
DESCRIPTION AND ANALYSIS OF A BOTTOM-UP DFA MINIMIZATIONALGORITHMJORGE ALMEIDA AND MARC ZEITOUNAbstra
t. We establish linear-time redu
tions between the minimization of a deterministi
 �nite au-tomaton (DFA) and the 
onjun
tion of 3 subproblems: the minimization of a strongly 
onne
ted DFA,the isomorphism problem for a set of strongly 
onne
ted minimized DFAs, and the minimization of a
onne
ted DFA 
onsisting in two strongly 
onne
ted 
omponents, both of whi
h are minimized. Weapply this pro
edure to minimize, in linear time, automata whose nontrivial strongly 
onne
ted 
om-ponents are 
y
les.
1. Introdu
tionFinite automata have been su

essfully used in numerous �elds of 
omputer s
ien
e su
h as patternmat
hing, 
ompilation, natural language pro
essing, databases, system veri�
ation. They 
an representa broad range of obje
ts, from di
tionaries to models of transition systems. Properties expressed inhigh-level des
ription formalisms must also often be �
ompiled� into automata before algorithms 
an beapplied. For real-world appli
ations, su
h automata may have a huge number of states, and redu
ingtheir size often proves to be 
ru
ial for subsequent treatment. Finite automata on �nite words have aminimal, 
anoni
al representation with respe
t to the language they determine. This paper fo
uses onthe pro
ess to 
ompute this minimal representation, 
alled minimization.Under the usual assumption that letters and states are represented by integers that 
an be 
om-pared in O(1)-time, the best-known algorithm for minimizing a deterministi
 �nite automaton (DFA) isHop
roft's [11℄, with a O(ℓm log m) worst 
ase time 
omplexity where ℓ is the number of letters and m thenumber of states (see [10, 13, 3℄ for 
omplexity analyses). Brzozowski's algorithm [5℄ works theoreti
allyin exponential time, but has in pra
ti
e a surprisingly good behavior (see [7℄).Minimization algorithms usually start from the equivalen
e separating �nal and non-�nal states, andre�ne it until stabilization o

urs. In this paper, starting from the equality relation, we merge states whi
hare dete
ted to be equivalent. We redu
e the minimization problem of a DFA to subproblems involvingits strongly 
onne
ted 
omponents on one hand, and its dire
ted a
y
li
 stru
ture on the other hand.More pre
isely, for any fun
tion f su
h that f(n)/n is nonde
reasing, we show that the minimizationproblem 
an be solved in time O(f(d + ℓ)), where ℓ still denotes the number of input symbols and d isthe number of transitions (whi
h 
an be smaller than ℓm sin
e the algorithm 
an deal with in
ompleteautomata), if and only if three subproblems have the same worst 
ase 
omplexity. These subproblemsare (1) the minimization of a strongly 
onne
ted DFA (2) the 
omputation of isomorphisms betweenstrongly 
onne
ted, minimized DFAs, and (3) the minimization of 
onne
ted DFAs having exa
tly twostrongly 
onne
ted 
omponents, both of whi
h are already minimized. The redu
tion is presented by thegeneri
 algorithm 1 using subroutines solving the subproblems, whi
h will be explained in detail later.Using pattern mat
hing te
hniques, we obtain as an appli
ation a O(d+ℓ)-time minimization algorithmfor automata whose nontrivial strongly 
onne
ted 
omponents are 
y
les (this parti
ular appli
ation wasannoun
ed, without proof, in [2℄). This extends Revuz's minimization algorithm [14℄ for a
y
li
 DFAs,whi
h was designed to 
ompress di
tionaries and works in O(d + ℓ)-time with O(m + ℓ) memory. Otheralgorithms for minimizing a
y
li
 DFAs in linear time [17℄ or to maintain a minimal DFA after adjun
tionof one word to its language have also been developed, see e.g., [6℄.Date: De
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t Egide-Gri
es 11113YM Automata, pro�nite semigroups and symboli
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Algorithm 1 Minimization algorithm (outline)1: pro
edure Minimize(Automaton A)2: X ← ZeroHeight(A)3: while X 6= ∅ do4: MinimizeSCC(X)5: MergeIsomorphi
SCC(X)6: Wrap(A, X)7: X ← NextHeight(A, X)8: end while9: end pro
edure 2. Automata and data stru
turesWe work on a �nite alphabet A = {0, . . . , ℓ− 1} with ℓ ≥ 2 letters. We denote by A∗ the free monoidgenerated by A, and by |x| the length of a word x ∈ A∗. We assume that A is known, and 
an be used asindex set for arrays. In Se
tion 4, we also use the usual total order on A, viewed as a set of integers. Adeterministi
 �nite automaton (DFA) is a tuple A = (A, S, F, δ, s0) where A is the alphabet, S is a �niteset of states, F ⊆ S is the set of �nal states, δ : S × A → S is a partial mapping 
alled the transitionfun
tion, and s0 is the initial state. We let m = |S| be the number of states, d = |δ| be the number oftransitions, and n = d + ℓ.The state δ(s, a), when it exists, is also written s · a. We represent the transition (s, a, s · a) by
s

a
−→ s · a. We use the word edge to mean a transition. An automaton de�nes a dire
ted graph withvertex set S and edge set {(s, s · a) | s ∈ S, a ∈ A}. A strongly 
onne
ted 
omponent (s

) of A is astrongly 
onne
ted 
omponent of this graph, and A is strongly 
onne
ted if so is its asso
iated graph. Weretain the terminology of [8℄: a strongly 
onne
ted 
omponent (s

) of a graph is an equivalen
e 
lass forthe mutual rea
hability relation. In parti
ular, a vertex u su
h that the only path from u to u is emptyis an s

, whi
h is said to be trivial.Given a state s ∈ S, the language re
ognized by A from s is the set LA(s) ⊆ A∗ of words labeling apath from s to some �nal state. Two states s, t are (Nerode) equivalent if LA(s) = LA(t). We write [s]for the 
lass of s in this equivalen
e. The minimization pro
edure 
onsists in 
omputing this equivalen
erelation. Merging the states of ea
h 
lass into a single state produ
es the minimal automaton re
ognizingthe same language from the initial state, see [12℄. A DFA is minimal, or minimized, if no two distin
tstates are equivalent. We are interested in the 
omplexity of minimization in terms of the parameters ℓ,

m, d and n.We assume that the DFA A is a

essible and 
o-a

essible, that is, all states are rea
hable from s0 and
an rea
h a �nal state. Other states are useless regarding the a

epted language, and removing them
an be done in O(d + m)-time. Further, the initial state is irrelevant for the 
omputation of equivalentstates (it just serves for determining the initial state of the minimized DFA). For this reason, we drop theinitial state, keeping in mind that we started from an a

essible automaton, so that we have m ≤ d + 1and O(d + m) = O(d).For a 
lass C of DFAs, we study the following problem.
C-minimization Minimizing a DFA of the 
lass C.Input: A �nite deterministi
 automaton from C.Output: Its minimal automaton given by the equivalen
e relation on states.The automaton 
an be given by a matrix of (S ∪ {_})S×A whose (s, a) entry is s · a if it is de�ned,or _ otherwise. Using lists yields a smaller representation: for ea
h s ∈ S, we are given a list of theform (a1, s1, . . . , ak, sk), with ai ∈ A and si ∈ S, des
ribing all outgoing transitions s

ai−→ si. (Theselists 
an be 
omputed from the matrix in O(ℓm)-time.) A list (a1, s1, . . . , ak, sk) of (A.S)∗ is sorted if
a1 < a2 < · · · < ak. We write Out(s) for the sorted list of outgoing transitions of s ∈ S.We �rst sort outgoing transitions. Re
all that, given a �nite set X , one 
an sort a sequen
e u1, . . . , uk ∈
X∗ in time O(|u1 · · ·uk|+ |X |) using radix-sort [1℄. Applying this result to transitions of a DFA yieldsthe following simple statement.Lemma 2.1. Let A be an a

essible DFA (with an initial state). Given, for ea
h state of A, a list of allits outgoing transitions, one 
an 
ompute in O(n)-time all sorted lists of outgoing transitions of statesof A, where n = d + ℓ. 2



Proof. For ea
h list Out(s) = (a1, s1, . . . , ak, sk), �rst build the transition list ((s, a1, s1), . . . , (s, ak, sk)).Sin
e A is a

essible, we have m ≤ d + 1, so this step takes O(d + m) = O(d)-time. One then usesradix sort on the list of all su
h transitions to order them lexi
ographi
ally a

ording to the �rst two
omponents, whi
h 
osts O(d+m)+O(d+ ℓ) = O(n). In the sorted list obtained, the transitions (s, a, t)with the same state s are 
onse
utive and sorted a

ording to the se
ond 
omponent. It remains tos
an this list to break it into pie
es 
orresponding to the same state s, to build ea
h of the sorted lists.Altogether, this requires O(d + ℓ) = O(n)-time. �The 
omplexity O(d) is the best possible for minimization algorithms, sin
e one needs to visit alltransitions. Note that O(n) = O(d) if ea
h letter of A labels at least one transition. Therefore, byLemma 2.1, one 
an start with a sorted list representation for DFAs. We assume that lists are doublylinked: one 
an a

ess ea
h of the prede
essors of a state, individually, in O(1)-time.3. A redu
tion for the minimization problem3.1. Minimizing a
y
li
 DFAs. Our algorithm is inspired by Revuz's [14℄ for a
y
li
 automata, whi
hwe brie�y re
all. Re
all that [t] denotes the 
lass of the state t in the Nerode equivalen
e. We asso
iatewith ea
h state s su
h that Out(s) = (a1, s1, . . . , ak, sk) the tuple τ(s) = (εs, a1, [s1], . . . , ak, [sk]), where
εs = 1 if s ∈ F and ε = 0 otherwise. The algorithm �rst 
omputes the height of ea
h state, whi
h is thelength of the longest path to a �nal state. Note that equivalent states must have the same height. Atstage h = 0, 1, . . . , up to the maximal height H , the algorithm merges states of height h. Sin
e [s] = [t] ifand only if τ(s) = τ(t), radix sorting the words τ(s) for states of height h yields a list with equal words at
onse
utive pla
es, whi
h allows identifying equivalent states of height h. A minor 
ompli
ation is thatusing H times radix sort produ
es a 
omplexity of O(d + Hℓ). This motivates the following statement,appearing in [14, Theorem 2 and page 187℄.Lemma 3.1. Given a set X and u1, . . . , uk ∈ X∗, one 
an 
ompute in time O(|u1 · · ·uk|) the equality
lasses on (u1, . . . , uk), using an already allo
ated 0-initialized X-indexed array whi
h is reset after the
omputation.Proof. Let K = |u1 · · ·uk|. We do not want X , whi
h may be huge 
ompared to K if many letters areunused, to appear in the 
omplexity bound. In one s
an, one rewrites the sequen
e u1, . . . , uk using only
onse
utive positive integer letters, thus obtaining words u′

1, . . . , u
′
k, as follows. We store the en
oding of

x ∈ X in T [x], where T is the 0-initialized array. We repla
e the o

urren
e of ea
h s
anned letter x byits en
oding T [x] if x has already been en
oded (T [x] 6= 0). Otherwise, we �rst in
rement the numberof distin
t letters already en
ountered, we assign the result to T [x], and we push x on a sta
k (whi
htherefore 
ontains the nonzero entries of T ). This rewriting requires O(K) operations. The size of thealphabet of 
onse
utive integers is O(K), so applying radix-sort to u′
1..., u

′
k determines equality 
lassesin time O(K) (sin
e u′

i = u′
j if and only if ui = uj). Finally, using the sta
k, one swit
hes ba
k to 0 allnonzero entries of T in time O(K). �Using the algorithm of Lemma 3.1 instead of radix sort dire
tly to minimize a
y
li
 automata yields thedesired O(n) time 
omplexity: O(ℓ) time is needed to allo
ate the 0-indexed array, and K = O(d+m) =

O(d) time to determine equality 
lasses.3.2. The bottom-up minimization algorithm.3.2.1. Des
ription. The same s
heme applied to arbitrary DFAs brings additional di�
ulties. First, thenotion of height has to be modi�ed, sin
e there may be paths of arbitrary length to a �nal state. Wede�ne the height of a state by 
onsidering ea
h strongly 
onne
ted 
omponent (s

) as a single state.This requires that one �rst 
ompute the dire
ted a
y
li
 graph (DAG) of s

's of the automaton, whi
h
an be done in O(d)-time with Tarjan's algorithm [16, 8℄. We maintain this DAG along the algorithm.(Expressions su
h as an s

 is below another s

 refer to the partial order indu
ed by this DAG.) In therest of the paper, we identify ea
h s

 with its set of states. We use an array of size m storing, for ea
hstate s, the number of its s

. Conversely for ea
h s

, we re
ord its list of states. We also use the samedata stru
tures for all equivalen
e relations, to have a

ess in O(1)-time to the equivalen
e 
lass of astate 
omputed so far. To de�ne heights, we assign weight 0 to an edge belonging to an s

 and weight1 to all other edges. The weight of a path is the sum of the weights of all edges in the path. The heightof a state is then the maximal weight of some path to a �nal state, whi
h is well de�ned. By de�nition,all states of a given s

 have the same height. 3



One 
ould 
ompute the height along one traversal, as for a DAG, but the problem is that two statesat di�erent heights may well be equivalent. For instan
e, 
onsider the automaton s1

a
−→ s0

a
−→ s0 withboth s1, s0 �nal. The height of s1 is 1 and the height of s0 is 0. However, s1 is equivalent to s0. Wesay that s1 
an be wrapped onto the s

 of s0. Formally, starting from an automaton with exa
tly twos

's C0 and C1, where C1 is 
onne
ted to C0 and both C0, C1 are already minimized as individualautomata (taking into a

ount, for C1, the transitions leading to C0), wrapping 
onsists in determiningpairs of equivalent states of C1 ×C0. If su
h a pair exists, then C0 is nontrivial, and every state of C1 isequivalent to some state of C0. In the example, our algorithm shall wrap s1 onto the 
y
le s0 (identifying

s0 and s1). However, doing so 
hanges the height of s1 (from 1 to 0) and more generally, wrapping statesmay de
rease the height of states that lie above them. The other di�
ulty is that both 
omputationsare linked: the height is needed to determine whi
h state to wrap at some point in the algorithm, andone also needs to modify the heights after a wrapping.To avoid re
omputing the heights several times, we do not 
ompute them beforehand, and we main-tain information to determine on the �y, before stage k, whi
h states must be treated at this stage.Nonetheless, to help understanding the 
omputation on-the-�y, we give a des
ription of how we wouldpre
ompute the height of all states in O(n)-time: one assigns a mass to ea
h state (stored in its datastru
ture). A state with i outgoing 1-weighted edges has initially mass i. The mass of an s

 is themaximal mass of its states. The mass of a state de
reases during the exe
ution of the algorithm. Were
ord for ea
h s

 its number of states and its number of states of mass 0. Initially, these two numbersare equal only for minimal s

 (in the DAG of s

). Ea
h time we de
rease the mass of a state, we 
he
kwhether it rea
hes mass 0. If so, we in
rement the number of states having mass 0 for its s

. If thisnumber rea
hes the total number of states in the s

, then the s

 itself rea
hes mass 0, and we add itto a list of s

 of mass 0.Initially, we assign height 0 to all states in s

 of mass 0. Further heights will be 
omputed later on,at di�erent steps of the algorithm. When states of height less than h − 1 have been treated, we needto 
ompute the set of states of height h. These states are obtained, at that stage, as those belonging tos

's of mass 0. Then, these states are not 
onsidered anymore for the height 
omputation (we removethe 
orresponding s

 from the list of s

's of mass 0). Moreover, for ea
h transition t
a
−→ s ending ina state s to whi
h we just assigned height h, we de
rease the mass of state t by 1, in
rease the 
ountof mass 0 states of its s

 if t rea
hes mass 0, and put its s

 in the list of s

's of mass 0 if this 
ountrea
hes its number of states. Observe that ea
h transition is 
onsidered at most on
e, so that the overalltime 
omplexity, for the height 
omputation, is O(d).An outline of a generi
 minimization algorithm is des
ribed in Algorithm 1. It uses three subroutines,MinimizeSCC, MergeIsomorphi
SCC and Wrap, assumed to be given, and des
ribed below. It
omputes a sequen
e of automata A−1 = A, A0, A1, . . . , AH su
h that AH is the minimal automaton of

A. Stage h ∈ [0, H ] merges equivalent states of height h of Ah−1 to produ
e Ah. The automaton Ah isobtained at the end of the hth iteration of the main loop of Algorithm 1, after that all merging of statesof height at most h will have been performed.The variable X always holds (states of) a subset of the set of s

's of the 
urrent automaton, for whi
hmerging should o

ur at lines 4�6. It is initialized, at line 2, with all s

's of mass 0 (pre
omputed byTarjan's algorithm). At line 7, it re
eives the 
andidate states for merging at the next iteration, that is,the part of Ah−1 
onsisting of states of height h, at that stage.Let us explain the 
alls of lines 4�7. The �rst two of them only merge states of X . The 
all of line 6possibly merges states of the part of Ah−1 not yet treated (
f. Fig. 1) with states of X .The 
all MinimizeSCC(X) minimizes separately ea
h s

 C1, . . . , Cp of X , taking also into a

ountthe transitions going to an s

 below X . Let C be an s

 of X . Some states of C may have transitionsto s

's below C in the DAG of s

. However, sin
e the algorithm pro
eeds bottom-up, the part ofthe automaton below C is already minimized when C is 
onsidered. Therefore, one 
an �rst use aminimization algorithm on C as if it were an automaton by itself, not 
onsidering the transitions fallingbelow C. This gives us a partition into equivalen
e 
lasses ∼1. We then re�ne this partition a

ordingto the equivalen
e ∼2 indu
ed by the transitions going below C: two states are ∼2-equivalent if andonly if they rea
h the same states of the part already treated by the algorithm, by the same transitionlabels. The 
all MinimizeSCC(X) 
omputes the equivalen
e ∼1 ∩ ∼2. To re�ne ∼1, on
e 
omputed,by ∼2 we asso
iate to a state s ∈ C with transitions s
ai−→ si (1 ≤ i ≤ k) falling below C the word

(εs, [s]1, a1, [s1]2, . . . , ak, [sk]2). By Lemma 3.1, one 
an sort these words in time O(di) where di isthe number of su
h transitions, assuming that an array of size max(2, m, ℓ) has been allo
ated at thebeginning of the algorithm, on
e for all. The overall 
ost is therefore O(d + max(2, m, ℓ)) = O(n).4



Part of Ah−1 not yet treated
States of height ≤ h− 1 in Ah−1

X : C1 C2 · · · Cp

Figure 1. Automaton Ah−1 during the algorithmLet C′
1, . . . , C

′
p be the s

's of X after line 4. The 
all MergeIsomorphi
SCC(X) merges all s

'sin X that are isomorphi
, and X gets modi�ed a

ordingly: it then 
ontains a set of representatives

{C′
i1

, . . . , C′
ij
}, j ≤ p, of isomorphi
 s

's (so that we make 
oarser the equivalen
e on states 
omputedso far). As in the previous 
ase, we then have to re�ne this partition a

ording to the transitions fallingbelow X .The 
all Wrap(A, X) o

urs when X is already minimized. It 
onsists in possibly identifying statesof s

's that are lo
ated above one of the C′

ik
to an already minimized s

 of X , as explained earlier inthe example s1

a
−→ s0

a
−→ s0. Note that if some state t above X in the DAG of s

's is equivalent tosome state in C′

ik
, then all states belonging to s

's between t and X are also equivalent to some statein C′

ik
. The pro
edure Wrap(A, X) pre
isely merges these s

 to X . Again, to validate that two statesare equivalent, we have to take into a

ount transitions falling below X .The last step in ea
h iteration of the main loop, line 7, is the update X ← NextHeight(A, X)
omputing the set of s

's to 
onsider during the next iteration. The height of states, as de�ned above,is not invariant through the 
all Wrap(A, X): a state may have its height lowered. For that reason,we update in the 
all NextHeight(A, X) the weights of edges as follows: all edges leading to a stateof X are assigned weight 0 (instead of 1 previously). The weights of all other edges remain un
hanged.We then 
ompute, only at this point, the mass of ea
h state having an outgoing edge whose weight hasbeen a�e
ted. The states rea
hing mass 0 are put in a list. They are exa
tly those we need for the nextiteration, and are returned by the 
all to NextHeight. Sin
e the weight of ea
h edge is modi�ed atmost on
e, the overall 
ost of all 
alls to NextHeight is O(d).3.2.2. Corre
tness. We prove that Algorithm 1 indeed 
omputes the minimal automaton. First, weonly identify equivalent states, sin
e merging is only done by the minimization subroutines of lines 4�6assumed to be 
orre
t.We have to prove that, whenever two states are equivalent, they are merged in the last automaton

AH . Arguing by 
ontradi
tion, assume that two equivalent states s, t of A have not been merged andsuppose that the pair (s, t) is minimal in the DAG of s

's for this property. That is, if s′ is below s,
t′ is below t, and s′, t′ are equivalent and distin
t, then s = s′ and t = t′. States s and t 
annot o

urin the same value of the variable X sin
e, otherwise, they would be merged at line 4 if they belong tothe same s

, or at line 5 otherwise. Suppose that s is the �rst to o

ur in the value of X . Then, two
ases may arise. One 
ase is that t is wrapped to another state at line 6 while s belongs to X . This isimpossible sin
e, as X has been previously minimized (lines 4 and 5), no state of X \ {s} is equivalentto s. It remains the 
ase where s, t o

ur in X in two di�erent iterations is, it of the main loop, with
is < it. Observe that, for every letter a su
h s · a falls below s or t · a falls below t, sin
e s · a and t · a areequivalent, by the minimality of the pair (s, t), they will be merged by the algorithm before s appears inthe value of X . Sin
e the remaining edges do not intervene in determining when t will appear in X , itfollows that s and t will be found in the same value of X , a 
ase whi
h has already been ex
luded. Thisproves that Algorithm 1 is 
orre
t.3.2.3. Redu
tions. We have isolated in our algorithm three subroutines to merge equivalent states in threedi�erent situations: (1) minimizing a strongly 
onne
ted 
omponent, (2) merging isomorphi
 strongly
onne
ted 
omponents, and (3) wrapping. We formulate these subproblems for a 
lass C of strongly
onne
ted DFAs.
C-ms
a Minimizing strongly 
onne
ted automata of C.Input: A strongly 
onne
ted DFA belonging to C. 5



Output: Its minimal automaton given by the equivalen
e relation on states.
C-mms

 Merging minimized DFAs from C whi
h are strongly 
onne
ted.Input: A set of minimized and strongly 
onne
ted DFAs (Ai)1≤i≤m of C.Output: (a) A partition ⋃

j∈J Ij of [1, m] su
h that Ap, Aq are isomorphi
 if and only if p, q are in thesame Ij . (b) A representative of ea
h 
lass. (c) For ea
h element in a 
lass di�erent from the 
hosenrepresentative, an isomorphism to the representative.
C-wrapping Wrapping on a minimized s

 of C.Input: A DFA 
onsisting of a minimized s

 A0 from C of height 0 and an s

 A1 from C of height 1.Output: Its minimal DFA given by the equivalen
e relation on states.For a 
lass C of DFAs, let dfa(C) be the 
lass of DFAs whose s

's are in C for some 
hoi
e of �nalstates.If there is an O(f(n))-time algorithm for dfa(C)-minimization, then C-ms
a, C-mms

 and C-wrapping also have an O(f(n))-time solution. This is 
lear for C-ms
a and C-wrapping whi
h arethe minimization problem on parti
ular instan
es. For C-mms

, assume we are given several strongly
onne
ted nontrivial automata (Ai)1≤i≤m from C. Let a, b /∈ A be two distin
t letters. Choose a state
ti in ea
h Ai and 
onsider the DFA A built by adding states s1, . . . , sm to the disjoint union of theautomata Ai, where the si's are new states, and transitions si

a
−→ si+1 and si

b
−→ ti (see Fig. 2). Thedisjoint union of automata Ai = (Ai, Si, Fi, δi), 1 ≤ i ≤ n, is the automaton A = (

⋃
Ai,

⊎
Si,

⊎
Fi,

⊎
δi)(whose state set is the disjoint union ⊎

Si). Obviously, A is in dfa(C) and has O(D) transitions, where D

s0 s1 . . . sk−1 sk

A0 : t0 A1: t1 . . .
Ak−1: tk−1 Ak: tk

a a a a

b b b bFigure 2. Merging minimal s
-automatais the total number of transitions of all Ai's. Minimizing A exa
tly merges those Ai that are isomorphi
,sin
e the Ai's are minimal.3.2.4. Complexity. We have shown in Se
tion 3.2.3 that if dfa(C)-minimization 
an be solved in O(f(n))time, then so 
an C-mms

, C-ms
a, and C-wrapping.Conversely, we use the algorithm of Se
tion 3.2.1, whi
h 
alls subroutines solving these subproblems inorder to solve dfa(C)-minimization. Assume that the subroutines run in time O(f(n)), where f(x+y) ≥
f(x) + f(y) (whi
h is the 
ase, e.g., if f(n)/n is nonde
reasing). The time 
omplexity for minimizingthe automaton is the sum of (1) the 
omplexity of all 
alls to the three subroutines, (2) the overheadto 
ompute heights, and (3) the overhead to re�ne relations (e.g., to 
ompute ∼1 ∩ ∼2). For (1), ea
hsubroutine is 
alled several times, on subautomata of sizes n1, . . . , np, where ∑

ni = n, yielding an overall
omplexity of f(n1)+ · · ·+ f(np) = O(f(n)) by the assumption on f . We have seen in Se
tion 3.2.1 thatthe 
omplexity for (2) is O(n) = O(f(n)). Finally, for (3), note that the re�nements o

ur at most threetimes on ea
h state (after the 
alls of lines 6, 4 and 5). The equivalen
e is 
omputed by storing the 
lassClass[s℄ of state s and the list States[c℄ of states of 
lass c, using arrays. Merging two states s and tamounts to removing, say s, from States[Class[s℄℄, appending it to States[Class[t℄℄, and 
hangingthe value of Class[s℄. These operations 
an be done in O(1)-time (Implementing the removal in O(1)-time is done by maintaining a pointer for ea
h state s to its position in the list States[Class[s℄℄.)Hen
e the overall 
omplexity is O(f(n)). We 
an state our main result.Theorem 3.2. Let C be a 
lass of strongly 
onne
ted DFAs 
ontaining the trivial DFAs (one state,no edge) and let f be a fun
tion su
h that f(n)/n is nonde
reasing. Then, the dfa(C)-minimizationproblem is solvable in O(f(n))-time if and only if C-mms

, C-ms
a, and C-wrapping are solvable in
O(f(n))-time.We have to in
lude trivial 
omponents in C for the wrapping, sin
e we need to be able to wrap a singlestate to a (nontrivial) s

. Note that if we take for C the 
lass of trivial s

's, we reobtain the linear
omplexity for the minimization of a
y
li
 automata [14℄. In the next se
tion we apply Theorem 3.2 toa larger sub
lass of automata whi
h one 
an still minimize in time O(n).6



4. Minimizing disjoint-
y
le automataA disjoint-
y
le automaton is an automaton su
h that all strongly 
onne
ted 
omponents are (possiblytrivial) 
y
les. In other words, two 
y
les on distin
t sets of verti
es share no verti
es. One 
an dete
twhether an automaton is disjoint-
y
le, by 
he
king for ea
h state that at most one outgoing edge remainsin the same strongly 
onne
ted 
omponent.We show in this se
tion that the mms

, ms
a and wrapping problems for strongly 
onne
ted 
om-ponents of this 
lass are solvable in O(n)-time (Lemmas 4.2, 4.3 and 4.4 below). In view of Theorem 3.2,this will entail the following result, announ
ed in [2℄.Theorem 4.1. One 
an minimize a disjoint-
y
le automaton on ℓ letters with d transitions in time
O(d + ℓ).The fa
t that s

's of a disjoint-
y
le automaton are 
y
les allows us to work on words instead ofworking dire
tly on automata. Re
all that the 
onjugates of a word b1 · · · bp (where bi are letters) arethe words of the form bibi+1 · · · bp · b1 · · · bi−1. A 
ir
ular word is a 
onjugation 
lass. Slightly abusingnotation, we represent a 
ir
ular word by any word of its 
lass.We 
an asso
iate to the 
y
le s0

a0−→ s1

a1−→ · · ·
ak−→ s0 the 
ir
ular word (ε0, a0)(ε1, a1) · · · (εk, ak)where εi = 1 if si is �nal and εi = 0 otherwise. Conversely, from su
h a 
ir
ular word, one 
an re
over aunique 
y
le (up to the name of the states).Lemma 4.2. ms
a is solvable in linear time for disjoint-
y
le automata.Proof. Re
all that the primitive root of a word w is the shortest word r su
h that w = rk for some k.It is easy to see that minimizing a 
y
le s0

a0−→ s1

a2−→ · · ·
ak−→ s0 amounts to �nding a primitive root ofits asso
iated 
ir
ular word: this primitive root is itself a 
ir
ular word, and the 
y
le asso
iated to it isthe minimal automaton of the original 
y
le. It is 
lassi
al that this 
omputation 
an be performed inlinear time (see e.g. [9℄ for instan
e). �Lemma 4.3. mms

 is solvable in linear time for disjoint-
y
le automata.Proof. The problem 
an be formulated as follows in terms of 
ir
ular words: we are given k 
ir
ular wordsand we want to merge them into equality 
lasses in linear time, with respe
t to the sum of their lengths.For that purpose, we 
ompute for ea
h 
ir
ular word its asso
iated Lyndon word, that is its smallestrepresentant, in the lexi
ographi
 order. (This is the pla
e where we use the fa
t that the alphabet isordered.) Sin
e we assumed that 
omparisons take linear time, the 
omputation of the asso
iated Lyndonword 
an be performed in linear time for ea
h word, in terms of its length [4, 15℄. It remains to groupin 
lasses 
ir
ular words having the same Lyndon word, whi
h 
an be done using Lemma 3.1. �Lemma 4.4. wrapping is solvable in linear time for disjoint-
y
le automata.Proof. Let A be an automaton having a single minimal s

 in the DAG of strongly 
onne
ted 
omponents.We distinguish two 
ases, depending on whether the highest s

 is trivial (Fig. 3 (a)) or not (Fig. 3 (b)).In 
ase (a), s 
an be wrapped on the 
y
le if and only if s is equivalent to t, that is if a = b. In 
ase (b),

s

tCase (a)

a
b

s

tCase (b)

a
b

c

Figure 3. Two 
ases for the wrapping problemthe only possible wrapping would identify s and t, hen
e a = b. Therefore, there should exist a transitionfrom t labeled c, where c labels the transition from s inside its s

. This is not the 
ase sin
e, as theautomaton is deterministi
, we have c 6= a, and the only transition from t is labeled by a. Hen
e nowrapping o

urs in this 
ase. �7
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