(a), p2(a)) with a € A.
Then T is again an A-generated member of V and we have a commutative diagram

A

ah

S1<— T —=~5%

where 7; : T' — §; is the projection on the ¢th component. The semigroup T is therefore more
general than both S; and Sy as an A-generated member of V and it is as small as possible
to satisfy this property. We could keep going on doing this with more and more A-generated
members of V but the problem is that we know by the above discussion concerning N that in
general we will never end up with one member of V which is more general than all the others.
So we need some kind of limiting process. The appropriate construction is the projective (or
inverse) limit which we proceed to introduce in the somewhat wider setting of topological
semigroups.

3.1 Profinite semigroups

By a directed set we mean a poset in which any two elements have a common upper bound.
A subset C of a poset P is said to be cofinal if, for every element p € P there exists ¢ € C
such p < c.

By a topological semigroup we mean a semigroup S endowed with a topology such that
the semigroup operation S x S — S is continuous. Fix a set A and consider the category of
A-generated topological semigroups whose objects are the mappings A — S into topological
semigroups whose images generate dense subsemigroups, and whose morphisms 0 : p — 1,
from ¢ : A — Stoy: A— T, are given by continuous homomorphisms 6 : S — T such
that 8 o ¢ = 1. Now, consider a projective system in this category, given by a directed set I
of indices, for each ¢ € I an object ¢; : A — S; in our category of A-generated topological
semigroups and, for each pair 4,j € I with @ > j a connecting morphism ; ; : p; — ¢; such
that the following conditions hold for all ¢, j, k € I:

e 1); ; is the identity morphism on ¢;;
o ifq > j > k then ka o 1/}7,,] = wi,k'
The projective limit of this projective system is an A-generated topological semigroup ® :
A — S together with morphisms ®; : ® — ¢; such that for all ¢, j € I withi > j, ; jo®; = ®;
and, moreover, the following universal property holds:
for any other A-generated topological semigroup ¥ : A — T and morphisms
V; : U — ¢; such that for all 4,5 € I with i > 7, v; j o ¥; = W, there exists a
morphism 6 : ¥ — ® such that ®; o § = U, for every i € I.

The situation is depicted in the following two commutative diagrams, respectively of mor-
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phisms and mappings:

\\ ' &
\i/ |

¢/

i % S
(2

The uniqueness up to isomorphism of such a projective limit is a standard diagram chasing
exercise. Existence may be established as follows.

Consider the subsemigroup S of the product []
for all 2,5 € I with ¢ > j,

ser Si consisting of all (s;);er such that,

@i j(si) = s; (3.1)
endowed with the induced topology from the product topology. To check that S provides
a construction of the projective limit, we first claim that the mapping ® : A — S given by
®(a) = (pi(a))ier is such that ®(A) generates a dense subsemigroup T" of S. Indeed, since
the system is projective, to find an approximation (¢;);c; € T to an element (s;);e; of S given
by ti; € Kij for a clopen set Kij - Sij containing s;; with j = 1,...,n, one may first take
k € I such that k > i1,...,7,. Then, by the hypothesis that the subsemigroup 7} of Sk
generated by ¢ (A) is dense, there is a word w € A" which in T} represents an element of
the open set ﬂ] 1 wk i, i since this set is non-empty as s; belongs to it. This word w then
represents and element (t;)icr of T which is an approximation as required.

It is now an easy exercise to show that the projections ®; : S — S; have the above universal
property. Note that since each of the conditions only involves two components and ¢; ; is
continuous, S is a closed subsemigroup of the product [[,.; S;. So, by Tychonoff’s Theorem,
if all the S; are compact semigroups, then so is S. We assume Hausdorff’s separation axiom
as part of the definition of compactness.

Recall that a topological space if totally disconnected if its connected components are
singletons and it is zero-dimensional if it admits a basis of open sets consisting of clopen
(meaning both closed and open) sets. See Willard [93] for background in General Topology.

A finite semigroup is always viewed in this paper as a topological semigroup under the
discrete topology. A profinite semigroup is defined to be a projective limit of a projective
system of finite semigroups in the above sense, that is for some suitable choice of generators.
The next result provides several alternative definitions of profinite semigroups.

3.1 Theorem The following conditions are equivalent for a compact semigroup S':
(1) S is profinite;
(2) S is residually finite as a topological semigroup;

(3) S is a closed subdirect product of finite semigroups;
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(4) S is totally disconnected;
(5) S is zero-dimensional.

Proof By the explicit construction of the projective limit we have :> while : is
easily verified from the definitions. For :>, suppose that ® : S — [],.; S; is an injective
continuous homomorphism from the compact semigroup .S into a product of finite semigroups
and that the factors are such that, for each component projection 7; : [[;c; S — S; the
mapping mj0® : § — S; is onto. We build a projective system of S-generated finite semigroups
by considering all onto mappings of the form ®r : S — SF where F' is a finite subset of I and
Op =71 o ® where 7p : Hie[ S; — HieF S; denotes the natural projection; the indexing set
is therefore the directed set of all finite subsets of I, under the inclusion ordering, and for the
connecting homomorphisms we take the natural projections. It is now immediate to verify
that S is the projective limit of this projective system of finite S-generated semigroups.

Since a product of totally disconnected spaces is again totally disconnected, we have
:>. The equivalence <:> holds for any compact space and it is a well-known
exercise in General Topology [93].

Up to this point in the proof, the fact that we are dealing with semigroups rather than
any other variety of universal algebras really makes no essential difference. To complete
the proof we establish the implication :>, which was first proved by Numakura [62].
Given two distinct points s,t € S, by zero-dimensionality they may be separated by a clopen
subset K C S in the sense that s lies in K and t does not. Since the syntactic congruence pg
saturates K, the congruence classes of s and t are distinct, that is the quotient homomorphism
p: S — Synt K sends s and t to two distinct points. Hence, to prove it suffices to show
that Synt K is finite and ¢ is continuous, which is the object of Lemma below. O

As an immediate application we obtain the following closure properties for the class of
profinite semigroups.

3.2 Corollary A closed subsemigroup of a profinite semigroup is also profinite. The product
of profinite semigroups is also profinite. ]

The following technical result has been extended in [2] to a universal algebraic setting in
which syntactic congruences are determined by finitely many terms. See [32] for the precise
scope of validity of the implication 1' in Theorem and applications in Universal
Algebra.

We say that a congruence p on a topological semigroup is clopen if its classes are clopen.

3.3 Lemma (Hunter [44]) IfS is a compact zero-dimensional semigroup and K is a clopen
subset of S then the syntactic congruence pg is clopen, and therefore it has finitely many
classes.

Proof The proof uses nets, sequences indexed by directed sets which play for general topo-
logical spaces the role played by usual sequences for metric spaces [93]. Let (s;)icr be a
convergent net in S with limit s. We should show that there exists ig € I such that, when-
ever i > 19, we have s; pg s. Suppose on the contrary that for every j € I there exists ¢ > j
such that s; is not in the same pg-class as s. The set A consisting of all ¢ € I such that
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s; is not in the pg-class of s is then a cofinal subset of I which determines a subnet (s;);ea
converging to s from outside the pg-class of s.

Now we use the characterization of syntactic congruences on semigroups: for each i € A
there exist x;,vy; € S such that the products x;s;y; and z;sy; do not both lie in K. Note that
if a directed set is partitioned into two parts, one of them must contain a cofinal subset. Hence
for some cofinal subset of indices M we must have all of the x;s;y; with ¢ € M lying in K or all
of them lying in the complement S\ K, while the opposite holds for z;sy;. By compactness
and taking subnets, we may as well assume that the nets (z;);enr and (yi)iens converge,
say to x and y, respectively. By continuity of multiplication in S, the nets (z;s;y;)icps and
(xisY:)ienmr both converge to xsy. Since both K and S\ K are closed, it follows that xsy
must lie in both K and S\ K, which is absurd. Hence the classes of px are open and, since
they form a partition of a compact space, there can only be finitely many of them and they
are also closed. O

3.2 Relatively free profinite semigroups

For a pseudovariety V, we say that a profinite semigroup S is pro-V if it is a projective limit
of members of V. In view of Theorem and its proof, this condition is equivalent to the
profinite semigroup being a subdirect product of members of V and also to being residually V
in the sense that for all distinct s, so € S there exists a continuous homomorphism ¢ : S — T
such that 7' € V and ¢(s1) # ¢(s2).

Let us go back to the construction of free objects for a pseudovariety V. For a generating
set A the idea was to take the projective limit of all A-generated members of V. For set
theoretical reasons this is inconvenient since there are too many such semigroups but nothing
is lost in considering only representatives of isomorphism classes and that is what we do.
So, let Vo be a set containing a representative from each isomorphism class of A-generated
members of V. The set Vg determines a projective system by taking the unique connecting
homomorphisms which respect to the choice of generators. The projective limit of this system
is denoted Q4V.

3.4 Proposition The profinite semigroup Q4V has the following universal property: the
natural mapping v : A — QaV is such that, for every mapping ¢ : A — S into a pro-V
semigroup there exists a unique continuous homomorphism ¢ : QaV — S such that $por =
as depicted in the following diagram:

A—">=Q04V
|
|
\

N

S

Proof Since pro-V semigroups are subdirect products of members of V, it suffices to consider
the case when S itself lies in V. Without loss of generality, we may assume that S is generated
by ¢(A). Then S is isomorphic, as an A-generated semigroup, to some member of Vy and
so we may further assume that S € Vy. But then, from our explicit construction of the
projective limit as a closed subsemigroup of a direct product, it suffices to take ¢ to be the
projection Q4V — S into the component corresponding to (. O
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Since, by usual diagram chasing there is up to isomorphism at most one A-generated
pro-V semigroup with the above universal property, we conclude that Q4V does not depend,
up to isomorphism, on the choice of V. We call QV the free pro-V semigroup on A. A
profinite semigroup is said to be relatively free if it is of the form Q4V for some set A and
some pseudovariety V.

By construction, 4V is an A-generated topological semigroup so that the subsemigroup
04V generated by the image of ¢ is dense in 4V, which explains the line over the capital
omega. From Proposition[3.4]it follows that Q4V is the free semigroup in the variety generated
by V.

The mapping ¢ is injective provided V is not the trivial pseudovariety consisting of single-
ton semigroups. Hence we will often identify the elements of A with their images under &.

3.3 Recognizable subsets

The following result characterizes the subsets of a pro-V semigroup which are recognized by
members of V. The reader may wish to compare it with Hunter’s lemma.

3.5 Proposition Let S be a pro-V semigroup and let K C S. Then the following conditions
are equivalent:

(1) there exists a continuous homomorphism ¢ : S — F such that F € V and K = p 'K ;
(2) K is clopen;
(3) the syntactic congruence px is clopen.

In particular, all these conditions imply that the syntactic semigroup Synt K belongs to V.

Proof Assuming the existence of a function ¢ satisfying , we deduce that K is clopen
since it is the inverse image under a continuous function of a clopen set. For the converse,
suppose K is clopen and let S < [];.; S; be a subdirect product of a family of members of V.
Then K may be expressed as K = SN(K1U---UK,,), where each Ky is a product of the form
[Iicr Xi with X; € S; and X; = S; for all but finitely many indices. Let J be the (finite)
set of all exceptional indices with £ = 1,...,n and consider the projection ¢ : S — [[;c; Si.
Then it is routine to check that ¢ is a continuous homomorphism satisfying the required
conditions. This establishes the equivalence <:>.

If K is clopen then pg is clopen by Hunter’s Lemma. This proves 1' and for the
converse it suffices to recall that K is saturated by px.

Finally, assuming , K is recognized by a semigroup from V. Since the syntactic semi-
group Synt K divides every semigroup which recognizes K by Proposition [2.4] Synt K belongs
to V since V is closed under taking divisors. O

We note that the assumption that Synt K belongs to V for a subset K of a pro-V semigroup
S does not suffice to deduce that K is clopen, as the following example shows. Take S to be
the Cantor set and consider the left-zero multiplication st = s on S. Although one could easily
show it directly, by Theorem S is profinite and hence it is pro-LZ for the pseudovariety
LZ of all finite left-zero semigroups. Let K be a subset of S. Then a simple calculation shows
that the syntactic congruence pg consists of two classes, namely K and its complement.
Hence Synt K belongs to LZ for an arbitrary subset K C S while K does need to clopen.
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We say that a subset L of a semigroup S is V-recognizable if there exists a homomorphism
¢ : S — F into some F € V such that L = ¢~ !'¢L. Proposition leads to the following
topological characterization of V-recognizable subsets of 24V.

3.6 Theorem The following conditions are equivalent for a subset L C Q4V:
(1) L is V-recognizable;
(2) the closure K = L C Q4V is open and L = K N Q4V;
(3) L =KnNQ4V for some clopen K C QaV.

Proof To prove :>, suppose L is recognized by a homomorphism ¢ : Q4V — F such
that F € V and L = ¢ 'pL. By the universal property of Q4V, there exists a unique
continuous homomorphism ¢ : Q4V — F extending ¢. Then K = ¢ '¢L is open and
satisfies K N Q4V = L. Since Q4V is dense in Q4V so is L dense in K, which shows K has
the required properties for .

The implication li is trivial, so it remains to show :>. Suppose holds.
By Proposition there exists a continuous homomorphism v : Q4V — F such that F € V
and K = ¢ 1) K. Let ¢ be the restriction of 1 to Q24V. Then we have L = QuVN K =
QVNyY WK = o9 K and so L is V-recognizable. ]

Another application of Proposition is the following result.

3.7 Proposition The image of a pro-V semigroup under a continuous homomorphism into
a profinite semigroup is pro-V and it belongs to V if it is finite.

Proof Let ¢:S — T be a continuous homomorphism with S pro-V and T profinite. Since
T is a subdirect product of finite semigroups, it suffices to consider the case where T is finite
and ¢ is onto and show that 7' € V. The sets K; = ¢~ 't, with t € T, are clopen subsets of S.
By Proposition 3.5 there is for each ¢ € T' a continuous homomorphism ¢ : S — F; such that
F; € V and ¢; "4y K; = K;. The induced homomorphism 1 : S — F, where F = [Ler F,
has a kernel ker ) which is contained in ker ¢ and so 1" divides F', which shows that indeed
TeV. O

The hypothesis in Proposition that the continuous homomorphism assumes values in
a profinite semigroup cannot be removed as the following example shows. We take again S
to be the Cantor set under left-zero multiplication. It is well-known that the unit interval
T = [0,1] is a continuous image of S and so it is also a continuous homomorphic image if
we endow it with the left-zero multiplication. But of course T is not zero-dimensional and
therefore it is not profinite.

We have seen in Section [2] that one is often interested in describing a variety of rational
languages V by giving a set of generators for the Boolean algebra V(A™T) for each finite
alphabet A. We now aim to characterize this property in topological terms.

3.8 Proposition The following conditions are equivalent for a family F of V-recognizable
subsets of QaV, where F = {L: L € F}:

(1) F generates the Boolean algebra of all V-recognizable subsets of Q4V;
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(2) TF generates the Boolean algebra of all clopen subsets of QaV;
(3) T suffices to separate points of QaV.

Proof Note that, for subsets L, L1, Ly C 94V, we have Ly U Ly = L; U Ly and, by Theo-
rem in case L is V-recognizable, the closure K = L is clopen with K N Q4V = L and
so Q4V\ L = Q4V \ L. Hence a Boolean expression for L in terms of elements of F gives
rise to a Boolean expression for L in terms of elements of F and vice versa. This proves the
equivalence @.

Assume and let s, € S be two distinct points. Since the topology of Q4V is zero-
dimensional, there exists a clopen subset K C Q4V such that s € K and t ¢ K. By
assumption, K admits a Boolean expression in terms of the closures of the elements of F and
therefore it admits an expression as a finitary union of finitary intersections of members of F
and their complements. At least one term of the union must contain s and none of them
can contain ¢, and so we may avoid taking the union. Similarly, we may avoid taking the
intersection, which shows that there is an element of F which contains one of s and ¢ but not
the other. This proves :>.

It remains to show that :>. Let F be the family of all elements of F together with
their complements. Given a closed subset C C Q4V and s € Q4V \ C, for each t € C there
exists K; € 7 such that s ¢ K; and t € K;. Then the K; constitute an open cover of
the closed set C' and so there are t;,...,t, € C such that K = K;, U---U K} contains C
but not s. This shows that we may separate points from closed sets using finitary unions of
elements of F .

Let now C be a clopen subset of Q4V. For each s € C' we can find a member K, of
the Boolean algebra generated by F containing s with empty intersection with the closed
set Q4V \ O, that is such that K; C C. Then the compact set C is covered by the open
sets Ky with s € C and so there exist sj,..., sy, such that K = K, U---U K, covers C
andg/K C C, that is C = K. This shows that C belongs to the Boolean algebra generated
by F. O

3.4 Metric structure

We end this section with a brief reference to a natural metric on finitely generated profinite
semigroups. Let S be a profinite semigroup. Define, for u,v € S,

2 (W) iy £
d(u,v) _{ 0 otherwise (3.2)

where r(u,v) denotes the minimum cardinality of a finite semigroup 7" such that there exists
a continuous homomorphism ¢ : S — T with ¢(u) # ¢(v). Note that d is an ultrametric in
the sense that d: S x S — [0, +00) is a function satisfying the following conditions:

e d(u,v) =0 if and only if u = v;
o d(u,v) =d(v,u);

o d(u,w) < max{d(u,v),d(v,w)}.
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The latter condition is trivial if any two of the three elements u,v,w € S coincide and
otherwise, taking logarithms, we deduce that it is equivalent to the inequality r(u,w) >
min{r(u,v), r(v,w)} which follows from the trivial fact that, if ¢(u) = p(v) and ¢(v) = p(w)
for a function ¢ : S — T, then p(u) = p(w). We call d the natural metric on S.

3.9 Proposition For a profinite semigroup S, the topology of S is contained in the topology
induced by the natural metric and the two topologies coincide in case S is finitely generated.

Proof We denote by B.(u) the open ball {v € S : d(u,v) < €}. Given a clopen subset K
of S, by Proposition there exists a continuous homomorphism ¢ : S — T into a finite
semigroup 7" such that K = ¢ 1@ K. Now, for t € T, the ball B, 7| (t) is contained in ¢ ~1(¢)
and so K is a finite union of open balls.

Next assume that S is finitely generated. Consider the open ball B = By-n(u). Observe
that up to isomorphism there are only finitely many semigroups with at most n elements.
Since S is finitely generated, there are only finitely many kernels of continuous homomor-
phisms from S into semigroups with at most n elements and so their intersection is a clopen
congruence on S. It follows that there exists a continuous homomorphism ¢ : § — T into a
finite semigroup 7' such that p(u) = ¢(v) if and only if r(u,v) > n. Hence B = ¢~ 1pB so
that B is open in the topology of S. 0

We observe that the natural metric d is such that the multiplication is contracting in the
sense that the following additional condition is satisfied:

o d(uv,wz) < max{d(u,w),d(v, z)}.

The completion S of a topological semigroup S whose topology is induced by a contracting
metric inherits a semigroup structure where the product of two elements s,t € S is defined
by taking any sequences (sy), and (t,), converging respectively to s and ¢ and noting that
(Sntn)n is a Cauchy sequence whose limit st does not depend on the choice of the two se-
quences. This gives S the structure of a topological semigroup.

In the case of a relatively free profinite semigroup Q4V, by Proposition the finite
continuous homomorphic images of Q4V are the A-generated members of V. Moreover, by
Proposition [3.4] every homomorphism from Q4V to a member of V has a unique continuous
homomorphic extension to Q4V. We define the natural metric on 24V to be the restriction
to Q4V of the natural metric on Q4V and we observe that, by the preceding remarks, this
is equivalent to defining the natural metric directly on 24V by the formula where now
r(u,v) denotes the minimum cardinality of a semigroup 7' € V such that there exists a
homomorphism ¢ : Q4V — T with p(u) # ¢(v).

We are thus led to an alternative construction of Q4V.

3.10 Theorem For a finite set A, the completion of the semigroup Q AV with respect to the
natural metric is a profinite semigroup isomorphic with 24V.

Proof By Proposition Q 4V is a metric space under the natural metric, and its restriction
to the dense subspace Q4V is the natural metric of 24V. By results in General Topology
[93] Theorem 24.4], it follows that the metric space (Q24V,d) is the completion of (24V, d).
It remains to show that the multiplication of the completion as defined above coincides with
the multiplication of Q4V which follows from continuity of multiplication in QV. O
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4 The operational point of view

It is well known from Universal Algebra that a term w in a free algebra F' on n generators
(the variables) in a variety V induces an n-ary operation on the members S of V basically by
substituting the arguments for the variables and operating in S [31]. This may be formulated
by taking the unique extension of the variable evaluation to a homomorphism ¢ : F' — S and
then computing the image ¢(w). This formulation can be suitably applied to relatively free
profinite semigroups, which is the starting point for this section.

4.1 Implicit operations

Given w € Q4V and a pro-V semigroup S, there is a natural interpretation of w as an
operation on S namely the mapping wg : S4 — S which sends a function ¢ : A — S to H(w)
where ¢ : Q4V — S is the unique continuous homomorphism such that ¢ o ¢ = ¢, where in
turn ¢ : A — Q4V denotes the generating function associated with Q4V as the free pro-V
semigroup on A.

4.1 Proposition The function wg as defined above is continuous and if f : S — T is a con-
tinuous homomorphism between two pro-V semigroups then the following diagram commutes

0

TA—">T
where fA(p) = fog for o € SA.
Proof We first prove the commutativity of the diagram . Consider the diagram
A—>0uV

s

S T

By the universal property of Q4V there is a unique continuous homomorphism m such
that the diagram commutes. Since f o ¢ also has this property, it follows that fop = fo .
Hence we have

wr(fA(9)) = wr(f o) = Fop(w) = (f o @)(w) = f(p(w)) = flws(p)).

which establishes commutativity of diagram .

To prove continuity of the natural interpretation wg, let K C S be a clopen subset. By
Proposition there exists a continuous homomorphism f : S — T such that T" € V and
K = f~'fK. By commutativity of diagram we have

wg'K = wg' fTUK = (£ wp fK.

Since wr is continuous, as T is finite, and f4 is also continuous, we conclude that w;lK is
clopen. Hence w; is continuous. ]
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We say that the operation w commutes with the homomorphism f : S — T if the di-
agram commutes. An operation w = (wg)gsey with an interpretation wg : sS4 - A
on each S € V is called an A-ary implicit operation on V if it commutes with every ho-
momorphism f : S — T between members of V. The natural interpretation provides a
representation

O : Q4V — {A-ary implicit operations on V}

w — (ws)sev

Since Q4V is residually V, given distinct u,v € Q4V there exists S € V and a continuous
homomorphism ¢ : 24V — S such that p(u) # p(v), that is ug(¢ o t) # vs(¢ o) and so we
have ug # vg, which shows that © is injective.

4.2 Theorem The mapping © is a bijection.

Proof Let w = (wg)sev be an A-ary implicit operation on V. We exhibit an element
s € 24V such that ©(s) = w. For this purpose, we take a specific representation of QV
as a projective limit of members of V namely as the projective limit of a projective system
containing one representative from each isomorphism class of A-generated members of V:
wi + A — S; (i € I) with connecting morphisms ; ; : p; — ¢; (i > j). Let s; = wg,(pi).
Since w is an implicit operation, a simple calculation shows that v; ;(s;) = s; whenever i > j.
Hence (s;);e; determines an element s of the projective limit Q4 V.

It remains to show that ©(s) = w, that is s7 = wr for every T € V. Let ¢ € T4. Since
both s and w are implicit operations, we may as well assume that ¢(A) generates T. Hence
up to isomorphism ¢ : A — T is one of the ¢; : A — 5; and so we may assume that the two
mappings coincide. Then we have

stT(p) = s5,(pi) = @i(s) = si = wg, (i) = wr(p)

where the middle step comes from the observation that ; is the projection on the ith com-
ponent. This completes the proof of the equality ©(s) = w. O

In view of Theorem [4.2| we will from hereon identify members of Q4V with A-ary implicit
operations on V. It is this operational point of view that explains the capital omega ) in
the notation for free pro-V semigroups. Starting from an implicit operation on V we realize
that it has a natural extension to an operation on all pro-V semigroups which commutes with
continuous homomorphisms. Treating a positive integer n as a set with n elements, we may
speak of n-ary implicit operations.

Recall that Q4V denotes the subsemigroup of Q4V generated by the image of the natural
generating mapping ¢ : A — Q4V. Note that natural interpretation of «(a) for a € A is
given by ¢ € S4 — ¢(a), that is the projection on the a-component if we view S4 as a
product. Hence 24V corresponds under the above mapping © to the semigroup of A-ary
implicit operations generated by these component projections, that is the semigroup terms
over A as interpreted in V. The elements of 24V are also called explicit operations.

For a class € of finite semigroups, denote by V(€) the pseudovariety generated by C. In
case € = {S1,...,Sn}, we may write V(S1,...,S,) instead of V(C). Note that V(Si,...,S,) =
V(S x -+ x Sp).
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4.3 Proposition Let S be a finite semigroup, V. = V(S), and let A be a finite set. Then
there is an embedding QaV — SS* and so QuV is finite and QaV = Q4V.

Proof Define the mapping ® : Q4V — 54 by sending each w € Q4V to its natural
interpretation wg : S4 — S. Since implicit operations commute with homomorphisms, if two
implicit operations u,v € Q4V coincide in S then they must also coincide in all of V, which
consists of divisors of finite products of copies of S. Hence our mapping is injective and the
rest of the statement follows immediately. O

If V and W are pseudovarieties with V. C W, then an implicit operation w € QW
determines an implicit operation wly € 24V by restriction: (wg)sew +— (wg)sev. The
mapping

QAW — QuV

w = wly

is called the natural projection. In terms of the construction of the projective limit, this is
indeed a projection which is obtained by disregarding all components in the product ], ; S;
corresponding to A-generated members of W which are not in V. This proves the following
result.

4.4 Proposition For pseudovarieties V and W with V C W, the natural projection Q W —
Q 4V is an onto continuous homomorphism. ]

4.2 Pseudoidentities

By a V-pseudoidentity we mean a formal equality u = v, with u,v € Q4V for some finite
set A. If ug = vg then we say that the pseudoidentity u = v holds in a given pro-V semigroup
S, or that S satisfies u = v, and we write S |= u = v. Note that S = u = v for u,v € QuV
if and only if, for every continuous homomorphism ¢ : Q4V — S, the equality ¢(u) = o(v)
holds. For a subclass € C V, we also write C = u =v if S |=u = v for every S € C. The
following result is immediate from the definitions.

4.5 Lemma Let V and W be pseudovarieties with V. C W and let © : QuW — Q4V be the
natural projection. Then, for u,v € QAW, we have V |= u = v if and only if n(u) = w(v). O

For a set ¥ of V-pseudoidentities, we denote by [X]y (or simply [X] if V is understood
from the context) the class of all S € V which satisfy all pseudoidentities from . From the
fact that implicit operations on V commute with homomorphisms between members of V, it
follows easily that [X] is a pseudovariety contained in V. The converse is also true.

4.6 Theorem (Reiterman [70]) A subclass V of a pseudovariety W is a pseudovariety if
and only if it is of the form V = [E]w for some set ¥ of W-pseudoidentities.

Proof Let V be a pseudovariety contained in W and let ¥ denote the set of all W-pseudoid-
entities u = v satisfied by V with u,v € Q4W and A C X, where X is a fixed countably
infinite set. Then we have V C [X] and we claim equality holds. Let U = [X] and let
S € U. Then there exists A C X and an onto continuous homomorphism ¢ : QU — S.
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Let 7 : Q4U — Q4V be the natural projection. By Lemma if u,v € Q4U are such that
m(u) = w(v) then V = u = v and so v = v is a pseudoidentity from ¥ so that S = u = v and
©(u) = @(v). This show that ker 7 C ker ¢ and therefore there exists a unique homomorphism
Y : Q4V — S such that the following diagram commutes:

QAU L>§AV

e
e
@l //w
~
S

We claim that 1 is continuous. Indeed, given a subset K C S, by continuity of ¢ the set o1 K
is closed and therefore by continuity of 7, 1y 'K = 71 'K is closed. Hence 1/ is an onto
continuous homomorphism. It follows that S € V by Proposition Hence V = [X]w. O

There are by now many proofs of this result. It is only fair to mention Banaschewski’s
proof [26] which was obtained independently of Reiterman’s proof and which suggested to look
at sets of implicit operations as algebraic-topological structures, a viewpoint which proved to
be very productive.

In these notes from hereon we will always take the W of Theorem to be the pseu-
dovariety S of all finite semigroups, that is all pseudoidentities will be S-pseudoidentities. A
set ¥ of pseudoidentities such that V = [X] is called a basis of pseudoidentities for V. The
pseudovariety V will be called finitely based if it admits a finite basis of pseudoidentities.

To give examples illustrating Reiterman’s Theorem, we now describe some important
unary implicit operations on finite semigroups. There are several equivalent ways to describe
them so we will choose one which is economical in the sense that it requires essentially no
verification. For a finite semigroup S, s € S, and k € Z, the sequence (s™1*%),, becomes
constant for n sufficiently large, namely n > max{|k|,|S|} suffices. Hence, in a profinite
semigroup S, for s € S and k € Z, the sequence (s™1*),, converges; we denote its limit s“*.
In particular, we have implicit operations 2*t* € ;S where z is the free generator of O;S.

Note that, in a finite semigroup S, for given s € S, there must be some repetition in
the powers s, s2, s, ... and so there exist minimal positive integers k, ¢ such that s* = s*+¢.
Let n be the unique integer such that ¥ < n < k + £ and ¢ divides n. Then the powers
sk skt sF T constitute a cyclic group with idempotent s” and generator s”1!, whose
inverse is s2"~1. Since s™ = s” for all m > n, it follows that s is the unique idempotent
which is a power of s (with positive exponent) and s*~! is the inverse of s“*! in the maximal
subgroup with idempotent s*. Hence, in a profinite group G, we have the equality g*~ = g~1.

From the above unary implicit operations and multiplication one may already easily con-
struct lots of implicit operations such as z*y*, (z**ly*t1)« and the commutator [z,y] =
gLy lgwtlywtl  These examples illustrate how implicit operations are composed: given
m-ary implicit operations wy, ..., w, € ,,V and an n-ary implicit operation v € Q,V, the
natural interpretation of v in Q,,V allows us to define v(wi, ..., wy) € Q,,V to be the op-
eration vg (w1, ...,wy). In particular, multiplication of implicit operations is obtained by
applying the binary explicit operation z12z2 to two given operations. An important property
of composition is that it is continuous.
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4.7 Proposition Composition of implicit operations of fized arity as defined above is a con-
tinuous function

LV % (V)" — OV

(anlv-"7wn) H'U(’U]l,...,wn)

Proof Given a clopen subset K C Q,,V, by Proposition there exists a continuous ho-
momorphism ¢ : Q,V — S such that S € V and K = ¢ 'pK. Let W = V(S). Then ¢
factors through the natural projection 7, : Q,V — Q,W and so we may as well assume
that S = ,,W. Consider the following diagram where 7, : Q,V — Q,W is also a natural
projection and the horizontal arrows represent composition of implicit operations defined for
each of the pseudovarieties V and W as above:

AV x (A V)" —— 0,V

an(ﬂm)"l \Lﬂ'm

QW x (W) —= 0, W

The commutativity of the diagram follows from the fact that implicit operations commute
with continuous homomorphisms between pro-V semigroups:

Tm(v(wi, ..., wn)) = Tm(vg y(wi,. .., w,))
= vg, w(Tm(W1), ..., T (wn)) = mp (V) (Tm (W1), - - ., T (wn))

Since the bottom line is continuous, as it is a mapping between discrete spaces, it follows
that the inverse image by the top line of the clopen set K is again clopen. O

+

The calculus of implicit operations of the form z“** under the operations of multiplication

and composition is quite simple.

4.8 Lemma The set of unary implicit operations of the form x*tk, with k € Z constitutes
a ring whose addition is multiplication of implicit operations and whose multiplication is
composition of implicit operations. It is isomorphic with the ring Z of integers.

Proof The result is immediate from the following equalities where we use continuity of
composition as given by Proposition [L.7}

. ! ! . ! . !
xw-i—kxw-i-f — lim xn.-l—kxn.-i-é — lim x2(n.)+k+€ — lim xn.+k+€ _ xw-i—k—%
n—o00 n—0o0 n—o0
. ! ! . 12 ! . !
(xw-i-k)w-&-@ — lim (l_n.-i-k)n.-&-é — lim ™) HEEOMY+ERE _ 15 RO — petkE
n—oo n—oo n—oo

4.9 Remark Let Z be the profinite completion of the ring Z of integers. It may be obtained
as the completion of Z with respect to the metric d of Subsection defined similarly in the
language of rings. Since Z is the free commutative ring on one generator and it is residually
finite, Z is isomorphic to ;R for the pseudovariety R of finite commutative rings. It follows
that the non-explicit unary implicit operations constitute a ring under multiplication and
composition which is isomorphic to the completion 7. This completion can be easily seen
to be the direct product of the p-adic completions Z, of the ring Z as p runs over all prime
numbers.
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We are now ready to present some examples regarding Reiterman’s Theorem.

4.10 Examples (1) The pseudovariety A of all finite aperiodic semigroups is defined by
the pseudoidentity %71 = 2 since all subgroups of a semigroup are trivial if and only
if all its cyclic subgroups are trivial.

(2) The pseudovariety N of all finite nilpotent semigroups is defined by the pseudoidentities
¥y = yz* = ¥ which we abbreviate as z% = 0.

(3) The pseudovariety G of all finite groups is defined by the pseudoidentities ¥y = ya* =y
which we naturally abbreviate as x* = 1.

(4) For a prime p, the pseudovariety G, of all finite p-groups cannot be defined by pseu-
doidentities involving only products and the operation z~!. Indeed, since G | 2~ =
z~1, all such pseudoidentities may be viewed as ordinary identities of group words and
it is well known that free groups are residually G, [28§].

4.3 Iteration of implicit operations

The last example from the previous subsection shows that one needs a richer language of
implicit operations than that provided by the multiplication plus the unary operations of
the form z#* to define some pseudovarieties in terms of pseudoidentities. A powerful tool
for constructing implicit operations is infinite iteration of composition. In this subsection,
we develop a more general framework where not only infinite iteration but arbitrary implicit
operations may be performed, namely we show that the monoid of continuous endomorphisms
of a finitely generated profinite semigroup is profinite. Our arguments are not the most
economical but the end result is the best which is presently known.

For a topological semigroup S, denote by End .S the monoid of its continuous endomor-
phisms. Note that End S is a subset of the set of functions S°. In general it is a delicate
question which topology to consider on a function space. For S° the two most natural alter-
natives are the product topology, also known as the topology of pointwise convergence, and
the compact-open topology, for which a subbase consists of the sets of functions of the form

V(K,U)={f €5%: f(K) CU}

where K C S is compact and U C S is open [93]. These topologies retain their names
when the induced topologies are considered on subspaces of S°. Note that a subbase for the
product topology is given by the sets of the form V({s},U) with s € S and U C S open and
so the pointwise convergence topology is contained in the compact-open topology.

For the sequel, we require the following very simple yet very useful observation.

4.11 Lemma Let S be a profinite semigroup and let d be the natural metric on S. Then
every f € End S is a contracting function in the sense that, for all s1,s9 € S,

d(f(s1), f(s2)) < d(s1,52). (4.2)

Proof If s; = sy then the inequality (4.2)) is obvious since both sides are zero. Otherwise,
let n = r(s1,s2), as defined in Subsection Given a continuous homomorphism ¢ :
S — T into a finite semigroup with |T'| < n, the composite p o f : S — T is again a
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continuous homomorphism and so, by definition of r(s1,s2), we have p(f(s1)) = ¢(f(s2)).
Hence 7(f(s1), f(s2)) > n, which proves (4.2]). O

The pointwise convergence topology has the advantage of being easier to handle in terms
of convergence since a net converges in it if and only if it converges pointwise. The following
result is an illustration of this fact.

4.12 Lemma If S is a finitely generated profinite semigroup then End S is compact with
respect to the pointwise convergence topology.

Proof For each s,t € S, the set {¢ € S : p(st) = (s)p(t)} is closed since the equation
that defines it only involves three components of the product, namely the components indexed
by st, s, and ¢ and the prescription on those three components, as a subset of 2, is the graph
of multiplication, which is assumed to be continuous. Hence the monoid of (not necessarily
continuous) endomorphisms of S is closed in S5 with respect to the pointwise convergence
topology.

Next, let (fi)icr be a net in End S converging to some f € S°. Given s,t € S, then
by continuity of the natural metric d, we have d(f(s), f(t)) = lim;c; d(fi(s), fi(t)) while
d(fi(s), fi(t)) < d(s,t) by Lemma [.11] Hence d(f(s), f(t)) < d(s,t) which, in view of
Proposition 3.9} shows that f is continuous. Since f is an endomorphism of S by the preceding
paragraph, we conclude that f € End.S. Thus End S is a closed subset of the compact space
SS9 and, therefore, End S is compact. ]

On the other hand, it is well known that for instance for locally compact .S, the compact-
open topology on End S implies continuity of the evaluation mapping

e:(EndS)xS—S
(f8) = f(s)

Indeed, for an open subset U C S and (f,s) € (EndS) x S such that f(s) € U, since f is
continuous and S is locally compact there is some compact neighbourhood K of s such that
J(K) CU. Then (V(K,U)NEndS) x K is a neighbourhood of (f,s) in (End S) x S which
is contained in e1(U). See [93] for more general results and background.

The comparison between the two topologies on End S is given by the following result.

4.13 Proposition Let S be a finitely generated profinite semigroup. Then the pointwise
convergence and compact-open topologies coincide on End S.

Proof It remains to show that every set of the form V(K,U)NEnd S with K C S compact
and U C S open is open in the pointwise convergence topology of EndS. Without loss of
generality, since S is zero-dimensional we may assume that U is clopen. Consider the open
cover U U (S'\ U). By Proposition this is also an open cover in the topology induced by
the natural metric d. By Lebesgue’s Covering Lemma [93, Theorem 22.5], there exists § > 0
such that every subset of S of diameter less than ¢ is contained in either U or S\ U.
Consider the cover of K by the open balls Bs(s) of radius § centered at points s € K. By
Proposition these balls are open in the topology of S and so, since K is compact, there
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are finitely many points s1, ..., s, € K such that
n
K C | Bs(si). (4.3)
i=1

Let f € V(K,U)NEndS and let

W = (\V({si}, Bs(f(5:))) NEnd S.

=1

Then W is an open set of End S in the pointwise convergence topology which contains f.
Hence it suffices to show that W C V(K,U). Let g € W and s € K. By (4.3), there
exists ¢ € {1,...,n} such that d(s,s;) < §. By Lemma [4.11] we have d(g(s),g(s;)) <. On
the other hand, since g € V({s;}, Bs(f(si))), we obtain d(g(s;), f(s;)) < 6. Since d is an
ultrametric, it follows that d(g(s), f(s;)) < 0. Finally, as f(s;) € U since f € V(K,U), we
conclude by the choice of ¢ that g(s) € U, which shows that g € V(K,U). O

For the case of finitely generated relatively free profinite semigroups, the following result
was already observed in [19] as a consequence of a result from [6]. We provide here a direct
proof of the more general case without the assumption of relative freeness.

4.14 Theorem Let S be a finitely generated profinite semigroup. Then End S is a profinite
monotid under the pointwise convergence topology and the evaluation mapping is continuous.

Proof By Proposition the pointwise convergence and compact-open topologies coin-
cide on End S. Hence the evaluation mapping € : (End S) x S — S is continuous.

Since S is totally disconnected, so is the product space S° and its subspace End S. More-
over, End S is compact by Lemma Hence, by Theorem to prove that End S is a
profinite monoid it suffices to sow that it is a topological monoid, that is that the composition
w1 (End S) x (End S) — End S is continuous, for which we show that, for every convergent
net (fi,9;) — (f,g) in (End S) x (End S), we have f; 0o g; — f og. For the pointwise con-
vergence topology the latter means f;(gi(s)) — f(g(s)) for every s € S. This follows from
fi — f together with g;(s) — g¢(s) since the evaluation mapping is continuous. O

Thus, if S is a finitely generated profinite semigroup then the group Aut S of its continuous
automorphisms is a profinite group since it is a closed subgroup of End S (cf. Corollary .
In particular, the group Aut G of continuous automorphisms of a finitely generated profinite
group G is profinite for the pointwise convergence topology, a result which is useful in profinite
group theory [76]. Moreover, since one can find in [76] examples of profinite groups whose
groups of continuous automorphisms are not profinite, we see that the hypothesis that S is
finitely generated cannot be removed from Theorem

Now, for a finite set A, Q45 is a finitely generated profinite semigroup and so End Q45 is a
profinite monoid. Since 245 is a free profinite semigroup on the generating set A, continuous
endomorphisms of Q45 are completely determined by their restrictions to A. For €,S we
may then choose to represent an element ¢ € End2,S by the n-tuple (¢(z1),...,¢(xn))
where z1,...,x, are the component projections. When n is small, we may write x,y, z,, ...
or a,b,c,d, ... instead of x1,x2,x3, x4, ... respectively.
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In the case n = 1, take p € End QS determined by the 1-tuple (z). Then ¢ has an
w-power in End ;S and we may consider the operation ¢“(z) which we denote 2™ since
w . k! . mk!
2" =¢¥(z) = lim ¥ (x) = lim 2™ .
k—o0 k—o0
4.15 Examples (1) It is now an easy exercise, which we leave to the reader, to show that,
for a prime p, G, = [zP* = 1].

(2) Let Gy denote the pseudovariety of all finite nilpotent groups. Consider the endomor-
phism ¢ € End Q5S defined by the pair ([z,y],y) where [z,y] denotes the commutator
defined earlier. Denote by [z, ,y] the implicit operation ¢“(x). Then it follows from a
theorem of Zorn [94] [77] that Guy = [ [z, wy] = 1].

(3) Let Ggo1 denote the pseudovariety of all finite solvable groups. Let ¢ € End 23S be de-
fined by the triple ([yzy“ !, z22*~1], ¥, 2) and let w = ©*¥(z), which is a ternary implicit
operation. Using J. Thompson’s list of minimal non-solvable simple groups, arithmetic
geometry and computer algebra and geometry, Bandman et al [27] have recently estab-
lished that Ggo = [w(x*~2y“~ 1z, z,5) = 1]. Since this provides a two-variable pseu-
doidentity basis for Ggo|, as an immediate corollary one obtains the Thompson-Flavell
Theorem stating that a finite group is solvable if and only if its 2-generated subgroups
are solvable. The fact that the pseudovariety Ggo is finitely based, and therefore it
may be defined by a single pseudoidentity of the form v = 1, was previously proved by
Lubotzky [56].

ZXZ

Having established the foundations of the theory of profinite semigroups, the remainder of
these notes is dedicated to surveying some results in the area which are meant to introduce the
reader to recent developments and reveal the richness and depthness of the already existing
theory. Most proofs will be omitted. Naturally, this survey will not be exhaustive and it
unavoidably reflects the author’s personal preferences and tastes.

5 Free pro-J semigroups and Simon’s Theorem

For details and proofs of the results in this section, see [3].

Recall that J denotes the pseudovariety consisting of all finite semigroups in which every
principal ideal admits a unique element as its generator. The letter J comes from Green’s
relation J which relates two elements of a semigroup if they generate the same principal
ideal. Hence J consists of all finite J-trivial semigroups, that is finite semigroups in which the
relation J is trivial. It is an exercise to show that

J=[(zy)” = (yo)*, 2" = 2] = [(xy)“z = (zy)” = y(ay)“]. (5.1)

Since J D N, J satisfies no nontrivial semigroup identities and so Q4J ~ AT is the free
semigroup on A.

We recall next a theorem which was already mentioned in Section 2| A language L C A™
is said to be piecewise testable if it is a Boolean combination of languages of the form

A*a1A* - -a, A", (5.2)
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The word aj - - - a,, is said to be a subword of an element w € QS if w belongs to the closure
of the language (|5.2)).

By taking Boolean combinations of languages of the form we may obtain, for each
positive integer N, the classes of the congruence ~n on AT which identifies two words if
they have precisely the same subwords of length at most N. Conversely, a language of the
form is saturated by the congruence ~y. Hence a language L C AT is piecewise testable
if and only if it is saturated by some congruence ~y.

The language (5.2)) is J-recognizable: in view of the preceding paragraph, this can be
proved by noting that for words u and v, the words (uv)”™ and (vu)Y are in the same ~ -
class, and the same holds for the words «N*t! and «”, which establishes that the quotient
semigroup A1/~ satisfies the first set of pseudoidentities in .

5.1 Theorem (Simon [80]) A language L C A" over a finite alphabet is piecewise testable
if and only if it is J-recognizable.

In terms of Eilenberg’s correspondence, Simon’s Theorem says that the variety of lan-
guages associated with J is the variety of piecewise testable languages. In topological terms,
Simon’s Theorem says that the closures in Q4J of the languages of the form suffice
to separate points (cf. Proposition . In other words, implicit operations over J can be
distinguished by looking at their subwords. This is certainly not true for implicit operations
over S as for instance (zy)“ and (yz)“ have the same subwords.

So, it should be possible to prove Simon’s Theorem by developing a good understanding of
the structure of the finitely generated free pro-J semigroups Q4J. This program was carried
out by the author in the mid-1980’s motivated by a question raised by I. Simon as to whether
Q4J is countable.

Recall that an element s of a semigroup S is said to be regular if there exists t € S such
that sts = s; such an element ¢ is called a weak inverse of s. Then u = tst is such that
sus = s and usu = u; an element u € S satisfying these two equalities is called an inverse
of s. Semigroups in which every element has a unique inverse are called inverse semigroups.
They are precisely the regular semigroups of partial bijections of sets and play an important
role in various applications [54].

If s and t are inverses in a semigroup S then st is an idempotent and s J st and so regular
elements are J-equivalent to idempotents. Hence in a J-trivial semigroup the regular elements
are the idempotents.

For words u,v € AT, one can use the pseudoidentities in to deduce that J satisfies
the pseudoidentity u* = v* if and only if 4 and v contain the same letters.

Consider the semilattice P(A) of subsets of A under union. Since it is J-trivial, the
function AT — P(A) which associates with a word u the set of letters occurring in it extends
uniquely to a continuous homomorphism ¢ : Q4J — P(A). We call it the content function.
The result in the preceding paragraph may then be stated as saying that an idempotent
in Q4J of the form u* is completely characterized by its content c¢(u®) = c(u). Since every
element v € Q4J is the limit of a sequence of words (v,,),, and we may assume that (c(vy,))n
is constant, if v is idempotent then

| . ! . .
v=2ov"=0v" = lim v =0v* = lim v¥ = lim v* =u
n—oo n—oo n—oo

w

where u is any word with c¢(u) = ¢(v).
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Now, idempotents of Q24J may be characterized by the property that whenever a word u
is a subword then so is u™ for every n > 1. This leads to the following result.

5.2 Theorem FEvery element of QaJ admits a factorization of the form ugv{uy - - v¥uy,
where the u;,v; are words, with the u; possibly empty and each v; with no repeated letters.
Furthermore, one may arrange for the following to hold:

e no u; ends with a letter occurring in vi41;
e no u; starts with a letter occurring in v;;

e if u; is the empty word, then the contents c(v;) and c(viy1) are incomparable under
inclusion.

Theorem answers Simon’s question: for A finite, the semigroup Q4J is countable and
it is in fact generated by A together with its 214 — 1 idempotents. This suggests viewing
Q4J as an algebra of type (2,1) under multiplication and the w-power. The semigroup Q4J
becomes a free algebra in the variety of algebras of this type generated by J and Theorem
suggests a canonical form for terms in this free algebra. First, Theorem already implies
that every such term is equal in Q4J to a term of the form described in the theorem. To
distinguish terms in canonical form, one may use subwords and thus prove at the same time
Simon’s Theorem.

5.3 Theorem Two terms in the form described in Theorem are distinct in QaJ if and
only if they have distinct sets of subwords.

One may more precisely bound the length of the subwords which are necessary to distin-
guish two such terms. Recently, in work whose precise connection with the above remains to
be determined, Simon [81] has proposed a very efficient algorithm to distinguish two words
by their subwords. For more on the significance in Mathematics and Computer Science of
Simon’s Theorem, see the lecture notes of M. V. Volkov in this volume.

6 Tameness

This section goes deeper into decidability problems for pseudovarieties. It grows out of
[16l 15, [7]. The reader is referred to those publications for details.
Let ¥ be a finite system of equations of the form v = v with u,v € X*. For example
such a system might be
xy = z
{ zr = ty

We impose on the variables rational constraints: for each x € X, we choose a rational language
L, C AT where A is another alphabet. A solution of the system in an A-generated profinite
semigroup ¢ : A — S is a mapping ¥ : X — 4S5 such that

(1) 9 (z) € L, for every variable z € X,

(2) @ o(u) = ¢ o(v) for every equation (u = v) € %,
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where the various mappings are depicted in the following commutative diagram:

N

QxS 3 Q4S 2 S

One may compute from the constraints a finite semigroup 7" and a homomorphism § : AT — T
recognizing all of them. Let U be the closed subsemigroup of 7" x S generated by all elements
of the form u(a) = (0(a), p(a)) with a € A, and let p : Q4S — U be the induced continuous
homomorphism. Then the above conditions and may be formulated in terms of the
composite v = /uﬂ by stating the following, where 7 : U — T and m : U — S are the
component projections:

(1) mu(x) € mipuL, for every variable x € X;

(2) mov(u) = mar(v) for every equation (u =v) € X.

A

Q45 S

2

In particular, if S is finite then one can test effectively whether a solution exists in .S.

The semigroup U is an example of what is called a “relational morphism”. More generally,
a relational morphism between two topological semigroups S and 7' is a relation 7 : S —
T with domain S which is a closed subsemigroup of the product S x T. A continuous
homomorphism and the inverse image of an onto continuous homomorphism are relational
morphisms and every relational morphism may be obtained by composition of two such
relational morphisms. Relational morphisms for monoids are defined similarly.

The following is a compactness result whose proof may be obtained by following basically
the same lines as in the proof of the equivalence <:> in Proposition

6.1 Theorem The following conditions are equivalent for a finite system % of equations with
rational constraints over the finite alphabet A:

(1) X has a solution in every A-generated semigroup from V;
(2) X has a solution in every A-generated pro-V semigroup;
(3) X has a solution in Q4V.

A system satisfying the conditions of Theorem[6.1]is said to be V-inevitable. A decidability
property for a pseudovariety V with respect to a given recursively enumerable set C of such
systems is whether there is an algorithm to decide whether a given ¥ € C is V-inevitable.
Before examining the relevance of such a property, we introduce a few more precise notions.
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An implicit signature is a set o of implicit operations (over S) which contains multi-
plication. It is viewed as an enlarged algebraic language for which profinite semigroups
immediately inherit a natural structure by giving the chosen implicit operations their natural
interpretation. Note that the subalgebra Q%V of Q4V generated by A is precisely the free
o-algebra in the variety generated by V.

The signature x = {_-_, “~1} is called the canonical signature since most implicit
operations which are commonly used are terms in its language. For finite groups, it becomes
the natural signature, with multiplication and inversion. In particular, since free groups are
residually finite, Q0 G is the free group on A.

Say V is C-tame if there is an implicit signature o such that

(1) o is recursively enumerable;
(2
(
(

) the operations in ¢ are computable;
3) the word problem for Q9V is decidable;
)

4) for every V-inevitable ¥ there is a solution 1) : X — Q4S for Q4V which takes its values
in Q9S.

Under the above conditions, we may also say that V is C-tame with respect to o. In case C
consists of all finite systems over a fixed countable alphabet, then we say that V is completely
tame if it is C-tame.

6.2 Theorem Let C be a recursively enumerable set of finite systems of equations with ra-
tional constraints and suppose V is a C-tame pseudovariety. Then it is decidable whether a
given % € C is V-inevitable.

Proof Let V be C-tame with respect to an implicit signature o. To prove the theorem it
suffices to effectively enumerate those > € € that are V-inevitable and those that are not.

One can start by enumerating all systems > € €. Since V is C-tame with respect to o, if
Y is V-inevitable then there is a solution 1 : X — QS for ¥ in Q4V that takes its values
in 9S. The candidates for such solutions can be effectively enumerated in parallel with the
systems, as ¢ is recursively enumerable, the constraints can be effectively tested by computing
operations in their syntactic semigroups, and the equations can be effectively tested by using
a solution of the word problem for 29V. This provides an effective enumeration of all V-
inevitable systems in C.

To enumerate those systems in € that are not V-inevitable, we try out pairs of systems 3
in C together with candidates for A-generated semigroups S € V. We already observed that
under these conditions one can test effectively whether a solution exists in S and if turns out
it does not, we output the system as one that is not V-inevitable. ]

One class of systems which the author has introduced for the study of semidirect products
of pseudovarieties (cf. Section [7]) consists of systems associated with finite directed graphs: to
each vertex and edge in the graph one associates a variable and an equation xy = z is written
if y is the variable corresponding to an edge which goes from the vertex corresponding to x
to the vertex corresponding to z. We will call a pseudovariety graph-tame if it is tame with
respect to systems of equations arising in this way.

Here are some examples of tame pseudovarieties.
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6.3 Example The pseudovarieties N and J are completely tame with respect to the canonical
signature x. Both results follow from the knowledge of the structure of the corresponding
relatively free profinite semigroups and the solution of their word problems. In the case of N
this is quite simple. In fact, Q4N is obtained from the free semigroup Q4N ~ A* by adjoining
a zero element, which is topologically the one-point compactification for the discrete topology
on Q4N. Hence a s-term is zero in Q4N if and only if it involves the (w—1)-power. Assuming
a finite system has a solution in Q4N, given by a function ¢ : X — Q4S, we modify 1 on
those variables x for which ¥ (x) is not explicit as follows. From Theorem it follows
that there exists a factorization 1 (x) = uv“w with u,v,w € Q4S. Since the constraint for
x translates into a condition of the form 1 (z) belongs to a given clopen subset of Q4S and
Y(z) is zero in Q4N, we may replace u,v,w by words. This changes () to a k-term by
maintaining a solution in Q4N. See [7] for details.

6.4 Theorem (Almeida and Delgado [13]) The pseudovariety Ab of all finite Abelian
groups is completely tame with respect to k.

The proof of Theorem amounts to linear algebra over the profinite completion Z
of the ring of integers, which we have already observed to be isomorphic with ;G under
multiplication and composition. From work of Steinberg [83] it follows that the pseudovariety
Com of finite commutative semigroups is also competely tame with respect to k.

6.5 Theorem (Ash [22]) The pseudovariety G of all finite groups is graph-tame with respect
to K.

Theorem is considered one of the deepest results in finite semigroup theory. In its
original version, it was proved by algebraic-combinatorial methods in a somewhat different
language; see [5l, [12] for a translation to the language of these notes. An independent proof
of the case of 1-vertex graphs, which is already quite nontrivial was obtained using profinite
group theory where the result translates to a conjecture which had been proposed by Pin
and Reutenauer [66], namely the following statement, where by the profinite topology of the
free group we mean the induced topology from the free profinite group or equivalently the
topology whose open subgroups are those of finite index.

6.6 Theorem (Ribes and Zalesskil [74]) The product of finitely many finitely generated
subgroups of the free group is closed in the profinite topology of the free group.

Theorem in turn generalizes a theorem of M. Hall [3§] which is the case of just one
subgroup. The interest in these results will be explained in more detail in Section [7] Finally,
it follows from a result of Coulbois and Khélif [33] that G is not completely tame with respect
to k. At present it is not known whether G is completely tame with respect to some implicit
signature.

There are some surprising connections of graph-tameness of G with other areas of Math-
ematics and in fact the result was rediscovered in disguise in Model Theory. We say that a
class R of relational structures of the same type has the finite extension property for partial
automorphisms (FEPPA for shortness) if for every finite R € R and every set P of partial
automorphisms of R, if there exists an extension S € R of R for which every f € P extends
to a total automorphism of S, then there exists such an extension S € R which is finite. For a
class R of relational structures, let Excl R denote the class of all structures S for which there
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is no homomorphism R — S with R € R where by a homomorphism of relational structures
of the same type we mean a function that preserves the relations in the forward direction.
Now, we have the following remarkable statement.

6.7 Theorem (Herwig and Lascar [41]) For every finite set R of finite structures of a
finite relational language, FxclR satisfies the FEPPA.

Herwig and Lascar recognized this result as extending Ribes and Zalesskii’s Theorem and
provided a general translation into a property of the free group. Delgado and the author
[11, 12] in turn recognized that property of the free group as being equivalent to Ash’s
Theorem.

The following two examples provide another two applications of Ash’s Theorem which
additionally use results from the theory of regular semigroups. See the quoted papers for
appropriate references.

6.8 Example Let OCR be the class consisting of all finite semigroups S which are unions
of their subgroups (in which case we say S is completely regular) and in which the products
of idempotents are again idempotents (in which case S is said to be orthodoz). In terms
of pseudoidentities, we have OCR = [2*T! = z, (z¥y*)? = 2y~ ]. Trotter and the author
[17] have used graph-tameness of G to show that OCR is also graph-tame with respect to the
canonical signature k.

6.9 Example Let CR = [2“™! = 2] be the pseudovariety of all finite completely regular
semigroups. Trotter and the author [I8] have reduced the graph-tameness of CR to a property
which was apparently stronger than graph-tameness of G but K. Auinger has observed that the
methods of [IT} [12] apply to show that the property in question follows from graph-tameness
of G.

Our final example comes from [6] which led the author to explore connections with dy-
namical systems.

The pseudovariety G, of all finite p-groups is not graph-tame with respect to the signa-
ture k since Steinberg and the author [I5] have observed that if it were then G, would be
definable by identities in the signature x, which we have already observed to be impossible.
Nevertheless, based on work of Ribes and Zalesskii [75], Margolis, Sapir and Weil [57], and
Steinberg [84], the author has proved the following.

6.10 Theorem It is possible to enlarge k to an infinite signature o so that G, is graph-tame
with respect to this signature [6]].

The added implicit operations are those of the form ¢“~1(v;) where ¢ € End Q,S is defined
by the n-tuple (w1,...,wy,) and the v; and w; are k-terms such that G, = v; = w; and the
determinant of the matrix (|w;s,); ; is invertible in Z/pZ. Here for a k-term w and a letter z,
|wl|, is the integer obtained by viewing w as a group word and counting the signed number
of occurrences of x in w. So, for example, if ¢ is given by the pair ((zy)*lyz®, z3yz“~1)
-1 0

then we get det < 9 1

> = —1. We do not know if G, is completely tame with respect to

this signature.
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7 Categories, semigroupoids and semidirect products

Tilson [90] introduced pseudovarieties of categories as the foundations of an approach to the
calculation of semidirect products of pseudovarieties of semigroups which had emerged earlier
from work of Knast [50], Straubing [86], and Thérien and Weiss [88, 02]. A pseudovariety
of categories is defined to be a class of finite categories which is closed under taking finite
products and “divisors”. A divisor of a category C' is a category D for which there exists a
category F and two functors: ' — C, which is injective on Hom-sets, and £ — D, which is
onto and also injective when restricted to objects.

Jones [45] and independently Weil and the author [20] have extended the profinite ap-
proach to the realm of pseudovarieties of categories. Thus one can talk of relatively free profi-
nite categories, implicit operations, and pseudoidentities. Instead of an unstructured set, to
generate a category one takes a directed graph. Thus relatively free profinite categories are
freely generated by directed graphs, implicit operations act on graph homomorphisms from
fixed directed graphs into categories, and pseudoidentities are written over finite directed
graphs. The free profinite category on a graph I' will be denoted QrCat. A pseudoidentity
(u = v;T') over the graph I is given by two coterminal morphisms u,v € QpCat. Examples
will be presented shortly.

The morphisms from an object in a category C' into itself constitute a monoid which is
called a local submonoid of C. On the other hand, every monoid M may be viewed as a
category by adding a virtual object and considering the elements of M as the morphisms,
which are composed as they multiply in M. Note that the notion of division of categories
applied to monoids is equivalent to the notion of division of monoids as introduced earlier.

For a pseudovariety V of finite monoids, gV denotes the (global) pseudovariety of cate-
gories generated by V and ¢V denotes the class of all finite categories whose local submonoids
lie in V. Note that gV and ¢V are respectively the smallest and the largest pseudovarieties of
categories whose monoids are those of V. The pseudovariety V is said to be local if gV = £ V.

If 3 is a basis of monoid pseudoidentities for V, then the members of ¥ may be viewed as
pseudoidentities over (virtual) 1-vertex graphs; the resulting set of category pseudoidentities
defines £V. So, £V is easy to “compute” in terms of basis of pseudoidentities. In general gV is
much more interesting in applications and also much harder to compute. Since the problem
of computing gV becomes simple if V is local, this explains the interest in locality results.

With appropriate care, the theory of pseudovarieties of categories may be extended to
pseudovarieties of semigroupoids, meaning categories without the requirement for local iden-
tities [20]. Again we will move from one context to the other without further warning.

2

7.1 Examples (1) The pseudovariety SI = [zy = yx, * = ] of finite semilattices is local

as was proved by Brzozowski and Simon [30].
(2) Every pseudovariety of groups is local [86] [90].

(3) The pseudovariety Com = [zy = yz] is not local and its global is defined by the
pseudoidentity xyz = zyx over the graph

T,z

x>

)
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This was proved by Thérien and Weiss [88].

(4) The pseudovariety J of finite J-trivial semigroups is not local. Its global is defined by
the pseudoidentity (zy)“zt(zt)* = (zy)“(2t)“ over the graph

X,z

x>

y,t

This result which has many important applications is also considered to be rather
difficult. It was discovered and proved by Knast [50]. A proof using the structure
of the free pro-J semigroups can be found in [3]. The application that motivated the
calculation of g J was the identification of dot-depth one languages [49] according to a
natural hierarchy of plus-free languages introduced by Brzozowski [29]. The work of
Straubing [86] was also concerned with the same problem. The computation of levels 2
and higher of this hierarchy remains an open problem.

(5) The pseudovariety DA = [ ((zy)“z)? = (zy)“z] of all finite semigroups whose regular
elements are idempotents is local [4]. This result, which was proved using profinite
techniques, turns out to have important applications in temporal logic [89]. See [87] for
further relevance of the pseudovariety DA in various aspects of Computer Science.

See also [4] for further references to locality results.
Let S and T be semigroups and let ¢ : 7' — End S be a monoid homomorphism. For
t€T" and s € S, denote (t)(s) by s. Then the formula

(51,t1)(82,t2) = (51 "s9,t112)

defines an associative multiplication on the set S x T'; the resulting semigroup is called
a semidirect product of S and T and it is denoted S x, T' or simply S * T. Given two
pseudovarieties of semigroups V and W, we denote by V x W the pseudovariety generated by
all semidirect products of the form S« T with S € V and T' € W, which we also call the
semidirect product of V and W. It is well known that the semidirect product of pseudovarieties
is associative, see for instance [90] or [3].

The semidirect product is a very powerful operation. The following is a decomposition
result which deeply influenced finite semigroup theory.

7.2 Theorem (Krohn and Rhodes [51]) Every finite semigroup lies in one of the alter-
nating semidirect products
AxGxAx---xGxA. (7.1)

Since the pseudovarieties of the form form a chain, every finite semigroup belongs to
most of them. The least number of factors G which is needed for the pseudovariety to
contain a given semigroup S is called the complexity of S. Although various announcements
have been made of proofs that this complexity function is computable, at present there is yet
no correct published proof. This has been over the past 40 years a major driving force to the
development of finite semigroup theory, the original motivations being again closely linked
with Computer Science namely aiming at the effective decomposition of automata and other
theoretical computing devices [35], 36].
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One approach to compute complexity is to study more generally the semidirect product
operation and try to devise a general method to “compute” V * W from V and W. What is
meant by computing a pseudovariety is to exhibit an algorithm to test membership in it; in
case such an algorithm exists, we will say, as we have done earlier, that the pseudovariety
is decidable. So a basic question for the semidirect product and other operations on pseu-
dovarieties defined in terms of generators is whether they preserve decidability. The difficulty
in studying such operations lies in the fact that the answer is negative for most natural
operations, including the semidirect product [I}, [72], 24].

Let 7 : S — T be a relational morphism of monoids. Tilson [90] defined an associated
category D, as follows: the objects are the elements of T'; the morphisms from ¢ to tt’' are
equivalence classes [t, s',t'] of triples (¢,s',t') € T x 7 under the relation which identifies the
triples (t1, s}, t}) and (to, 85, th) if t1 = ta, t1t] = toth, and for every s such that (s,t1) € 7 we
have ss| = ssb; composition of morphisms is defined by the formula

[t,s1,t1] [tt1, s2, ta] = [t, s1S2, tita].

The derived semigroupoid of a relational morphism of semigroups is defined similarly. The
following is the well-known Derived Category Theorem.

7.3 Theorem (Tilson [90]) A finite semigroup S belongs to V«W if and only if there exists
a relational morphism 7 : S — T with T ¢ W and D, € gV.

By applying the profinite approach, Weil and the author [20] have used the Derived Cat-
egory Theorem to describe a basis of pseudoidentities for V « W from a basis of semigroupoid
pseudoidentities for g V. This has come to be known as the Basis Theorem. Unfortunately,
there is a gap in the argument which was found by J. Rhodes and B. Steinberg in trying
to extend the approach to other operations on pseudovarieties and which makes the result
only known to be valid in case W is locally finite or ¢V has finite vertex-rank in the sense
that it admits a basis of pseudoidentities in graphs using only a bounded number of vertices.
Although a counterexample was at one point announced for the Basis Theorem, at present
it remains open whether it is true in general. Here is the precise statement of the “Basis
Theorem”:

Let V and W be pseudovarieties of semigroups and let {(u; = v;;1;) i € I} be a
basis of semigroupoid pseudoidentities for gV. For each pseudoidentity u; = w;
over the finite graph T'; one considers a labeling \ : T; — (Q4S)! of the graph T;
such that

(1) the labels of edges belong to Q4S;
(2) for every edge e : vi — vo, W satisfies the pseudoidentity A(vi)A(e) = A(v2).

The labeling A extends to a continuous category homomorphism A QpCat —
(24S)L. Let z be the label of the initial vertex for the morphisms u;, w; and con-
sider the semigroup pseudoidentity z \(u;) = z A(v;). Then the “Basis Theorem”
is the assertion that the set of all such pseudoidentities constitutes a basis for
VW,

In turn Steinberg and the author [I5] have used the Basis Theorem to prove the following
result which explains the interest in establishing graph-tameness of pseudovarieties. Say
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that a pseudovariety is recursively definable if it admits a recursively enumerable basis of
pseudoidentities in which all the intervening implicit operations are computable.

7.4 Theorem (Almeida and Steinberg [15]) If V is recursively enumerable and recur-
sively definable and W is graph-tame, then V «W has decidable membership problem provided
gV has finite vertex-rank or W is locally finite.

Moreover, we have the following result which was meant to handle the iteration of semidi-
rect product. Let By denote the syntactic semigroup of the language (ab)™ over the alphabet

{a,b}.

7.5 Theorem (Almeida and Steinberg [15]) Let Vi,...,V, be recursively enumerable
pseudovarieties such that Bs € V1, and each V; is tame. If the Basis Theorem holds then the
semaidirect product V1 * - - - x V,, is decidable through a “uniform” algorithm depending only on
algorithms for the factor pseudovarieties.

Since By belongs to A, in view Ash’s Theorem this would prove computability of the
Krohn-Rodes complexity of finite semigroups once the Basis Theorem would be settled and a
proof that A is graph-tame would be obtained. The latter has been announced by J. Rhodes
but a written proof has been withdrawn since the gap in the proof of the Basis Theorem has
been found.

8 Other operations on pseudovarieties

We make a brief reference in this section to another two famous results as well as some
problems involving other operations on pseudovarieties of semigroups.

Given a semigroup S, one may extend the multiplication to an associative operation on
subsets of S by putting PQ = {st : s € P, t € Q}. The resulting semigroup is denoted
P(S). For a pseudovariety V of semigroups, let PV denote the pseudovariety generated by all
semigroups of the form P(S) with S € V. The operator P is called the power operator and it
has been extensively studied. If V consists of finite semigroups each of which satisfies some
nontrivial permutation identity or, equivalently, if V is contained in the pseudovariety

Perm = [2¥yzt¥ = 2% 2yt“ ],

then one can find in [3] a formula for PV. Otherwise, it is also shown in [3] that P3V = S.
These results were preceded by similar results of Margolis and Pin [58] in the somewhat easier
case of monoids, where permutativity becomes commutativity.

One major open problem involving the power operator is the calculation of PJ: it is
well-known that this pseudovariety corresponds to the variety of dot-depth 2 languages in
Straubing’s hierarchy of star-free languages [67].

Another value of the operator P which has deserved major attention is P G. Before
presenting results about this pseudovariety, we introduce another operator. Given two pseu-
dovarieties V and W, their Mal’cev product V @ W is the class of all finite semigroups S such
that there exists a relational morphism 7 : § — T into T' € W such that, for every idempotent
e € T, we have 7-1(e) € V. It is an exercise to show that V @ W is a pseudovariety.

The analog of the “Basis Theorem” for the Mal’cev product is the following.
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8.1 Theorem (Pin and Weil [68]) LetV and W be two pseudovarieties of semigroups and
let {ui(z1,...,2n,) = vi(T1,...,%n,) : 1 € I} be a basis of pseudoidentities for V. Then V @ W
is defined by the pseudoidentities of the form w;(wi, ..., wy,) = vi(wi,...,wy,) withi € I and
wj € QA4S such that W = wy = -+ = wy, :wgi.

Call a pseudovariety W idempoteni-tame if it is C-tame for the set C of all systems of the
form z; = --- = x, = 2. Applying the same approach as for semidirect products, we deduce
that if V is decidable and W is idempotent-tame, then V @ W is decidable [7].

For a pseudovariety H of groups, let BH denote the pseudovariety consisting of all finite
semigroups in which regular elements have a unique inverse and whose subgroups belong
to H. Finally, for a pseudovariety V, let £V denote the pseudovariety consisting of all finite
semigroups whose idempotents generate a subsemigroup which belongs to V.

We have the following chain of equalities

PG=J+G=J@G=BG=2¢J (8.1)

The last equality is elementary as is the inclusion (C) in the second equality even for any
pseudovariety of groups H in the place of G. The first and third equalities were proved by
Margolis and Pin [59] using language theory. Using Knast’s pseudoidentity basis for g J, the
inclusion (D) in the second equality was reduced by Henckell and Rhodes [40] to what they
called the pointlike conjecture which is equivalent to the statement that G is C-tame with
respect to the signature x where C is the class of systems associated with finite directed
graphs with only two vertices and all edges coterminal. Hence Ash’s Theorem implies the
pointlike conjecture and the sequence of equalities is settled.

Another problem which led to Ash’s Theorem was the calculation of Mal’cev products
of the form V@) G. For a finite semigroup S, define the group-kernel of S to consist of all
elements s € S such that, for every relational morphism 7 : S — G into a finite group, we
have (s,1) € 7. Then it is easy to check that S belongs to V@ G if and only if K(S) € V.
J. Rhodes conjectured that there should be an algorithm to compute K (S) and proposed a
specific procedure that should produce K(.S): start with the set E of idempotents of S and
take the closure under multiplication in S and weak conjugation, namely the operation that,
for a pair of elements a,b € S, one of which is a weak inverse of the other, sends s to asb.
This came to be known as the Type II conjecture and it is equivalent to Ribes and Zalesskii’s
Theorem. Therefore, as was already observed in Section [6] Ash’s Theorem also implies the
Type II conjecture. See [39] for further information on the history of this conjecture.

B. Steinberg later joined by K. Auinger have done extensive work on generalizing the
equalities to other pseudovarieties of groups. This culminated in their recent papers [23,
25] where they completely characterize the pseudovarieties H of groups for which respectively
the equalities PH = J*H and J*xH = J@H hold. On the other hand, Steinberg [85]
has observed that results of Margolis and Higgins [42] imply that the inclusion J@ H ;
BH is strict for every proper subpseudovariety H g G such that H* H = H. Going in
another direction, Escada and the author [I4] have used profinite methods to show that
several pseudovarieties V satisfy the equation V * G = £V. Hence the cryptic line has
been a source and inspiration for a lot of research.

Another result involving the two key pseudovarieties J and G is the decidability of their
join J Vv G. This was proved independently by Steinberg [83] and Azevedo, Zeitoun and the
author [I0] using Ash’s Theorem and the structure of free pro-J semigroups. Previously,
Trotter and Volkov [91] had shown that JV G is not finitely based.
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9 Symbolic Dynamics and free profinite semigroups

We have seen that relatively free profinite semigroups are an important tool in the theory of
pseudovarieties of semigroups. Yet very little is known about them in general, in particular
for the finitely generated free profinite semigroups Q24S. In this section we survey some recent
results the author has obtained which reveal strong ties between Symbolic Dynamics and the
structure of free profinite semigroups. See [9, 8] for more detailed surveys and [19] for related
work.

Throughout this section let A be a finite alphabet. The additive group Z of integers acts
naturally on the set A% of functions f : Z — A by translating the argument: (n - f)(m) =
f(m4n). The elements of A% may be viewed as bi-infinite words on the alphabet A. Recall
that a symbolic dynamical system (or subshift) over A is a non-empty subset X C A% which
is topologically closed and stable under the natural action of Z in the sense that it is a union
of orbits.

The language L(X) of a subshift X consists of all finite factors of members of X, that is
words of the form win,n + k] = w(n)w(n+1)---w(n + k) with n,k € Z, k > 0, and w € X.
It is easy to characterize the languages L C A* that arise in this way: they are precisely the
factorial (closed under taking factors) and eztensible languages (w € L implies that there
exist letters a,b € A such that aw,wb € L). We say that the subshift X is irreducible if for
all u,v € L(X) there exists w € A* such that uwv € L(X).

A subshift X is said to be sofic if L(X) is a rational language. The subshift X is called
a subshift of finite type if there is a finite set W of forbidden words which characterize L(X)
in the sense that L(X) = A* \ (A*W A*); equivalently, the syntactic semigroup Synt L(X) is
finite and satisfies the pseudoidentities z¥ya®zz¥ = a%za¥yx® and z¥yx*ya” = x2¥ya* [3
Section 10.8].

The mapping X +— L(X) transfers structural problems on subshifts to combinatorial prob-
lems on certains types of languages. But, from the algebraic-structural point of view, the free
monoid A* is a rather limited entity where combinatorial problems have often to be dealt in
an ad hoc way. So, why not going a step forward to the profinite completion Q4M = (Q45)*,
where the interplay between algebraic and topological properties is expected to capture much
of the combinatorics of the free monoid? We propose therefore to take this extra step and
associate with a subshift X the closed subset L(X) C Q4M.

For example, in the important case of sofic subshifts, by Theorem we recover L(X) by
taking L(X) N A*. It turns out that the same is true for arbitrary subshifts so that the extra
step does not loose information on subshifts but rather provides a richer structure in which
to work.

Here is a couple of recent preliminary results following this approach.

9.1 Theorem A subshift X C A% is irreducible if and only if there is a unique minimal ideal
J(X) among those principal ideals of QLaM generated by elements of L(X) and its elements
are reqular.

By a topological partial semigroup we mean a set S endowed with a continuous partial
associative multiplication D — S with D C § x S. Such a partial semigroup is said to be
simple if every element is a factor of every other element. The structure of simple compact
partial semigroups is well known: they are described by topological Rees matriz semigroups
M(I,G, A, P), where I and A are compact sets, G is a compact group, and P : Q — G is a
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continuous function with @ C A x I a closed subset; as a set, M(I, G, A, P) is the Cartesian
product I x G x A; the partial multiplication is defined by the formula

(4,9, A) (4, by 1) = (i, 9 P(X, 5) by 1)

in case P(),j) is defined and the product is left undefined otherwise. The group G is called
the structure group and the function P is seen as a partial A x I-matrix which is called the
sandwich matriz.

It is well known that a regular J-class J of a compact semigroup is a simple compact
partial semigroup [43]. The structure group of J is a profinite group which is isomorphic
to all maximal subgroups that are contained in J. In particular, for an irreducible subshift
X, there is an associated simple compact partial subsemigroup J(X) of Q4M. We denote by
G(X) the corresponding structure group which is a profinite group by Corollary

Let X € A% and Y C BZ be subshifts over two finite alphabets. A conjugacy is a function
@ : X — Y which is a topological homeomorphism that commutes with the action of Z in the
sense that for all f € A” and n € Z, we have o(n - f) = n-¢(f). If there is such a conjugacy,
then we say that X and Y are conjugate. By a conjugacy invariant we mean a structure
I(X) associated with each subshift X C A% from a given class such that, if o : X — Y is a
conjugacy, then I(X) and I(Y) are isomorphic structures.

Let X € AZ and Y C BZ be subshifts. By a sliding block code we mean a function
¥+ X — Y such that ¢(w)(n) = ¥(w[n — r,n + s]) where ¥ : A+ N [(X) — B is any
function. The following diagram gives a pictorial description of this property and explains
its name: each letter in the image 1 (w) of w € X is obtained by sliding a window of length
r+ s+ 1 along w.

T an—r—l’ Qp—pr An—r41 **° Ands—1 Anits ‘ Optstl """

g
. bnfl@ byt -

A sliding block code is said to be invertible if it is a bijection, which implies its inverse is
also a sliding block code. It is well known from Symbolic Dynamics that the conjugacies are
the invertible sliding block codes (see for instance [55]). This implies that if a subshift X is
conjugate to an irreducible subshift then X is also irreducible.

A major open problem in Symbolic Dynamics is if it is decidable whether two subshifts
of finite type are conjugate and it is well known that it suffices to treat the irreducible case.
Hence, the investigation of invariants seems to be worthwhile.

9.2 Theorem For irreducible subshifts, the profinite group G(X) is a conjugacy invariant.

By a minimal subshift we mean one which is minimal with respect to inclusion. Minimal
subshifts constitute another area of Symbolic Dynamics which has deserved a lot of attention.
It is easy to see that minimal subshifts are irreducible.

Say that an implicit operation w is uniformly recurrent if every factor u € A* of w is also
a factor of every sufficiently long factor v € A™ of w.
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9.3 Theorem A subshift X C A% is minimal if and only if the set L(X) meets only one
nontrivial J-class. Such a J-class is then regular and it is completely contained in L(X).
(This J-class is then J(X).) The J-classes that appear in this way are those that contain
uniformly recurrent implicit operations or, equivalently the J-classes that contain non-explicit
implicit operations and all their reqular factors.

To gain further insight, it seems worthwhile to compute the profinite groups of specific
subshifts. One way to produce a wealth of examples is to consider substitution subshifts. We
say that a continuous endomorphism ¢ € End Q4S is primitive if, for all a,b € A, there exists
n such that a is a factor of ¢"(b), and that it is finite if p(A) C A*.

Given ¢ € End Q4S and a subpseudovariety V C S, ¢ induces a continuous endomorphism
¢’ € End Q4V namely the unique extension to a continuous endomorphism of the mapping
which sends each a € A to mp(a), where m : Q4S — Q4V is the natural projection. In case
p(A) € Q9S for an implicit signature o, the restriction of ¢’ to Q3V is an endomorphism of
this o-algebra. So, in particular, if ¢ is finite then it induces an endomorphism of the free
group % G.

The first part of the following result is well known in Symbolic Dynamics [69].

9.4 Theorem Let p € EndQ4S be a finite primitive substitution and let X, C AZ be the
subshift whose language L(X,) consists of all factors of ¢™(a) (a € A, n > 0). Then the
following properties hold:

(1) the subshift X, is minimal;

(2) if ¢ induces an automorphism of the free group, then G(X,) is a free profinite group on
|A| free generators.

To test whether an endomorphism v of the free group 2% G is an automorphism, it suffices
to check whether the subgroup generated by 1(A) is all of Q%G. There is a well-known
algorithm to check this property, namely Stallings’ folding algorithm applied to the “flower
automaton”, whose petals are labeled with the words ¢ (A) [82] [46].

9.5 Example The Fibonacci substitution ¢ given by the pair (ab,a) is finite and primitive
and therefore it determines a subshift X,. Moreover, ¢ is invertible in the free group Q5G
since we may easily recover the generators a and b from their images ab and a using group
operations: the substitution given by the pair (b,b“~1a) is the inverse of ¢ in the free group.
By Theorem the group G(X,,) is a free profinite group on 2 free generators. At present we
do not know the precise structure of the compact partial semigroup J(X,). This example has
been considerably extended to minimal subshifts which are not generated by substitutions,
namely to Sturmian subshifts and even to Arnoux-Rauzy subshifts [9] §].

9.6 Example For the substitution ¢ given by the pair (ab, a®b), one can show that the group
G(X,) is not a free profinite group.
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