
DESCRIPTION AND ANALYSIS OF A BOTTOM-UP DFA MINIMIZATIONALGORITHMJORGE ALMEIDA AND MARC ZEITOUNAbstra
t. We establish linear-time redu
tions between the minimization of a deterministi
 �nite au-tomaton (DFA) and the
onjun
tion of 3 subproblems: the minimization of a strongly
onne
ted DFA,the isomorphism problem for a set of strongly
onne
ted minimized DFAs, and the minimization of a
onne
ted DFA
onsisting in two strongly
onne
ted
omponents, both of whi
h are minimized. Weapply this pro
edure to minimize, in linear time, automata whose nontrivial strongly
onne
ted
om-ponents are
y
les.
1. Introdu
tionFinite automata have been su

essfully used in numerous �elds of
omputer s
ien
e su
h as patternmat
hing,
ompilation, natural language pro
essing, databases, system veri�
ation. They
an representa broad range of obje
ts, from di
tionaries to models of transition systems. Properties expressed inhigh-level des
ription formalisms must also often be �
ompiled� into automata before algorithms
an beapplied. For real-world appli
ations, su
h automata may have a huge number of states, and redu
ingtheir size often proves to be
ru
ial for subsequent treatment. Finite automata on �nite words have aminimal,
anoni
al representation with respe
t to the language they determine. This paper fo
uses onthe pro
ess to
ompute this minimal representation,
alled minimization.Under the usual assumption that letters and states are represented by integers that
an be
om-pared in O(1)-time, the best-known algorithm for minimizing a deterministi
 �nite automaton (DFA) isHop
roft's [11℄, with a O(ℓm log m) worst
ase time
omplexity where ℓ is the number of letters and m thenumber of states (see [10, 13, 3℄ for
omplexity analyses). Brzozowski's algorithm [5℄ works theoreti
allyin exponential time, but has in pra
ti
e a surprisingly good behavior (see [7℄).Minimization algorithms usually start from the equivalen
e separating �nal and non-�nal states, andre�ne it until stabilization o

urs. In this paper, starting from the equality relation, we merge states whi
hare dete
ted to be equivalent. We redu
e the minimization problem of a DFA to subproblems involvingits strongly
onne
ted
omponents on one hand, and its dire
ted a
y
li
 stru
ture on the other hand.More pre
isely, for any fun
tion f su
h that f(n)/n is nonde
reasing, we show that the minimizationproblem
an be solved in time O(f(d + ℓ)), where ℓ still denotes the number of input symbols and d isthe number of transitions (whi
h
an be smaller than ℓm sin
e the algorithm
an deal with in
ompleteautomata), if and only if three subproblems have the same worst
ase
omplexity. These subproblemsare (1) the minimization of a strongly
onne
ted DFA (2) the
omputation of isomorphisms betweenstrongly
onne
ted, minimized DFAs, and (3) the minimization of
onne
ted DFAs having exa
tly twostrongly
onne
ted
omponents, both of whi
h are already minimized. The redu
tion is presented by thegeneri
 algorithm 1 using subroutines solving the subproblems, whi
h will be explained in detail later.Using pattern mat
hing te
hniques, we obtain as an appli
ation a O(d+ℓ)-time minimization algorithmfor automata whose nontrivial strongly
onne
ted
omponents are
y
les (this parti
ular appli
ation wasannoun
ed, without proof, in [2℄). This extends Revuz's minimization algorithm [14℄ for a
y
li
 DFAs,whi
h was designed to
ompress di
tionaries and works in O(d + ℓ)-time with O(m + ℓ) memory. Otheralgorithms for minimizing a
y
li
 DFAs in linear time [17℄ or to maintain a minimal DFA after adjun
tionof one word to its language have also been developed, see e.g., [6℄.Date: De
ember 24, 2007.Key words and phrases. Finite automaton, minimization, algorithms, formal languages.2000 MSC: 68Q45.Work partly supported by the Pessoa proje
t Egide-Gri
es 11113YM Automata, pro�nite semigroups and symboli
dynami
s. J. Almeida: work also partly supported by the Centro de Matemáti
a da Universidade do Porto, �nan
ed byFCT through the programmes POCTI and POSI, with Portuguese and European Community stru
tural funds.1

Algorithm 1 Minimization algorithm (outline)1: pro
edure Minimize(Automaton A)2: X ← ZeroHeight(A)3: while X 6= ∅ do4: MinimizeSCC(X)5: MergeIsomorphi
SCC(X)6: Wrap(A, X)7: X ← NextHeight(A, X)8: end while9: end pro
edure 2. Automata and data stru
turesWe work on a �nite alphabet A = {0, . . . , ℓ− 1} with ℓ ≥ 2 letters. We denote by A∗ the free monoidgenerated by A, and by |x| the length of a word x ∈ A∗. We assume that A is known, and
an be used asindex set for arrays. In Se
tion 4, we also use the usual total order on A, viewed as a set of integers. Adeterministi
 �nite automaton (DFA) is a tuple A = (A, S, F, δ, s0) where A is the alphabet, S is a �niteset of states, F ⊆ S is the set of �nal states, δ : S × A → S is a partial mapping
alled the transitionfun
tion, and s0 is the initial state. We let m = |S| be the number of states, d = |δ| be the number oftransitions, and n = d + ℓ.The state δ(s, a), when it exists, is also written s · a. We represent the transition (s, a, s · a) by
s

a
−→ s · a. We use the word edge to mean a transition. An automaton de�nes a dire
ted graph withvertex set S and edge set {(s, s · a) | s ∈ S, a ∈ A}. A strongly
onne
ted
omponent (s

) of A is astrongly
onne
ted
omponent of this graph, and A is strongly
onne
ted if so is its asso
iated graph. Weretain the terminology of [8℄: a strongly
onne
ted
omponent (s

) of a graph is an equivalen
e
lass forthe mutual rea
hability relation. In parti
ular, a vertex u su
h that the only path from u to u is emptyis an s

, whi
h is said to be trivial.Given a state s ∈ S, the language re
ognized by A from s is the set LA(s) ⊆ A∗ of words labeling apath from s to some �nal state. Two states s, t are (Nerode) equivalent if LA(s) = LA(t). We write [s]for the
lass of s in this equivalen
e. The minimization pro
edure
onsists in
omputing this equivalen
erelation. Merging the states of ea
h
lass into a single state produ
es the minimal automaton re
ognizingthe same language from the initial state, see [12℄. A DFA is minimal, or minimized, if no two distin
tstates are equivalent. We are interested in the
omplexity of minimization in terms of the parameters ℓ,

m, d and n.We assume that the DFA A is a

essible and
o-a

essible, that is, all states are rea
hable from s0 and
an rea
h a �nal state. Other states are useless regarding the a

epted language, and removing them
an be done in O(d + m)-time. Further, the initial state is irrelevant for the
omputation of equivalentstates (it just serves for determining the initial state of the minimized DFA). For this reason, we drop theinitial state, keeping in mind that we started from an a

essible automaton, so that we have m ≤ d + 1and O(d + m) = O(d).For a
lass C of DFAs, we study the following problem.
C-minimization Minimizing a DFA of the
lass C.Input: A �nite deterministi
 automaton from C.Output: Its minimal automaton given by the equivalen
e relation on states.The automaton
an be given by a matrix of (S ∪ {_})S×A whose (s, a) entry is s · a if it is de�ned,or _ otherwise. Using lists yields a smaller representation: for ea
h s ∈ S, we are given a list of theform (a1, s1, . . . , ak, sk), with ai ∈ A and si ∈ S, des
ribing all outgoing transitions s

ai−→ si. (Theselists
an be
omputed from the matrix in O(ℓm)-time.) A list (a1, s1, . . . , ak, sk) of (A.S)∗ is sorted if
a1 < a2 < · · · < ak. We write Out(s) for the sorted list of outgoing transitions of s ∈ S.We �rst sort outgoing transitions. Re
all that, given a �nite set X , one
an sort a sequen
e u1, . . . , uk ∈
X∗ in time O(|u1 · · ·uk|+ |X |) using radix-sort [1℄. Applying this result to transitions of a DFA yieldsthe following simple statement.Lemma 2.1. Let A be an a

essible DFA (with an initial state). Given, for ea
h state of A, a list of allits outgoing transitions, one
an
ompute in O(n)-time all sorted lists of outgoing transitions of statesof A, where n = d + ℓ. 2

Proof. For ea
h list Out(s) = (a1, s1, . . . , ak, sk), �rst build the transition list ((s, a1, s1), . . . , (s, ak, sk)).Sin
e A is a

essible, we have m ≤ d + 1, so this step takes O(d + m) = O(d)-time. One then usesradix sort on the list of all su
h transitions to order them lexi
ographi
ally a

ording to the �rst two
omponents, whi
h
osts O(d+m)+O(d+ ℓ) = O(n). In the sorted list obtained, the transitions (s, a, t)with the same state s are
onse
utive and sorted a

ording to the se
ond
omponent. It remains tos
an this list to break it into pie
es
orresponding to the same state s, to build ea
h of the sorted lists.Altogether, this requires O(d + ℓ) = O(n)-time. �The
omplexity O(d) is the best possible for minimization algorithms, sin
e one needs to visit alltransitions. Note that O(n) = O(d) if ea
h letter of A labels at least one transition. Therefore, byLemma 2.1, one
an start with a sorted list representation for DFAs. We assume that lists are doublylinked: one
an a

ess ea
h of the prede
essors of a state, individually, in O(1)-time.3. A redu
tion for the minimization problem3.1. Minimizing a
y
li
 DFAs. Our algorithm is inspired by Revuz's [14℄ for a
y
li
 automata, whi
hwe brie�y re
all. Re
all that [t] denotes the
lass of the state t in the Nerode equivalen
e. We asso
iatewith ea
h state s su
h that Out(s) = (a1, s1, . . . , ak, sk) the tuple τ(s) = (εs, a1, [s1], . . . , ak, [sk]), where
εs = 1 if s ∈ F and ε = 0 otherwise. The algorithm �rst
omputes the height of ea
h state, whi
h is thelength of the longest path to a �nal state. Note that equivalent states must have the same height. Atstage h = 0, 1, . . . , up to the maximal height H , the algorithm merges states of height h. Sin
e [s] = [t] ifand only if τ(s) = τ(t), radix sorting the words τ(s) for states of height h yields a list with equal words at
onse
utive pla
es, whi
h allows identifying equivalent states of height h. A minor
ompli
ation is thatusing H times radix sort produ
es a
omplexity of O(d + Hℓ). This motivates the following statement,appearing in [14, Theorem 2 and page 187℄.Lemma 3.1. Given a set X and u1, . . . , uk ∈ X∗, one
an
ompute in time O(|u1 · · ·uk|) the equality
lasses on (u1, . . . , uk), using an already allo
ated 0-initialized X-indexed array whi
h is reset after the
omputation.Proof. Let K = |u1 · · ·uk|. We do not want X , whi
h may be huge
ompared to K if many letters areunused, to appear in the
omplexity bound. In one s
an, one rewrites the sequen
e u1, . . . , uk using only
onse
utive positive integer letters, thus obtaining words u′

1, . . . , u
′
k, as follows. We store the en
oding of

x ∈ X in T [x], where T is the 0-initialized array. We repla
e the o

urren
e of ea
h s
anned letter x byits en
oding T [x] if x has already been en
oded (T [x] 6= 0). Otherwise, we �rst in
rement the numberof distin
t letters already en
ountered, we assign the result to T [x], and we push x on a sta
k (whi
htherefore
ontains the nonzero entries of T). This rewriting requires O(K) operations. The size of thealphabet of
onse
utive integers is O(K), so applying radix-sort to u′
1..., u

′
k determines equality
lassesin time O(K) (sin
e u′

i = u′
j if and only if ui = uj). Finally, using the sta
k, one swit
hes ba
k to 0 allnonzero entries of T in time O(K). �Using the algorithm of Lemma 3.1 instead of radix sort dire
tly to minimize a
y
li
 automata yields thedesired O(n) time
omplexity: O(ℓ) time is needed to allo
ate the 0-indexed array, and K = O(d+m) =

O(d) time to determine equality
lasses.3.2. The bottom-up minimization algorithm.3.2.1. Des
ription. The same s
heme applied to arbitrary DFAs brings additional di�
ulties. First, thenotion of height has to be modi�ed, sin
e there may be paths of arbitrary length to a �nal state. Wede�ne the height of a state by
onsidering ea
h strongly
onne
ted
omponent (s

) as a single state.This requires that one �rst
ompute the dire
ted a
y
li
 graph (DAG) of s

's of the automaton, whi
h
an be done in O(d)-time with Tarjan's algorithm [16, 8℄. We maintain this DAG along the algorithm.(Expressions su
h as an s

 is below another s

 refer to the partial order indu
ed by this DAG.) In therest of the paper, we identify ea
h s

 with its set of states. We use an array of size m storing, for ea
hstate s, the number of its s

. Conversely for ea
h s

, we re
ord its list of states. We also use the samedata stru
tures for all equivalen
e relations, to have a

ess in O(1)-time to the equivalen
e
lass of astate
omputed so far. To de�ne heights, we assign weight 0 to an edge belonging to an s

 and weight1 to all other edges. The weight of a path is the sum of the weights of all edges in the path. The heightof a state is then the maximal weight of some path to a �nal state, whi
h is well de�ned. By de�nition,all states of a given s

 have the same height. 3

One
ould
ompute the height along one traversal, as for a DAG, but the problem is that two statesat di�erent heights may well be equivalent. For instan
e,
onsider the automaton s1

a
−→ s0

a
−→ s0 withboth s1, s0 �nal. The height of s1 is 1 and the height of s0 is 0. However, s1 is equivalent to s0. Wesay that s1
an be wrapped onto the s

 of s0. Formally, starting from an automaton with exa
tly twos

's C0 and C1, where C1 is
onne
ted to C0 and both C0, C1 are already minimized as individualautomata (taking into a

ount, for C1, the transitions leading to C0), wrapping
onsists in determiningpairs of equivalent states of C1 ×C0. If su
h a pair exists, then C0 is nontrivial, and every state of C1 isequivalent to some state of C0. In the example, our algorithm shall wrap s1 onto the
y
le s0 (identifying

s0 and s1). However, doing so
hanges the height of s1 (from 1 to 0) and more generally, wrapping statesmay de
rease the height of states that lie above them. The other di�
ulty is that both
omputationsare linked: the height is needed to determine whi
h state to wrap at some point in the algorithm, andone also needs to modify the heights after a wrapping.To avoid re
omputing the heights several times, we do not
ompute them beforehand, and we main-tain information to determine on the �y, before stage k, whi
h states must be treated at this stage.Nonetheless, to help understanding the
omputation on-the-�y, we give a des
ription of how we wouldpre
ompute the height of all states in O(n)-time: one assigns a mass to ea
h state (stored in its datastru
ture). A state with i outgoing 1-weighted edges has initially mass i. The mass of an s

 is themaximal mass of its states. The mass of a state de
reases during the exe
ution of the algorithm. Were
ord for ea
h s

 its number of states and its number of states of mass 0. Initially, these two numbersare equal only for minimal s

 (in the DAG of s

). Ea
h time we de
rease the mass of a state, we
he
kwhether it rea
hes mass 0. If so, we in
rement the number of states having mass 0 for its s

. If thisnumber rea
hes the total number of states in the s

, then the s

 itself rea
hes mass 0, and we add itto a list of s

 of mass 0.Initially, we assign height 0 to all states in s

 of mass 0. Further heights will be
omputed later on,at di�erent steps of the algorithm. When states of height less than h − 1 have been treated, we needto
ompute the set of states of height h. These states are obtained, at that stage, as those belonging tos

's of mass 0. Then, these states are not
onsidered anymore for the height
omputation (we removethe
orresponding s

 from the list of s

's of mass 0). Moreover, for ea
h transition t
a
−→ s ending ina state s to whi
h we just assigned height h, we de
rease the mass of state t by 1, in
rease the
ountof mass 0 states of its s

 if t rea
hes mass 0, and put its s

 in the list of s

's of mass 0 if this
ountrea
hes its number of states. Observe that ea
h transition is
onsidered at most on
e, so that the overalltime
omplexity, for the height
omputation, is O(d).An outline of a generi
 minimization algorithm is des
ribed in Algorithm 1. It uses three subroutines,MinimizeSCC, MergeIsomorphi
SCC and Wrap, assumed to be given, and des
ribed below. It
omputes a sequen
e of automata A−1 = A, A0, A1, . . . , AH su
h that AH is the minimal automaton of

A. Stage h ∈ [0, H] merges equivalent states of height h of Ah−1 to produ
e Ah. The automaton Ah isobtained at the end of the hth iteration of the main loop of Algorithm 1, after that all merging of statesof height at most h will have been performed.The variable X always holds (states of) a subset of the set of s

's of the
urrent automaton, for whi
hmerging should o

ur at lines 4�6. It is initialized, at line 2, with all s

's of mass 0 (pre
omputed byTarjan's algorithm). At line 7, it re
eives the
andidate states for merging at the next iteration, that is,the part of Ah−1
onsisting of states of height h, at that stage.Let us explain the
alls of lines 4�7. The �rst two of them only merge states of X . The
all of line 6possibly merges states of the part of Ah−1 not yet treated (
f. Fig. 1) with states of X .The
all MinimizeSCC(X) minimizes separately ea
h s

 C1, . . . , Cp of X , taking also into a

ountthe transitions going to an s

 below X . Let C be an s

 of X . Some states of C may have transitionsto s

's below C in the DAG of s

. However, sin
e the algorithm pro
eeds bottom-up, the part ofthe automaton below C is already minimized when C is
onsidered. Therefore, one
an �rst use aminimization algorithm on C as if it were an automaton by itself, not
onsidering the transitions fallingbelow C. This gives us a partition into equivalen
e
lasses ∼1. We then re�ne this partition a

ordingto the equivalen
e ∼2 indu
ed by the transitions going below C: two states are ∼2-equivalent if andonly if they rea
h the same states of the part already treated by the algorithm, by the same transitionlabels. The
all MinimizeSCC(X)
omputes the equivalen
e ∼1 ∩ ∼2. To re�ne ∼1, on
e
omputed,by ∼2 we asso
iate to a state s ∈ C with transitions s
ai−→ si (1 ≤ i ≤ k) falling below C the word

(εs, [s]1, a1, [s1]2, . . . , ak, [sk]2). By Lemma 3.1, one
an sort these words in time O(di) where di isthe number of su
h transitions, assuming that an array of size max(2, m, ℓ) has been allo
ated at thebeginning of the algorithm, on
e for all. The overall
ost is therefore O(d + max(2, m, ℓ)) = O(n).4

Part of Ah−1 not yet treated
States of height ≤ h− 1 in Ah−1

X : C1 C2 · · · Cp

Figure 1. Automaton Ah−1 during the algorithmLet C′
1, . . . , C

′
p be the s

's of X after line 4. The
all MergeIsomorphi
SCC(X) merges all s

'sin X that are isomorphi
, and X gets modi�ed a

ordingly: it then
ontains a set of representatives

{C′
i1

, . . . , C′
ij
}, j ≤ p, of isomorphi
 s

's (so that we make
oarser the equivalen
e on states
omputedso far). As in the previous
ase, we then have to re�ne this partition a

ording to the transitions fallingbelow X .The
all Wrap(A, X) o

urs when X is already minimized. It
onsists in possibly identifying statesof s

's that are lo
ated above one of the C′

ik
to an already minimized s

 of X , as explained earlier inthe example s1

a
−→ s0

a
−→ s0. Note that if some state t above X in the DAG of s

's is equivalent tosome state in C′

ik
, then all states belonging to s

's between t and X are also equivalent to some statein C′

ik
. The pro
edure Wrap(A, X) pre
isely merges these s

 to X . Again, to validate that two statesare equivalent, we have to take into a

ount transitions falling below X .The last step in ea
h iteration of the main loop, line 7, is the update X ← NextHeight(A, X)
omputing the set of s

's to
onsider during the next iteration. The height of states, as de�ned above,is not invariant through the
all Wrap(A, X): a state may have its height lowered. For that reason,we update in the
all NextHeight(A, X) the weights of edges as follows: all edges leading to a stateof X are assigned weight 0 (instead of 1 previously). The weights of all other edges remain un
hanged.We then
ompute, only at this point, the mass of ea
h state having an outgoing edge whose weight hasbeen a�e
ted. The states rea
hing mass 0 are put in a list. They are exa
tly those we need for the nextiteration, and are returned by the
all to NextHeight. Sin
e the weight of ea
h edge is modi�ed atmost on
e, the overall
ost of all
alls to NextHeight is O(d).3.2.2. Corre
tness. We prove that Algorithm 1 indeed
omputes the minimal automaton. First, weonly identify equivalent states, sin
e merging is only done by the minimization subroutines of lines 4�6assumed to be
orre
t.We have to prove that, whenever two states are equivalent, they are merged in the last automaton

AH . Arguing by
ontradi
tion, assume that two equivalent states s, t of A have not been merged andsuppose that the pair (s, t) is minimal in the DAG of s

's for this property. That is, if s′ is below s,
t′ is below t, and s′, t′ are equivalent and distin
t, then s = s′ and t = t′. States s and t
annot o

urin the same value of the variable X sin
e, otherwise, they would be merged at line 4 if they belong tothe same s

, or at line 5 otherwise. Suppose that s is the �rst to o

ur in the value of X . Then, two
ases may arise. One
ase is that t is wrapped to another state at line 6 while s belongs to X . This isimpossible sin
e, as X has been previously minimized (lines 4 and 5), no state of X \ {s} is equivalentto s. It remains the
ase where s, t o

ur in X in two di�erent iterations is, it of the main loop, with
is < it. Observe that, for every letter a su
h s · a falls below s or t · a falls below t, sin
e s · a and t · a areequivalent, by the minimality of the pair (s, t), they will be merged by the algorithm before s appears inthe value of X . Sin
e the remaining edges do not intervene in determining when t will appear in X , itfollows that s and t will be found in the same value of X , a
ase whi
h has already been ex
luded. Thisproves that Algorithm 1 is
orre
t.3.2.3. Redu
tions. We have isolated in our algorithm three subroutines to merge equivalent states in threedi�erent situations: (1) minimizing a strongly
onne
ted
omponent, (2) merging isomorphi
 strongly
onne
ted
omponents, and (3) wrapping. We formulate these subproblems for a
lass C of strongly
onne
ted DFAs.
C-ms
a Minimizing strongly
onne
ted automata of C.Input: A strongly
onne
ted DFA belonging to C. 5

Output: Its minimal automaton given by the equivalen
e relation on states.
C-mms

 Merging minimized DFAs from C whi
h are strongly
onne
ted.Input: A set of minimized and strongly
onne
ted DFAs (Ai)1≤i≤m of C.Output: (a) A partition ⋃

j∈J Ij of [1, m] su
h that Ap, Aq are isomorphi
 if and only if p, q are in thesame Ij . (b) A representative of ea
h
lass. (c) For ea
h element in a
lass di�erent from the
hosenrepresentative, an isomorphism to the representative.
C-wrapping Wrapping on a minimized s

 of C.Input: A DFA
onsisting of a minimized s

 A0 from C of height 0 and an s

 A1 from C of height 1.Output: Its minimal DFA given by the equivalen
e relation on states.For a
lass C of DFAs, let dfa(C) be the
lass of DFAs whose s

's are in C for some
hoi
e of �nalstates.If there is an O(f(n))-time algorithm for dfa(C)-minimization, then C-ms
a, C-mms

 and C-wrapping also have an O(f(n))-time solution. This is
lear for C-ms
a and C-wrapping whi
h arethe minimization problem on parti
ular instan
es. For C-mms

, assume we are given several strongly
onne
ted nontrivial automata (Ai)1≤i≤m from C. Let a, b /∈ A be two distin
t letters. Choose a state
ti in ea
h Ai and
onsider the DFA A built by adding states s1, . . . , sm to the disjoint union of theautomata Ai, where the si's are new states, and transitions si

a
−→ si+1 and si

b
−→ ti (see Fig. 2). Thedisjoint union of automata Ai = (Ai, Si, Fi, δi), 1 ≤ i ≤ n, is the automaton A = (

⋃
Ai,

⊎
Si,

⊎
Fi,

⊎
δi)(whose state set is the disjoint union ⊎

Si). Obviously, A is in dfa(C) and has O(D) transitions, where D

s0 s1 . . . sk−1 sk

A0 : t0 A1: t1 . . .
Ak−1: tk−1 Ak: tk

a a a a

b b b bFigure 2. Merging minimal s
-automatais the total number of transitions of all Ai's. Minimizing A exa
tly merges those Ai that are isomorphi
,sin
e the Ai's are minimal.3.2.4. Complexity. We have shown in Se
tion 3.2.3 that if dfa(C)-minimization
an be solved in O(f(n))time, then so
an C-mms

, C-ms
a, and C-wrapping.Conversely, we use the algorithm of Se
tion 3.2.1, whi
h
alls subroutines solving these subproblems inorder to solve dfa(C)-minimization. Assume that the subroutines run in time O(f(n)), where f(x+y) ≥
f(x) + f(y) (whi
h is the
ase, e.g., if f(n)/n is nonde
reasing). The time
omplexity for minimizingthe automaton is the sum of (1) the
omplexity of all
alls to the three subroutines, (2) the overheadto
ompute heights, and (3) the overhead to re�ne relations (e.g., to
ompute ∼1 ∩ ∼2). For (1), ea
hsubroutine is
alled several times, on subautomata of sizes n1, . . . , np, where ∑

ni = n, yielding an overall
omplexity of f(n1)+ · · ·+ f(np) = O(f(n)) by the assumption on f . We have seen in Se
tion 3.2.1 thatthe
omplexity for (2) is O(n) = O(f(n)). Finally, for (3), note that the re�nements o

ur at most threetimes on ea
h state (after the
alls of lines 6, 4 and 5). The equivalen
e is
omputed by storing the
lassClass[s℄ of state s and the list States[c℄ of states of
lass c, using arrays. Merging two states s and tamounts to removing, say s, from States[Class[s℄℄, appending it to States[Class[t℄℄, and
hangingthe value of Class[s℄. These operations
an be done in O(1)-time (Implementing the removal in O(1)-time is done by maintaining a pointer for ea
h state s to its position in the list States[Class[s℄℄.)Hen
e the overall
omplexity is O(f(n)). We
an state our main result.Theorem 3.2. Let C be a
lass of strongly
onne
ted DFAs
ontaining the trivial DFAs (one state,no edge) and let f be a fun
tion su
h that f(n)/n is nonde
reasing. Then, the dfa(C)-minimizationproblem is solvable in O(f(n))-time if and only if C-mms

, C-ms
a, and C-wrapping are solvable in
O(f(n))-time.We have to in
lude trivial
omponents in C for the wrapping, sin
e we need to be able to wrap a singlestate to a (nontrivial) s

. Note that if we take for C the
lass of trivial s

's, we reobtain the linear
omplexity for the minimization of a
y
li
 automata [14℄. In the next se
tion we apply Theorem 3.2 toa larger sub
lass of automata whi
h one
an still minimize in time O(n).6

4. Minimizing disjoint-
y
le automataA disjoint-
y
le automaton is an automaton su
h that all strongly
onne
ted
omponents are (possiblytrivial)
y
les. In other words, two
y
les on distin
t sets of verti
es share no verti
es. One
an dete
twhether an automaton is disjoint-
y
le, by
he
king for ea
h state that at most one outgoing edge remainsin the same strongly
onne
ted
omponent.We show in this se
tion that the mms

, ms
a and wrapping problems for strongly
onne
ted
om-ponents of this
lass are solvable in O(n)-time (Lemmas 4.2, 4.3 and 4.4 below). In view of Theorem 3.2,this will entail the following result, announ
ed in [2℄.Theorem 4.1. One
an minimize a disjoint-
y
le automaton on ℓ letters with d transitions in time
O(d + ℓ).The fa
t that s

's of a disjoint-
y
le automaton are
y
les allows us to work on words instead ofworking dire
tly on automata. Re
all that the
onjugates of a word b1 · · · bp (where bi are letters) arethe words of the form bibi+1 · · · bp · b1 · · · bi−1. A
ir
ular word is a
onjugation
lass. Slightly abusingnotation, we represent a
ir
ular word by any word of its
lass.We
an asso
iate to the
y
le s0

a0−→ s1

a1−→ · · ·
ak−→ s0 the
ir
ular word (ε0, a0)(ε1, a1) · · · (εk, ak)where εi = 1 if si is �nal and εi = 0 otherwise. Conversely, from su
h a
ir
ular word, one
an re
over aunique
y
le (up to the name of the states).Lemma 4.2. ms
a is solvable in linear time for disjoint-
y
le automata.Proof. Re
all that the primitive root of a word w is the shortest word r su
h that w = rk for some k.It is easy to see that minimizing a
y
le s0

a0−→ s1

a2−→ · · ·
ak−→ s0 amounts to �nding a primitive root ofits asso
iated
ir
ular word: this primitive root is itself a
ir
ular word, and the
y
le asso
iated to it isthe minimal automaton of the original
y
le. It is
lassi
al that this
omputation
an be performed inlinear time (see e.g. [9℄ for instan
e). �Lemma 4.3. mms

 is solvable in linear time for disjoint-
y
le automata.Proof. The problem
an be formulated as follows in terms of
ir
ular words: we are given k
ir
ular wordsand we want to merge them into equality
lasses in linear time, with respe
t to the sum of their lengths.For that purpose, we
ompute for ea
h
ir
ular word its asso
iated Lyndon word, that is its smallestrepresentant, in the lexi
ographi
 order. (This is the pla
e where we use the fa
t that the alphabet isordered.) Sin
e we assumed that
omparisons take linear time, the
omputation of the asso
iated Lyndonword
an be performed in linear time for ea
h word, in terms of its length [4, 15℄. It remains to groupin
lasses
ir
ular words having the same Lyndon word, whi
h
an be done using Lemma 3.1. �Lemma 4.4. wrapping is solvable in linear time for disjoint-
y
le automata.Proof. Let A be an automaton having a single minimal s

 in the DAG of strongly
onne
ted
omponents.We distinguish two
ases, depending on whether the highest s

 is trivial (Fig. 3 (a)) or not (Fig. 3 (b)).In
ase (a), s
an be wrapped on the
y
le if and only if s is equivalent to t, that is if a = b. In
ase (b),

s

tCase (a)

a
b

s

tCase (b)

a
b

c

Figure 3. Two
ases for the wrapping problemthe only possible wrapping would identify s and t, hen
e a = b. Therefore, there should exist a transitionfrom t labeled c, where c labels the transition from s inside its s

. This is not the
ase sin
e, as theautomaton is deterministi
, we have c 6= a, and the only transition from t is labeled by a. Hen
e nowrapping o

urs in this
ase. �7

Referen
es[1℄ A. V. Aho, J. E. Hop
roft, and J. D. Ullman. The design and analysis of
omputer algorithms. Addison-Wesley, 1975.Se
ond printing.[2℄ J. Almeida and M. Zeitoun. The equational theory of ω-terms for �nite R-trivial semigroups. In Pro
eedings of Semi-groups and Languages (Lisbon 2002), pages 1�23. World S
ienti�
, 2004.[3℄ D. Beauquier, J. Berstel, and Ph. Chrétienne. Éléments d'Algorithmique. Masson, 1992. In Fren
h.http://www-igm.univ-mlv.fr/~berstel/Elements/Elements.html .[4℄ K. S. Booth. Lexi
ographi
ally least
ir
ular substrings. Inform. Pro
ess. Lett., 10:240�242, 1980.[5℄ J. Brzozowski. Canoni
al regular expressions and minimal state graphs for de�nite events. MRI Symposia Series,12:529�561, 1962. Polyte
hni
 Press, Polyte
hni
 Institute of Brooklyn.[6℄ R. Carras
o and M. For
ada. In
remental
onstru
tion and maintenan
e of minimal �nite-state automata. Computa-tional Linguisti
s, 28(1):207�216, 2002.[7℄ J.-M. Champarnaud and D. Ziadi. Canoni
al derivatives, partial derivatives and �nite automaton
onstru
tions. Theor.Comput. S
i., 289(1):137�163, 2002.[8℄ T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introdu
tion to Algorithms. M
Graw-Hill, 2001.[9℄ M. Cro
hemore and W. Rytter. Text Algorithms. Oxford University Press, 1994. With a prefa
e by Zvi Galil.[10℄ D. Gries. Des
ribing an algorithm by Hop
roft. A
ta Inform., 2:97�109, 1973.[11℄ J. E. Hop
roft. An n log n algorithm for minimizing states in a �nite automaton. In Z. Kohavi, editor, Theory ofma
hines and
omputations (Pro
. Internat. Sympos., Te
hnion, Haifa, 1971), pages 189�196. A
ademi
 Press, 1971.[12℄ J. E. Hop
roft, R. Motwani, and J. D. Ullman. Introdu
tion to Automata Theory, Languages, and Computation (2ndEdition). Addison Wesley, 2000.[13℄ T. Knuutila. Re-des
ribing an algorithm by Hop
roft. Theoret. Comput. S
i., 250:333�363, 2001.[14℄ D. Revuz. Minimisation of a
y
li
 deterministi
 automata in linear time. Theoret. Comput. S
i., 92:181�189, 1992.[15℄ Y. Shiloa
h. Fast
anonization of
ir
ular strings. J. Algorithms, 2:107�121, 1981.[16℄ R. E. Tarjan. Depth �rst sear
h and linear graph algorithms. SIAM J. Comput., 1(2):146�160, 1972.[17℄ B. W. Watson. A new algorithm for the
onstru
tion of minimal a
y
li
 DFAs. S
i. Comput. Program., 48(2-3):81�97,2003.Centro de Matemáti
a e Departamento de Matemáti
a Pura, Fa
uldade de Ciên
ias,, Universidade doPorto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.E-mail address: jalmeida�f
.up.ptLaBRI, Université Bordeaux & CNRS UMR 5800. 351
ours de la Libération, 33405 Talen
e Cedex,Fran
e.E-mail address: mz�labri.fr

8

http://www-igm.univ-mlv.fr/~berstel/Elements/Elements.html
mailto:jalmeida@fc.up.pt
mailto:mz@labri.fr

	1. Introduction
	2. Automata and data structures
	3. A reduction for the minimization problem
	3.1. Minimizing acyclic DFAs
	3.2. The bottom-up minimization algorithm

	4. Minimizing disjoint-cycle automata
	References

