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In a recent paper we gave a counterexample to a longstanditfjgature concerning the characterization of regular
languages of level 2 in the Straubing-Thérien concatendtierarchy of star-free languages. In that paper a new
upper bound for the corresponding pseudovariety of moneasimplicitly given. In this paper we show that it is
decidable whether a given monoid belongs to the new uppendolVe also prove that this new upper bound is
incomparable with the previous upper bound.
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1 Introduction

A well-known result due to Schiitzenbergerl[22] gives a agtit characterization of star-free regular
languages. This prompted both Eilenberg’s identificatibthe combinatorial properties of classes of
regular language§][8], leading to a natural correspondeeatvecen varieties of languages (excluding the
empty word,.e. +-languages, or possibly includingiite. x-languages) and pseudovarieties (respectively
of semigroups or monoids), and Brzozowski's hierarchi@aistruction of star-free--languages. As
acknowledged by Eilenberl[8, Chapter IX], the reason ttkdih +-languages was to avoid technical
difficulties with the empty word, but these were later ovenedby Thérien[[29] and Straubing [25], who
also established a simple syntactic connection betweeBithazowski hierarchy and what came to be
known as the Straubing-Thérien hierarchy. The hierasctvere later refined by Pii_[l14] by introducing
intermediate (half) levels whose syntactic characteomadepends on a stable quasiorder rather than just
a congruence.

Starting from the trivial variety of languages, the levelshe refined Straubing-Thérien hierarchy are
defined inductively by alternately taking polynomial andoBxan closures. While it is decidable whether
a given regular language belongs to each of the levels 0,11&hd 3/2, decidability remains an open
problem for level 2 or higher. Via Eilenberg’s corresponckerfor the clas$; of all languages from the
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second level, the problem translates to decidability of imership of an arbitrary given finite monoid in
the corresponding pseudovariety of monoiis This is considered one of the main longstanding open
problems in the algebraic theory of regular languagé$d3]).

Pin and Straubind [15] showed that the languages from thensklevel), over a finite alphabett
are the finite Boolean combinations of languages of the fdfu, Ajas - - - ar A}, where thea;’s are
letters and thed,’s are subsets ofl. Work of several authors led to the conjecture that the étyual
V, = By @ Sl holds [18,19[ 26, 27, 28], whe® is the Mal'cev product[13, Section 6B, is the
pseudovariety of finite semigroups corresponding totheariety of languages of dot-depth one, &id
is the pseudovariety of finite semilattices. Indeed, Stirayi[26,[27] established that the classes contain
the same 2-generated monoids and Cow&hl[6, 7] that theyindhe&asame inverse monoids, while Pin
and Weil [18, Theorem 5.9] proved that a similar equalitydsdbr all half levels.

In the recent papel][3] we disproved the equality = B; @ SI. We discovered certain new pseu-
doidentities which are satisfied by member¥gfand we showed an example of a monéide B; @ SI
which does not satisfy one of these pseudoidentities. Thepseudoidentities are all those of the form
u® = u“vu” whereu andv are pseudowords such thé , satisfies the inequality < v; hereVs/,
is the pseudovariety of ordered monoids correspondingviel 82 in the Straubing-Thérien hierarchy.
These new pseudoidentities define a pseudovariety of firoteoidsF. Now the results fron ]3] can be
summarized in the following way, C F, M € B; @ SI, andM ¢ F, so thatM ¢ Vs. This implies
B @ Sl g F andV, 7& B, @ Sl

In this paper we also provide an example of a monoid whichrigddoF and does not belong to
B, @ SI, and so we also haveZ B; @ SI. Hence the two upper boun8s @ S| andF are incomparable
and we get a new tighter upper bound for the clssnamely(B; @ SI) N F. One can hope that the
inclusionV, C (B; @ SI) N F turns out to be an equality. This equality would solve thempaibblem if
one can show that the membership problem for the pseudtwéBe @ SI) N F is decidable. The main
contribution of this paper is the decidability of the mendtgp problem for the pseudovariefyfrom
which the decidability of the membership problem {8q @ SI) N F follows.

Perhaps surprisingly, the membership problem for the pmeartety F is not easy to solve. When
we want to test whether the new pseudoidentities are sdtisfie given finite monoid/ the following
relation plays a crucial role. For a finite monaid we define a relations» (M) C M x M by the rule
(s,t) € 13/9(M) if there is a pair of pseudowords v such thaV;, = u < v and an evaluatiop such
thato(u) = s, p(v) = t. Now we see thad/ € F if and only if for every(s,t) € 73/2(M) we have
s¥ = s“ts¥. The latter condition is easy to test whenever we know thedicel 73, (1 ). Unfortunately,
we do not know whether it is possible to compute this relaitiogeneral. Our solution of the membership
problem is based on the trick that it is enough to computertiresitive closure ofs 5 (M), because the
conditions” = s*“ts* is satisfied for all pairgs, ) from 75 (M) if and only if the condition is satisfied
for all pairs(s, ¢) from the transitive closure af; /5 (M).

The paper is organized as follows. In Seclidn 2, we recallageliminaries and notation. Then in
SectiorB we introduce the relatiog,, (M) and some other equivalent descriptions of this relatioo- Se
tion[d is devoted to the formal definition of the new upper tErand the trick concerning the transitive
closure of the relation;,(M). In Sectiorlb we prove the difficult part of the crucial chaeaization
of the transitive closure of the relatieg,, (M ). Here we apply the Factorization Forest Theorem [23].
The decidability offF is also established, which achieves the purpose of thisrp&petior® presents an
example of a monoid which shows thatz B, @ SI.
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2 Preliminaries

2.1 Stable quasiorders

In this paper the key notion is stable quasiorder in monditise we recall some easy observations and
we fix notation. Note that in this paper a monoid is either &mit a free (profinite) monoid.

For an arbitrary sed/ we say that a relatioR, i.e.a subset of\/ x M, is a quasiorder if and only if it
is reflexive and transitive. Such a relati®rdetermines an equivalence relation

R*=RNR ' ={(s,t) e M x M| (s,t) € Rand(t,s) € R}.

Then we can consider the factor 9 R which is naturally ordered by the relatid?) i.e. sR® < tR®
if and only if (s,¢t) € R. We will denote this ordered séb//R¢, <) simply by M/R. The number of
classes im//R is called theéndexof R.

If we take an arbitrary relatio® on M then we can consider the smallest transitive relation égonta
ing R, so-calledransitive closurgnamelyR* = | J,. R’, whereR' is the composition of copies ofR.
More formally, for eachi € N we define

R' = {(s,t) € M x M | there exists, s1,...,s; € M suchthats = sg Rs; Rsy R--- Rs; =t}.

Note that if the original relatiork is reflexive then we hav&’ C R’ whenever < j. This implies that
for two arbitrary pairgsi, s2), (t1,t2) € R* there is an exponentsuch thai(s, s2), (t1,t2) € R’
For an arbitrary monoid/ we say that a relatioR is stableif for all sy, s2,t1,t2 € M we have

((81,82> €ER and(tl,tg) S R) implieS(Sltl, 82t2> € R. (21)

In other words, the relatioR is stable if and only ifR is a subsemigroup af/ x M. In some papers a
stable relation? on a monoidV/ is defined by the following condition

(s,t) € Rimplies((sz,tz) € Rand(zs, zt) € R) (2.2)

for all s, ¢, 2 € M. Note thatl[ZP) follows froni{2]11) wheR is a reflexive relation. On the other hand if
Ris a transitive relation thei {2.1) is a consequencEQf (2.2)

If R is a stable reflexive relation on a monaid then the transitive closurB* is a stable quasiorder
on M. Indeed, for eacti the relationR is a stable relation o/ and the reflexivity ofR implies the
claim. This basic observation means that if we have a relaicon M and we want to construct the
smallest stable quasiorder containiRgve can first extend to a reflexive relation, which we then use to
generate a submonoid M x M, and finally we take the transitive closure.

2.2 Free profinite monoid

According to Reiterman’s Theorein [20], pseudovarietiealgébras are defined by pseudoidentities, that
is formal equalities of implicit operations. In the case mterest for this paper, implicit operations are
operations whose interpretation in finite monoids commwidshomomorphisms. Reiterman’s Theorem
has been extended independently by Molchahal [11] (sed®E})p via the nonstandard approach, and by
Pin and Weil [1¥] to first order structures, the latter haviagticularly in mind pseudovarieties of ordered
monoids, for which the equality (of implicit operations)replaced by the order relation. By endowing
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all unordered monoids from a given pseudovariétpy all possible stable partial orders, one obtains a
pseudovariety of ordered monoids, which is identified with

Simple examples of implicit operations are the so-cadieglicit operationsgiven by words, and the
w-power, which associates to each elemenf a finite monoid its unique idempotent powet = s™
(n > 0).

The implicit operations over a fixed finite sétcan be viewed as the elements of the projective lifit
of all A-generated finite monoids, which is the structure one isdembhsider when trying to identify the
“most general” such monoid. Here, finite monoids are viewetbpological monoids under the discrete
topology. In general, projective limits of finite monoidearalledprofinite monoids They may also be
characterized as compact totally disconnected monoidarrs out thatF', is the free profinite monoid
on the set4, in which the discrete submonoid generateddyywhose elements are the explicit operations,
is a free monoid and thus is identified witt. Thus, elements of’y become a generalization of usual
words, which prompts calling them alternativ@lyeudowordsSee [1[ 2] for details.

Denote byP,4 the monoid of all subsets of under the union operation. The mapping that sends each
lettera € A to the singleton{a} extends to a unique continuous homomorphism Fy — Pj4. Its
restriction toA* is the usual content function and, more generally, a letter A belongs tox(u) for a
given pseudoword € F if and only if there is a factorization of the form = zay with z,y € Fu
(cf. [, Section 8.1]). For this reason,is also called theontent function

Note thatP, is a semilatticei.e. a commutative and idempotent monoid. Moreoverfor € F4, we
haveS| = u = v if and only if a(u) = a(v). For a subseB of an alphabetd we denote by B] the set
of all words overA such that their content iB, i.e. [B] = {u € A* | a(u) = B} = a~1(B) N A*.In
particular, forB = () we write[] = [(] = {e} wheree is the empty word.

2.3 Regular languages and syntactic quasiorder

We recall the concept of syntactic quasiorder, which waséhiced by Pin under the name syntactic order
(seee.qg.[13)).
For an arbitrary language C A* we define relatior<;, on A* in the following way. Foru,v € A*
we writeu <p, v if
(Vx,y € A") (avy € L = zuy € L).

The relation<;, is a stable quasiorder on the moneald and it is called thesyntactic quasiordeof L.

In this paper we deal only with regular languages, for whighhas finite index. The reason is that for a
regular languagé there are only finitely many languages of the form! Ly ! = {u € A* | zuy € L}.
We denotelM;, = A*/<; which is a finite ordered monoid, called thedered syntactic monoidf L.
The natural projectiow;, : A* — M, is called thesyntactic morphismNote thaté, (L) is an ideal in
(My, <) and that; (¢, (L)) = L.

Now we consider the extension gf, to the continuous morphismy, : F4 — M of compact
monoids. The relation o4y consisting of the pairgu, v) such thaty; (u) < ¢ (v) is still denoted
by <r. Note that it is a stable quasiorder 613. Thus if we speak about syntactic quasiorder and syntac-
tic morphism we can consider these extensions 4o

Using the continuous morphisiy, we see that the topological closuteof L is clopen inF, and that
o7 (¢ (L)) = L. An alternative definition of the relatiori;, is given by the next lemma, whose proof
amounts to an easy exercise.
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Lemma 2.1 Let L be a regular language over an alphabétand letu,v € F4 be pseudowords. Then
the following statements are equivalent:

() u<pov,
(ii) forall 2,y € Fa, zvy € Limplieszuy € L,
(iii) forall z,y € A*, xvy € Limplieszuy € L.

2.4 Some known results on the Straubing-Thérien hierarchy

We recall the characterizations % /., the level3/2 of the Straubing-Thérien hierarchy. The first is
implicitly contained in [15].

Proposition 2.2 (13, Theorem 8.8]) A language over an alphabet is of level3/2 if and only if it is a
finite union of languages of the forAfa; Ajas - - - ar A, where eactd; C A and eachu; € A.

Proposition 2.3 ([l18, Theorem 8.7], [[13, Theorem 8.9]) A language is of level/2 if and only if its or-
dered syntactic monoid satisfies the pseudoideatity.~ < u* for all pseudowords, v over some finite
alphabet satisfying(u) = a(v).

The following proposition from[]i3] gives new pseudoideiestfor the pseudovariety,. The proof is
also recalled as it is quite easy.

Proposition 2.4 ([3, Proposition 2]) Letu andv be pseudowords such theg,, = u < v. ThenV, =
u? = u¥ovu”.

Proof: Since), is the Boolean closure df;/,, we haveV, = = yifand only if Vg5 |= o = y, i.e.if
andonly ifVs, =z <yandVg), =y < .

From the assumptioN's/; = v < v, we deduce that(u) = a(v) becausel C Vj/,. From
Propositiol 21, we obtain immediately , = u“vu® < u®.

When we multiplyu < v by «* from both sides, we obtain’vu® < u“vu®. SinceVs,y = et =
x*, we conclude tha¥/s /, = u® < u®vu®. a

3 Relations on monoids related to level 3/2

For each finite alphabet and natural number. we denoté/,, (A) the set of all languages ovérof the
form
[Ao] a [A1] a2 [A2] T [Ak—l] Qg [Ak] ) (3.1)

wherek < m, ay,...,ar € AandAy,...,A; C A. SinceA is finite, so is each of the sett4,(A4). We
denotel/(A) their union over alln > 0. The languages of levél/2 over an alphabetl are exactly the
finite unions of languages frotd(A), because for each finite alphali2tone can express the language
B* as the finite union of all languages of the fof@| with C' C B, which in turn are of level 1.

Now, we define a reIatioﬁf}L on the free profinite monoid'y in the following way:

u =g v if, forall L € Uy, (A), v € Limpliesu € L.
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Note that ifu <2 v for someu,v € F,4 then the implication € L. = u € L is satisfied also for
each languagé which is a finite union of finite intersections of languagesii/,,(A). One can prove
that such languages form a positive variety of languageis. dlaim is a special case af]14, Theorem 5.1]
or alternatively of[[®, Theorem 1]. One can also prove it cliseby showing that each morphic preimage
and also each derivative of a language from the dlgséA) is a finite union of finite intersections of
languages frond,,,(A). This method is used ifi][4] to prove that the polynomial ctesof a variety of
languages constitutes a positive variety, although thedide for morphic preimagél4, Lemma 2.2.2] is

not correc

Lemma 3.1 Let A be an alphabety: be a number and, v € F'4 be pseudowords. Then
u <A v if and only if, for all L € Uy (A), u <y v.

In other words=<? is the intersection of all relations 1, for L € U,,(A).

Proof: Letu,v € F4 be such thatt <2 v and letL € U,,(A). We want to show that <;, v, which
is equivalent to conditiori{lii) in Lemmad.1. Lety € A* be such thatvy € L and we show that also
ruy € L. Since the sel is open, we may consider a sequence of wdigs,,cn converging tov such
that for eachn, we havexv,y € L. Hencev,, € 2~ 'Ly~! and we see that ¢ K for K = 2~ 'Ly~ .
The languagéX is a finite union of finite intersections of languages frof(A) and the implication
v € K = u € K follows fromu <4 v. Thus there is a sequence of wofds ),,cy converging tau such
thatu, € K = 2~ 'Ly~! for eachn € N. Henceru,y € L and we deduce thatuy € L.

On the other hand, fat,v € F4 andL € U,,(A) we have

(u<p vandv € L) impliesu € L

because we can consider conditibd (iii) in Lemimd 2.1 withndy empty words. This property entails
the implication “=". O

GivenX C Fa, writeu <4 vif u,v € Fa andv € X = u € X. Then=<% is a quasiorder in which
the elements o are minima and the remaining elements are maxima.

Lemma 3.2 The following hold for every natural number.
(i) ForeachA the relationjﬁ is a stable quasiorder of'4.
(i) For every continuous morphism : F4 — Fp we have

forall u,v € Fy, u < vimpliesy(u) <B o (v).

—m —m

(iii) The equivalence relation determined by the quasiordé. has index at mosttm (A1,

() The problem lies in the fact that the formula does not take attcount the possibility of a letter covering several of dise
tinguished letters. For instance, the formula fails for lieenomorphismy : a* — b* defined byp(a) = b2, for which
e~ H[1b[]1b]]) = {a} = [] a[], while the language given by Arfi's formula is empty, sincéeast one of the derivatives in the
languages in the union is empty.
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Proof: By Lemma 3L, the relatior? is the intersection of all stable quasiorders with L € U, (A),

and therefore it is itself a stable quasiorder, which pradesOn the other hand, sincg? is also the
intersection of the quasiorders of the fom%, each of which has index 2, we obtalnl(iii).

@ Let u,v € F4 be such that: </} v, let L € U, (B), and suppose that(v) € L. From the
continuity of¢, we obtain the equality =" (L) = ~!(L). Now K = ¢~!(L) € A* is a finite union
of finite intersections of languages fraiy, (A). Sincev € K andu <% v we haveu € K. Hence

Y(u) € L, which proves that)(u) <2 v (v). m

From Lemmag3]1 arld3.2 one can also state that the ordereaianion/ < is a free (pro)finite or-
dered monoid in the pseudovariety of ordered monoids cporeding to the positive variety of languages
generated by alll,,,(B).

By asystem of relations we mean an operator which determines, for each finite alghalzerelation
p? on the free profinite monoid’s. E.g.for eachm we have a system of relations,,. We call a
system of relationg afully invariant system of stable quasiordefdt satisfies conditiond)i) andTii) of
Lemmd3R. If every relatiop has finite index inf'4, then we speak of flly invariant system of stable
quasiorders of finite index

Another example of a fully invariant system of stable quedges of finite index is given by the kernel
of the content functiom. More precisely we consider the relatierf on 4 given by the following rule
foru,v € Fy:

u=2v if a(u) = a(v).
Further, we define a relation on F4 as the intersection of all relatiOH;sAm, i.e.
u =" if, forall L € U(A), v € Limpliesu € L.
The following is an immediate consequence of Lemmas 3.12hd 3

Proposition 3.3 The system of relations is a fully invariant system of stable quasiorders. For each
alphabetA, the relation=<“ is the intersection of all relations ;, for L € U(A). O

Lety : F4 — M be a continuous morphism to a finite mondifl For a binary relatiorR on F4, we
define the relatiog(R) on the monoid\/ by the rule

o(R) ={(s,t) € M x M | there exist,,v € F4 such thaw R v, p(u) = s andp(v) =1t}.

Note that if R is a stable relation o4 theny(R) is a stable relation ofd/. But o(R) need not be a
quasiorder even iR is. We show that the definition ¢f( R) does not depend apor A when we consider
a fully invariant system of stable quasiorders.

Lemma34 Lety : F4 — M andg : Fgp — M be a pair of continuous morphisms. Further, febe a
fully invariant system of stable quasiorders.

(i) If Bis onto thenp(p?) C B(p?).

(i) If both » and 3 are onto thenp(p?) = B(p?).
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Proof: The second statement follows from applying the first oneewfo, assume thgtis onto and let
(s,t) € ¢(p?). Then by the definition op(p*) we haveu,v € Fa such thatu,v) € p4, ¢(u) = s, and
©(v) = t. Sinces is onto andB* is dense inF'z, we can consider for eaeche A a wordu, € B* such
that3(u,) = p(a) € M. Then there is a continuous morphism F4 — Fp such that)(a) = u, for
alla € A, sothatp = 8 0 1. Sincep is fully invariant we obtain(+(u), ¥ (v)) € p? from (u,v) € pA.
From the definition of3(p?) we get

(s:8) = (p(u), 0(v)) = (B (w)), B (v))) € B(p"),
which completes the proof of the lemma. O

Thus, we can define for each fully invariant system of stalbiasgprders) and every finite monoid
M the relationp™ on M by taking an arbitrary onto continuous morphism F, — M and putting
p™ = ¢(p?). In particular, we can consider the relatiord’ and < for eachm. The relation=™
is sometimes known in the literature as the se$lgbointlike pairsof elements of\/ (cf. [21, Subsec-
tion 2.4.1]).

We say that we have agffective descriptionf a finite ordered monoid if its multiplication table and
its order relation are known.

Useful properties of the relations? and=<™ are given in the following lemma. Some of them are

—m

formulated in a more general setting.

Lemma3.5 Lety : F4 — M be an arbitrary onto continuous morphism and petbe a fully invariant
system of stable quasiorders; in particulet! = (p*). Then the following properties hold.

(i) The relationp™ is stable.

(i) If the equivalence relation corresponding gé' has finite index then we have
pM = {(s,t) € M x M | there existu, v € A* such thatu p v, p(u) = sandp(v) = t}.

Moreover, if we have an effective description of the finigeoed monoid?s /p* thenp is com-
putable.

(iiiy For eachm we have<2!, , C <M and the relation<? is the intersection of all relations:}’ .

Proof: (i) We already mentioned that(R) is a stable relation whenevé&ris a stable relation.

(@ The inclusion ‘2" is trivial. If we take (s,t) € p™ then we havéu,v) € p for someu,v € Fi4
such thatp(u) = s andp(v) = t. We denote; the natural morphism fronf’s to the finite ordered
monoid F4/p#. Sincey~!(s) andn~—!(n(u)) are both clopen subsets iy which containu € Fa, it
follows that their intersection is also non-empty and clopeF 4. This entails that it contains some word
u’ € A*. Hence we have(u') = s and(v/,u) € p (and alsa(u, u') € p). By the same argument we
obtainv’ € A* suchthatp(v') = t and(v,v') € p. Sincep” is a transitive relation we gét’, v') € p?.
We proved the first part oEJii).

For the second part we define a relational morphisfrom M to Fa/p” asm = no ¢~!. In other
wordsm = {(p(u),n(u)) | u € A*}. In factr is a submonoid of the finite monoid x F4/p* and it is
generated by the sé&t = {(¢(a),n(a)) | a € A}.
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Since we have an effective description of the finite orderedoid F4 /p* we can compute as the
submonoid of the finite monoidil x F/p? generated bys. Now (s,t) € pM if and only if there exist
u,,v, € Fa/p? such that, < v, and(s,u,) € m and(t,v,) € . By the above, the latter condition on
the pair(s, t) can be effectively checked.

(@) From the inclusions<4 C =<2 | C =4 it follows that< C <M  C <M |t remains to show

—m*

that(),,~, <M C <M. So, suppose that¢ € M are such that <2 ¢ for all m > 0. Then, for each
m > 0 there existu,, € p~1(s) andv,, € ¢~1(t) such thats,, <2} v,,. Since the spacg, is compact,
there is a sequence of indices < msy < --- such that each of the subsequenges, ). and (v, )k
converges to the respective limitandv. As ¢ is continuous, we have(u) = s andy(v) = t. We
claim thatu <4 v, which will establish that < ¢, as required. Indeed, given a langudge U,,(A),
consider the syntactic morphisp, : F4 — M, which is continuous. Hence there is soimsuch that
mie > m and o (um,) = ¢r(u) ander(vm,) = ¢r(v). SiNCeUM, =& Vm, andL € Uy (A), we
conclude in particular that,,,, <, v,,,, whence alsa <, v, which proves the claim. O

Recall that we have defined the relation, (M) € M x M by the rule(s,t) € 73/5(M) if there are
a finite set of variable&(, a pair of pseudowords, v € Fx such thaWs,, = u < v, and a continuous
morphismy : Fx — M such thatp(u) = s, ¢(v) = t. We show that the inequalities satisfiedMp,,
are exactly given by the system of relatiodsand that the relatioms (1) coincides with the previous
relation=<?,

Proposition 3.6 Let A be a finite alphabet.

(i) Foreachu,v € F4 we have

Va2 | u <o ifandonlyif u <* .

(i) For every finite monoid/ we havers; (M) = <M,

Proof: (@) Letu,v € F4 be suchthaVs,, = u < v. Thenforeactl € U/(A) and its syntactic morphism
¢r, : Fa — My we havepy (u) < ¢r(v), i.e.u < v. This shows that <“ v by Propositioli-313.

Now, letu <4 v. We want to show that for eadh € V3,2(B) and its syntactic morphismy, : Fp —
M, onto the ordered syntactic monald;, of L, we haveM = u < v. Itis enough to prove it for
languaged. < U(B) because’s, is the positive variety of languages generated by/tl’). So, let
L € U(B) with syntactic morphisng;, : Fp — My, and takey : F4 — M), an arbitrary continuous
morphism. Since the syntactic morphisi is onto we obtaini(=<4) C ¢, (=<?) from Lemma3H.
Thus, as we are assuming that<4 v, so that(y(u),¥(v)) € %(=4), we conclude that there are
u',v" € Fp such that)(u) = ¢r(u'), ¥(v) = ¢r(v'), andu’ <8 +'. Propositior 3B yields' <, '
and we get)(u) = ¢r(v') < ¢r(v') = ¥ (v) in M. We have thus proved thaf;, = u < v.

@ We fix the finite alphabeB = M and onto continuous morphisfth: Fz — M given byj3|p =
idp and we show that;»(M) = 3(=%). The inclusions(=?) C 73,,(M) follows from {i). Let
(s,t) € 13/2(M). Then there are a finite set of variabl&s a pair of pseudowords, v € Fx such that
V32 = u < v and a continuous morphism: Fx — M such thatp(u) = s, ¢(v) = t. Hence we have
u =X v from @@). Lemma 3 then yields, t) € p(=X) C B3(=B). O
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4 New upper bound

In the first section we have defined the pseudovariety of fmt@oids
F= [[u“:u“vuw|V3/2 ':USU]]~

Our goal is to solve the membership problemFoiSo, for a fixed monoid/ we need to test whether

w

¥ = s¥ts” 4.1

forall (s,t) € 73/5(M) = <M The crucial trick in our contribution is the following lenam

Lemma4.1l Let R be a reflexive stable relation on a given finite mondid Then condition[{4]1) holds
for every pair(s,t) from R if and only if condition[[Z11) holds for every pa(s, t) from the transitive
closure ofR.

Proof: Assume that conditioli.{4.1) holds for every pairt) from R. We show by induction with respect
to 4 that condition [Z11) holds for every pais, t) from R'. Fori = 1, this is given. Leti > 1 and
(s,t) € R' be an arbitrary pair. Thus theredss M such tha(s,z) € R*~! and(z,t) € R. SinceR is a
stable relation we havg“zs“, s“ts*) € R. Condition [41) holds foR?, hence we have

(s¥28%)" = (s¥28%)Y(s¥ts¥)(s¥ 28¥)".
On the other hand, by the induction hypothesis, sifice) € Ri~!, we haves” = s“zs*. Hence
s = (s¥zs*)“ and we get
s = (s¥zs¥)Y = (8¥28%)Y(s¥tsV) (s¥zs%)Y = s¥(s¥ts¥)s” = s“ts¥.
Now since condition{Z]1) holds for every péi; t) from R’ for everyi, condition [Z1) holds for all pairs
(s,t) from R* = |,y R'. The opposite implication in the statement is trivial, hesaR C R*. O

If we apply this observation to our relatiox’ then we obtain the following basic characterization of
the pseudovarietly.

Proposition 4.2 Let M be a finite monoid. Thei/ € F if and only if the condition{Z11) holds for every
pair (s, t) from the transitive closure of the relatior? .

Proof: The statement is an easy consequence of the definition ofldeeF; and Propositiofi 316 and
LemmdZlL. O

We should show that the transitive closure¥ can be computed. In fact, we give an alternative
characterization of this relation which is motivated by gsitionZB. We define
Su={(s,s) e M x M|seM}uU{(s“ts¥,s*) e M x M | s =M t}. (4.2)

Furthermore, we denote Hy',) the submonoid of the monoitl' x M generated by the sét, and we
denote the transitive closure of the relati@,), i.e. (Sas)*, by Ths. The two following results clarify
the meaning of';.
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Lemma 4.3 For each finite monoid/ the relationT’, is a computable stable quasiorder.

Proof: Since M is finite and= is a fully invariant system of stable quasiorders of finitddr, the
relation=" is computable by Lemma_3.5. Hence one can compute also tore5,,;. Generating
the submonoidSy,) and then the transitive closut§y,)* = T, is routine. The fact thdly, is stable
follows from a general observation concerning the travsitiosure of a stable relation. O

Proposition 4.4 Let M be a finite monoid. Then the transitive closure<df is T;.

Proof: We haveS); C <™ by Propositio 213 and PropositienB[@ (ii). By Lemmmal 315 G have
(Sar) € =M. Thus the transitive closure ¢5,;), i.e. Ty, is a subset of the transitive closure-f/.
Thus we proved thaty, € (=xM)*. The reverse inclusiof=™)* C T, is much more difficult. By
Lemme 3B [[i) we know tha™ C <M for every natural number.. Hence we havé<)* C (xM)*
for everym. To prove(=<M)* C T), it is therefore enough to prove that there is a numhewith the
property(<M)* C T),. This statement is contained in Proposifiod 5.2 in the nestisn. O

—m

5 Application of the Factorization Forest Theorem

To finish the proof of Propositidn4.4 we use the Factorizaforest Theorem of Imre Simon. In fact,
our proofis inspired by the proof concerning polynomiaktlees given by Pin and WelL[IL8] (see alsb [5,
Section 3]). The following brief introduction to factorikan forests is essentially borrowed from 18,
Section 4].

A factorization forests a mapping fromd?A4* to | J, -, (A™)™ which associates to every worde A*
of length at leas® a factorizationd(z) = (z1,2,...,x,) of x such thate > 2, z1,22,...,2, € AT
andzyzy - - -z, = . The integem is called thedegreeof the factorizationd(z). Thus a factorization
forest is a description of a recursive process to factoriaele/as products of letters. Theight function
of a factorization forest is a mapping:; : AT — N defined by the rule

ha() 0 ifreA
xTr) =
¢ 1+ max{ha(z;) |1 <i<n} ifdz)=(z1,29...,20).

The heightof a wordz in a factorization forest is simply k() and theheightof d is given byH,; =
sup{hq(x) | z € AT}

For a given wordr € A™, we define recursively the so-calléactorization treeof = as a tree with
rootz and direct descendants, xo, . .., z,, whered(z) = (x1, 2, ..., z,), and the subtree with root
x; being the factorization tree of;.

Let M be a finite semigroup and let: At — M be a morphism. A factorization foregis Ramseyan
moduloy if, for every wordz € A% A*, eitherd(x) is of degre€ or there exists an idempotente M
such thati(xz) = (x1,za,...,2,) Withn > 3andp(z1) = p(x2) = -+ = o(a,) = e.

These definitions apply in particular if the semigraupis a monoid. Because there is no interest in
factorizations of the empty word, when we speak about a feetiion forest modulg : A* — M we
mean a factorization forest modufg+ : AT — M.

The Factorization Forest Theorem states that for every hismpp to a given finite semigroup/
there exists a factorization forest of finite height whictiRemseyan modulg. Originally the theorem
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was proved by |. Simon with the upper bousid/ | in [23] and with an exponential upper bound but with
easier proofinl[24]. In successive papers the upper bountiéwan improved (seeg.[10] for references).
The most recent paper on the toficl[10] establishes the uyperd3| M| — 1 in the general case and the
upper boun@|M | in the case of aperiodic semigroups, which are both optiorahfe respective classes
of semigroups.

In our application the exact upper bound does not play are; meé use just the existence of it. So we
may as well formulate the theorem in existential form.

Theorem 5.1 ([23,124]) Let M be a finite monoid angh : A* — M be a morphism. Then there exists a
factorization forest of finite height which is Ramseyan nimgu

Now we can return to our considerations. The missing parhefgroof of Propositiofi4l4 is the
following statement. Note that, for our purposes, it islevant whether an integen as in the statement
of Propositiorl5R is computable, although from the prodbWeand the Factorization Forest Theorem it
follows that such an integer can be indeed be computed.

Proposition 5.2 Let M be a finite monoid ang : A* — M be a morphism. Then there exists an integer
m such that(j%)* CTy.

Proof: Let d be a factorization forest of finite height which is Ramseyardnio p, whose existence is
ensured by Theore®.1. For the purpose of this proof, wedathibose any strict upper bourid of the
heightH, of d. For definiteness, we pit = H; + 1. We prove that the inclusion in the statement holds
for m = 2K+, SinceT), is a transitive relation it is enough to establish thdf C ).

Lets,t € M and suppose thdt,t) € <M. By Lemmal3b[{i) we can take,v € A* such that
o(u) = s, p(v) =t andu <2 v.

Intuitively, we take a factorization tree @f and in every factorization used in this trée. d(x) =
(x1,x2,...,2,) We keep just the first and last factoi®. 21 andz,,, which we further factorize and
instead of the middle paft., . .., z,—1) we take just the produat; - - - z,,—; which we do not factorize
any further. Thus at the end of the process we obtain a faetiish of the wordv of the formv =
ajviagvy - - - v_1a; Wherea; € A andv; € A*. Moreover, sincé;(v) < K we havek < 25+1 = m,
We are led to consider the language

L={Jar|a(v)]ag - ap—1 [a(vp-1)] ax [] € Un(A).

Sincev € L andu jf,‘L v we haveu € L. Thus we can writer = ajuqasus - - - ap_1ur_1a, Where the
u; € A* are such that(u;) = a(v;) foreveryi =1,...,k — 1.

Now, if we consecutively replace; for u; in the mentioned factorization af, where the order of
replacements is given by the structure of the factorizatiea ofv, then the images undeérof the corre-
sponding pairs of words in this sequence are in the rel&fipn Thus at the end of the process we obtain
(s,t) = (¢(u), d(v)) € Tar. This is just the underlying idea of the proof which we nowgeed to make
more precise.

First, we consider a full binary tree of height, i.e. T = U,L.Kzo{l,Q}i ={pe{1,2}* | |p| < K},
where each node € T which is not a leafj.e. |p| < K, has left childpl and right childp2. The root
of T, i.e. the empty word over the alphabégt, 2}, is denoted by\. For technical reasons, we want to
distinguish this empty word from the empty word over the alpét A, which is denoted. In fact the
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tree structure ofl' is not needed for the following proof, but it can help to felld. We mention that
|T| = Zl 020 =28 —1=m—1.

Now, for our propose, we define a certain order, denoted_bgn the sefl' which is known in the
literature under the names “in-order traversal” and “syrimiméraversal” of the tree. For a pair of nodes
p,q € T we denote(p, ¢) € T the longest common prefix @f andq and we putp C ¢ if one of the
following conditions is satisfied:

e p=(p,q)1p’ andq = (p, q)2¢' for somep’, ¢’ € T,
e p=(p,q)1p’ andg = (p, q) for somep’ € T,

e p = (p,q) andqg = (p, q)2¢’ for someq’ € T,

e p=(pq) =

We writep C ¢ if p C ¢ andp # ¢. Taking arbitrary nodes, ¢ € T, such thap # ¢, exactly one of the
possibilitiesp = ¢ andq C p occurs. Elementary computations check thas also transitive. Altogether,
the relationC is a linear ordering of.

We say that a paify, x) is acompatible labelingn T if the following conditions are satisfied:

(i) bothy : T — A* andx : T — A* are mappings;
(i) for each leafp € T, i.e.p such thatp| = K, we havex(p) = x(p);
(iii) for eachp € T which is not a leafi.e. |p| < K, we havex(p) = x(pl) - x(p) - X(p2).

We call the wordy(\) € A* thevalueof the compatible labeling off and we also denote§{(T).
Note that, for an arbitrary compatible labeliggon T, we have

X(A) = x(p1)x(p2) - - x(Pm-1),

wherep; C ps C --- C pm—1 are all nodes fronT. Indeed, one can prove by induction with respect
to the treeT in bottom-up direction, that for eagh € T we havex(p) = x(pp1)--- x(pp:) where
pp1 C - - - C pp; are all nodes frorfT with the prefixp. Thus, ify : T — A* is an arbitrary mapping, then
there is a unique mappingsuch that the paify, ) forms a compatible labeling dh. For this reason a
compatible labelindy, X) is usually referred simply by.

We say that a labelingon T is similar to a labelingy on T if the following conditions are satisfied:

(i) for eachp € T we havex(£(p)) = a(x(p));
(i) for eachp € T such thaty(p) € A we havet(p) = x(p).

Note that this relation is not symmetric, because for spra€el anda € A we can have(p) = aaa and
&(p) = a and in this casg is not similar to¢ but¢ could be similar toy.

For the wordv we will define a certain compatible labelifg.,, x,,) onT. The definition is inductive
in top-down direction with respect to the tr&eand it reflects the factorization efin the factorization
forestd. First of all, we puty,(\) = v. Next, if forp € T which is not a leafj.e. |p| < K, we have
definedy, (p) = = € A*, then we define the values (p), X, (p1) andy, (p2) as follows:
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(a) if z = e then we puty, (p1) = o (p) = X, (p2) = €;
(b) if = € Athenwe pufy, (pl) = ¢, x(p) = = andy, (p2) = €;
(c) if d(z) = (21, x2) then we puty, (pl) = z1, xu(p) = € andy, (p2) = x2;

d) if d(x) = (z1,22,...,2n), n > 2 then we puly,(pl) = x1, xu(p) = 2223 -+ Tp—1 @NdY,(p2) =
Tp.

Finally, if for a leafp € T we have defined, (p) = « € A*, then we puty,(p) = z. Sincehy(v) < K
we can see that in this cage(p) = x,(p) =z = .

Directly from the definition of the paify., X, ) we see that it is a compatible labeling @rwith the
valuey,(T) = x,(A) = v.

We have defined all technical notation and we can formulaethcial observations which finish the
proof of the proposition.

Lemmab5.3 Letv € A* be an arbitrary word and ., x,,) be the compatible labeling dfi given by the
previous definition. Let € A* be such that _jﬁ v. Thenthere is a compatible labeliggpn T which is
similar to x,, and which has the valugT) = £(\) = w.

Lemmab5.4 Letwv be an arbitrary word and x,, X,,) be the compatible labeling dh given by the previ-
ous definition. 1€ is a compatible labeling off similar to x, then

(2(€(T)), ©(x,(T))) € T

Proof of LemmalR3 Letv € A* and consider the corresponding compatible labelipgandu € A*
such that: <4 v. We denotéS = {p € T | x.(p) # ¢}. Then for eachp € S leta, € A be the last letter
in x,(p) and letv, € A* be such that,a, = x(p). Thusv = vy, ap, vp,ap, - - - Vp, ap, , Wherek < m
andp; C p2 C --- C py are all nodes fronS. We denoted; = «a(vp,) fori =1,..., k. We consider the
language

L= [Aap, [As] ap, - - [Ax] ap, [].

Asv € L € Uy, (A) andu <7 v, we deduce that € L and we can Writer = wuy, ap, Uy, ap, - - * Up, Gpy
where for eachh = 1, . .., k we haven(up,) = a(vp,) = A;.

We define a compatible labelirggon T in the following way: ifp ¢ S, i.e. x,(p) = ¢, then we put
&(p) = eand ifp € S then we put(p) = upa,. Now for eachp € T we havea({(p)) = a(x.(p))-
Moreover, if x,(p) € A theny,(p) = a, andv, = ¢, which entailsu, = ¢ and, consequently(p) =
ap, = Xo(p). Thus the constructed compatible labeliign T is similar toy,,. We know thaté(\) is
the product of all(p), for p € T, in the order_. Since&(p) = e for p ¢ S, this product is equal to

Up, Gp, Upy Gy * * * Up, Ap, = uWherep; C pa C - - T py, are all nodes fron. O

Proof of LemmaBZ4 We prove the statement by an induction with respect to thectstre of T in
bottom-up direction. This means that we want to prove fohgae T that

(e(€(p)), (X, (p)) € Tn- (5.1)

First, if pis a leaf inT thenx, (p) = X, (p) = ¢, because the height satisfies the inequalitiv) < K.
Thusé(p) = X(p) for this leafp and [&1) is trivial.
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Now, letp be not a leaf and assume thaf]5.1) is true for the npdlemdp2. We distinguish between
the cases (a)—(d) in the definition pf which were used for the definition af, (p).

In case (a), we havg, (p) = e which entailsy, (pg) = € for all ¢ € T such thapg € T. It follows that
&(pq) = € for all suchg € T. Consequently(p) = e and [&) is trivially satisfied.

In case (b), we have,(p) = = € A, X,(pl) = X,(»2) = e. Sincef is similar toy, we have
£(p) = xu(p) = x andé(pl) = £(p2) = . Consequentl¥(p) = X, (p) = = and [21) is again trivially
satisfied.

In case (c), we have,(p) = e which impliesé(p) = € = x,(p). Thené(p) =
Xo(p) = Xo(P1)X,(p2). Since (p(€(p1)), (X, (p1))) € Tar and (p(€(p2)), ¢(X,(p
obtain [521) as a consequence of the fact Thatis a stable relation o/,

In case (d), we havg, (pl) = z1, xo(p) = 22 - - - xn—1 andx, (p2) = z,, and consequently, (p) =
x = T1T2- Ty Moreover,p(xzi) = p(x2) = -+ = p(x,) = eis an idempotent inV/. Since
£ is similar toy, we haveé(p) = w € A* such thata(w) = a(zazs---x,—1). This means that
o(w) =M ¢(zow3---1,_1) = e and we havde - p(w) - e,e) € Sy C Thy. By induction hypothesis
we have(p(£(p1)), ¢(X,(p1))) € Tu, where the second coordinatedsecausex,, (pl) = z; and
¢(z1) = e. Thus(p(&(pl)),e) € Tar and, analogously(p(£(p2)),e) € Ta. SinceT)y is a stable
quasiorder we get the following sequencel@f-related elements af/. (Here we writel), in an infix
notation to make the presentation more readable.)

&(p1)é(p2) and
2))) € Ta we

P(E(p)) = p(E(PL)) - p(E(P)) - P(E(P2)) Tar € - p(w) - e Tar € = P12 -+~ ) = p(X,(P))-
This achieves the proof of Lemrhab.4. O
From LemmaERl3 arld 5.4 it immediately follows that
(5,1) = (p(u), p(v)) = (¢(€(T)), (X, (T))) € Tar-
Thus we have proved the inclusiet]! C T, and the proof of Propositido3.2 is finished. O

Combining Propositions4.24.4 ahdl]5.2, we obtain the ¥alig characterization of our new upper
boundF.

Theorem 5.5 The pseudovariet§ consists of all finite monoid3/ such thats® = s“ts“ whenever

(S, t) e Thy.

Proof: By PropositiorZH4, which is a consequence of Proposiiigh the relationl’; is equal to the

transitive closure ok . Hence we get the statement by applying Proposifich 4.2. O
From Theorerm 515, we obtain the following main result of fheper.

Theorem 5.6 It is decidable whether a given finite mondidl belongs to the pseudovariety

Proof: It suffices to observe that the necessary and sufficient tondin a finite monoid\/ to belong
to F given by TheorerfiBl5 can be effectively checked, which fediédrom LemmdZl3. O

Corollary 5.7 Itis decidable whether a given finite mondifibelongs to the pseudovaridty; @ SI)NF.

Proof: It is decidable whetheM belongs to the pseudovarieBy @ SI. Indeed, Straubing’s descrip-
tion [26,[27] of this upper bound is obviously decidableeaiatively using the description by the Mal’cev
product, the decidability result is containedin][16]. Herlee statement follows from Theoréml5.6.0
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6 The new versus the old upper bound

By [3] there is a monoid/ € B; @ Sl such thatM ¢ F. This meangB; @ SI) Z F. In this section we
exhibit a monoidV € F such thatV ¢ B, @ SI.

Let A = {a,b} andL be the language of all words that after every faetbrcontain a factob®. This
means thal = (A*a?(A*b?A*)¢)¢, where the exponentstands for complementation ifi*. Note that
the languaget*v?A* = A*b(*bA* is of level2. Hence(A*b?A*)¢ is also of level 2 and consequently
L is a language of level 3. We consider the syntactic mombig= M, of this language and show that
N ¢ B; @ SlandthatV € F. ConsequentlyN ¢ Vs, so thatL is not in level 2.

In order to computéV, we first note that the minimal automaton/ofs the one described in Figyre J(a),
where 1 is the initial state and 1 and 2 are the final states ttigin routine to compute the presentation

N = {a,b: aba = a, bab = b, a® = ba® = a?, ab® = b*> = b?)

and the eggbox picture of the monald, which is represented in Figufe_1i(b), where ttemark the

idempotents.
1]

a | *ab

*ba | b

*a2

*a2b *b2 *b2a‘

(@) (b)

Fig. 1. Structural information about the language

We show thatV ¢ By @ SI. Itis known (seee.g.(8.1) at page 732 ir[13]) th&; @ Sl is defined by
all pseudoidentities

(u¥ w0 wau®)Ywy v wy (U wavwau ) = (uCwrvYwau ) (U wzv wau® ) (6.1)

whereu,v,w; € F4 (i = 1,...,4) are such thatv(u) = a(v) = a(w1) = a(ws) = a(ws) = a(ws).
We consider such a pseudoidentity where wepstv = ws = wy = (zy)¥, w1 = rya? andws = yry?
to obtain the pseudoidentity

((zy)?mya® (vy) yry? (xy)?) “ wya® (xy)” = ((zy) zyz® (zy) yay® (zy)*)” (6.2)

which is satisfied irB; @ SI. To check thatV fails the pseudoidentitf8.2), we simply evaluate- a
andy = bin N, so that the left hand side df{$.2) evaluateatbwhile the right hand side gives.

It remains to show thalv € F. To prove it, in view of Theorerfi 8.5, it suffices to show thét =
s¥ts* for every pair(s,t) € Tn. Recall thatly is the transitive closure of the submonditly) of the
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monoidN x N, whereSy is defined in[[ZR). We start by noting that the relatiof{ is an equivalence
relation with two classes, namefy } and N \ {1}. Taking into account that the only idempotents in the
non-singleton="-class that are not right zeros ark andba, we conclude that the only non-diagonal
pairs in Sy are the following:(b?, ab), (a?b, ab), (a?,ba), and(b?a, ba). Hence all non-diagonal pairs
(s,t) € Ty are such that is a right zero, and sg” = s“ts*, thereby showing tha¥ € F.

The constructed monoit¥ and its properties established above yield the followiateshent.

Proposition 6.1 F Z By @ SI. O

From the example froni[3] and Propositionl6.1 we know tEat@ SI) NF is a smaller pseudovariety
of monoids than each &; @ Sl andF. Hence(B; @ SI)NF is currently the best known decidable upper
bound forV,. We leave as an open question whettigr @ SI) N F = Vs.

Acknowledgements

The authors wish to thank the referees, whose comments goestions helped to improve readability
of the paper.

The work of the first author was supported, in partHundago para a Céncia e a Tecnologi@=CT)
through theCentro de Matefética da Universidade do Portand by the FCT project PTDC/MAT/65481
/2006, which is partly funded by the European Community FEE®ER. The work of the second author
was supported, in part, by the Ministry of Education of thee€@r Republic under the project MSM
0021622409 and by the Grant no. 201/09/1313 of the Grant &gehthe Czech Republic. The work
leading to this paper has also been carried out within thadrork of the ESF programme “Automata:
from Mathematics to Applications (AutoMathA)”, benefitimgparticular from an exchange grant for the
visit of the second author to the University of Porto.

References

[1] J. Almeida, Finite semigroups and universal algeb/orld Scientific, Singapore, 1995, English
translation.

, Profinite semigroups and applicationStructural Theory of Automata, Semigroups, and
Universal Algebra (New York) (Valery B. Kudryavtsev and &0 Rosenberg, eds.), NATO Science
Series Il: Mathematics, Physics and Chemistry, vol. 207ingpr, 2005, Proceedings of the NATO

Advanced Study Institute on Structural Theory of Autom&amigroups and Universal Algebra,

Montréal, Québec, Canada, 7-18 July 2003, pp. 1-45.

(2]

[3] J. Almeida and O. KlimaA counterexample to a conjecture concerning concatendtierarchies
Inform. Process. Letfl10 (2009), 4-7.

[4] Mu. Arfi, Opérations polynomiales et &iarchies de concénation Theor. Comp. Sci9l (1991),
71-84.

[5] M. J. Branco and J.-E. PirEquations for the polynomial closyréCALP 2009, Part Il (Berlin)
(S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. Nikedets, and W. Thomas, eds.), Lecture
Notes in Comput. Sci., vol. 5556, Springer, 2009, pp. 11512



18 Jorge Almeida and Oridj Klima
[6] D. Cowan,Inverse monoids of dot-depth twlat. J. Algebra CompuB (1993), 411-424.
[7]

, A result on the dot-depth hierarchy for inverse monpBsmigroups, Automata and Lan-
guages (Singapore) (J. Almeida, G. M. S. Gomes, and P. Va Sdlds.), World Scientific, 1996,

pp. 41-57.

[8] S. EilenbergAutomata, languages and machinesl. B, Academic Press, New York, 1976.

[9] O. Klima and L. PolakPolynomial operators on classes of regular languagesl '09: Proceedings
of the 3rd International Conference on Algebraic Inforrma{Berlin, Heidelberg), Lecture Notes in
Comput. Sci., no. 5725, Springer-Verlag, 2009, pp. 260--277

[10] M. Kufleitner, The height of factorization forestBroc. MFCS'08, Lecture Notes in Comput. Sci.,
no. 5162, 2008, pp. 443-454.

[11] V. A. Molchanov,Nonstandard characterization of pseudovarietiggebra UniversaliS3 (1995),
533-547.

[12] , On nonstandard axiomatization of elementarily non-axitnadle classes of discrete al-
gebraic systemsSibirsk. Mat. Zh40 (1999), no. 2, 421-433, iv, translation in Siberian MatHQ.

(1999), no. 2, 363-373.

[13] J.-E. Pin,Syntactic semigroup$iandbook of Formal Languages (G. Rozenberg and A. Salomaa,
eds.), Springer, 1997.

[14] , Algebraic tools for the concatenation produ¢heor. Comp. Sciz92 (2003), 317-342.

[15] J.-E. Pin and H. Straubing/onoids of upper triangular matrice$Semigroups: structure and uni-
versal algebraic problems (Amsterdam) (G. Pollak, edoytiNHolland, 1985, pp. 259-272.

[16] J.-E. Pin and P. WeiRrofinite semigroups, mal’'cev products and identitisAlgebral82 (1996),
604—626.

[17] , A Reiterman theorem for pseudovarieties of finite first-ostieictures Algebra Universalis

35 (1996), 577-595.

[18] , Polynomial closure and unambiguous produidteory Comput. Sys80 (1997), 383-422.

[19] _ , A conjecture on the concatenation produdheor. Inform. Appl.35 (2001), 597-618
(2002), A tribute to Aldo de Luca.

[20] J. ReitermanThe Birkhoff theorem for finite algebra&lgebra Universalid4 (1982), 1-10.

[21] J. Rhodes and B. Steinbeiitheq-theory of finite semigroupSpringer Monographsin Mathematics,
Springer, 2009.

[22] M. P. Schitzenbergddn finite monoids having only trivial subgroypsform. and Contro8 (1965),
190-194.

[23] 1. Simon,Factorization forests of finite heightheor. Comp. Scir2 (1990), 65-94.



New upper bound of the second level in the Straubingr€h hierarchy 19

[24] , The product of rational language&0th ICALP (Berlin), Lect. Notes Comput. Sci., vol.

700, Springer, 1993, pp. 430-444.

[25] H. StraubingFinite semigroup varieties of the forbi« D, J. Pure Appl. Algebr&6 (1985), 53-94.

[26] _, Semigroups and languages of dot-dephtAutomata, languages and programming (Rennes,
1986), Lecture Notes in Comput. Sci., vol. 226, Springer)iBe1986, pp. 416—-423.

[27] , Semigroups and languages of dot-depth,t®eeor. Comp. Sci8 (1988), 361-378.

[28] H. Straubing and P. WeiDn a conjecture concerning dot-depth two languagdéseor. Comp. Sci.
104 (1992), 161-183.

[29] D. Thérien,Classification of finite monoids: the language approatheor. Comp. Scil4 (1981),
195-208.



	Introduction
	Preliminaries
	Stable quasiorders
	Free profinite monoid
	Regular languages and syntactic quasiorder
	Some known results on the Straubing-Thérien hierarchy

	Relations on monoids related to level 3/2
	New upper bound
	Application of the Factorization Forest Theorem
	The new versus the old upper bound

