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In a recent paper we gave a counterexample to a longstanding conjecture concerning the characterization of regular
languages of level 2 in the Straubing-Thérien concatenation hierarchy of star-free languages. In that paper a new
upper bound for the corresponding pseudovariety of monoidswas implicitly given. In this paper we show that it is
decidable whether a given monoid belongs to the new upper bound. We also prove that this new upper bound is
incomparable with the previous upper bound.
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1 Introduction
A well-known result due to Schützenberger [22] gives a syntactic characterization of star-free regular
languages. This prompted both Eilenberg’s identification of the combinatorial properties of classes of
regular languages [8], leading to a natural correspondencebetween varieties of languages (excluding the
empty word,i.e.+-languages, or possibly including it,i.e.∗-languages) and pseudovarieties (respectively
of semigroups or monoids), and Brzozowski’s hierarchical construction of star-free+-languages. As
acknowledged by Eilenberg [8, Chapter IX], the reason to stick to +-languages was to avoid technical
difficulties with the empty word, but these were later overcome by Thérien [29] and Straubing [25], who
also established a simple syntactic connection between theBrzozowski hierarchy and what came to be
known as the Straubing-Thérien hierarchy. The hierarchies were later refined by Pin [14] by introducing
intermediate (half) levels whose syntactic characterization depends on a stable quasiorder rather than just
a congruence.

Starting from the trivial variety of languages, the levels of the refined Straubing-Thérien hierarchy are
defined inductively by alternately taking polynomial and Boolean closures. While it is decidable whether
a given regular language belongs to each of the levels 0, 1/2,1 and 3/2, decidability remains an open
problem for level 2 or higher. Via Eilenberg’s correspondence, for the classV2 of all languages from the
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second level, the problem translates to decidability of membership of an arbitrary given finite monoid in
the corresponding pseudovariety of monoidsV2. This is considered one of the main longstanding open
problems in the algebraic theory of regular languages (cf. [13]).

Pin and Straubing [15] showed that the languages from the second levelV2 over a finite alphabetA
are the finite Boolean combinations of languages of the formA∗

0a1A
∗
1a2 · · · akA

∗
k, where theai’s are

letters and theAj ’s are subsets ofA. Work of several authors led to the conjecture that the equality
V2 = B1 ©m Sl holds [18, 19, 26, 27, 28], where©m is the Mal’cev product [13, Section 6],B1 is the
pseudovariety of finite semigroups corresponding to the+-variety of languages of dot-depth one, andSl

is the pseudovariety of finite semilattices. Indeed, Straubing [26, 27] established that the classes contain
the same 2-generated monoids and Cowan [6, 7] that they contain the same inverse monoids, while Pin
and Weil [18, Theorem 5.9] proved that a similar equality holds for all half levels.

In the recent paper [3] we disproved the equalityV2 = B1 ©m Sl. We discovered certain new pseu-
doidentities which are satisfied by members ofV2 and we showed an example of a monoidM ∈ B1 ©m Sl

which does not satisfy one of these pseudoidentities. The new pseudoidentities are all those of the form
uω = uωvuω whereu andv are pseudowords such thatV3/2 satisfies the inequalityu ≤ v; hereV3/2

is the pseudovariety of ordered monoids corresponding to level 3/2 in the Straubing-Thérien hierarchy.
These new pseudoidentities define a pseudovariety of finite monoidsF. Now the results from [3] can be
summarized in the following way:V2 ⊆ F, M ∈ B1 ©m Sl, andM 6∈ F, so thatM /∈ V2. This implies
B1 ©m Sl 6⊆ F andV2 6= B1 ©m Sl.

In this paper we also provide an example of a monoid which belongs toF and does not belong to
B1©m Sl, and so we also haveF 6⊆ B1©m Sl. Hence the two upper boundsB1©m Sl andF are incomparable
and we get a new tighter upper bound for the classV2, namely(B1 ©m Sl) ∩ F. One can hope that the
inclusionV2 ⊆ (B1 ©m Sl) ∩ F turns out to be an equality. This equality would solve the main problem if
one can show that the membership problem for the pseudovariety (B1 ©m Sl) ∩ F is decidable. The main
contribution of this paper is the decidability of the membership problem for the pseudovarietyF from
which the decidability of the membership problem for(B1 ©m Sl) ∩ F follows.

Perhaps surprisingly, the membership problem for the pseudovarietyF is not easy to solve. When
we want to test whether the new pseudoidentities are satisfied in a given finite monoidM the following
relation plays a crucial role. For a finite monoidM we define a relationτ3/2(M) ⊆ M ×M by the rule
(s, t) ∈ τ3/2(M) if there is a pair of pseudowordsu, v such thatV3/2 |= u ≤ v and an evaluationϕ such
thatϕ(u) = s, ϕ(v) = t. Now we see thatM ∈ F if and only if for every(s, t) ∈ τ3/2(M) we have
sω = sωtsω. The latter condition is easy to test whenever we know the relationτ3/2(M). Unfortunately,
we do not know whether it is possible to compute this relationin general. Our solution of the membership
problem is based on the trick that it is enough to compute the transitive closure ofτ3/2(M), because the
conditionsω = sωtsω is satisfied for all pairs(s, t) from τ3/2(M) if and only if the condition is satisfied
for all pairs(s, t) from the transitive closure ofτ3/2(M).

The paper is organized as follows. In Section 2, we recall a few preliminaries and notation. Then in
Section 3 we introduce the relationτ3/2(M) and some other equivalent descriptions of this relation. Sec-
tion 4 is devoted to the formal definition of the new upper bound F and the trick concerning the transitive
closure of the relationτ3/2(M). In Section 5 we prove the difficult part of the crucial characterization
of the transitive closure of the relationτ3/2(M). Here we apply the Factorization Forest Theorem [23].
The decidability ofF is also established, which achieves the purpose of this paper. Section 6 presents an
example of a monoid which shows thatF 6⊆ B1 ©m Sl.
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2 Preliminaries
2.1 Stable quasiorders
In this paper the key notion is stable quasiorder in monoids.Here we recall some easy observations and
we fix notation. Note that in this paper a monoid is either finite or a free (profinite) monoid.

For an arbitrary setM we say that a relationR, i.e.a subset ofM ×M , is a quasiorder if and only if it
is reflexive and transitive. Such a relationR determines an equivalence relation

Re = R ∩R−1 = {(s, t) ∈M ×M | (s, t) ∈ R and(t, s) ∈ R} .

Then we can consider the factor setM/Re which is naturally ordered by the relationR, i.e. sRe ≤ tRe

if and only if (s, t) ∈ R. We will denote this ordered set(M/Re,≤) simply byM/R. The number of
classes inM/R is called theindexof R.

If we take an arbitrary relationR onM then we can consider the smallest transitive relation contain-
ingR, so-calledtransitive closure, namelyR∗ =

⋃

i∈N
Ri, whereRi is the composition ofi copies ofR.

More formally, for eachi ∈ N we define

Ri = {(s, t) ∈M ×M | there exists0, s1, . . . , si ∈M such thats = s0 R s1 R s2 R · · · R si = t} .

Note that if the original relationR is reflexive then we haveRi ⊆ Rj wheneveri ≤ j. This implies that
for two arbitrary pairs(s1, s2), (t1, t2) ∈ R∗ there is an exponenti such that(s1, s2), (t1, t2) ∈ Ri.

For an arbitrary monoidM we say that a relationR is stableif for all s1, s2, t1, t2 ∈M we have

(

(s1, s2) ∈ R and(t1, t2) ∈ R
)

implies(s1t1, s2t2) ∈ R. (2.1)

In other words, the relationR is stable if and only ifR is a subsemigroup ofM ×M . In some papers a
stable relationR on a monoidM is defined by the following condition

(s, t) ∈ R implies
(

(sz, tz) ∈ R and(zs, zt) ∈ R
)

(2.2)

for all s, t, z ∈M . Note that (2.2) follows from (2.1) whenR is a reflexive relation. On the other hand if
R is a transitive relation then (2.1) is a consequence of (2.2).

If R is a stable reflexive relation on a monoidM then the transitive closureR∗ is a stable quasiorder
onM . Indeed, for eachi the relationRi is a stable relation onM and the reflexivity ofR implies the
claim. This basic observation means that if we have a relation R onM and we want to construct the
smallest stable quasiorder containingR we can first extendR to a reflexive relation, which we then use to
generate a submonoid inM ×M , and finally we take the transitive closure.

2.2 Free profinite monoid
According to Reiterman’s Theorem [20], pseudovarieties ofalgebras are defined by pseudoidentities, that
is formal equalities of implicit operations. In the case of interest for this paper, implicit operations are
operations whose interpretation in finite monoids commuteswith homomorphisms. Reiterman’s Theorem
has been extended independently by Molchanov [11] (see also[12]), via the nonstandard approach, and by
Pin and Weil [17] to first order structures, the latter havingparticularly in mind pseudovarieties of ordered
monoids, for which the equality (of implicit operations) isreplaced by the order relation. By endowing
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all unordered monoids from a given pseudovarietyV by all possible stable partial orders, one obtains a
pseudovariety of ordered monoids, which is identified withV.

Simple examples of implicit operations are the so-calledexplicit operations, given by words, and the
ω-power, which associates to each elements of a finite monoid its unique idempotent powersω = sn

(n > 0).
The implicit operations over a fixed finite setA can be viewed as the elements of the projective limitFA

of all A-generated finite monoids, which is the structure one is led to consider when trying to identify the
“most general” such monoid. Here, finite monoids are viewed as topological monoids under the discrete
topology. In general, projective limits of finite monoids are calledprofinite monoids. They may also be
characterized as compact totally disconnected monoids. Itturns out thatFA is the free profinite monoid
on the setA, in which the discrete submonoid generated byA, whose elements are the explicit operations,
is a free monoid and thus is identified withA∗. Thus, elements ofFA become a generalization of usual
words, which prompts calling them alternativelypseudowords. See [1, 2] for details.

Denote byPA the monoid of all subsets ofA under the union operation. The mapping that sends each
letter a ∈ A to the singleton{a} extends to a unique continuous homomorphismα : FA → PA. Its
restriction toA∗ is the usual content function and, more generally, a lettera ∈ A belongs toα(u) for a
given pseudowordu ∈ FA if and only if there is a factorization of the formu = xay with x, y ∈ FA

(cf. [1, Section 8.1]). For this reason,α is also called thecontent function.
Note thatPA is a semilattice,i.e.a commutative and idempotent monoid. Moreover, foru, v ∈ FA, we

haveSl |= u = v if and only if α(u) = α(v). For a subsetB of an alphabetA we denote by[B] the set
of all words overA such that their content isB, i.e. [B] = {u ∈ A∗ | α(u) = B} = α−1(B) ∩ A∗. In
particular, forB = ∅ we write[ ] = [∅] = {ǫ} whereǫ is the empty word.

2.3 Regular languages and syntactic quasiorder

We recall the concept of syntactic quasiorder, which was introduced by Pin under the name syntactic order
(seee.g.[13]).

For an arbitrary languageL ⊆ A∗ we define relation≤L onA∗ in the following way. Foru, v ∈ A∗

we writeu ≤L v if
(∀x, y ∈ A∗) (xvy ∈ L =⇒ xuy ∈ L).

The relation≤L is a stable quasiorder on the monoidA∗ and it is called thesyntactic quasiorderof L.
In this paper we deal only with regular languages, for which≤L has finite index. The reason is that for a
regular languageL there are only finitely many languages of the formx−1Ly−1 = {u ∈ A∗ | xuy ∈ L}.
We denoteML = A∗/≤L which is a finite ordered monoid, called theordered syntactic monoidof L.
The natural projectionφL : A∗ → ML is called thesyntactic morphism. Note thatφL(L) is an ideal in
(ML,≤) and thatφ−1

L (φL(L)) = L.
Now we consider the extension ofφL to the continuous morphismφL : FA → ML of compact

monoids. The relation onFA consisting of the pairs(u, v) such thatφL(u) ≤ φL(v) is still denoted
by≤L. Note that it is a stable quasiorder onFA. Thus if we speak about syntactic quasiorder and syntac-
tic morphism we can consider these extensions toFA.

Using the continuous morphismφL we see that the topological closureL of L is clopen inFA and that
φ−1

L (φL(L)) = L. An alternative definition of the relation≤L is given by the next lemma, whose proof
amounts to an easy exercise.
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Lemma 2.1 LetL be a regular language over an alphabetA and letu, v ∈ FA be pseudowords. Then
the following statements are equivalent:

(i) u ≤L v,

(ii) for all x, y ∈ FA, xvy ∈ L impliesxuy ∈ L,

(iii) for all x, y ∈ A∗, xvy ∈ L impliesxuy ∈ L.

2.4 Some known results on the Straubing-Thérien hierarchy

We recall the characterizations ofV3/2, the level3/2 of the Straubing-Thérien hierarchy. The first is
implicitly contained in [15].

Proposition 2.2 ([13, Theorem 8.8]) A language over an alphabetA is of level3/2 if and only if it is a
finite union of languages of the formA∗

0a1A
∗
1a2 · · ·akA

∗
k, where eachAi ⊆ A and eachaj ∈ A.

Proposition 2.3 ([18, Theorem 8.7], [13, Theorem 8.9]) A language is of level3/2 if and only if its or-
dered syntactic monoid satisfies the pseudoidentityuωvuω ≤ uω for all pseudowordsu, v over some finite
alphabet satisfyingα(u) = α(v).

The following proposition from [3] gives new pseudoidentities for the pseudovarietyV2. The proof is
also recalled as it is quite easy.

Proposition 2.4 ([3, Proposition 2]) Letu andv be pseudowords such thatV3/2 |= u ≤ v. ThenV2 |=
uω = uωvuω.

Proof: SinceV2 is the Boolean closure ofV3/2, we haveV2 |= x = y if and only if V3/2 |= x = y, i.e. if
and only ifV3/2 |= x ≤ y andV3/2 |= y ≤ x.

From the assumptionV3/2 |= u ≤ v, we deduce thatα(u) = α(v) becauseSl ⊆ V3/2. From
Proposition 2.3, we obtain immediatelyV3/2 |= uωvuω ≤ uω.

When we multiplyu ≤ v by uω from both sides, we obtainuωuuω ≤ uωvuω. SinceV3/2 |= xω+1 =
xω , we conclude thatV3/2 |= uω ≤ uωvuω. 2

3 Relations on monoids related to level 3/2

For each finite alphabetA and natural numberm we denoteUm(A) the set of all languages overA of the
form

[A0] a1 [A1] a2 [A2] · · · [Ak−1] ak [Ak] , (3.1)

wherek ≤ m, a1, . . . , ak ∈ A andA0, . . . , Ak ⊆ A. SinceA is finite, so is each of the setsUm(A). We
denoteU(A) their union over allm ≥ 0. The languages of level3/2 over an alphabetA are exactly the
finite unions of languages fromU(A), because for each finite alphabetB one can express the language
B∗ as the finite union of all languages of the form[C] with C ⊆ B, which in turn are of level 1.

Now, we define a relation�A
m on the free profinite monoidFA in the following way:

u �A
m v if, for all L ∈ Um(A), v ∈ L impliesu ∈ L.
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Note that ifu �A
m v for someu, v ∈ FA then the implicationv ∈ L =⇒ u ∈ L is satisfied also for

each languageL which is a finite union of finite intersections of languages fromUm(A). One can prove
that such languages form a positive variety of languages. This claim is a special case of [14, Theorem 5.1]
or alternatively of [9, Theorem 1]. One can also prove it directly by showing that each morphic preimage
and also each derivative of a language from the classUm(A) is a finite union of finite intersections of
languages fromUm(A). This method is used in [4] to prove that the polynomial closure of a variety of
languages constitutes a positive variety, although the formula for morphic preimage [4, Lemma 2.2.2] is
not correct.(i)

Lemma 3.1 LetA be an alphabet,m be a number andu, v ∈ FA be pseudowords. Then

u �A
m v if and only if, for allL ∈ Um(A), u ≤L v.

In other words�A
m is the intersection of all relations≤L for L ∈ Um(A).

Proof: Let u, v ∈ FA be such thatu �A
m v and letL ∈ Um(A). We want to show thatu ≤L v, which

is equivalent to condition (iii) in Lemma 2.1. Letx, y ∈ A∗ be such thatxvy ∈ L and we show that also
xuy ∈ L. Since the setL is open, we may consider a sequence of words(vn)n∈N converging tov such
that for eachn we havexvny ∈ L. Hencevn ∈ x−1Ly−1 and we see thatv ∈ K for K = x−1Ly−1.
The languageK is a finite union of finite intersections of languages fromUm(A) and the implication
v ∈ K ⇒ u ∈ K follows fromu �A

m v. Thus there is a sequence of words(un)n∈N converging tou such
thatun ∈ K = x−1Ly−1 for eachn ∈ N. Hencexuny ∈ L and we deduce thatxuy ∈ L.

On the other hand, foru, v ∈ FA andL ∈ Um(A) we have

(u ≤L v andv ∈ L) impliesu ∈ L

because we can consider condition (iii) in Lemma 2.1 withx andy empty words. This property entails
the implication “⇐”. 2

GivenX ⊆ FA, write u �A
X v if u, v ∈ FA andv ∈ X ⇒ u ∈ X . Then�A

X is a quasiorder in which
the elements ofX are minima and the remaining elements are maxima.

Lemma 3.2 The following hold for every natural numberm.

(i) For eachA the relation�A
m is a stable quasiorder onFA.

(ii) For every continuous morphismψ : FA → FB we have

for all u, v ∈ FA, u �A
m v impliesψ(u) �B

m ψ(v).

(iii) The equivalence relation determined by the quasiorder �A
m has index at most2|Um(A)|.

(i) The problem lies in the fact that the formula does not take into account the possibility of a letter covering several of thedis-
tinguished letters. For instance, the formula fails for thehomomorphismϕ : a∗ → b∗ defined byϕ(a) = b2, for which
ϕ−1([ ] b [ ] b [ ]) = {a} = [ ] a [ ], while the language given by Arfi’s formula is empty, since atleast one of the derivatives in the
languages in the union is empty.
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Proof: By Lemma 3.1, the relation�A
m is the intersection of all stable quasiorders≤L with L ∈ Um(A),

and therefore it is itself a stable quasiorder, which proves(i). On the other hand, since�A
m is also the

intersection of the quasiorders of the form�A
L

, each of which has index 2, we obtain (iii).

(ii) Let u, v ∈ FA be such thatu �A
m v, let L ∈ Um(B), and suppose thatψ(v) ∈ L. From the

continuity ofψ, we obtain the equalityψ−1(L) = ψ−1(L). NowK = ψ−1(L) ⊆ A∗ is a finite union
of finite intersections of languages fromUm(A). Sincev ∈ K andu �A

m v we haveu ∈ K. Hence
ψ(u) ∈ L, which proves thatψ(u) �B

m ψ(v). 2

From Lemmas 3.1 and 3.2 one can also state that the ordered monoid FA/�A
m is a free (pro)finite or-

dered monoid in the pseudovariety of ordered monoids corresponding to the positive variety of languages
generated by allUm(B).

By asystem of relationsρ we mean an operator which determines, for each finite alphabetA, a relation
ρA on the free profinite monoidFA. E.g. for eachm we have a system of relations�m. We call a
system of relationsρ a fully invariant system of stable quasiordersif it satisfies conditions (i) and (ii) of
Lemma 3.2. If every relationρA has finite index inFA, then we speak of afully invariant system of stable
quasiorders of finite index.

Another example of a fully invariant system of stable quasiorders of finite index is given by the kernel
of the content functionα. More precisely we consider the relation≡A onFA given by the following rule
for u, v ∈ FA:

u ≡A v if α(u) = α(v).

Further, we define a relation�A onFA as the intersection of all relations�A
m, i.e.

u �A v if, for all L ∈ U(A), v ∈ L impliesu ∈ L.

The following is an immediate consequence of Lemmas 3.1 and 3.2.

Proposition 3.3 The system of relations� is a fully invariant system of stable quasiorders. For each
alphabetA, the relation�A is the intersection of all relations≤L for L ∈ U(A). 2

Letϕ : FA → M be a continuous morphism to a finite monoidM . For a binary relationR onFA, we
define the relationϕ(R) on the monoidM by the rule

ϕ(R) = {(s, t) ∈M ×M | there existu, v ∈ FA such thatu R v, ϕ(u) = s andϕ(v) = t} .

Note that ifR is a stable relation onFA thenϕ(R) is a stable relation onM . But ϕ(R) need not be a
quasiorder even ifR is. We show that the definition ofϕ(R) does not depend onϕ orA when we consider
a fully invariant system of stable quasiorders.

Lemma 3.4 Letϕ : FA → M andβ : FB → M be a pair of continuous morphisms. Further, letρ be a
fully invariant system of stable quasiorders.

(i) If β is onto thenϕ(ρA) ⊆ β(ρB).

(ii) If both ϕ andβ are onto thenϕ(ρA) = β(ρB).
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Proof: The second statement follows from applying the first one twice. So, assume thatβ is onto and let
(s, t) ∈ ϕ(ρA). Then by the definition ofϕ(ρA) we haveu, v ∈ FA such that(u, v) ∈ ρA, ϕ(u) = s, and
ϕ(v) = t. Sinceβ is onto andB∗ is dense inFB , we can consider for eacha ∈ A a wordua ∈ B∗ such
thatβ(ua) = ϕ(a) ∈ M . Then there is a continuous morphismψ : FA → FB such thatψ(a) = ua for
all a ∈ A, so thatϕ = β ◦ ψ. Sinceρ is fully invariant we obtain(ψ(u), ψ(v)) ∈ ρB from (u, v) ∈ ρA.
From the definition ofβ(ρB) we get

(s, t) = (ϕ(u), ϕ(v)) =
(

β(ψ(u)), β(ψ(v))
)

∈ β(ρB),

which completes the proof of the lemma. 2

Thus, we can define for each fully invariant system of stable quasiordersρ and every finite monoid
M the relationρM onM by taking an arbitrary onto continuous morphismϕ : FA → M and putting
ρM = ϕ(ρA). In particular, we can consider the relations�M and�M

m for eachm. The relation≡M

is sometimes known in the literature as the set ofSl-pointlike pairsof elements ofM (cf. [21, Subsec-
tion 2.4.1]).

We say that we have aneffective descriptionof a finite ordered monoid if its multiplication table and
its order relation are known.

Useful properties of the relations�M
m and�M are given in the following lemma. Some of them are

formulated in a more general setting.

Lemma 3.5 Letϕ : FA → M be an arbitrary onto continuous morphism and letρ be a fully invariant
system of stable quasiorders; in particularρM = ϕ(ρA). Then the following properties hold.

(i) The relationρM is stable.

(ii) If the equivalence relation corresponding toρA has finite index then we have

ρM =
{

(s, t) ∈M ×M | there existu, v ∈ A∗ such thatu ρA v, ϕ(u) = s andϕ(v) = t
}

.

Moreover, if we have an effective description of the finite ordered monoidFA/ρ
A thenρM is com-

putable.

(iii) For eachm we have�M
m+1 ⊆ �M

m and the relation�M is the intersection of all relations�M
m .

Proof: (i) We already mentioned thatϕ(R) is a stable relation wheneverR is a stable relation.
(ii) The inclusion “⊇” is trivial. If we take (s, t) ∈ ρM then we have(u, v) ∈ ρA for someu, v ∈ FA

such thatϕ(u) = s andϕ(v) = t. We denoteη the natural morphism fromFA to the finite ordered
monoidFA/ρ

A. Sinceϕ−1(s) andη−1(η(u)) are both clopen subsets inFA which containu ∈ FA, it
follows that their intersection is also non-empty and clopen inFA. This entails that it contains some word
u′ ∈ A∗. Hence we haveϕ(u′) = s and(u′, u) ∈ ρA (and also(u, u′) ∈ ρA). By the same argument we
obtainv′ ∈ A∗ such thatϕ(v′) = t and(v, v′) ∈ ρA. SinceρA is a transitive relation we get(u′, v′) ∈ ρA.
We proved the first part of (ii).

For the second part we define a relational morphismπ from M to FA/ρ
A asπ = η ◦ ϕ−1. In other

wordsπ = {(ϕ(u), η(u)) | u ∈ A∗}. In factπ is a submonoid of the finite monoidM × FA/ρ
A and it is

generated by the setG = {(ϕ(a), η(a)) | a ∈ A}.
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Since we have an effective description of the finite ordered monoidFA/ρ
A we can computeπ as the

submonoid of the finite monoidM × FA/ρ
A generated byG. Now (s, t) ∈ ρM if and only if there exist

uρ, vρ ∈ FA/ρ
A such thatuρ ≤ vρ and(s, uρ) ∈ π and(t, vρ) ∈ π. By the above, the latter condition on

the pair(s, t) can be effectively checked.
(iii) From the inclusions�A ⊆ �A

m+1 ⊆ �A
m it follows that�M ⊆ �M

m+1 ⊆ �M
m . It remains to show

that
⋂

m≥0 �
M
m ⊆ �M . So, suppose thats, t ∈ M are such thats �M

m t for all m ≥ 0. Then, for each
m ≥ 0 there existum ∈ ϕ−1(s) andvm ∈ ϕ−1(t) such thatum �A

m vm. Since the spaceFA is compact,
there is a sequence of indicesm1 < m2 < · · · such that each of the subsequences(umk

)k and(vmk
)k

converges to the respective limitu andv. As ϕ is continuous, we haveϕ(u) = s andϕ(v) = t. We
claim thatu �A v, which will establish thats �M t, as required. Indeed, given a languageL ∈ Um(A),
consider the syntactic morphismφL : FA → ML, which is continuous. Hence there is somek such that
mk ≥ m andφL(umk

) = φL(u) andφL(vmk
) = φL(v). Sinceumk

�A
mk

vmk
andL ∈ Um(A), we

conclude in particular thatumk
≤L vmk

, whence alsou ≤L v, which proves the claim. 2

Recall that we have defined the relationτ3/2(M) ⊆ M ×M by the rule(s, t) ∈ τ3/2(M) if there are
a finite set of variablesX , a pair of pseudowordsu, v ∈ FX such thatV3/2 |= u ≤ v, and a continuous
morphismϕ : FX → M such thatϕ(u) = s, ϕ(v) = t. We show that the inequalities satisfied inV3/2

are exactly given by the system of relations� and that the relationτ3/2(M) coincides with the previous
relation�M .

Proposition 3.6 LetA be a finite alphabet.

(i) For eachu, v ∈ FA we have

V3/2 |= u ≤ v if and only if u �A v.

(ii) For every finite monoidM we haveτ3/2(M) = �M .

Proof: (i) Let u, v ∈ FA be such thatV3/2 |= u ≤ v. Then for eachL ∈ U(A) and its syntactic morphism
φL : FA →ML we haveφL(u) ≤ φL(v), i.e. u ≤L v. This shows thatu �A v by Proposition 3.3.

Now, letu �A v. We want to show that for eachL ∈ V3/2(B) and its syntactic morphismφL : FB →
ML onto the ordered syntactic monoidML of L, we haveML |= u ≤ v. It is enough to prove it for
languagesL ∈ U(B) becauseV3/2 is the positive variety of languages generated by allU(C). So, let
L ∈ U(B) with syntactic morphismφL : FB → ML and takeψ : FA → ML an arbitrary continuous
morphism. Since the syntactic morphismφL is onto we obtainψ(�A) ⊆ φL(�B) from Lemma 3.4.
Thus, as we are assuming thatu �A v, so that(ψ(u), ψ(v)) ∈ ψ(�A), we conclude that there are
u′, v′ ∈ FB such thatψ(u) = φL(u′), ψ(v) = φL(v′), andu′ �B v′. Proposition 3.3 yieldsu′ ≤L v′

and we getψ(u) = φL(u′) ≤L φL(v′) = ψ(v) in ML. We have thus proved thatML |= u ≤ v.
(ii) We fix the finite alphabetB = M and onto continuous morphismβ : FB → M given byβ|B =

idB and we show thatτ3/2(M) = β(�B). The inclusionβ(�B) ⊆ τ3/2(M) follows from (i). Let
(s, t) ∈ τ3/2(M). Then there are a finite set of variablesX , a pair of pseudowordsu, v ∈ FX such that
V3/2 |= u ≤ v and a continuous morphismϕ : FX → M such thatϕ(u) = s, ϕ(v) = t. Hence we have
u �X v from (i). Lemma 3.4 then yields(s, t) ∈ ϕ(�X) ⊆ β(�B). 2
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4 New upper bound
In the first section we have defined the pseudovariety of finitemonoids

F =
q

uω = uωvuω | V3/2 |= u ≤ v
y

.

Our goal is to solve the membership problem forF. So, for a fixed monoidM we need to test whether

sω = sωtsω (4.1)

for all (s, t) ∈ τ3/2(M) = �M . The crucial trick in our contribution is the following lemma.

Lemma 4.1 LetR be a reflexive stable relation on a given finite monoidM . Then condition (4.1) holds
for every pair(s, t) fromR if and only if condition (4.1) holds for every pair(s, t) from the transitive
closure ofR.

Proof: Assume that condition (4.1) holds for every pair(s, t) fromR. We show by induction with respect
to i that condition (4.1) holds for every pair(s, t) from Ri. For i = 1, this is given. Leti > 1 and
(s, t) ∈ Ri be an arbitrary pair. Thus there isz ∈M such that(s, z) ∈ Ri−1 and(z, t) ∈ R. SinceR is a
stable relation we have(sωzsω, sωtsω) ∈ R. Condition (4.1) holds forR, hence we have

(sωzsω)ω = (sωzsω)ω(sωtsω)(sωzsω)ω.

On the other hand, by the induction hypothesis, since(s, z) ∈ Ri−1, we havesω = sωzsω. Hence
sω = (sωzsω)ω and we get

sω = (sωzsω)ω = (sωzsω)ω(sωtsω)(sωzsω)ω = sω(sωtsω)sω = sωtsω.

Now since condition (4.1) holds for every pair(s, t) fromRi for everyi, condition (4.1) holds for all pairs
(s, t) fromR∗ =

⋃

i∈N
Ri. The opposite implication in the statement is trivial, becauseR ⊆ R∗. 2

If we apply this observation to our relation�M then we obtain the following basic characterization of
the pseudovarietyF.

Proposition 4.2 LetM be a finite monoid. ThenM ∈ F if and only if the condition (4.1) holds for every
pair (s, t) from the transitive closure of the relation�M .

Proof: The statement is an easy consequence of the definition of the classF, and Proposition 3.6 and
Lemma 4.1. 2

We should show that the transitive closure of�M can be computed. In fact, we give an alternative
characterization of this relation which is motivated by Proposition 2.3. We define

SM = {(s, s) ∈M ×M | s ∈M} ∪
{

(sωtsω, sω) ∈M ×M | s ≡M t
}

. (4.2)

Furthermore, we denote by〈SM 〉 the submonoid of the monoidM ×M generated by the setSM and we
denote the transitive closure of the relation〈SM 〉, i.e. 〈SM 〉∗, by TM . The two following results clarify
the meaning ofTM .
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Lemma 4.3 For each finite monoidM the relationTM is a computable stable quasiorder.

Proof: SinceM is finite and≡ is a fully invariant system of stable quasiorders of finite index, the
relation≡M is computable by Lemma 3.5. Hence one can compute also the relationSM . Generating
the submonoid〈SM 〉 and then the transitive closure〈SM 〉∗ = TM is routine. The fact thatTM is stable
follows from a general observation concerning the transitive closure of a stable relation. 2

Proposition 4.4 LetM be a finite monoid. Then the transitive closure of�M is TM .

Proof: We haveSM ⊆ �M by Proposition 2.3 and Proposition 3.6 (ii). By Lemma 3.5 (i), we have
〈SM 〉 ⊆ �M . Thus the transitive closure of〈SM 〉, i.e. TM , is a subset of the transitive closure of�M .
Thus we proved thatTM ⊆ (�M )∗. The reverse inclusion(�M )∗ ⊆ TM is much more difficult. By
Lemma 3.5 (iii) we know that�M ⊆ �M

m for every natural numberm. Hence we have(�M )∗ ⊆ (�M
m )∗

for everym. To prove(�M )∗ ⊆ TM it is therefore enough to prove that there is a numberm with the
property(�M

m )∗ ⊆ TM . This statement is contained in Proposition 5.2 in the next section. 2

5 Application of the Factorization Forest Theorem
To finish the proof of Proposition 4.4 we use the Factorization Forest Theorem of Imre Simon. In fact,
our proof is inspired by the proof concerning polynomial closures given by Pin and Weil [18] (see also [5,
Section 3]). The following brief introduction to factorization forests is essentially borrowed from [18,
Section 4].

A factorization forestis a mapping fromA2A∗ to
⋃

n≥2(A
+)n which associates to every wordx ∈ A∗

of length at least2 a factorizationd(x) = (x1, x2, . . . , xn) of x such thatn ≥ 2, x1, x2, . . . , xn ∈ A+

andx1x2 · · ·xn = x. The integern is called thedegreeof the factorizationd(x). Thus a factorization
forest is a description of a recursive process to factorize words as products of letters. Theheight function
of a factorization forestd is a mappinghd : A+ → N defined by the rule

hd(x) =

{

0 if x ∈ A

1 + max{hd(xi) | 1 ≤ i ≤ n} if d(x) = (x1, x2, . . . , xn).

Theheightof a wordx in a factorization forestd is simplyhd(x) and theheightof d is given byHd =
sup{hd(x) | x ∈ A+}.

For a given wordx ∈ A+, we define recursively the so-calledfactorization treeof x as a tree with
rootx and direct descendantsx1, x2, . . . , xn, whered(x) = (x1, x2, . . . , xn), and the subtree with root
xi being the factorization tree ofxi.

LetM be a finite semigroup and letϕ : A+ → M be a morphism. A factorization forestd is Ramseyan
moduloϕ if, for every wordx ∈ A2A∗, eitherd(x) is of degree2 or there exists an idempotente ∈ M
such thatd(x) = (x1, x2, . . . , xn) with n ≥ 3 andϕ(x1) = ϕ(x2) = · · · = ϕ(xn) = e.

These definitions apply in particular if the semigroupM is a monoid. Because there is no interest in
factorizations of the empty word, when we speak about a factorization forest moduloϕ : A∗ → M we
mean a factorization forest moduloϕ|A+ : A+ →M .

The Factorization Forest Theorem states that for every morphismϕ to a given finite semigroupM
there exists a factorization forest of finite height which isRamseyan moduloϕ. Originally the theorem
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was proved by I. Simon with the upper bound9|M | in [23] and with an exponential upper bound but with
easier proof in [24]. In successive papers the upper bound has been improved (seee.g.[10] for references).
The most recent paper on the topic [10] establishes the upperbound3|M | − 1 in the general case and the
upper bound2|M | in the case of aperiodic semigroups, which are both optimal for the respective classes
of semigroups.

In our application the exact upper bound does not play any role, we use just the existence of it. So we
may as well formulate the theorem in existential form.

Theorem 5.1 ([23, 24]) LetM be a finite monoid andϕ : A∗ → M be a morphism. Then there exists a
factorization forest of finite height which is Ramseyan modulo ϕ.

Now we can return to our considerations. The missing part of the proof of Proposition 4.4 is the
following statement. Note that, for our purposes, it is irrelevant whether an integerm as in the statement
of Proposition 5.2 is computable, although from the proof below and the Factorization Forest Theorem it
follows that such an integer can be indeed be computed.

Proposition 5.2 LetM be a finite monoid andϕ : A∗ →M be a morphism. Then there exists an integer
m such that(�M

m )∗ ⊆ TM .

Proof: Let d be a factorization forest of finite height which is Ramseyan moduloϕ, whose existence is
ensured by Theorem 5.1. For the purpose of this proof, we could choose any strict upper boundK of the
heightHd of d. For definiteness, we putK = Hd + 1. We prove that the inclusion in the statement holds
for m = 2K+1. SinceTM is a transitive relation it is enough to establish that�M

m ⊆ TM .
Let s, t ∈ M and suppose that(s, t) ∈ �M

m . By Lemma 3.5 (ii) we can takeu, v ∈ A∗ such that
ϕ(u) = s, ϕ(v) = t andu �A

m v.
Intuitively, we take a factorization tree ofv, and in every factorization used in this tree,i.e. d(x) =

(x1, x2, . . . , xn) we keep just the first and last factors,i.e. x1 andxn, which we further factorize and
instead of the middle part(x2, . . . , xn−1) we take just the productx2 · · ·xn−1 which we do not factorize
any further. Thus at the end of the process we obtain a factorization of the wordv of the formv =
a1v1a2v2 · · · vk−1ak whereai ∈ A andvi ∈ A∗. Moreover, sincehd(v) < K we havek < 2K+1 = m.
We are led to consider the language

L = [ ] a1 [α(v1)] a2 · · · ak−1 [α(vk−1)] ak [ ] ∈ Um(A).

Sincev ∈ L andu �A
m v we haveu ∈ L. Thus we can writeu = a1u1a2u2 · · · ak−1uk−1ak where the

ui ∈ A∗ are such thatα(ui) = α(vi) for everyi = 1, . . . , k − 1.
Now, if we consecutively replacevi for ui in the mentioned factorization ofv, where the order of

replacements is given by the structure of the factorizationtree ofv, then the images underφ of the corre-
sponding pairs of words in this sequence are in the relationTM . Thus at the end of the process we obtain
(s, t) = (φ(u), φ(v)) ∈ TM . This is just the underlying idea of the proof which we now proceed to make
more precise.

First, we consider a full binary tree of heightK, i.e. T =
⋃K

i=0{1, 2}
i = {p ∈ {1, 2}∗ | |p| ≤ K},

where each nodep ∈ T which is not a leaf,i.e. |p| < K, has left childp1 and right childp2. The root
of T, i.e. the empty word over the alphabet{1, 2}, is denoted byλ. For technical reasons, we want to
distinguish this empty word from the empty word over the alphabetA, which is denotedǫ. In fact the
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tree structure ofT is not needed for the following proof, but it can help to follow it. We mention that
|T| =

∑K
i=0 2i = 2K+1 − 1 = m− 1.

Now, for our propose, we define a certain order, denoted by⊑, on the setT which is known in the
literature under the names “in-order traversal” and “symmetric traversal” of the tree. For a pair of nodes
p, q ∈ T we denote〈p, q〉 ∈ T the longest common prefix ofp andq and we putp ⊑ q if one of the
following conditions is satisfied:

• p = 〈p, q〉1p′ andq = 〈p, q〉2q′ for somep′, q′ ∈ T,

• p = 〈p, q〉1p′ andq = 〈p, q〉 for somep′ ∈ T,

• p = 〈p, q〉 andq = 〈p, q〉2q′ for someq′ ∈ T,

• p = 〈p, q〉 = q.

We writep ⊏ q if p ⊑ q andp 6= q. Taking arbitrary nodesp, q ∈ T, such thatp 6= q, exactly one of the
possibilitiesp ⊏ q andq ⊏ p occurs. Elementary computations check that⊑ is also transitive. Altogether,
the relation⊑ is a linear ordering ofT.

We say that a pair(χ, χ) is acompatible labelingonT if the following conditions are satisfied:

(i) bothχ : T → A∗ andχ : T → A∗ are mappings;

(ii) for each leafp ∈ T, i.e.p such that|p| = K, we haveχ(p) = χ(p);

(iii) for eachp ∈ T which is not a leaf,i.e. |p| < K, we haveχ(p) = χ(p1) · χ(p) · χ(p2).

We call the wordχ(λ) ∈ A∗ thevalueof the compatible labeling onT and we also denote itχ(T).
Note that, for an arbitrary compatible labelingχ onT, we have

χ(λ) = χ(p1)χ(p2) · · ·χ(pm−1),

wherep1 ⊏ p2 ⊏ · · · ⊏ pm−1 are all nodes fromT. Indeed, one can prove by induction with respect
to the treeT in bottom-up direction, that for eachp ∈ T we haveχ(p) = χ(pp1) · · ·χ(ppi) where
pp1 ⊏ · · · ⊏ ppi are all nodes fromT with the prefixp. Thus, ifχ : T → A∗ is an arbitrary mapping, then
there is a unique mappingχ such that the pair(χ, χ) forms a compatible labeling onT. For this reason a
compatible labeling(χ, χ) is usually referred simply byχ.

We say that a labelingξ onT is similar to a labelingχ onT if the following conditions are satisfied:

(i) for eachp ∈ T we haveα(ξ(p)) = α(χ(p));

(ii) for eachp ∈ T such thatχ(p) ∈ A we haveξ(p) = χ(p).

Note that this relation is not symmetric, because for somep ∈ T anda ∈ A we can haveχ(p) = aaa and
ξ(p) = a and in this caseχ is not similar toξ but ξ could be similar toχ.

For the wordv we will define a certain compatible labeling(χv, χv) on T. The definition is inductive
in top-down direction with respect to the treeT and it reflects the factorization ofv in the factorization
forestd. First of all, we putχv(λ) = v. Next, if for p ∈ T which is not a leaf,i.e. |p| < K, we have
definedχv(p) = x ∈ A∗, then we define the valuesχv(p), χv(p1) andχv(p2) as follows:
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(a) if x = ǫ then we putχv(p1) = χv(p) = χv(p2) = ǫ;

(b) if x ∈ A then we putχv(p1) = ǫ, χv(p) = x andχv(p2) = ǫ;

(c) if d(x) = (x1, x2) then we putχv(p1) = x1, χv(p) = ǫ andχv(p2) = x2;

(d) if d(x) = (x1, x2, . . . , xn), n > 2 then we putχv(p1) = x1, χv(p) = x2x3 · · ·xn−1 andχv(p2) =
xn.

Finally, if for a leafp ∈ T we have definedχv(p) = x ∈ A∗, then we putχv(p) = x. Sincehd(v) < K
we can see that in this caseχv(p) = χv(p) = x = ǫ.

Directly from the definition of the pair(χv, χv) we see that it is a compatible labeling onT with the
valueχv(T) = χv(λ) = v.

We have defined all technical notation and we can formulate the crucial observations which finish the
proof of the proposition.

Lemma 5.3 Letv ∈ A∗ be an arbitrary word and(χv, χv) be the compatible labeling onT given by the
previous definition. Letu ∈ A∗ be such thatu �A

m v. Then there is a compatible labelingξ onT which is
similar toχv and which has the valueξ(T) = ξ(λ) = u.

Lemma 5.4 Letv be an arbitrary word and(χv, χv) be the compatible labeling onT given by the previ-
ous definition. Ifξ is a compatible labeling onT similar toχv then

(

ϕ(ξ(T)), ϕ(χv(T))
)

∈ TM .

Proof of Lemma 5.3: Let v ∈ A∗ and consider the corresponding compatible labelingχv andu ∈ A∗

such thatu �A
m v. We denoteS = {p ∈ T | χv(p) 6= ǫ}. Then for eachp ∈ S let ap ∈ A be the last letter

in χv(p) and letvp ∈ A∗ be such thatvpap = χv(p). Thusv = vp1
ap1

vp2
ap2

· · · vpk
apk

, wherek < m
andp1 ⊏ p2 ⊏ · · · ⊏ pk are all nodes fromS. We denoteAi = α(vpi

) for i = 1, . . . , k. We consider the
language

L = [A1] ap1
[A2] ap2

· · · [Ak] apk
[ ].

As v ∈ L ∈ Um(A) andu �A
m v, we deduce thatu ∈ L and we can writeu = up1

ap1
up2

ap2
· · ·upk

apk
,

where for eachi = 1, . . . , k we haveα(upi
) = α(vpi

) = Ai.
We define a compatible labelingξ on T in the following way: ifp /∈ S, i.e. χv(p) = ǫ, then we put

ξ(p) = ǫ and if p ∈ S then we putξ(p) = upap. Now for eachp ∈ T we haveα(ξ(p)) = α(χv(p)).
Moreover, ifχv(p) ∈ A thenχv(p) = ap andvp = ǫ, which entailsup = ǫ and, consequently,ξ(p) =
ap = χv(p). Thus the constructed compatible labelingξ on T is similar toχv. We know thatξ(λ) is
the product of allξ(p), for p ∈ T, in the order⊏. Sinceξ(p) = ǫ for p /∈ S, this product is equal to
up1

ap1
up2

ap2
· · ·upk

apk
= u wherep1 ⊏ p2 ⊏ · · · ⊏ pk are all nodes fromS. 2

Proof of Lemma 5.4: We prove the statement by an induction with respect to the structure ofT in
bottom-up direction. This means that we want to prove for each p ∈ T that

(

ϕ(ξ(p)), ϕ(χv(p))
)

∈ TM . (5.1)

First, if p is a leaf inT thenχv(p) = χv(p) = ǫ, because the height satisfies the inequalityhd(v) < K.
Thusξ(p) = χ(p) for this leafp and (5.1) is trivial.
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Now, letp be not a leaf and assume that (5.1) is true for the nodesp1 andp2. We distinguish between
the cases (a)–(d) in the definition ofχv which were used for the definition ofχv(p).

In case (a), we haveχv(p) = ǫ which entailsχv(pq) = ǫ for all q ∈ T such thatpq ∈ T. It follows that
ξ(pq) = ǫ for all suchq ∈ T. Consequentlyξ(p) = ǫ and (5.1) is trivially satisfied.

In case (b), we haveχv(p) = x ∈ A, χv(p1) = χv(p2) = ǫ. Sinceξ is similar toχv we have
ξ(p) = χv(p) = x andξ(p1) = ξ(p2) = ǫ. Consequentlyξ(p) = χv(p) = x and (5.1) is again trivially
satisfied.

In case (c), we haveχv(p) = ǫ which impliesξ(p) = ǫ = χv(p). Thenξ(p) = ξ(p1)ξ(p2) and
χv(p) = χv(p1)χv(p2). Since

(

ϕ(ξ(p1)), ϕ(χv(p1))
)

∈ TM and
(

ϕ(ξ(p2)), ϕ(χv(p2))
)

∈ TM we
obtain (5.1) as a consequence of the fact thatTM is a stable relation onM .

In case (d), we haveχv(p1) = x1, χv(p) = x2 · · ·xn−1 andχv(p2) = xn, and consequentlyχv(p) =
x = x1x2 · · ·xn. Moreover,ϕ(x1) = ϕ(x2) = · · · = ϕ(xn) = e is an idempotent inM . Since
ξ is similar toχv we haveξ(p) = w ∈ A∗ such thatα(w) = α(x2x3 · · ·xn−1). This means that
ϕ(w) ≡M ϕ(x2x3 · · ·xn−1) = e and we have(e · ϕ(w) · e, e) ∈ SM ⊆ TM . By induction hypothesis
we have

(

ϕ(ξ(p1)), ϕ(χv(p1))
)

∈ TM , where the second coordinate ise becauseχv(p1) = x1 and
ϕ(x1) = e. Thus

(

ϕ(ξ(p1)), e
)

∈ TM and, analogously,
(

ϕ(ξ(p2)), e
)

∈ TM . SinceTM is a stable
quasiorder we get the following sequence ofTM -related elements ofM . (Here we writeTM in an infix
notation to make the presentation more readable.)

ϕ(ξ(p)) = ϕ(ξ(p1)) · ϕ(ξ(p)) · ϕ(ξ(p2)) TM e · ϕ(w) · e TM e = ϕ(x1x2 · · ·xn) = ϕ(χv(p)).

This achieves the proof of Lemma 5.4. 2

From Lemmas 5.3 and 5.4 it immediately follows that

(s, t) = (ϕ(u), ϕ(v)) =
(

ϕ(ξ(T)), ϕ(χv(T))
)

∈ TM .

Thus we have proved the inclusion�M
m ⊆ TM and the proof of Proposition 5.2 is finished. 2

Combining Propositions 4.2, 4.4 and 5.2, we obtain the following characterization of our new upper
boundF.

Theorem 5.5 The pseudovarietyF consists of all finite monoidsM such thatsω = sωtsω whenever
(s, t) ∈ TM .

Proof: By Proposition 4.4, which is a consequence of Proposition 5.2, the relationTM is equal to the
transitive closure of�M . Hence we get the statement by applying Proposition 4.2. 2

From Theorem 5.5, we obtain the following main result of thispaper.

Theorem 5.6 It is decidable whether a given finite monoidM belongs to the pseudovarietyF.

Proof: It suffices to observe that the necessary and sufficient condition on a finite monoidM to belong
to F given by Theorem 5.5 can be effectively checked, which follows from Lemma 4.3. 2

Corollary 5.7 It is decidable whether a given finite monoidM belongs to the pseudovariety(B1©m Sl)∩F.

Proof: It is decidable whetherM belongs to the pseudovarietyB1 ©m Sl. Indeed, Straubing’s descrip-
tion [26, 27] of this upper bound is obviously decidable; alternatively using the description by the Mal’cev
product, the decidability result is contained in [16]. Hence the statement follows from Theorem 5.6.2



16 Jorge Almeida and Ondřej Klı́ma

6 The new versus the old upper bound
By [3] there is a monoidM ∈ B1 ©m Sl such thatM /∈ F. This means(B1 ©m Sl) 6⊆ F. In this section we
exhibit a monoidN ∈ F such thatN /∈ B1 ©m Sl.

LetA = {a, b} andL be the language of all words that after every factora2 contain a factorb2. This
means thatL = (A∗a2(A∗b2A∗)c)c, where the exponentc stands for complementation inA∗. Note that
the languageA∗b2A∗ = A∗b ∅∗bA∗ is of level2. Hence(A∗b2A∗)c is also of level 2 and consequently
L is a language of level 3. We consider the syntactic monoidN = ML of this language and show that
N /∈ B1 ©m Sl and thatN ∈ F. Consequently,N /∈ V2, so thatL is not in level 2.

In order to computeN , we first note that the minimal automaton ofL is the one described in Figure 1(a),
where 1 is the initial state and 1 and 2 are the final states. It is then routine to compute the presentation

N = 〈a, b : aba = a, bab = b, a3 = ba2 = a2, ab2 = b3 = b2〉

and the eggbox picture of the monoidN , which is represented in Figure 1(b), where the∗’s mark the
idempotents.

1 2

34

a

b

b

a

a

b

b

a

(a)

∗

1

a

∗

ba

∗

ab

b

∗

a
2 ∗

a
2
b

∗

b
2 ∗

b
2
a

(b)

Fig. 1: Structural information about the languageL

We show thatN /∈ B1 ©m Sl. It is known (seee.g.(8.1) at page 732 in [13]) thatB1 ©m Sl is defined by
all pseudoidentities

(uωw1v
ωw2u

ω)ωw1v
ωw4(u

ωw3v
ωw4u

ω)ω = (uωw1v
ωw2u

ω)ω(uωw3v
ωw4u

ω)ω (6.1)

whereu, v, wi ∈ FA (i = 1, . . . , 4) are such thatα(u) = α(v) = α(w1) = α(w2) = α(w3) = α(w4).
We consider such a pseudoidentity where we putu = v = w3 = w4 = (xy)ω ,w1 = xyx2 andw2 = yxy2

to obtain the pseudoidentity
(

(xy)ωxyx2(xy)ωyxy2(xy)ω
)ω
xyx2(xy)ω =

(

(xy)ωxyx2(xy)ωyxy2(xy)ω
)ω

(6.2)

which is satisfied inB1 ©m Sl. To check thatN fails the pseudoidentity (6.2), we simply evaluatex = a
andy = b in N , so that the left hand side of (6.2) evaluates toa2b while the right hand side givesb2.

It remains to show thatN ∈ F. To prove it, in view of Theorem 5.5, it suffices to show thatsω =
sωtsω for every pair(s, t) ∈ TN . Recall thatTN is the transitive closure of the submonoid〈SN 〉 of the
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monoidN ×N , whereSN is defined in (4.2). We start by noting that the relation≡N is an equivalence
relation with two classes, namely{1} andN \ {1}. Taking into account that the only idempotents in the
non-singleton≡N -class that are not right zeros areab andba, we conclude that the only non-diagonal
pairs inSN are the following:(b2, ab), (a2b, ab), (a2, ba), and(b2a, ba). Hence all non-diagonal pairs
(s, t) ∈ TN are such thats is a right zero, and sosω = sωtsω, thereby showing thatN ∈ F.

The constructed monoidN and its properties established above yield the following statement.

Proposition 6.1 F 6⊆ B1 ©m Sl. 2

From the example from [3] and Proposition 6.1 we know that(B1 ©m Sl)∩F is a smaller pseudovariety
of monoids than each ofB1©m Sl andF. Hence(B1©m Sl)∩F is currently the best known decidable upper
bound forV2. We leave as an open question whether(B1 ©m Sl) ∩ F = V2.
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[24] , The product of rational languages, 20th ICALP (Berlin), Lect. Notes Comput. Sci., vol.
700, Springer, 1993, pp. 430–444.

[25] H. Straubing,Finite semigroup varieties of the formV ∗D, J. Pure Appl. Algebra36 (1985), 53–94.

[26] , Semigroups and languages of dot-depth2, Automata, languages and programming (Rennes,
1986), Lecture Notes in Comput. Sci., vol. 226, Springer, Berlin, 1986, pp. 416–423.

[27] , Semigroups and languages of dot-depth two, Theor. Comp. Sci.58 (1988), 361–378.

[28] H. Straubing and P. Weil,On a conjecture concerning dot-depth two languages, Theor. Comp. Sci.
104 (1992), 161–183.
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