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Abstract. This paper provides a characterization of pseudowords over the pseudovariety of all finite
aperiodic semigroups that can be described from the free generators using only the operations of mul-
tiplication and ω-power. A necessary and sufficient condition for this property to hold turns out to
be given by the conjunction of two rather simple finiteness conditions: the nonexistence of infinite

anti-chains of factors and the rationality of the language of McCammond normal forms of ω-terms that
define factors of the given pseudoword. The relationship between pseudowords with this property and
arbitrary pseudowords is also investigated.

1. Introduction

Since the mid nineteen seventies, the theory of finite semigroups has seen a significant boost thanks to
its connections and applications in computer science. The now classical framework for the relationships
between the two areas is provided by Eilenberg’s correspondence between pseudovarieties of finite semi-
groups and varieties of rational languages [16], whose importance is also corroborated by the fact that
it has been the object of many extensions [17]. The typical application consists in the solution (positive
or negative) of an algorithmic problem about rational languages or finite automata by translating it to a
membership problem in a suitable pseudovariety of semigroups. Concomitantly, such applications have
served as a guide in the theory of finite semigroups, pointing out the most interesting pseudovarieties to
study.

Unlike varieties of algebras, pseudovarieties do not in general have free algebras. In the following
decade, a substitute for relatively free algebras emerged and found many applications in the context
of pseudovarieties of semigroups: the relatively free profinite algebras. The common algebraic and
combinatorial properties of the semigroups in a pseudovariety become encoded in the algebraic and
topological properties of their free profinite semigroups which, over a given finite alphabet, can be viewed
as the Stone dual for the Boolean algebra of languages over that alphabet recognized by semigroups in
the pseudovariety [1, 17, 27]. The difficulty, of course, is to obtain sufficient structural information about
these profinite semigroups for the intended applications.

Through the seminal work of Ash [14] and its generalizations found by the first author and Steinberg
[3, 11, 10], an important property that a pseudovariety V may enjoy has emerged: the so-called tameness.
Roughly speaking, it serves as a strong form of decidability, entailing that it is decidable whether a finite
system of equations with rational constraints over a finite alphabet X admits a solution in every X-
generated semigroup from V. By a standard compactness argument, the existence of such solutions can
be reduced to the existence of solutions in the pro-V semigroup freely generated by X . Basically, the
idea of tameness is to reduce the search of solutions in such a semigroup, which is often uncountable, to
a countable subsemigroup, namely a subalgebra generated by the same set X with respect to a suitable
signature, which turns out to be itself a relatively free algebra. The signature in question should be made
up of “natural”operations on profinite semigroups, including the multiplication. Among such operations,
the most encountered is the pseudoinversion, or (ω − 1)-power. In the group case, this operation is the
group inversion and the corresponding countable subsemigroup of the free profinite group is just the free
group on the same generating set. In the aperiodic case, the (ω− 1)-power reduces to the perhaps more
familiar ω-power which, in a finite semigroup, gives the unique idempotent power of an element. In this
case, let us call an algebra in our signature simply an ω-semigroup.

To prove tameness, one must establish that the word problem for the chosen relatively free algebra is
decidable and, since the existence of solutions of certain systems in the relatively free profinite semigroup
must be shown to entail the existence of solutions in the chosen subalgebra, it is important to understand
well how the subalgebra fits the profinite semigroup. For the case of the pseudovariety of all finite groups,
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a restricted form of tameness was first proved within the framework of semigroup theory [14], but also
independently a special case was proved using methods from profinite group theory [28, 29], and later
was rediscovered as a model-theoretic result [18, 8, 9].

For the pseudovariety A of all finite aperiodic semigroups, tameness has been announced by John
Rhodes at the International Conference on Algorithmic Problems in Groups and Semigroups (Lincoln,
Nebraska, U.S.A., May 1998) but no published proof has yet appeared except for the solution of the
word problem for the relatively free ω-semigroup in the variety of ω-semigroups generated by A, which
has been obtained by McCammond [24]. This seems to be explained, at least in part, by the fact that
a gap was discovered in the proof of a key result from [13] used in [10] to reduce the decidability of the
Krohn-Rhodes complexity of finite semigroups [19] (see [27]) to the tameness of the pseudovariety A.
McCammond’s solution of the word problem is obtained by constructing a normal form, to which every
ω-term may be reduced, preserving its action on semigroups from A, and then showing that two distinct
ω-terms in normal form act differently on some finite aperiodic semigroup by using his own solution of
the word problem for certain free Burnside semigroups [23].

The present paper is intended as a contribution to a deeper understanding of how the ω-subsemigroup
generated by X fits in the free pro-A semigroup F on the finite alphabet X . The main result provides a
characterization of the elements u of the ω-subsemigroup in terms of simple finiteness conditions: in any
infinite set of factors of u in F , at least one of them is a factor of another one; the language of ω-terms
in normal form that determine elements of F that are factors of u is rational. This may be viewed as
a sort of iterated periodicity result, by interpreting the operation of taking the ω-power as the infinite
iteration of its argument.

The paper is organized as follows. Section 2 gathers most of the preliminary material including
some remarks on uniformly recurrent right infinite words, a description of McCammond’s normal form
and algorithm to compute it, as well as some important properties of the pseudovariety A. Section 3
gives a characterization of pseudovarieties V such that the set of all finite elements of the free pro-V
semigroup ΩXV over a finite set of free generators X is always open and some related complementary
observations to results of [4] on uniformly recurrent pseudowords. In Section 4, we introduce a notion of
rank for elements of a semigroup inspired by McCammond’s rank of ω-terms. Section 5 investigates some
properties of Green’s relations in the semigroup of ω-words over A. Several characterizations of periodicity
for uniformly recurrent pseudowords over pseudovarieties containing all finite local semilattices are the
theme of Section 6 which brings forth the relevance of properties like the rationality of the set of finite
factors of a pseudoword as well as various chain conditions.

Sections 7 to 9 contain the main technicalities necessary for the main theorem, which is proved in
Section 10. Section 7 establishes necessary conditions for a pseudoword to be describable by an ω-term,
from which emerges the notion of slim pseudoword, which is investigated in Section 8. Section 9 gives
a way to encode slim pseudowords over A as pseudopaths in suitable profinite categories, tools whose
introduction is postponed to this point, rather than included in Section 2 for they play no role earlier
in the paper. It is the iterative application of this encoding procedure that allows us to show how to
construct an ω-term description of a pseudoword over A satisfying suitable finiteness conditions.

2. Preliminaries

Throughout this paper, we assume that the reader is familiar with the general basic theory of pseu-
dovarieties and specifically with the central role played by relatively free profinite semigroups. A quick
introduction, both to the theory and to the applications, is found in [5]. For more comprehensive treat-
ments, see [1, 27].

We adopt the following notation. A general finite alphabet is denoted X . For a pseudovariety V

of (finite) semigroups, the pro-V semigroup freely generated by X is represented by ΩXV. It may be
constructed for example as the projective limit of allX-generated semigroups from V or as the completion
of the free semigroup X+ on X with respect to the uniform structure generated by all congruences θ
such that X+/θ ∈ V.

The above construction of ΩXV provides a natural mapping ιV : X+ → ΩXV. While this may not
be injective, it is injective for many pseudovarieties of interest. Elements of ΩXV are called implicit
operations or pseudowords over V; if no reference to a pseudovariety is made, it is assumed to be S, the
pseudovariety of all finite semigroups. The elements of ιV(X+) are said to be finite while the remaining
elements of ΩXV are called infinite pseudowords.

The letter A denotes the pseudovariety of all finite aperiodic semigroups, consisting of all finite semi-
groups all of whose subsemigroups that are groups are trivial. The pseudovariety LSl consists of all finite
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semigroups S such that, for every idempotent e ∈ S, the monoid eSe is a semilattice, that is eSe is a
commutative semigroup in which every element is idempotent.

By a right infinite word over an alphabet X we mean an infinite sequence s = a1a2 · · · of letters of X .
Its finite factors are the words of the form u = ai · · · aj with i ≤ j; we then also say that u occurs in s

starting at position i. We denote by F (s) the set of all finite factors of s.
We say that the right infinite word s = a1a2 · · · is periodic if there exists n such that ai+kn = ai for

all k ≥ 0 and all i. We concatenate a finite word w = b1 · · · bm with a right infinite word s to obtain the
right infinite word ws = b1 · · · bma1a2 · · · . We say that the right infinite word t is ultimately periodic if
it is of the form ws for some finite word w and some periodic right infinite word s.

By K and D we denote the pseudovarieties consisting of all finite semigroups in which idempotents
are left zeros, respectively right zeros. Let Kn and Dn be the pseudovarieties consisting of all finite
semigroups satisfying respectively the identities x1 · · ·xny = x1 · · ·xn and xy1 · · · yn = y1 · · · yn.

The structure of ΩXK is easy to describe. The mapping ιK : X+ → ΩXK is injective and its image is
a discrete subspace, which we identify with X+. The elements of ΩXK \X+ have unique prefixes in X+

of any given length and they are completely determined by these prefixes, and so they may be identified
with right infinite words, that is with elements of XN, where N denotes the set of all natural numbers.
The infinite elements of ΩXK are left zeros and multiplication on the left by a finite word is obtained
by concatenation. The topology of the subspace of infinite pseudowords, identified with infinite words,
is precisely the product topology of XN, so that this space is homeomorphic to the Cantor set of reals.
A sequence of finite words converges to an infinite word if every finite prefix of the latter is a prefix of
all but finitely many terms of the sequence. The structure of ΩXD is dual.

By a quasi-order on a set we mean a reflexive and transitive binary relation ≤. The associated strict
order < is defined by x < y if x ≤ y and y 6≤ x. A quasi-order is a well-quasi-order (wqo for short) if
it admits no infinite descending chains x1 > x2 > · · · and no infinite anti-chains, that is infinite sets in
which, for any two distinct elements x and y, x 6≤ y. Equivalently, given any sequence (xk)k, there exist
m,n such that m < n and xm ≤ xn.

Given two elements s and t of a semigroup S, we write s ≥J t and say that s lies J-above t if t may
be written as a product in which s appears as a factor. Theorem 2.4 below may be expressed by saying
that ΩκXA forms a filter in ΩXA with respect the quasi-order relation ≤J. We write J for the equivalence
relation ≤J ∩≥J. In general, when we talk about anti-chains in this paper, we mean anti-chains for the
factor ordering ≥J.

Similarly, we write s ≥R t if s is a left factor (or prefix ) of t in a given semigroup S and s ≥L t
if s is a right factor (or suffix ) of t. The corresponding equivalence relations are R = ≤R ∩ ≥R and
L = ≤L ∩ ≥L. The remaining Green relations are H = R ∩ L and D = R ◦ L = L ◦ R, where ◦ denotes
the composition of binary relations. It is well known that the maximal subgroups of a semigroup S are
precisely those H-classes that contain idempotents. In the case of a finite aperiodic semigroup, H is the
equality relation.

A language L ⊆ X+ is factorial if it is closed under taking factors. If L is infinite, we say that L is
uniformly recurrent if, for every u ∈ L there is an integer n such that, for all w ∈ L with |w| ≥ n, u is a
factor of w. The right infinite word s is uniformly recurrent if the language F (s) is uniformly recurrent.
The following combinatorial properties of right infinite words will be useful in the sequel. We do not
know if they have been observed elsewhere.

Lemma 2.1. Let s be a right infinite word such that F (s) has no infinite anti-chains. Then s is of the
form ut, where u is finite and t is uniformly recurrent.

Proof. Suppose that every factorization s = ut, where u is a finite word, is such that t is not uniformly
recurrent. We construct a sequence (fn)n of factors of s which is an anti-chain, which produces a
contradiction and therefore proves the lemma.

Since s itself is not uniformly recurrent, there exists an arbitrarily long factor f1 of s that is not a
factor of infinitely many factors of s. If f1 occurs infinitely often as a factor of s, then there are infinitely
many factors of s of the form f1uf1 in which f1 appears only as prefix and suffix. Since such factors
constitute an anti-chain, it follows that there is a factorization s = u1s1 such that f1 /∈ F (s1).

Applying the same argument to s1, we deduce that there is some factorization s1 = u2s2 and some
f2 ∈ F (s1) \ F (s2) such that |f2| > |f1|. Iterating this procedure, we obtain the announced anti-chain
(fn)n, which completes the proof of the lemma. �

Lemma 2.2. Let s be a uniformly recurrent right infinite word such that the language F (s) is rational.
Then s is periodic.
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Proof. This could be deduced from Theorem 6.2 below, but we give a direct proof. Since the language
F (s) is rational, infinite, and factorial, there is some word u ∈ A+ such that every finite power of u is a
factor of s. Let s = u1u2 · · ·un · · · be the factorization of s in factors of length |u|. Since s is uniformly
recurrent, for each n, u1 · · ·un is a factor of some power of u. Hence, since all ui have the same length
as |u|, it follows that they are all equal (to some conjugate of u). Since this is true for all n, it follows
that s is periodic. �

Combining the two preceding lemmas, we obtain the following result.

Proposition 2.3. Let s be a right infinite word. Then s is ultimately periodic if and only if the language
F (s) is rational and it contains no infinite J-anti-chains.

Proof. Suppose first that s is ultimately periodic, say s = uv∞, where v∞ stands for the right infinite
periodic word with period v. Then F (s) is the language of factors of uv∗ and, therefore, it is a rational
language. More precisely, the finite factors of s are the factors of u together with the words of the form
xvky, where x is a suffix of either u or v, k ≥ 0, and y is a prefix of v, and it is immediate to deduce
that there are no infinite J-anti-chains of such words.

Conversely, if there are no infinite anti-chains of finite factors of s then, by Lemma 2.1, s has a
factorization of the form s = ut, where u is a finite word and t is a uniformly recurrent infinite word. We
claim that the language F (t) is rational which, by Lemma 2.2, entails that t is periodic and, therefore,
that s is ultimately periodic.

To prove the claim, note that, since t is uniformly recurrent, the factors of t are precisely the factors
v of s such that, for every n, there exists x ∈ X+ of length n with xv ∈ F (s). By hypothesis, F (s) is a
rational language, whence there is a finite deterministic automaton A recognizing the reverse L of this
language, consisting of the reversed words. In this context, we consider automata as recognizing devices
only for nonempty words. Since L is factorial, all states from which a terminal state is accessible are also
terminal, that is, either there is only one state or we may as well assume that the only state which is not
terminal is a sink. If we change to nonterminal those states from which no strongly connected component
of terminal states is accessible, we obtain an automaton A ′ that recognizes the set of all words v ∈ L
which can be extended arbitrarily to the right to other words from L. Hence F (t) is rational. �

Going back to the profinite world, we recall that implicit operations over V can be naturally interpreted
in pro-V semigroups as follows: given w ∈ ΩXV and a profinite semigroup S, the interpreted operation
wS : SX → S associates to each function ϕ : X → S the element ϕ̂(w) ∈ S, where ϕ̂ is the unique
extension of ϕ to a continuous homomorphism ΩXV → S.

Given u, v ∈ ΩXV, we call the formal equality u = v a pseudoidentity (over V). For a pro-V semigroup
S, we then say that S satisfies the pseudoidentity u = v and write S |= u = v if uS = vS . For a set Σ
of pseudoidentities, we let JΣK denote the class of all finite semigroups that satisfy all pseudoidentities
from Σ. It is easy to check that JΣK is a pseudovariety and Reiterman [26] showed that every pseudovariety
is of this form.

For a set σ of implicit operations, one may in particular use natural interpretation of the elements
of σ to define the σ-subalgebra of ΩXV generated by X , which is denoted ΩσXV. Formal terms over a
finite alphabet X in the signature σ are called σ-terms. Since our multiplication is always associative,
without further reference, we identify terms that only differ by the order in which multiplications are to
be carried out.

Following [10], we denote by κ the set consisting of the operations of multiplication and pseudo-
inversion x 7→ xω−1, where, for an element s of a finite semigroup, sω−1 stands for the inverse of ssω in
the maximal subgroup of the subsemigroup generated by s, whose idempotent is denoted sω. In general,

for a profinite semigroup S, one may define sω+k = limn s
n!+k for k ∈ Z and sm

ω

= limn s
mn!

for m ≥ 1
[5]. For k, ℓ ∈ Z with ℓ > 0, we have sω+(k+ℓ) = sω+ksℓ.

Note that, for pseudovarieties contained in A, since the subgroup in question is trivial, the operations
xω−1 and xω coincide. Since this paper is concerned mainly with the pseudovariety A, our κ-terms will
use the operation xω rather than xω−1 and such terms are also, abusively, called ω-terms. More formally,
an ω-term on a set X is an element of the unary semigroup UX freely generated by X .

We will sometimes adopt the simplified notation of McCammond [24] for ω-terms under which the
curved parenthesis (α) stands for αω . This allows us to refer to ω-terms as words over an extended
alphabet X∪{(, )}, which is particularly useful for McCammond’s solution of the word problem for ΩκXA

and is also instrumental in the formulation of our main result. Note that the words in the extended
alphabet that represent ω-terms are precisely those for which the opening and closing parentheses match,
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that is, by removing all other letters we obtain a Dyck word. In fact, it is easy to check that the ω-
subsemigroup of the free semigroup (X ∪ {(, )})+ generated by X , where the ω-power is interpreted as
the operation w 7→ (w), is freely generated by X as a unary semigroup. Thus, we identify UX with the
set of well-parenthesized words over the alphabet X .

In particular, there is a natural homomorphism of ω-semigroups ǫ : UX → ΩκXA that fixes each x ∈ X
when we view X as a subset of UX and ΩκXA in the natural way. To avoid ambiguities in the meaning of
the parentheses, we will write ǫ[w] for the image of w ∈ UX under ǫ. The elements of ΩκXA will sometimes
be called ω-words. Whenever we say that an ω-term over the alphabet X is a factor of another, we mean
that that is the case in the free semigroup (X ∪ {(, )})+.

The ω-word problem for A (over X), consists in deciding when two elements of UX have the same
image under ǫ. To solve this problem, McCammond described a normal form for ω-terms over A that we
will use extensively in this paper. For its description, a total order is fixed on the underlying alphabet
X ; on the extended alphabet, we set ( < x < ) for every x ∈ X . A primitive word is a word that
cannot be written in the form un with n > 1. Two words u and v are said to be conjugate if there are
factorizations of the form u = xy and v = yx, with the words x and y possibly empty. A Lyndon word
is a primitive word that is lexicographically minimum in its conjugacy class. The rank of a word in the
extended alphabet is the maximum number of nested parentheses in it.

A rank 0 normal form ω-term is simply a finite word. Assuming that rank i normal form terms have
been defined, a rank i+ 1 normal form term is a term of the form α0(β1)α1(β2) · · ·αn−1(βn)αn, where
the αj and βk are ω-terms such that

(a) each βk is a Lyndon word;
(b) no intermediate αj is a prefix of a power of βj or a suffix of a power of βj+1;
(c) replacing each subterm (βk) by βkβk, we obtain a rank i normal form term;
(d) at least one of the properties (b) and (c) is lost by canceling from αj a prefix βj (in case j > 0) or

a suffix βj+1 (in case j < n).

McCammond also described a method to transform an arbitrary ω-term into one in normal form with
the same image under ǫ. Moreover, he proved that if two ω-terms in normal form have the same image
under ǫ, then they are equal.

Since we will need to refer to McCammond’s procedure to transform an arbitrary ω-term into one in
normal form, we proceed to describe its steps. The procedure consists in applying elementary changes
that obviously retain the value of the ω-term under ǫ. The types of changes are given by the following
rules:

1. ((α)) = (α)
2. (αk) = (α)
3. (α)(α) = (α)
4. (α)α = (α), α(α) = (α)
5. (αβ)α = α(βα)

If a subterm given by the left side of a rule of type 1–4 is replaced in a term by the right side of the rule,
then we say there is a contraction of that type. If the replacement is done in the opposite direction than
we say that there is an expansion of that type. For the rules of type 4, we may add an index L or R to
indicate on which side of the ω-power the base was added or deleted.

The steps in McCammond’s normal form algorithm may now be described as follows.

(1) In case the given term is a word, do nothing and stop.
(2) Apply all possible contractions of type 1.
(3) Apply all possible contractions of type 2. The resulting term may be written as a product of the

form

(1) α0(β1)α1(β2) · · ·αn−1(βn)αn

where each subterm αj and βk has strictly smaller rank.
(4) Apply recursively the algorithm to each subterm αj and βk, to put it in normal form.
(5) If some βk is an idempotent (that is, it has the same normal form as its square), then remove the

parentheses around it in the expression (1), join it with the adjacent α subterms and apply again
the previous item to the new α subterms.

(6) By means of an expansion of type 4L and an expansion of type 4R and a shift of parentheses by
application of the rule 5, write each remaining subterm of the form (βk) in the form ε1(γ)ε2 where:

(i) γ is a Lyndon word in the extended alphabet;
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(ii) ε1γε2 is the normal form of β3
k;

(iii) ε1ε2 is the normal form of β2
k;

(iv) ε2ε1 has the same normal form as γ2;
(v) the rank of each of ε1 and ε2 is rank[βk].

(7) Using contractions of types 3 and 4, replace maximum rank subterms of the form (γ)γℓ(γ) by (γ).
The remaining maximum rank subterms of the form (γ)ε(δ), where rank[γ] = rank[δ] ≥ rank[ε],
are called crucial portions, whereas the prefix ε(δ) and the suffix (γ)ε, with similar assumptions on
γ, δ, ε, are called respectively the initial portion and the final portion. An initial portion ε(δ) with
ε = 1 (the empty word) is said to be trivial and similarly for final portions.

(8) Standardize each crucial portion (γ)ε(δ) by using expansions of type 4R on (γ) and of type 4L on (δ)
until the intermediate term ε′ is no longer a prefix of a power of γ nor a suffix of a power of δ, as a
word in the extended alphabet, and apply contractions of type 4R on the left and of type 4L on the
right while that property holds.

(9) Reduce the initial portion ε(δ) by dropping the largest suffix of ε that is a power of δ as a word in
the extended alphabet; proceed dually with the final portion.

It is not very hard to check that the above normal form algorithm does indeed transform an arbitrary
ω-term into one in normal form. Since all the rewriting rules are based on identities of ω-semigroups
that are valid in A, every ω-term over X has the same image under ǫ as its normal form. To prove that
distinct ω-terms in normal form have different images in ΩκXA, McCammond used his solution of the
word problem for certain free Burnside semigroups [23]. We have obtained a direct combinatorial proof
of the same result which leads to many other applications, including the following two theorems, the
first of which plays an important role in this paper and which does not apparently follow easily from
McCammond’s results. The paper containing our proof is under preparation and will appear elsewhere.

Theorem 2.4. If v ∈ ΩκXA and u ∈ ΩXA is a factor of v, then u ∈ ΩκXA.

It is well know that the Green relations J and D coincide in every compact semigroup, and so in
particular they coincide in every finite semigroup. In fact, this property holds more generally in so-called
stable semigroups (cf. [20]), that is in semigroups S such that, s ≥R t (respectively s ≥L t) and s J t
implies s R t (respectively s L t).

Corollary 2.5. The semigroup ΩκXA is stable. Hence the Green relations J and D of ΩκXA coincide,
while H is the equality relation.

Proof. If the relations s ≥R t J s hold in the subsemigroup ΩκXA then they also hold in ΩXA. Since

ΩXA, like any compact semigroup, is stable, we deduce that there exists u ∈ (ΩXA)1 such that su = t.
If u = 1, then s = t. Otherwise, u ∈ ΩκXA by Theorem 2.4, and so s R t holds in ΩκXA in any case.

It was already pointed out that stability implies J = D. That H is trivial in ΩκXA is actually true for

every subsemigroup of ΩXA since, if two elements are H-equivalent in a subsemigroup of ΩXA, then they
are also H-equivalent in ΩXA. It is well known that H is trivial in ΩXA (cf. [1, Corollary 5.6.2]): if s H t
and s 6= t, then there exists a continuous homomorphism ϕ : ΩXA → S onto a finite aperiodic semigroup
S such that ϕ(s) 6= ϕ(t). But, since the Green relations are preserved by applying homomorphisms,
ϕ(s) H ϕ(t). Since the Green relation H is trivial in finite aperiodic semigroups, we reach a contradiction.
Hence H is trivial in ΩκXA. �

Following [25, 20], we say that a semigroup S is equidivisible if, for any two factorizations xy = zt of
the same element of S, there exists u ∈ S1 such that, either x = zu and uy = t, or xu = z and y = ut.
It follows that any two factorizations of the same element of S may be refined by further factorizating
some of the factors so as to reach the same factorization.

We also say that a pseudovariety V is equidivisible if ΩXV is equidivisible for every finite set X . The
following result, which can be easily derived using results from [6, Section 2] is very useful. Details will
be given in a forthcoming paper where equidivisibilty is extensively explored.

Theorem 2.6. The pseudovariety A is equidivisible.

3. Set of all finite words open

Let N = Jxω = 0K be the pseudovariety of all finite nilpotent semigroups. The following result
completes well-known properties of N.

Theorem 3.1. The following conditions are equivalent for a pseudovariety V:
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(a) V ⊇ N;
(b) if V satisfies a pseudoidentity of the form u = v, where u is a finite word, then u = v;
(c) if V satisfies a two-letter pseudoidentity of the form u = v, where u is a finite word, then u = v;
(d) for every finite alphabet A, the natural homomorphism ιA : A+ → ΩAV is injective and its image is

an open discrete subset;
(e) for the two-letter alphabet A = {a, b}, the natural homomorphism ιA : A+ → ΩAV is injective and

the subset {xn : n ≥ 1} is open in Ω{x}V.

Proof. (a)⇒(b) This is well-known. Simply observe that, if the word u over the finite alphabet A has
length n, then the Rees quotient S of A+ by the ideal AnA+ is a nilpotent semigroup which satisfies no
non-trivial pseudoidentity of the form u = v.

(b)⇒(a) This is also well-known. Indeed, by Reiterman’s Theorem [26], it suffices to show that N

satisfies every non-trivial pseudoidentity u = v which holds in V. By (b), for such a pseudoidentity, u
and v are both infinite pseudowords, whence they have factors of the form wω (cf. [1, Corollary 5.6.2]).
Hence, N satisfies the pseudoidentities u = 0 = v.

(b)⇒(c) and (d)⇒(e) are obvious.
(b)⇒(d) That V satisfies no non-trivial identities u = v with u, v ∈ A+ is clearly equivalent to the

statement that ιA is injective. Suppose that Im ιA is not an open discrete subset. Then there is an
injective sequence (wn)n which converges to a word u in ΩAV. Since the sequence is injective, if it
has infinitely many terms which are finite words (meaning that they belong to Im ιA), then it contains
arbitrarily long words, which implies that the limit u is of the form u = xyωz for some x, y, z ∈ ΩAV.
Hence V satisfies the non-trivial pseudoidentity u = xyωz, in contradiction with (b). Note that in this
argument, we worked with a fixed finite alphabet. (c)⇒(e) follows from the particular case of a two-letter
alphabet.

(e)⇒(b) Let A = {a, b} be a two-letter alphabet and let C = {c1, . . . , cn} be an arbitrary finite
alphabet with n letters. Then the homomorphism ϕ : C+ → A+ defined by ϕ(ci) = bia is injective. Let
ϕ̂ : ΩCV → ΩAV be the continuous homomorphism defined by ϕ̂(ιC(ci)) = ιA(bia), that is so that the
following diagram commutes:

C+
ιC //

ϕ

��

ΩCV

ϕ̂

��

A+
ιA // ΩAV

Since ιA ◦ ϕ is injective, it follows that ιC is also injective, that is V satisfies no non-trivial identity on
the alphabet C.

Note that, if V satisfies some non-trivial pseudoidentity u = v, with u ∈ C+, then V satisfies some
pseudoidentity of the form xk = xω+k and hence limn x

(2·3 ··· pn)ω+k = xk, where pn denotes the nth
prime. The assumption that x+ is an open subset of Ω{x}V entails that V satisfies x(2·3 ··· pn)ω+k = xmn ,
with mn finite, for all sufficiently large n. If ℓ ∈ {1, . . . , n}, n is sufficiently large, and r is so large that
prℓ does not divide mn − k, then the pseudoidentity x(2·3 ··· pn)ω+k = xmn fails in the cyclic group Z/prℓZ,
whence this group does not belong to V. It follows that, for every prime p, there is the largest exponent
r = rp ≥ 0 such that Z/prZ ∈ V.

Next, for each n ≥ 1, let wn denote an accumulation point of the sequence
(

x(pnpn+1···pm)ω)

m
. We

claim limn wn = xω+1 in Ω{x}S, from which it follows that limn wn = xk+1 in Ω{x}V. Before establishing

the claim, note that the assumption that x+ is open now implies that, for all sufficiently large n, V |=
wn = xℓn for some finite exponent ℓn ≥ 1. It follows that, for some n, ℓn is divisible by all prs

s with

s ≥ n, whence rs = 0 for all s greater than or equal to some n. We deduce that V |= xk = xk+
Q

i<n
p

ri
i ,

which contradicts the assumption that ιA is injective.
It remains to establish the claim that limn wn = xω+1, which means that every monogenic finite

semigroup S satisfies the pseudoidentity wn = xω+1 for all sufficiently large n. This amounts to an
elementary exercise which we solve for the sake of completeness. Since both wn and xω+1 are infinite,
the substitution of x by xω+1 leaves the pseudoidentity wn = xω+1 unchanged. Hence it suffices to
consider the case where S is a cyclic group, say of order r. Then, for every k relatively prime to r, the
fact that k is invertible in the multiplicative monoid of Z/rZ means that S |= xk

ω

= x. Since, for all
sufficiently large n and all m ≥ n, pn · · · pm is relatively prime to r, this proves the claim. �

Just by itself, the property that the set of all finite words is open in ΩXV has some interesting
consequences.
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Proposition 3.2. For every pseudovariety V such that the set of all finite words is open in ΩXV,
every infinite pseudoword in ΩXV is J-below some pseudoword that is J-maximal among all infinite
pseudowords.

Proof. By Zorn’s Lemma, it suffices to show that every J-chain C of infinite pseudowords has an upper
bound in the set of infinite pseudowords. We consider C as a net, indexed by itself. Since the space
ΩXV is compact and the set of finite words is open, the subspace of infinite pseudowords is compact
as well, whence there is some convergent subnet (di)i∈I , given by di = ϕ(i), where ϕ : I → C is an
order-preserving mapping which is cofinal in the sense that, for every c ∈ C, there exists i ∈ I with
c ≤J ϕ(i). Note that cofinality implies that C and {di : i ∈ I} have the same upper bounds. Hence,
it suffices to show that the limit d = lim di is such an upper bound. Since the subnet (dj)j∈I, j≥i also
converges to d and it consists of elements that are J-above di, it follows that indeed d ≥J di. �

Let now w ∈ ΩXV be an arbitrary pseudoword. We denote by F (w) the set of all u ∈ X+ such that
ιV(u) is a factor of w. We say that w ∈ ΩXV is uniformly recurrent if the language F (w) is uniformly
recurrent. By [4, Theorem 2.6], if V contains LSl then a pseudoword w ∈ ΩXV is uniformly recurrent if
and only if w is J-maximal among all infinite pseudowords. We will use this fact from hereon without
further reference.

Proposition 3.3. Let V be a pseudovariety containing LSl and let v, w ∈ ΩXV be such that F (v) ⊆ F (w),
w is uniformly recurrent, and v /∈ X+. Then v is J-equivalent to w and, in particular, it is uniformly
recurrent.

Proof. Since LSl contains N, by Theorem 3.1 and Proposition 3.2, there exists some uniformly recurrent
pseudoword y ∈ ΩXV such that y ≥J v. Hence F (y) ⊆ F (v) ⊆ F (w). By [4, Corollary 2.10], it follows
that y J w, whence F (y) = F (w). Hence F (v) = F (w), so that v is also uniformly recurrent. Applying
[4, Corollary 2.10] again, we now conclude that v J w. �

4. The rank

Given an ω-word w ∈ ΩκXA, there are in general many ω-terms that represent it. But, by Mc-
Cammond’s results, there is only one such ω-term in normal form, which we call the normal form
representation or simply the normal form of w.

The rank of w ∈ ΩκXA is i if the normal form of w is a rank i normal form term or, equivalently, an ω-
term of rank i. It is denoted rank[w]. In this section, we introduce structural, rather than combinatorial,
notions of rank for elements of ΩκXA and, more generally, for ΩXA.

Given w ∈ ΩκXA, define r(w) to be the supremum of the cardinalities of strict J-chains of idempotents

of ΩκXA which lie J-above w. Similarly, for w ∈ ΩXA, define r̄(w) to be the supremum of the cardinalities

of strict J-chains of idempotents of ΩXA which lie J-above w. Note that the definition of r and r̄
immediately implies that the value of any of these functions at a product is at least its value at each of
the factors.

Lemma 4.1. Let α and β be ω-terms in normal form and let γ be the normal form of αβ. Then
rank[γ] ≥ max{rank[α], rank[β]}.

Proof. According to the normal form algorithm, the only steps that change the depth of nested paren-
theses are the application of a rule of type 1 ((δ)) 7→ (δ) or of the step that replaces (γ) by γ in case γ is
idempotent. Now, such changes on the concatenation of two expressions which represent ω-terms (that
is, which are properly parenthesized), can only take place entirely within one of the factors, and this is
not possible since α and β are in normal form. �

Lemma 4.2. Let (α) and (β) be ω-terms in normal form.

(a) If (α) is a subterm of β then ǫ[(α)] lies strictly J-above ǫ[(β)] in ΩκXA.
(b) If ǫ[(α)] lies strictly J-above ǫ[(β)] in ΩκXA then rank[α] < rank[β].

Proof. (a) Since β is in normal form, the hypothesis that (α) is a subterm of β implies that rank[(α)] ≤
rank[β] and so that rank[(α)] < rank[(β)]. Moreover, the same hypothesis yields that ǫ[(α)] lies J-
above ǫ[(β)] in ΩκXA. On the other hand, if ǫ[(β)] lies J-above ǫ[(α)] in ΩκXA then, by Lemma 4.1,
rank[(β)] ≤ rank[(α)], which contradicts an earlier inequality.

(b) Assume that indeed ǫ[(α)] lies strictly J-above ǫ[(β)]. By Lemma 4.1, we have rank[(α)] ≤ rank[(β)].
Since (α) and (β) are in normal form, it follows that rank[α] ≤ rank[β]. Suppose that rank[α] = rank[β].
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By hypothesis, there exist possibly empty ω-terms in normal form γ and δ such that ǫ[γ(α)δ] = ǫ[(β)].
We further assume that |γδ| is minimal for this property.

By McCammond’s results, the normal form of γ(α)δ is (β). Again, the only way that the depth of
nested parentheses might go down in the computation of the normal form for γ(α)δ would be within one
of the three factors, which is impossible since they are assumed to be in normal form. Hence rank[γ]
and rank[δ] are at most rank[(α)]. If, next, there are any contractions of type (ε)(ε) 7→ (ε), then they
take place at the junction of either γ and (α) or (α) and δ, and so there is no need for such contractions
by the minimality assumption on |γδ|. The remaining phases of the normal form algorithm concern
therefore the standardization of subterms of the form (ε) of highest rank and of the crucial portions. The
first of these steps produces no changes since all subterms of the form (ε) of highest rank are already in
normal form. For the second step, since we know that the end result is (β), the minimality assumption
on |γδ| implies that γ = δ = 1, which contradicts the hypothesis that ǫ[(α)] lies strictly J-above ǫ[(β)] in
ΩκXA. �

Lemma 4.3. Let w be an idempotent in ΩκXA. Then there exists an ω-term (α), in normal form, such
that w J ǫ[(α)].

Proof. Let β be the normal form of w. Then β is the normal form of ββ and so β is an idempotent
in rank[β] in the sense of [24, Definition 5.9]. By [24, Lemma 5.10], it follows that the normal form
expression for β is of the form ε0(α)ε1 and that the expression (α)ε1ε0(α) is rank[α]-equivalent to (α).
Hence w = ǫ[β] J ǫ[(α)]. �

Proposition 4.4. Let w ∈ ΩκXA and let α be its normal form. Then r(w) = rank[α].

Proof. By definition, the rank of an ω-term in normal form is the largest number of nested parentheses.
Hence, for n = rank[α], there are ω-terms in normal form (β1), . . . , (βn) such that each (βi) is a subterm
of βi+1 (i < n) and of α (i ≤ n). By Lemma 4.2(a), {ǫ[(β1)], . . . , ǫ[(βn)]} constitutes a strict J-chain of
idempotents J-above w. Hence r(w) ≥ n = rank[α].

Let e1, . . . , em be a strictly descending J-chain of idempotents of ΩκXA which lie J-above w. By
Lemma 4.3, we may assume that each ei has a normal form of the form (βi). By Lemma 4.2(b), since
ei = ǫ[(βi)] is strictly J-above ei+1 = ǫ[(βi+1)], we have rank[(βi)] < rank[(βi+1)] (i < m). On the
other hand, by Lemma 4.1, since ǫ[(βm)] is J-above w = ǫ[α], we have rank[(βm)] ≤ rank[α]. Hence
m ≤ rank[α], which shows that r(w) ≤ rank[α]. �

Since, by Theorem 2.4, the factors of an element of ΩκXA are the same in ΩκXA and in ΩXA, we also
have the following result.

Proposition 4.5. For every element w ∈ ΩκXA, we have r̄(w) = r(w). �

Propositions 4.4 and 4.5 imply that, for an ω-term in normal form α, rank[α] = r(ǫ[α]) = r̄(ǫ[α]). For
an arbitrary element w of ΩXA, we also call r̄(w) the rank of w.

5. Properties of the Green relations on ΩκXA

In this section, we examine some properties of the Green relations on the semigroup ΩκXA.

Lemma 5.1. In every regular J-class of ΩκXA there is a unique element which, in normal form, is of
the form (α).

Proof. Let β = γ0(δ1)γ1 · · · (δr)γr be an ω-term in normal form and suppose that u = ǫ[β] is a regular
element of ΩκXA. Then there exists w ∈ ΩκXA such that uwu = u and wuw = w. Let ui = ǫ[γi] and
vj = ǫ[δj ]. By the normal form algorithm, r = 1 and vω1 u1 ·w ·u0v

ω
1 = vω1 , so that vω1 = vω1 u1 ·wuw ·u0v

ω
1 .

Hence u J vω1 . Suppose that vω is another ω-term in normal form in the J-class of u. Then rank[v] =
rank[v1] and there exist x, y ∈ ΩκXA such that vω1 = xvωy. Hence the normal form of vω1 xv

ωy is vω1 .
This means that the application of the normal form algorithm must eliminate the crucial portion vω1 xv

ω ,
since vω1 has no crucial portions. The only step where this can happen is Step (7), which implies that
v1 = v. �

Proposition 5.2. In every regular R-class of ΩκXA there is a unique element which, in normal form, is
an initial portion.
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Proof. Let u be a regular element of ΩκXA. By Lemma 5.1, there is in the J-class of u a unique element e
which, in normal form, is of the form (α). By Corollary 2.5, there exists a unique element of the form xe
such that u R xe L e. Let y ∈ ΩκXA be such that e = yxe and let β and γ be the normal forms of x and
y, respectively. Then the normal form algorithm reduces γβ(α) to (α), which implies that the normal
form of β(α) is an initial portion.

Suppose next that there is another element in the R-class of u whose normal form is an initial portion
δ(ε). Let t = ǫ[δ] and f = ǫ[(ε)]. Since e J tf and δ(ε) is an initial portion, which in particular means
that rank[δ] ≤ rank[ε] = rank[δ(ε)] − 1, by Proposition 4.4 it follows that r(f) = r(e) and so f J e since
f ≥J e. By Lemma 5.1, we deduce that ε = α. Hence all terms in the R-class of u which, in normal
form, are initial portions, lie in the same H-class. Hence there is a unique such term since the Green
relation H is trivial in ΩκXA by Corollary 2.5. �

Of course, one has a dual result to Proposition 5.2 concerning L-classes and final portions.

Lemma 5.3. Let α and (β) be ω-terms in normal form and suppose that ǫ[(β)] ≥J ǫ[α] in ΩκXA. Then
(β) is a factor of α.

Proof. Let w = ǫ[α] and e = ǫ[(β)]. We proceed by induction on rank[α]. We assume inductively that
the result holds for all ω-terms α′ with rank[α′] < rank[α]. Let x and y be ω-words such that w = xey.
If rank[α] = rank[(β)], then the result follows from the normal form algorithm since it does not affect
factors of the form (ξ) which are already in normal form. Otherwise, at least one of the factors x and
y has the same rank as w. As the other cases are similar and simpler, we consider the case where
r(x) = r(y) = r(w) = rank[α].

Let (γ)δ and λ(µ) be, respectively, the final and initial portions of the normal forms of x and y. Then
the normal form of the ω-term (γ)δ(β)λ(µ) is a factor of α. Let ε be the normal form of δ(β)λ. There
are two cases to consider.

First, Step (7) of the normal form algorithm may apply to the crucial portion (γ)δ(β)λ(µ), in which
case γ = µ and ε = γn is a finite power of γ, which in turn is a factor of α. Since rank[γn] < rank[α] and
ǫ[ε] = ǫ[δ(β)λ], by the induction hypothesis we obtain that (β) is a factor of γn, and therefore also of α.

Second, Step (7) does not apply to the crucial portion (γ)ε(µ), and applying the standardization
procedure of Step (8), (γ)ε(µ) reduces to its normal form (γ)ε′(µ) by expansions and contractions of
the forms (γ) → (γ)γ, (µ) → µ(µ), (γ)γ → (γ), and µ(µ) → (µ). It follows that there are some finite
exponents k, ℓ such that ε is a factor of the ω-term γkε′µℓ, which has strictly smaller rank than α. Hence
e is a factor of ǫ[γkε′µℓ] in ΩκXA. By the induction hypothesis, it follows that (β) is a factor of γkε′µℓ

and, therefore, also of at least one of the factors γ, ε′ and µ, whence of α. �

Combining Lemmas 5.1 and 5.3, we obtain the following result.

Theorem 5.4. There are only finitely many regular J-classes ≥J a given w ∈ ΩκXA.

Proof. By Lemma 5.1, all regular J-classes ≥J a given ω-word w contain elements whose normal forms
are of the form (α). By Lemma 5.3, all such elements are factors of the normal form of w. Hence there
are only finitely many such J-classes. �

Note that a regular J-class of ΩκXA may be infinite. For instance, all the elements anb(aωb)ω, with
n ≥ 1 lie in the J-class of the idempotent (aωb)ω while they are all distinct by McCammond’s Normal
Form Theorem, since their given descriptions are already in normal form.

The following result is both a consequence of Theorem 2.6 and a special case of a much more general
result [7, Lemma 4.7].

Proposition 5.5. Let w ∈ ΩXA and suppose that u and v are two prefixes of w. Then one of u and v
is a prefix of the other. �

In the terminology of [15], Proposition 5.5 is expressed by stating that the semigroup ΩXA has
unambiguous R-order. Dually, ΩXA also has unambiguous L-order. Taking into account Theorem 2.4,
we immediately deduce that the semigroup ΩκXA also has unambiguous R-order and L-order. More
precisely, we have the following result.

Corollary 5.6. The set of prefixes of a given w ∈ ΩκXA is wqo under the prefix order.

Proof. By Proposition 5.5, we already know that the prefixes of w form a chain. Let [xn]n be a sequence
of prefixes of w and suppose that each xn+1 is a strict prefix of the preceding xn. In particular, the ranks
of the xn constitute a non-increasing sequence of integers. Therefore, without loss of generality, we may
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assume that all xn have the same rank. By the normal form algorithm, we may assume that all xn have
a common prefix u, where w = uv, and are of the form xn = uyn where the yn have smaller rank and
are prefixes of v. An induction argument then shows that there exist indices m < n such that ym is a
prefix of yn. Hence xm is a prefix of xn, which contradicts the hypothesis. This completes the proof of
the corollary. �

6. The prefix order on factors

The following proposition shows that the set of factors of a given w ∈ ΩXA may not be wqo under
the prefix order, even under the restriction r̄(w) < ∞. It concerns an example which is taken from [1,
Chapter 12] and satisfies r̄(w) = 2. In rank 1, we show that the existence of an infinite ascending R-chain
converging to an idempotent is equivalent to periodicity of the idempotent.

Let (n1,k)k be a strictly increasing sequence of integers such that the sequence (bn1,ka · · · b2aba)k
converges in ΩXA and call x1 its limit. Assuming (ni,k)k is a subsequence of (ni−1,k)k for i = 2, . . . , ℓ

such that the sequence (bni,ka · · · bi+1abia)k converges to xi in ΩXA for i = 1, . . . , ℓ, then there also exists
a subsequence (nℓ+1,k)k of (nℓ,k)k such that (bnℓ+1,ka · · · bℓ+2abℓ+1a)k converges in ΩXA and we denote
by xℓ+1 its limit. This recursive definition yields a sequence (xn)n. The following proposition states
some of its properties.

Proposition 6.1. The following properties hold for the above sequence (xn)n:

(a) xn+1 >R xn for every n;
(b) limn xn = (bωa)ω in ΩXA;
(c) the only regular J-classes J-above any given xn are those of bω and (bωa)ω;
(d) r̄(xn) = 2.

Proof. Multiplying the terms of the sequence (bni,ka · · · bi+1abia)k on the right by bi−1a, we obtain a
subsequence of (bni−1,ka · · · biabi−1a)k. Hence, taking limits, we conclude that xi−1 = xib

i−1a. This
proves (a) since abi−1a is a factor of xi−1 but not a factor of xi.

Given a finite aperiodic semigroup S and a continuous homomorphism ϕ : ΩXA → S, let N be such
that S |= xω = xN . Then, for n ≥ N and m ≥ n+N , we have

ϕ(bma · · · bn+1abna) = ϕ
(

(bωa)ω
)

,

which proves (b).
Since (d) is an immediate consequence of (c), it remains to prove (c). For this purpose, consider an

idempotent e J-above xn. We claim that the finite factors of e are factors of bωabω. A first remark in
this direction is that a2 is not a factor of xn, and therefore it cannot be a factor of e. Moreover, the set
of finite factors of e is prolongable in both directions, meaning that every finite factor is both a proper
prefix and a proper suffix of another finite factor. But the only finite factors of xn that can be prolonged
indefinitely on the right are the finite factors of bωabω: any other finite factor has at least a factor of the
form abka, which can only be found once as a factor of xn, within fixed finite distance from its right end.
Hence all finite factors of e are factors of bωabω, which proves the claim.

If e does not contain the factor a, then it must be bω. Otherwise, by the claim, every finite factor of e
is a factor of bωabω, so that e has no finite factor in which the letter a occurs more than once. We claim
that e is J-equivalent to (bωa)ω in ΩXA. Let (um)m be a sequence of words converging to e and let S be
a finite aperiodic semigroup. Let N be such that S |= xω = xN . Then, since limm u

2
m = e, there exists

m0 such that, for all m ≥ m0, none of the words abka is a factor of u2
m for k = 0, 1, . . . , N − 1. Hence

um is of the form bαabβ1abβ2 · · ·abβpabγ , for some α, βi, γ with βi ≥ N and α + γ ≥ N . It follows that
S |= um = bα(abN )pabγ . Hence, for all m sufficiently large,

S |= e = eω = uωm = bα(abω)ωabγ .

Since bα(abω)ωabγ J (bωa)ω, this proves (c). �

We now turn to the rank 1 case. We say that w ∈ ΩXV is periodic if there is some finite x ∈ ΩXV

such that x >J w ≥J x
ω. In this case, we also say that x is a period of w. We define the set of factors

of a pseudoword w as
F(w) = {v ∈ ΩXV : v ≥J w}.

Theorem 6.2. Let V be any pseudovariety containing LSl and let w ∈ ΩXV be uniformly recurrent.
Then the following conditions are equivalent:

(a) w is periodic;
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(b) the language F (w) is rational;
(c) the set F(w) is open;
(d) w is not the limit of a sequence of words wn, none of which is a factor of w;
(e) there is no infinite strictly ascending J-chain in ΩXV converging to w;
(f) there is no infinite strictly ascending J-chain (wn)n in ΩXV converging to w such that, for all n,

all idempotents J-above wn are J-equivalent to w;
(g) there is no infinite strictly ascending R-chain in ΩXV converging to w;
(h) there is no infinite strictly ascending R-chain (wn)n in ΩXV converging to w such that, for all n,

all idempotents J-above wn are J-equivalent to w;
(i) there is no sequence (un)n of words such that each un is not a factor of w, its factors of length n

are factors of w, and the suffix of length n of un is also a suffix of w.
(j) there is no sequence (un)n of words such that each un is not a factor of w and its factors of length n

are factors of w.

Proof. Since the set of factors of an element of a compact semigroup is always closed, the equivalence
of conditions (a), (b), and (c) is the statement of [4, Theorem 2.11] for V = S and one can check that
the results of [4, Section 2], with the same proofs, apply to any pseudovariety V containing LSl (see also
[6, Section 6] for an alternative approach). We proceed to establish the equivalence with the remaining
conditions.

Note that, if the set F(w) is open then, whenever wn → w, all terms in the sequence with suffi-
ciently large index are factors of w. This trivially shows that (c)⇒(d) and (c)⇒(e). The implications
(e)⇒(f)⇒(h), (e)⇒(g)⇒(h), and (i)⇒(j) are also straightforward.

(d)⇒(c) Suppose that (wn)n is a sequence converging to w in which no term belongs to F(w). By (d),
we may assume that all pseudowords wn are infinite. If every finite factor of wn is a factor of w then,
since w is uniformly recurrent, wn has exactly the same finite factors as w and, by [4, Corollary 2.8], for
uniformly recurrent pseudowords this condition implies that wn and w are J-equivalent and, therefore,
wn ∈ F(w), in contradiction with the initial assumption. Hence, for each n, wn has some finite factor
un /∈ F(w). By compactness, we may assume that the sequence un converges to a limit u; continuity
of multiplication yields u ∈ F(w). Let x, y ∈ ΩXV be such that w = xuy and let (xn)n and (yn)n be
sequences of words converging respectively to x and y. Since un is not a factor of w, neither is xnunyn.
By construction and continuity of multiplication again, we have xnunyn → w, which contradicts (d).
Hence there is no such sequence of non-factors of w converging to w which is equivalent to (c).

(h)⇒(i) Suppose that (un)n is a sequence satisfying the conditions of (i). We show how to construct
a sequence satisfying the conditions of (h). Denote by pn and sn respectively the prefix and the suffix
of un of length n. Since w is uniformly recurrent and sn+1 and pn are factors of w, for every n there
exists a word vn such that sn+1vnpn is a factor of w, and we may assume that |vn| → ∞. Consider the
sequence Sm = (vnun · · · vm+1um+1vmum)n≥m. There is a strictly increasing sequence of indices (n1,k)k
whose corresponding subsequence of S1 converges, and we call x1 its limit. There is in turn a subsequence
(n2,k)k of (n1,k)k such that the subsequence of S2 which it determines converges, and we call x2 its limit.
And so on. Recursively, we obtain a sequence (xn)n such that, for every n ≥ 1,

(2) xn = xn+1vnun,

so that, in particular, xn+1 ≥R xn. Let x be the limit of a subsequence (xnk
)k for which we may assume

that the sequences (snk
)k and (vnk

)k both converge, to the respective limits s and v. Since sn is a suffix
of both xn and w, s is a suffix of x and w. Since vn is a prefix of vnun · · · vm+1um+1vmum, it follows
that v is a prefix of xm, for all m, hence v is a prefix of x. Since ΩXV is stable, s and v are infinite
pseudowords, and w is a J-maximal infinite pseudoword, it follows that s L w, whence w ≥J x.

Let u be a finite factor of x. Then u is a factor of xn for all sufficiently large n, hence u is a factor of
un+1vnun for arbitrarily large n. It follows that there exists n ≥ |u| such that u is a factor of un+1vnun.
Hence, u is a factor of at least one of the words un+1, sn+1vnpn, or un. By hypothesis and the choice
of vn, this implies that u is a factor of w. Since w ≥J x, we conclude that x and w have the same finite
factors, so that x is also uniformly recurrent. By [4, Corollary 2.10], it follows that x J w. Since s is a
common infinite suffix, we must have x L w. Let t ∈ ΩXV be an infinite pseudoword such that w = tx
and note that w ≥R txn for all n.

Since un is a factor of txn but not of w, by stability of ΩXV it follows that w >R txn for every n,
whence some subsequence of (txnk

)k is a strictly ascending R-chain converging to w.
To complete the proof of (h)⇒(i), it suffices to show that every idempotent e that lies J-above tx1

is J-equivalent to w. Let e be such an idempotent. Then the set of finite factors of e is a prolongable
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language. We claim that every finite factor u of e is a factor of w. Let (tn)n be a sequence of finite words
converging to t. Since u is a factor tx1 = lim tkvn1,k

un1,k
· · · v1u1 and |vn| → ∞, we conclude that, for

all sufficiently large k, at least one of the following conditions holds:

(1) u is a factor of tkvn1,k
;

(2) u is a factor of vn1,k
un1,k

· · · v1u1.

Suppose first that there are infinitely many values of k for which condition (1) holds. Then u is also a
factor of the limit tv. Since v R x and tx = w, we have tv J w, whence u is a factor of w. Otherwise,
(2) holds for all sufficiently large values of n. Since u is prolongable on the right to a factor of e, it
follows that, if we assume that u is not a factor of w, then, for all n, there exists a word zn of length n
such that uzn is a factor of some vn1,k

un1,k
· · · v1u1. If we take n ≥ |v|u|−1u|u|−1 · · · v1u1| then we deduce

that u is a factor of vn1,k
un1,k

· · · v|u|u|u|. By the hypothesis on the sequence (uk)k, this implies that u
is a factor of some factor of the form um or sm+1vmpm, for some m ≥ |u|. In both cases, the hypotheses
imply that u is a factor of w, contrary to the assumption. This proves the claim that u is a factor of w.
By Proposition 3.3, we finally conclude that e J w, thereby establishing that (h)⇒(i).

(j)⇒(a) Let Gn be the Rauzy graph of order n of w, whose vertices are the factors of w of length n
and for which there is an edge ax→ xb, where a, b ∈ X , if axb is a factor (of length n+ 1) of w; we label
such an edge with the letter b. The label of a path is the concatenation of the labels of its edges. Note
that, since w is uniformly recurrent, Gn is strongly connected for every n. Hence Gn has some cycle C.
Let u be the label of C. Then uk is the label of the cycle obtained by going k times around C. If all
such labels were factors of w, then uω would also be a factor of w which, by [4, Corollary 2.10], implies
that w J uω, whence w is periodic. Hence, if w is not periodic then, for every n, there is some non-trivial
path in Gn whose label is a word un in the conditions of (j), namely such that un is not a factor of w
but all its factors of length n are. This completes the proof. �

Note that condition (h) of Theorem 6.2 implies that every uniformly recurrent pseudoword over a
pseudovariety V containing LSl is the limit of a strictly ascending R-chain of rank 1 pseudowords.

7. Key properties of factors of ω-words over A

Given an ω-term α = γ0(β1)γ1 · · · (βn)γn with rank[γi], rank[βj ] < rank[α], we say that an ω-term of
the form γ0β

m
1 γ1 · · ·βmn γn with m ≥ 1 is an expansion of α.

Lemma 7.1. Suppose that u,w ∈ ΩκXA are such that u is a factor of w such that r(u) < r(w) and let
α, β be the normal forms respectively of w, u. Then there is a portion ε of α such that β is a factor of
an expansion of ε.

Proof. By hypothesis, there exist x, y ∈ (ΩκXA)1 such that w = xuy. Since multiplication does not raise
the rank, at least one of the factors x and y must have the same rank as w. Accordingly, there are three
similar cases to consider. We only treat the case in which both x and y have the same rank as w, as the
other cases are similar.

Let γ, δ be the normal forms respectively of x, y. Since w = xuy, the normal form algorithm reduces
γβδ to α. The hypotheses on the ranks of the factors x, u, y imply that the only standardization which
may take place is in the product γ′βδ′, where γ′ is the final portion of γ and δ′ is the initial portion
of δ. Such a standardization will produce either a crucial portion of α or a factor of the form (ε) of
maximal rank. Moreover, the maximal rank idempotents in γ′ and δ′ determine bounding idempotents
in the crucial portion of α in question, or they are equal to (ε). Since the normalization depends on
applying the algorithm at a lower rank in the section of γ′βδ′ between those two idempotents and using
expansions and contractions of type 4, by replacing those idempotents by some finite powers of their
bases, we conclude that β is a factor of the expansion of some portion of α. �

The following marginal observation is an immediate consequence of the normal form algorithm.

Remark 7.2. Suppose that u and v are ω-words of the same rank, whose normal forms have the same
number of crucial portions, and trivial initial and final portions. If u ≥J v then u = v.

Given w ∈ ΩκXA, recall that F(w) is the set of all factors of w in ΩκXA. We view F(w) as a quasi-ordered
set under the factor ordering.

Theorem 7.3. Let w ∈ ΩκXA. Then F(w) is wqo.
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Proof. Let (un)n be a sequence of factors of w. We claim that there exist indices m and n such that
m < n and um ≥J un. Let α and βn be the normal forms respectively of w and un.

Suppose first that there is a subsequence of the given sequence all of whose elements have the same
rank as w. Then we may as well assume that, for all n, r(un) = r(w). By the normal form algorithm,
for each n there are factorizations α = γnδnεn and βn = γ′nδnε

′
n where γ′n is a suffix of γn, ε

′
n is a prefix

of εn, and both γ′n and ε′n have smaller rank than α. Since there are only finitely many such segments
of w, we may as well assume that each of the sequences γn, δn, εn is constant. It follows that all γ′n are
suffixes of the same element of ΩκXA and all ε′n are prefixes of the same element of ΩκXA. By Corollary 5.6
and its dual, by taking subsequences, we may assume that each ǫ[γ′n] is a suffix of ǫ[γ′n+1] and each ǫ[ε′n]
is a prefix of ǫ[ε′n+1]. It follows that un = ǫ[γ′nδnε

′
n] is a factor of un+1.

Hence we may assume that r(un) < r(w) for all n. By Lemma 7.1, each βn is a factor of an expansion
of some portion of α. Since there are only finitely many such portions, we may as well assume that the
portion in question is the same for every n. One should now consider several cases according to the type
of portion, initial, crucial, or final. Since the other cases are similar but somehwat simpler, we treat only
the case where the portion is crucial, say (γ)δ(ε). For each n, let (kn, ℓn) be a lexicographically minimal
pair of non-negative integers such that βn is a factor of γknδεℓn . By taking subsequences, we may assume
that both sequences (kn)n and (ℓn)n are non-decreasing.

If (kn)n is bounded by some k and (ℓn)n is bounded by some ℓ, then the βn are factors of an element
of ΩκXA of rank smaller than r(w), namely γkδεℓ. An induction argument then shows that there are
indices m < n such that um is a factor of un, as desired.

There remain three cases to consider, depending on the boundedness of the sequences (kn)n and (ℓn)n.
We treat here only the case where (kn)n is bounded and (ℓn)n is not. By taking subsequences, we may
then assume that kn = k is constant and that (ℓn)n is strictly increasing. Then βn is a factor of γkδεℓn

but not a factor of γkδεℓn−1. We distinguish two subcases, according to whether k is zero or positive.
Assume first that k = 0. By the normal form algorithm, there is a factorization βn = β′

nε
mnβ′′

n, where
β′
n is a suffix of δε, β′′

n is a prefix of ε, and mn < ℓn. By Corollary 5.6 and its dual, we may assume that
each β′

n is a suffix of β′
n+1, each β′′

n is a prefix of β′′
n+1, and mn ≤ mn+1. But then βn is a factor of βn+1

and, therefore, un is a factor of un+1. The remaining cases are treated similarly. �

Given w ∈ ΩXV, denote by FV(w) the set of all v ∈ X+ such that v >J w. For L ⊆ X+, denote by
clV(L) the closure of L in ΩXV.

For a pseudovariety V and a fixed alphabet X , denote by pV the natural continuous homomorphism
ΩXS → ΩXV determined by sending each generator x ∈ X to itself.

Lemma 7.4. If V contains LSl and w ∈ ΩXS, then FV(pV(w)) = FLSl(pLSl(w)).

Proof. Note that, if W ⊆ V then FV(pV(w)) ⊆ FW(pW(w)). Hence FV(pV(w)) ⊆ FLSl(pLSl(w)). For the
converse, consider a sequence of words wn ∈ X+ converging to w and suppose that v ∈ FLSl(pLSl(w)).
Since the set clLSl(X

∗vX∗) is open in ΩXLSl, we may as well assume that all words wn belong to
clLSl(X

∗vX∗)∩X+ = X∗vX∗. Hence, we may factorize wn as wn = xnvyn, with xn, yn ∈ X∗. By taking
subsequences, we may further assume that xn → x and yn → y in (ΩXV)1. Then pV(w) = xvy, which
shows that v ∈ FV(w). �

Lemma 7.5. If w ∈ ΩκXA then FA(w) is a rational language.

Proof. By Lemma 7.4, it suffices to show that FLSl(w) is rational whenever w ∈ ΩκXLSl. Note that, if

v ∈ ΩκXA has rank at least 1, then LSl |= vω = v2 since two elements of ΩXLSl are equal if and only if
they have the same finite factors, the same finite prefixes, and the same finite suffixes, which is the case
for vω and v2 since v is infinite. By induction on the rank, it follows that w is either a finite word, for
which the result is obvious, or it is given by an ω-term of rank 1, say w = u0v

ω
1 u1 · · · vωr ur, where the

ui, vj ∈ X+.
Let wn = u0v

n
1 u1 · · · vnr ur. Then a word v ∈ X+ is a factor of w if and only if v is a factor of wn for

all sufficiently large values of n. It follows that the finite factors of w are precisely the finite factors of a
subterm of one of the forms u0v

ω
1 , vωi uiv

ω
i+1, or vωr ur. Now, for instance, FLSl(v

ω
i uiv

ω
i+1) is the set of all

factors of the rational language v∗i uiv
∗
i+1 and, therefore, it is rational. The other cases are similar. �

From hereon, for a pseudovariety V containing LSl and w ∈ ΩXS, we will write F (w) or F (pV(w)) for
FS(w).

Corollary 7.6. If w ∈ ΩκXA then the following conditions hold:
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(a) for every v ∈ F(w), F (v) is a rational language;
(b) F(w) is wqo.

Proof. (a) follows from Theorem 2.4 and Lemma 7.5, while (b) is Theorem 7.3. �

8. Slim pseudowords over A

For a non-negative integer n, we say that a pseudoword w ∈ ΩXA is n-slim if it has no infinite anti-
chains of factors of rank at most n and the language F (w) ⊆ X+ is rational. We say that w is slim if
it is slim for all n ≥ 0. For example, since every uniformly recurrent pseudoword by its own definition
has no infinite anti-chains of finite factors, and all its infinite factors are J-equivalent (cf. [4]), in view of
Theorem 6.2 it is slim if and only if it is periodic. Thus, for a uniformly recurrent pseudoword, slimness
is equivalent to being an ω-word. More generally, by Corollary 7.6, every ω-word is slim.

This section is dedicated to establishing some useful features of pseudowords that enjoy one or both
defining properties of slim pseudowords. We start with a further preliminary observation involving
uniformly recurrent pseudowords.

Lemma 8.1. Let V be a pseudovariety containing LSl and let w1, . . . , wn ∈ ΩXV be uniformly recurrent
pseudowords. If

⋃n
i=1 F (wi) is a rational language then every wi is periodic.

Proof. By the pumping lemma and the fact that each F (wi) is an infinite factorial language, at least
one of the languages F (wi) must contain all words of the form uk for a fixed word u. Without loss
of generality, we may assume that i = 1. Since w1 is J-maximal as an infinite pseudoword, we deduce
that w1 is periodic. Note also that, by a compactness argument and Proposition 3.3, if x, y ∈ ΩXV are
uniformly recurrent but not J-equivalent, then F (x)∩F (y) is a finite language. It follows that

⋃n
i=2 F (wi)

is still a rational language. An induction argument completes the proof of the lemma. �

In analogy with the definition of reduced rank 1 crucial portions of ω-terms, we call a bridge factor-
ization of a pseudoword from ΩXA a factorization of the form xyz such that:

(a) x and z are uniformly recurrent;
(b) y is a finite word;
(c) y is a factor of neither x nor z;
(d) if y = av and xa R x, then v is a factor of at least one of x and z;
(e) if y = vb and bz L z, then v is a factor of at least one of x and z.
(f) y has minimum length among all elements y′ for which there exist x′, z′ such that the preceding

conditions hold for the triple (x′, y′, z′) and x′y′z′ = xyz.

We then also say that the product xyz is a bridge. The word y is called a middle of the bridge.

Lemma 8.2. Let x, z ∈ ΩXA be uniformly recurrent and y ∈ X∗. Then the product xyz is either
uniformly recurrent or it is a bridge.

Proof. Suppose that xyz is not uniformly recurrent. Since it is infinite, it follows from Proposition 3.3
that there is some finite factor u of xyz that is not a factor of x. Either u overlaps with y or it is a
factor of z (cf. [12, Lemma 8.2]). In either case, we conclude that there exist factorizations x = x1x2 and
z = z1z2 such that x2yz1 is a finite word that is not a factor of x. By symmetry and by further extending
the suffix x2 of x and the prefix z1 of z, we may assume that x2yz1 is a finite word that is a factor of
neither x nor z, so that the factorization x1 ·x2yz1 ·z2 satisfies conditions (a)–(c). Conditions (d) and (e)
are obtained by first passing to x1 all the beginning letters of x2yz1 which fail (d) and then proceeding
dually with suffix letters. Observe that in this procedure part or all of y may be removed. The resulting
factorization x′y′z′ of xyz satisfies conditions (a)–(e), and therefore there is such a factorization in which
the length of y′ is minimum, that is a bridge factorization of xyz. �

We give a couple of examples to further help to understand our notion of bridge. Without condition
(f), we could have two middles of the same bridge of different lengths. For instance, the two factorizations
aω ·ab ·(cdbc)ω = aω ·bcd ·bc(cdbc)ω both satisfy conditions (a)–(e). According to our definition of bridge,
only ab is a middle of the bridge. On the other hand, further assuming condition (f), as in our definition
of bridge, even the middles of bridges may not be unique as the following two bridge factorizations show:
(abc)ωab · cb · (abc)ω = (abc)ω · ba · bc(abc)ω.

Lemma 8.3. If w ∈ ΩXA is a bridge then r̄(w) = 1.
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Proof. Let w = xyz be a bridge factorization and suppose that e is an idempotent factor of w. Let
p, q ∈ (ΩXA)1 be such that w = peeeq. Then, by equidivisibility (cf. Theorem 2.6), e must be a factor of
at least one of x and z. Since x and z are uniformly recurrent, whence J-maximal as infinite pseudowords,
there are no idempotents strictly J-above e, which proves that r̄(w) = 1. �

The previous result allows us to show that relatively weak hypotheses force the finiteness of the number
bridge factors of a pseudoword.

Lemma 8.4. Suppose that w ∈ ΩXA has no infinite anti-chains of factors of rank at most 1. Then there
are only finitely many middles of bridge factors of w.

Proof. Let tuv and xyz be two bridge factorizations and suppose that xyz = ptuvq for some p, q ∈
(ΩXA)1. Since ΩXA is equidivisible by Theorem 2.6, the two factorizations have a common refinement.
We claim that in such refinements, u and y must overlap. Indeed, otherwise, one of the following two
symmetric cases must hold: ptu is a prefix of x or uvq is a suffix of z. In the first case, since t is infinite
and x is uniformly recurrent, we have u ≥J x J t, which contradicts the hypothesis that tuv is a bridge
factorization. The symmetric case is similarly shown to be impossible.

By symmetry, we may as well assume that there are t′, y1, y2 ∈ (ΩXA)1 such that x = pt′, t = t′y1,
y = y1y2, and y2z = uvq. Since y is finite, so is y1 and, therefore, since t is infinite, so is t′. As pt′

is a factor of the uniformly recurrent pseudowords x and t, we deduce that x, t, t′ are all J-equivalent.
Considering the equality y2z = uvq, we conclude similarly that z, v, vq are all J-equivalent. It follows
that xyz and pt · u · vq are two bridge factorizations of the same pseudoword. By condition (f) of the
definition of bridge, we deduce that y and u have the same length.

Now, if there are infinitely many middles of bridge factors of w, then there is a sequence of such
bridges whose middles have strictly increasing length and the above shows that no element in such a
sequence is a factor of another. Since we assumed that there are no infinite anti-chains of factors of w of
rank at most 1, in view of Lemma 8.3 we conclude that there are only finitely many middles of bridge
factors of w. �

We next prove some properties of general factors of 1-slim pseudowords.

Proposition 8.5. Let w ∈ ΩXA be a 1-slim pseudoword. Then the following conditions hold.

(a) If w′ is a factor of w then every element of F (w′) is a factor of at least one of the following: a finite
prefix of w′, a finite suffix of w′, a uniformly recurrent factor of w′, or a bridge factor of w′.

(b) Every uniformly recurrent factor of w is periodic and the number of J-classes of such factors is
finite.

(c) If u is an infinite factor of w then pK(u) and pD(u) are ultimately periodic.

Proof. Suppose that u is an infinite factor of w. Since F (pK(u)) ⊆ F (u) ⊆ F(w), by Lemma 2.1 there is
a factorization pK(u) = u1s, where u1 is a finite word and s is a uniformly recurrent right infinite word.
Let pn be the prefix of length n of s. Then u = u1pnrn for some pseudoword rn. Let (u2, u3) be an
accumulation point in ΩXA×ΩXA of the sequence

(

(pn, rn)
)

n
. Then F (u2) = F (s) and so u2 is uniformly

recurrent. By continuity of multiplication, we conclude that there is a factorization u = u1u2u3, where
u1 is finite and u2 is uniformly recurrent. Dually one could require instead of u1 being finite that u3 be
finite.

Suppose next that uv is a factor of w. If u and v are both infinite then, by the preceding paragraph
there are factorizations u = u1u2u3 and v = v1v2v3 such that u2 and v2 are uniformly recurrent and
u3, v1 ∈ X∗. By Lemma 8.2, the product u2u3v1v2 is either uniformly recurrent or it is a bridge.

Given a factorization xyz of some w′ ∈ F(w) with y ∈ X+, if one of x or z is finite then y is respectively
a factor of pK(w′) or pD(w′), while otherwise we may apply the preceding paragraph say to the factor
x · yz of w. It follows that the finite factors of w′ ∈ F(w) are those of pK(w′), of pD(w′), and of the
uniformly recurrent and bridge factors of w′, from which (a) follows.

Since there are only finitely many middles of bridge factors of w by Lemma 8.4 and only finitely many
J-classes of uniformly recurrent factors of w, as they are all ≤J-incomparable rank 1 pseudowords and w
is 1-slim (which includes the rationality of the language F (w)), and also taking into account Lemma 2.1
and its dual, we deduce that the (finitary) union of the languages of factors of the uniformly recurrent
factors of w is a rational language. By Lemma 8.1, the uniformly recurrent factors of w must be periodic,
which proves (b).

In the notation of the first paragraph, we conclude that u2 is periodic and, therefore, so is s. This
proves (c) and completes the proof of the proposition. �
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The following is an immediate application of Proposition 8.5.

Corollary 8.6. Let w ∈ ΩXA be an infinite 1-slim pseudoword. Then the set of rank 1 idempotent
factors of w is finite and nonempty, and consists of ω-words of the form uω, where u ∈ X+.

Proof. It has already been observed that the rank 1 idempotents are the uniformly recurrent idempotents
and whence periodic by Proposition 8.5. To complete the proof, it remains to observe that the J-class of
a pseudoword of the form uω with u ∈ X+ contains only finitely idempotents. Namely, they are of the
form vω, where v is an arbitrary conjugate of u. �

We are now ready to prove the following result.

Theorem 8.7. For n ≥ 1, every factor of an (n-)slim pseudoword is also (n-)slim.

Proof. Let w ∈ ΩXA be an n-slim pseudoword and let w′ be a factor of w. Since, in case w is finite, the
result is obvious, we assume that w is infinite. By Proposition 8.5, the finite factors of w′ are factors of
factors of w of the form uω with u ∈ X+, of which there are only finitely many by Corollary 8.6, or of
factors of one of the forms puω, uωztω, or uωs, with p, s, t, u, z ∈ X+, and where p and s are fixed and
we may restrict the choices of z to a finite set of words. It follows that F (w′) is a rational language,
which shows that w′ is n-slim. �

The following couple of examples describe some non-slim pseudowords.

Example 8.8. Let w be an accumulation point of the infinite expression

(((ab)ωab2)ωab3)ω · · · ,

meaning an accumulation point of the sequence of truncated expressions

(· · · ((ab)ωab2)ω · · · abn)ω .

We claim that the rank 1 idempotent factors of w are the following: (ab)ω, (ba)ω, bω. Indeed, every
finite factor of w is a factor of some pseudoword of the form (ab)ωab2ab3 · · ·abn(ab)ω. Hence no uniformly
recurrent factor can have a factor of any the forms abk and bka with k > 1. This implies that the only
possibilities for the sets of finite factors of idempotent uniformly recurrent factors of w are the finite
factors of (ab)ω and bω.

Note also that F (w) is not rational by the Pumping Lemma since it contains arbitrarily long words of
the form ab2ab3 · · ·abna, none of which admits a factorization of the form xyz such that xymz ∈ F (w)
with |x|, |y|, |z| bounded. Since the pseudowords of the form (ab)ωab2ab3 · · ·abn(ab)ω constitute an anti-
chain of factors of w, we deduce that w fails both conditions for being 1-slim. �

Example 8.9. Let w be an accumulation point of the infinite expression

(((aωb)ωaωb2)ωaωb3)ω · · · .

Then the factors of the form aωbnaω constitute an anti-chain. Note that the set F (w) = a∗b∗a∗ is
rational.

We claim that, like in the preceding example, there are only finitely many rank 1 idempotent factors
of w. More precisely, we claim that the only rank 1 idempotent factors of w are aω and bω. Indeed, all
finite factors are factors of a pseudoword of the form aωbnaω. Hence there are no finite factors of the
form barb with r > 0 and so a uniformly recurrent factor cannot contain both a and b as factors, whence
it must be either aω or bω. On the other hand, while aω is obviously a factor, being even a prefix, bω is
a factor because every finite power of b is a factor. �

We say that v ∈ F(w) is a special ω-factor of w if v = uω for some Lyndon word u. In this case, the
Lyndon word u is called a special base of w. A factor v of w is called a special factor if it is of the form
uω1 zu

ω
2 , where z ∈ X+ and uω1 , u

ω
2 are special ω-factors and v is not itself a special ω-factor. Note that

every special factor is a bridge. We say that a prefix v of w is special if v is of the form zuω, where
z ∈ X+ and uω is a special ω-factor. The definition of special suffix of w is dual.

Corollary 8.10. Every infinite 1-slim pseudoword has at least one special ω-factor.

Proof. This is an immediate consequence of Corollary 8.6. �

For special factors, we have the following result.

Lemma 8.11. If w is 1-slim, then it has only finitely many special ω-factors, finitely many special
factors, and precisely one special prefix and one special suffix.
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Proof. We claim that two special factors are either equal or J-incomparable. By the hypothesis that F(w)
has no infinite J-anti-chains, it follows that w has only finitely many special factors. To prove the claim,
let uω1 zu

ω
2 and vω1 tv

ω
2 be two special factors and suppose that the latter is a factor the former. Without

loss of generality, we may assume that the given expressions are actually the normal forms of these
ω-words. Let x, y ∈ (ΩXA)1 be such that uω1 zu

ω
2 = xvω1 tv

ω
2 y. Then, by Theorem 2.4, we may assume

that x, y are rank 1 ω-words. Then, by the normal form algorithm, we must have (u1)z(u2) = (v1)t(v2),
since (v1)t(v2) is a crucial portion in normal form of the normal form of the product xvω1 tv

ω
2 y, which

proves the claim. The proof that w has only finitely many special ω-factors is similar.
That w has some special prefix follows from Proposition 8.5(c). Suppose that xyω and uvω are both

special prefixes of w. Then the right infinite words xyyy · · · and uvvv · · · coincide. It is an exercise in
combinatorics on words to show that, for two Lyndon words such that the square of each is a factor of a
power of the other, the two words coincide. Hence v = y and, because a Lyndon word is lexicographically
minimum in its conjugacy class, we must have xym = uvn for some m,n ≥ 0, which implies that
xyω = uvω. The argument for suffixes is dual. �

We say that an infinite 1-slim pseudoword is periodic at the ends if its special prefix and suffix are
special ω-factors.

Corollary 8.12. Let w ∈ ΩXA be 1-slim. Then there is a factorization w = xw′y, where x, y ∈ X∗ and
w′ ∈ ΩXA is periodic at the ends.

Proof. Let xuω and vωy be respectively the special prefix and suffix of w. Then there are factorizations
w = xuωs = tvωy. By equidivisibility (cf. Theorem 2.6), and since powers of u and v can only overlap if
they do so in a synchronized way, in the sense explained in the proof of Lemma 8.11, taking into account
that uω is an idempotent, we conclude that there is a factorization of the form w = xuωzvωy. Set
w′ = uωzvω to obtain, by Theorem 8.7, a 1-slim pseudoword which is periodic at the ends and therefore
satisfies the requirements of the corollary. �

Proposition 8.5 (a) may be reformulated in terms of special factors as follows.

Lemma 8.13. Let the pseudoword w ∈ ΩXA be 1-slim and periodic at the ends. Then every finite factor
of w is a factor of some special factor or of some special ω-factor of w.

Proof. Taking into account Proposition 8.5(a) and (b), it suffices to observe that every bridge factor of w
is a factor of some special factor of w. Suppose then that u is a bridge factor of w. By Proposition 8.5(b),
u is of the form xωyzω, with x, y, z ∈ X+ and x and z primitive, although this is not necessarily a bridge
factorization. By the normal form algorithm and since u is not uniformly recurrent, the normal form of
u is of the form α(β)γ(δ)ε where β is a conjugate of x, α a suffix of β, δ a conjugate of z, and ε a prefix
of δ. It follows that u is a factor of βωγδω, which establishes our claim. �

In the absence of special factors, we can say much more.

Lemma 8.14. Let w ∈ ΩXA be 1-slim and periodic at the ends. If w has no special factor, then w = uω

for some Lyndon word u ∈ X+.

Proof. Since w is periodic at the ends, it has a special prefix, whence there is a factorization w = uωv
where u is a Lyndon word. Suppose that w 6= uω. Let (vn)n be a sequence of finite words converging
to v and let vn = uinv′n, where in ≥ 0 is maximum. By compactness, we may assume that the sequence
(v′n)n converges to some pseudoword v′ that does not admit u as a prefix. Then we also have w = uωv′

and so we may as well assume that u is not a prefix of v. Since the special suffix of w is also periodic,
v must be infinite.

By Proposition 8.5(c), v has a factorization of the form v = xyωz, where xyω is the special prefix.
Since u is not a prefix of xyω and u and y are Lyndon words, the factor uωxyω of w is a special factor,
which contradicts the hypothesis that w has no such factors. Hence we must have w = uω. �

9. Encoding 1-slim pseudowords

Let w ∈ ΩXA. We denote by Γ(w) the directed multigraph whose vertices are the special ω-factors
of w and which has an edge ezf : e → f if z ∈ X+ is such that ezf is a special factor of w. By
Lemma 8.11, Γ(w) is finite if w is an infinite 1-slim pseudoword.

In this section, we show how to encode 1-slim pseudowords w as “pseudopaths” in their graphs Γ(w).
For this purpose, we need to introduce pseudovarieties of categories and their relatively free profinite
associated categories, which we do as succintly as possible. See [31] for the definition of pseudovarieties
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of categories and their relevance for the theory of pseudovarieties of finite semigroups. See also [6] for
caveats and pitfalls that one should be aware of when handling pseudovarieties of categories, particularly
when profinite techniques are involved.

We view small categories as directed graphs with an associative partial composition of edges which
has local identities. We say that a functor f : C → D is a quotient if it is surjective and its restriction to
vertices is injective. We say that the functor f : C → D is faithful if its restriction to each hom-set C(p, q)
is injective. A category C divides a category D if there is a pair of functors f : E → C and g : E → D
such that f is a quotient and g is faithful. A pseudovariety of categories is a class of finite categories
that contains the trivial, one-vertex one-edge, category and is closed under taking finite products and
divisors.

The hom-set C(p, p) of loops at a vertex p of a category C forms a monoid, called the local monoid
at p. Conversely, a monoid is viewed as a category by adding a virtual vertex and viewing the elements
of the monoid as loops at that vertex, which are composed as they are multiplied in the monoid. Given
a pseudovariety V of semigroups, the class of all finite categories which divide some monoid in V is a
pseudovariety of categories which is denoted gV. The class of all finite categories whose local monoids
belong to V is also a pseudovariety of categories which is denoted ℓV.

By a congruence on a category C we mean an equivalence relation ≡ on its set of edges which only
identifies edges with the same ends and such that, if u ≡ u′ and v ≡ v′ and the composite uv is defined,
then uv ≡ u′v′. Then C/≡ is the quotient category, with the same vertex set, and edges the ≡-classes of
edges of C.

Given a finite graph Γ, the category freely generated by Γ is denoted Γ∗ and has the same set of vertices
as Γ while its edges are the finite paths in Γ. Given a pseudovariety W of categories, by a pro-W category
we mean a finite-vertex compact category C whose edges are separated by continuous quotient functors
into members of W. The congruences ≡ on Γ∗ for which the quotient Γ∗/≡ belongs to W generate a
uniform structure on Γ∗. The completion of Γ∗ with respect to this uniform structure is the pro-W
category freely generated by Γ and is denoted ΩΓW. The subcategory of ΩΓW generated by Γ is denoted
ΩΓW. Note that the ω-power x 7→ xω is a well-defined operation on loops of ΩΓW. The subcategory
closed under this operation generated by Γ is denoted ΩκΓW.

Let ιW denote the natural mapping Γ → ΩΓW. In analogy with the terminology for the semigroup
case, and taking into account that the elements of Γ∗ are effectively viewed as paths, the elements of
ΩΓW are called pseudopaths while those of ΩΓW \ Γ∗ are said to be infinite pseudopaths. Elements of
ΩκΓW may be called ω-paths.

A pseudovariety of semigroups V is said to be monoidal if it is generated by (its) monoids. Equivalently,
S ∈ V implies S1 ∈ V and so, certainly A is monoidal. For a monoidal pseudovariety V, the unique
continuous homomorphism

γV : ΩΓgV → (ΩE(Γ)V)1

that sends each edge to itself (and all vertices to the virtual vertex) is faithful [2].
In case w ∈ ΩXA is infinite and 1-slim, we also consider the unique continuous homomorphism

λw : ΩΓ(w)gA → ΩXA

that sends each edge ezf : e→ f to the pseudoword ezf .
Given a semigroupoid S, that is a category without the requirement for local identities, denote by Sc

the category which is obtained from S by adding the missing local identities. Recall that

Sl ∗ D1 = Jxyxzx = xzxyx, x3 = x2, (xy)2x = xyxK

is the pseudovariety of two-testable semigroups, which is generated by the languages whose membership
is characterized by the first letter, the last letter and the two-letter factors (cf. [1, Chapter 10]). It is
also the pseudovariety generated by the real matrix semigroup

A2 =

{(

1 1
0 0

)

,

(

0 0
1 1

)

,

(

1 0
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 0

)}

under matrix multiplication.
The following lemma can probably be considered folklore.

Lemma 9.1. Let Γ be a finite graph and V a pseudovariety containing A2. Suppose that v ∈ ΩΓgV and
u ∈ ΩE(Γ)V are such that u is a factor of γV(v). Then there exists u′ ∈ ΩΓgV such that γV(u′) = u and
u′ is a factor of v.
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Proof. Suppose that w ∈ ΩE(Γ)V is such that all its two-letter factors can be read in the graph Γ. In

case w ∈
(

E(Γ)
)+

, w itself can be read in the graph Γ as a path w′ such that γV(w′) = w. In general,

let (wn)n be a sequence in
(

E(Γ)
)+

converging to w. The hypothesis on V implies that we may assume
that all wn have the same two-letter factors as w. Hence, for each n there exists a path w′

n in Γ such
that γV(w′

n) = wn. If w′ ∈ ΩΓgV is an accumulation point of the sequence (w′
n)n, then w = γV(w′) by

continuity of γV.
Now, assuming that v ∈ ΩΓgV, u ∈ ΩE(Γ)V, and γV(v) = xuy, then the two-letter factors of each

of x, u, y can be read in Γ. By the above, it follows that there exist x′, u′, y′ ∈ (ΩΓgV)c such that
γV(x′) = x, γV(u′) = u, and γV(y′) = y. In case x 6= 1, then the last letter of x and the first letter
of u are consecutive edges in Γ, since their product is a two-letter factor of γV(v). Hence x′u′ is an
edge in ΩΓgV and, similarly, so is u′y′, and, therefore, also x′u′y′. Since γV(v) = xuy = γV(x′u′y′),
the pseudowords γV(v) and γV(x′u′y′) have the same first letter and the same last letter in E(Γ) and
therefore the edges v and x′u′y′ begin in the same vertex and end in the same vertex. Since γV is faithful,
it follows that v = x′u′y′, which completes the proof of the lemma. �

The following elementary observation from combinatorics on words will be useful in the sequel.

Lemma 9.2. Suppose that u, v ∈ X+ and k > |v| are such that v is primitive and uk is a factor of vω.
Then u is a conjugate of a power of v.

Proof. The hypothesis that uk is a factor of vω implies that uk is a prefix of zω for some conjugate z of
v. On the other hand, as k > |v|, we have |uk| = k|u| ≥ (|v| + 1)|u| ≥ |u| + |v| = |u|+ |z|. Therefore, by
Fine and Wilf’s Theorem, it follows that u and z are both powers of some word y. Now, z is primitive
since it is a conjugate of a primitive word. Hence y = z and u is a power of z, say u = zℓ for some ℓ ≥ 1.
Therefore u is a conjugate of vℓ, thus proving the lemma. �

Given two pseudovarieties of semigroups V and W, V ∗ W denotes the pseudovariety generated by all
semidirect products S ∗T with S ∈ V and T ∈ W. The semidirect products of the form V ∗Dn have been
extensively studied in [1, Chapter 10] as an approach to semidirect products of the form V ∗ D, which
in turn have received even more attention [16, 31, 30]. We need to recall here some technology from [1,
Chapter 10].

Let V be a pseudovariety and n a positive integer. Let Bn denote the de Bruijn graph of order n,
whose set of vertices is Xn and whose set of edges is Xn+1, where axb : ax→ xb whenever a, b ∈ X and
x ∈ Xn−1. Recall that the Rauzy graph Gn(w) of a pseudoword w, which was introduced in the proof
of Theorem 6.2, consists of the subgraph of Bn whose vertices and edges are factors of w.

Denote by X≤n the set of all words u ∈ X+ such that |u| ≤ n. We define a continuous mapping Φ̄V
n

using the following diagram

(3) ΩX(V ∗ Dn) \X≤n
Φ̄V

n //

ιV

''NNNNNNNNNNNN
E(ΩBn

gV)

ηV

zzuu
uu

uu
uu

uu

� � // ΩBn
gV

Sn

where

• Sn is the subsemigroup of the semigroup Mn(ΩXn+1V,ΦV
n) of [1, Section 10.6] whose universe is Xn×

ΩXn+1V ×Xn and whose operation is given by

(u1, w1, v1) (u2, w2, v2) = (u1, w1Φ
V
n(v1u2)w2, v2),

where, for a word t of length at least n+1, ΦV
n(t) is the value in ΩXn+1V of the word over the alphabet

Xn+1 which reads the successive factors of length n+ 1 of t;
• the arrow ηV is the continuous map that sends each edge u : x→ y of the category ΩBn

gV to the triple
(x, γV(u), y);

• the arrow ιV is the continuous homomorphism given by [1, Theorem 10.6.12].

Since ηV is continuous and the image of the subsemigroupoid generated by Bn is dense in Im ιV, we have
Im ηV = Im ιV. On the other hand, since γV is faithful, ηV is injective. Hence ηV is a homeomorphism of
E(ΩBn

gV) with Im ιV, and we may define the continuous mapping Φ̄V
n to be the composite η−1

V ◦ ιV. It is
therefore just a reinterpretation of the mapping ιV. Note that each finite word w of length at least n+ 1
is mapped by Φ̄V

n to the path which starts at the prefix in(w) of length n, ends at the suffix tn(w) of
length n, and goes through the edges given by the successive factors of length n+ 1 of w.
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Denote by Ak the pseudovariety Jxk+1 = xkK. Note that Aω = A ∗ Dn = A.

Lemma 9.3. Let w ∈ ΩXA be 1-slim, periodic at the ends, and let n be a common multiple of the lengths
of all special bases of w. Let k be a positive integer or ω. Then there is a unique mapping τk such that
the following diagram commutes:

(4) ΩΓ(w)gA

τk

��

λw // ΩXA \X≤n

��

� � // ΩXA

pk

��
ΩGn(w)gAk

� � // ΩBn
gAk ΩX(Ak ∗ Dn) \X≤n

Φ̄
Ak
n

oo � � // ΩX(Ak ∗ Dn)

where pk is the natural continuous homomorphism. Moreover the mapping τk is a continuous homomor-
phism.

Proof. Let τk : ΩΓ(w)gA → ΩGn(w)gAk denote the continuous graph homomorphism which maps each
vertex xω to the vertex in(x

ω) = tn(x
ω) and each edge xωyzω to the “pseudopath reading the successive

factors of length n+1”. More precisely, τk is defined so that the diagram (4) commutes. The uniqueness,
existence, and continuity of the mapping τk is justified by the observation that the composite mapping
Φ̄Ak
n ◦ pk ◦ λw takes its values in ΩGn(w)gAk.
It remains to show that τk is a semigroupoid homomorphism. For this purpose, it suffices to show that

it is a homomorphism on the subsemigroupoid generated by Γ(w), since this subsemigroupoid is dense
in ΩΓ(w)gA. A finite path in Γ(w) is a sequence of edges of the form xωi−1yix

ω
i : xωi−1 → xωi (i = 1, . . . , r).

Its image under λw is the product xω0 y1x
ω
1 · · · yrxωr . Hence it suffices to observe that, for every finite

word y whose length divides n and x, z ∈ ΩX(Ak ∗ Dn), the following equality holds:

(5) Φ̄Ak
n (xyωz) = Φ̄Ak

n (xyω)Φ̄Ak
n (yωz).

By the definition of Φ̄Ak
n , to prove (5) it suffices to show that ηAk

maps both sides to the same element
of Xn × ΩXn+1Ak ×Xn. The left side is mapped to

(6) ιAk
(xyωz) = ηAk

(

Φ̄Ak
n (xyωz)

)

=
(

in(xy
ω), γAk

(

Φ̄Ak
n (xyωz)

)

, tn(y
ωz)

)

while, since γAk
is a homomorphism, the right side is mapped to

(7) ηAk

(

Φ̄Ak
n (xyω)Φ̄Ak

n (yωz)
)

=
(

in(xy
ω), γAk

(

Φ̄Ak
n (xyω)

)

γAk

(

Φ̄Ak
n (yωz)

)

, tn(y
ωz)

)

.

Since ιAk
is a homomorphism, we have ιAk

(xyωz) = ιAk
(xyω)ιAk

(yωz) which shows that the triple in (6)
may be rewritten as the product

(8)
(

in(xy
ω), γAk

(

Φ̄Ak
n (xyω)

)

Φ̄Ak
n

(

tn(xyω) in(y
ωz)

)

γAk

(

Φ̄Ak
n (yωz)

)

, tn(y
ωz)

)

Hence, to prove (5) it suffices to establish the equality of the middle components of the triples in (7)
and (8), which in turn follows from the stronger equality

(9) γAk

(

Φ̄Ak
n (xyω)

)

= γAk

(

Φ̄Ak
n (xyω)

)

Φ̄Ak
n

(

tn(y
ω) in(y

ω)
)

.

Since n is a multiple of the length of y, tn(y
ω) in(y

ω) = ys for some integer s ≥ 2. On the other hand,
since γAk

and Φ̄Ak
n are continuous,

(10) γAk

(

Φ̄Ak
n (xyω)

)

= lim
ℓ
γAk

(

Φ̄Ak
n (xyℓ)

)

.

Now, for ℓ ≥ ms, γAk

(

Φ̄Ak
n (xyℓ)

)

is a word in the alphabet Xn+1 which admits
(

ΦAk
n (ys)

)m
as a suffix.

By compactness, it follows that
(

ΦAk
n (ys)

)m
is a suffix of γAk

(

Φ̄Ak
n (xyω)

)

for all m, and therefore so is
(

ΦAk
n (ys)

)ω
. Aperiodicity now implies the equality (9), which completes the verification of the equality

(5) and the proof of the lemma. �

As a consequence of Lemma 8.11, we may associate to each infinite 1-slim pseudoword w a positive
integer ν(w) = m′m′′ where m′ is a multiple of the length of each special base of w and m′′ ≥ 8 is such
that m′′ > |xyz| for every special factor xωyzω of w in normal form.

Lemma 9.4. Let w ∈ ΩXA be a 1-slim pseudoword that is periodic at the ends, let n = ν(w), and let
u = u′au′′ be a factor of w of length 3n where |u′| = n and a ∈ X. If u′ occurs in a special ω-factor
xω of w and u′a does not occur in xω, then u occurs in a unique special factor of w of the form xωyzω.
Moreover, u may be written uniquely in the form x′yz′ where x′ is a suffix of xω and z′ is a prefix of zω

with |x′| ≤ n and n ≤ |z′| < 2n.
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Proof. Since w is 1-slim, we know from Lemma 8.11 that it has only finitely many special ω-factors and
finitely many special factors. If w would have no special factors, then by Lemma 8.14 it would be a
special ω-factor vω and the Lyndon word v would be the only special base of w. In that case, since by
hypothesis xω is a special ω-factor of w, we would have v = x which contradicts the hypotheses that u
is a factor of w and that u′a does not occur in xω . Therefore w has special factors and, by Lemma 8.13,
u is a factor of one of them, say of tω1 yt

ω
2 written in normal form.

Now, notice that since x is a special base of w, the definition of n implies the existence of a positive
integer k > |t1yt2| such that n = k|x|. Hence, from the hypotheses that u′ is a factor of xω and |u′| = n,
we deduce that u′ = vk for some conjugate v of x. Since k > |t1yt2| and u′ is a factor of tω1 yt

ω
2 , it follows

that vk−2 occurs in tω1 or in tω2 . As k − 2 > |t1yt2| − 2 ≥ |t1|, if vk−2 occurs in tω1 , then v is a conjugate
of tℓ1 for some ℓ ≥ 1 by Lemma 9.2. Therefore v and t1 are conjugates because v is a primitive word,
whence x is a conjugate of t1. As x and t1 are Lyndon words, this shows that they are equal. In the
second case, we would deduce analogously that x = t2. However, since v is a conjugate of x, if the second
case holds, then va does not occur in tω2 since otherwise a would be the first letter of v and so u′a(= vka)
would occur in xω(= tω2 ). Therefore, the first case holds necessarily, whence x = t1 and u occurs in the
special factor xωyzω, where z = t2. Moreover, since u′a is not a factor of xω and taking into account
that xωyzω is in normal form, the occurrence of u in xωyzω must be such that the a in question is found
within y. Hence there is a factorization u = x′yz′ with |x′| ≤ n a suffix of xω and z′ a prefix of zω with
|z′| < 2n, and so |z′| = |u| − |x′| − |y| ≥ 3n− n− n = n.

To prove uniqueness, suppose that u occurs in special factors xωy1z
ω
1 and xωy2z

ω
2 in normal form.

Then one deduces from the above that u may be written in the forms u = x′y1z
′
1 = x′′y2z

′
2, where x′ and

x′′ are suffixes of xω and z′i is a prefix of zωi (i = 1, 2) with |x′|, |x′′| ≥ 2|x| and |z′i| ≥ |z1| + |z2|. As x is

a Lyndon word, it follows that x′ = txℓ
′

and x′′ = txℓ
′′

for some prefix t of x and positive integers ℓ′ and
ℓ′′. On the other hand, since z1 and z2 are Lyndon words which have powers with a common factor of
length |z1|+ |z2|, we deduce as above that z1 = z2 and that z′1 = zm

′

1 v and z′2 = zm
′′

1 v for some suffix v of
z1 and positive integers m′ and m′′. We thus conclude that xωy1z

ω
1 and xωy2z

ω
2 are equal. Since they are

written in normal form, we finally deduce from McCammond’s normal form algorithm that y1 = y2. To
conclude the proof, we notice that ℓ′ = ℓ′′ (i.e., x′ = x′′) and that m′ = m′′ (i.e., z′1 = z′′2 ) since otherwise
y1 would be a prefix of xω or a suffix of zω1 , thus contradicting the definition of normal form. �

Given two pseudowords u, v ∈ ΩXA and a positive integer m, write u ≃m v if u and v have precisely
the same prefix, the same suffix and the same factors of length m.

Lemma 9.5. Let w ∈ ΩXA be a 1-slim pseudoword that is periodic at the ends, let n = ν(w), and let
k ≥ 1 be an integer. Suppose that v is a finite word such that w ≃kn+1 v. Then every occurrence of a
factor of v of length n which is a factor of some special ω-factor of w is found within a factor of v of
length kn which occurs in the same special ω-factor.

Proof. Let v = v1uv2 be a factorization such that |u| = n and u is a factor of a special ω-factor xω of w.
Suppose first that |uv2| ≤ kn + 1. Then u is a factor of the suffix s of length kn + 1 of v. Since,

by hypothesis, s is also a suffix of w and w is periodic at the ends, we deduce that s is a factor of the
special suffix zω of w. But n = ν(w) is at least twice the length of both x and z. Since u is a common
factor of xω and zω and x and z are both Lyndon words, it follows from Fine and Wilf’s Theorem
(cf. [21, Proposition 1.3.5]) that x = z, which concludes the proof in this case. Thus, we may assume
that |uv2| ≥ kn+ 1. Similarly, we may also assume that |v1u| ≥ kn+ 1.

Let up be the longest prefix of uv2 that is a factor of xω and suppose that |up| < kn for, otherwise,
we are done. Let a be the first letter of v2 and let s be the suffix of v1 of length kn + 1 − |upa|. By
hypothesis, the factor supa of v is also a factor of w. By Lemma 8.13, either (a) supa is a factor of a
special ω-factor zω or (b) supa is a factor of a special factor αωβγω of w.

If some factor of length 2m′ − 1 of up is a factor of a special ω-factor tω of w then, again by Fine and
Wilf’s Theorem, since xω and tω have a common factor of length |x| + |t| − gcd(|x|, |t|) ≤ 2m′ − 1, we
conclude that x = t. Thus case (a) is impossible as upa in particular would be a factor of xω, contrary
to our assumption and so it remains to treat case (b).

Since m′′ ≥ 8, an elementary calculation shows that 4m′ +m′′ ≤ m′m′′ = n. Let sup = y1y2y3y4 be
the factorization such that y2 and y4 both have length 2m′ − 1 and |y3| = m′′. Since supa is a factor
of αωβγω and |y3| = m′′ > |β|, we deduce that either y1y2 is a factor of αω or y4a is a factor of γω.
By the preceding paragraph, it follows that, in the former case, α = x and y1y2 is a factor of xω while,
in the latter case, γ = x and y4a is a factor of xω . Since the overlap of both y1y2 and y4a with up has
length at least |x| and x is primitive, [22, Proposition 12.1.3] implies that, respectively, sup or upa is a

22



factor of xω, the latter being excluded by the choice of p. Hence the given occurrence of u as a factor v
is found within the factor sup, of length kn, which is still a factor of xω. �

Lemma 9.6. Let w ∈ ΩXA be a 1-slim pseudoword that is periodic at the ends, let n = ν(w), and let
k ≥ 3 be an integer. Let wk be a finite word such that wk ≃kn+1 w. Then there is some path w′

k in Γ(w),
starting and ending respectively at the special prefix and special suffix of w, such that

(11) τk(w
′
k) = Φ̄Ak

n (pk(wk)).

Proof. We first note that Φ̄Ak
n (pk(wk)) is a path in Gn(w) which starts at the vertex in(wk) = in(w), ends

at tn(wk) = tn(w), and goes through the edges determined by the successive occurrences of factors of wk
of length n+1 of wk. Since wk and w have the same factors of length 3n ≤ kn+1, Lemma 9.4 shows that
each such occurrence is either an occurrence in some special ω-factor, or it determines uniquely a special
factor xωyzω in which it occurs. Lemma 9.4 shows moreover that the path Φ̄Ak

n (pk(wk)) determines
uniquely an alternated sequence of special ω-factors and special factors of w, where the special ω-factors
that come before and after the special factor xωyzω are respectively xω and zω. In other words, we have
an associated path w′

k in the graph Γ(w).
It remains to show that (11) holds. From Lemma 9.5, it follows that the path Φ̄Ak

n (pk(wk)), whenever
it enters an edge which is determined by a factor of a special ω-factor vω , it must go at least k times
around the cycle which reads the successive factors of vω of length n+ 1. The equality (11) now follows
from the definition of τk. �

The following lemma is the core of our encoding of 1-slim pseudowords w as pseudopaths in the
graph Γ(w).

Lemma 9.7. If w ∈ ΩXA is 1-slim and has at least one special factor, then there are some edge
w′ ∈ ΩΓ(w)gA and some words x, y ∈ X∗ such that w = xλw(w′)y.

Proof. By Corollary 8.12, we may as well assume that w is periodic at the ends. We will show that
w = λw(w′) for a suitable w′ ∈ ΩΓ(w)gA.

Let n be as in Lemma 9.4 and for this value of n, consider the continuous homomorphisms τk (k ∈
{1, 2, . . . , ω}) of Lemma 9.3. In particular, the diagram (4) commutes. Combining the diagrams for
positive integers k ≤ ℓ and ω, we obtain the following diagram, where pk, pℓ,k, qk, and qℓ,k are the
natural continuous homomorphisms:

(12) ΩΓ(w)gA

τω
&&LLLLLLLLLL

τℓ

%%
τk

&&

λw

))
ΩGn(w)gA

��

� � // ΩBn
gA

qℓ

��
qk

}}

ΩXA \X≤n

Φ̄A
n

oo

��

ww

� � // ΩXA

pℓ

��

pk

ww

ΩGn(w)gAℓ

��

� � // ΩBn
gAℓ

qℓ,k

��

ΩX(Aℓ ∗ Dn) \X≤n

Φ̄
Aℓ
n

oo

��

� � // ΩX(Aℓ ∗ Dn)

pℓ,k

��
ΩGn(w)gAk

� � // ΩBn
gAk ΩX(Ak ∗ Dn) \X≤n

Φ̄
Ak
n

oo � � // ΩX(Ak ∗ Dn)

The commutativity of the leftmost and rightmost rectangles is trivial, while for the rectangles in the
middle it follows from the continuity of the mappings involved and the way the horizontal sides transform
finite words. The commutativity of the leftmost triangles is now a consequence of the uniqueness of the
mappings τk, cf. Lemma 9.3. Hence the diagram (12) commutes.

Let (wk)k be a sequence of finite words converging to w such that, for all k, wk and w have the same
factors, prefixes and suffixes of length kn+ 1. Note that, by Lemma 9.5, if vω is a special ω-factor of w,
then every occurrence of a factor of vω of length n as a factor of wk can be found within an occurrence
of vk as a factor of wk.

The reason to consider τk for finite k is that the image under τk of each edge xωyzω ∈ Γ(w) is equal
over gAk to a finite path. Hence, for finite k, τk maps finite paths of Γ(w) to finite paths of Gn(w).

By Lemma 9.6, there is some path w′
k in Γ(w), starting and ending respectively at the special prefix

and special suffix of w such that τk(w
′
k) = Φ̄Ak

n (pk(wk)) ∈ ΩGn(w)gAk. By compactness, without loss of

generality, we may assume that the sequence (w′
k)k converges to some w′ in ΩΓ(w)gA. Then, in view of
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the commutativity of the diagram (12) and the fact that the homomorphisms qk (k = 1, 2, . . .) suffice to
separate points of ΩBn

gA, we obtain the following implications:

τℓ(w
′
ℓ) = Φ̄Aℓ

n (pℓ(wℓ)) ∀ℓ

⇒ τk(w
′
ℓ) = qℓ,k

(

τℓ(w
′
ℓ)

)

= qℓ,k
(

Φ̄Aℓ
n (pℓ(wℓ))

)

= Φ̄Ak
n (pk(wℓ)) ∀k ∀ℓ ≥ k

⇒ qk(τω(w′)) = τk(w
′) = Φ̄Ak

n (pk(w)) = qk(Φ̄
A
n(w)) ∀k

⇔ τω(w′) = Φ̄A
n(w)

From the equality τω(w′) = Φ̄A
n(w) we deduce that Φ̄A

n(λw(w′)) = τω(w′) = Φ̄A
n(w). Since Φ̄A

n is injective,
because the homomorphism ιV of diagram (3) is an embedding, it follows that λw(w′) = w, which
completes the proof of the lemma. �

Recall that γA : ΩΓ(w)gA → (ΩE(Γ(w))A)1 is a faithful homomorphism of categories. It maps edges
of Γ(w) to themselves, viewed as letters. The following result shows how we can carry the theory of
ω-words from ΩE(Γ(w))A to ΩΓ(w)gA.

Proposition 9.8. Let Γ be a finite graph and let u and v be two edges of ΩΓgA. Then γA(u) is a factor
of γA(v) in ΩE(Γ)A if and only if u is a factor of v in ΩΓgA. In particular, all factors of ω-paths in ΩΓgA

are again ω-paths.

Proof. The forward implication follows from Lemma 9.1 and the reverse implication is a consequence of
γA being a homomorphism. �

We also define the rank of a pseudopath of ΩΓgA to be the rank of its image under γA and the normal
form of a pseudopath to be normal form of its image under γA.

To proceed, we need a rather technical but unsurprising lemma which requires some further notation
to state.

We denote by πk the natural continuous homomorphism ΩXA → ΩXAk. Note that ΩκXAk = ΩXAk.
For u, v ∈ ΩκXA, we write u ∼w,k v if it is possible to transform u into v by changing the exponents of
factors of the form zp, keeping them at least k, where z is a primitive word such that zω is a factor of w.
Note that ∼w,k is a congruence on ΩκXA such that u ∼w,k v implies πk(u) = πk(v) but the converse is
false. For instance, the converse fails for w = aω, u = bk, and v = bk+1, in case X has at least two
distinct letters a and b.

Noting that A is local, that is gA = ℓA (cf. [31]), there is a natural continuous homomorphism,
̟k : ΩΓ(w)gA → ΩΓ(w)ℓAk.

For a finite semigroup S, we denote by ind(S) the smallest positive integer m such that S satisfies the
pseudoidentity xω+m = xm.

Lemma 9.9. Let w ∈ ΩXA be an infinite 1-slim pseudoword and let ϕ : ΩΓ(w)gA → S be a continuous ho-

momorphism onto some S ∈ A such that the natural continuous homomorphisms ΩΓ(w)gA → ΩE(Γ(w))K1

and ΩΓ(w)gA → ΩE(Γ(w))D1 factor through ϕ. Let n = ν(w) and let k = max{ind(S) + 1, n}. Denote
by µw the restriction of λw to ΩΓ(w)gA. Let m be the supremum of the lengths of the special bases of w.
Then the following properties hold:

(a) µw is injective on edges;
(b) if u ∈ ΩΓ(w)gA is an edge and v ∈ ΩκXA is such that πk

(

λw(u)
)

= πk(v), then there exists an edge
u′ ∈ ΩΓ(w)gA such that λw(u′) ∼w,k v and ̟k−1(u) = ̟k−1(u

′);
(c) ker(πk ◦ µw) ⊆ kerϕ so that ϕ induces a homomorphism of partial semigroups ψ : πk(Imµw) → S

such that ψ ◦ πk ◦ µw = ϕ|ΩΓ(w)gA;

(d) let θ denote the congruence on ΩXAk generated by the binary relation kerψ; then πk(Imµw) is a
union of θ-classes;

(e) the restriction of θ to πk(Imµw) coincides with kerψ;

(f) denote by ψ̂ the natural homomorphism ΩXAk → ΩXAk/θ; then, whenever u ∈ ΩXAk, ψ̂(u) is a

factor of some element of ψ̂ ◦ πk(Imµw) if and only if u is a factor of some element of πk(Imµw);
(g) if u ∈ ΩκXA and x, y ∈ X∗ are such that πk(xuy) ∈ πk(Imµw) and πk(x

′uy′) /∈ πk(Imµw) whenever
x′ is a suffix of x and y′ is a prefix of y such that |x′y′| < |xy|, then (k + 1)m > max{|x|, |y|}; in
particular, there are only finitely many such pairs (x, y).

Proof. To prove (a), it suffices to observe that, since λw maps edges of Γ(w) to elements of ΩκXA,
McCammond’s solution of the word problem for ΩκXA allows us to recover a path in Γ(w) from its image
under λw.
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Since S ∈ Ak−1 and gA = ℓA ⊇ ℓAk−1, ϕ factors through a continuous homomorphism ξ : ΩΓ(w)ℓAk−1 →
S. For the remainder of the proof, it will be useful to keep in mind the following commutative diagram,

where the existence of the mapping ψ is asserted in (c) and ψ̂ is defined in (f):

(13) ΩΓ(w)gA
λw //

ϕ

((

̟k−1

��

ΩXA

πk

��
ΩΓ(w)ℓAk−1

ξ

00

ΩκΓ(w)gA
3 S

ffMMMMMMMMMM

// ΩκXA
, �

::uuuuuuuuuu

��

ΩXAk

ΩΓ(w)gA
3 S

eeLLLLLLLLLL
µw //

��

Imµw
+ �

88rrrrrrrrrrr

��

ΩXAk

, �

::uuuuuuuuuu

ψ̂

��
S πk(Imµw)

ψoo_ _ _ _

+ �

88qqqqqqqqqqq

ΩXAk/θ

Suppose that u and v are as in (b). Since ΩXAk is the quotient of the ω-semigroup ΩκXA by the least
congruence which identifies xk, xk+1, and xω for every x ∈ ΩκXA, there are v0, v1, . . . , vp ∈ ΩκXA such that

v0 = λw(u), vp = v and, for each i ∈ {1, . . . , p}, there are factorizations vi−1 = xiy
αi

i zi and vi = xiy
βi

i zi
with xi, zi ∈ (ΩκXA)1, yi ∈ ΩκXA, and αi, βi ∈ {k, k + 1, . . . , ω}. Proceeding inductively to prove (b),
we may as well assume that p = 1, and so drop subscripts, thus assuming that there are factorizations
λw(u) = xyαz and v = xyβz, with x, z ∈ (ΩκXA)1, y ∈ ΩκXA, and α, β ∈ {k, k + 1, . . . , ω}.

Suppose that y ∈ X+. Then the choice of k implies that the α ≥ k occurrences of y which are
distinguished in the factorization λw(u) = xyαz are found within the same factor of the form tω, where
t is a primitive word. In this case, we may simply take u′ = u. Thus we may assume that y /∈ X+. It
follows that y is a rank 1 ω-word. Let y = y0t

ω
1 y1 · · · t

ω
r yr be its normal form. Then xy0t

ω
1 , t

ω
r yrz ∈ Imλw

so that v = λw(u′) for some u′ which is obtained from u by replacing the exponent α − 1 by β − 1 for
the cycle

tω1
tω1 y1t

ω
2−−−−→ tω2

tω2 y2t
ω
3−−−−→ tω3 −→ · · · −→ tωr−1

tωr−1yr−1t
ω
r

−−−−−−−→ tωr
tωr yry0t

ω
1−−−−−−→ tω1 ,

in case tωr yry0t
ω
1 6= tω1 , or otherwise the cycle

tω1
tω1 y1t

ω
2−−−−→ tω2

tω2 y2t
ω
3−−−−→ tω3 −→ · · · −→ tωr−1

tωr−1yr−1t
ω
r

−−−−−−−→ tωr = tω1 ,

which proves (b).
To establish (c), we prove a slightly stronger property. Let u, v be two edges in ΩΓ(w)gA and suppose

that πk ◦λw(u) = πk ◦λw(v). As above, there are v0, v1, . . . , vp ∈ ΩκXA such that v0 = λw(u), vp = λw(v)

and, for each i ∈ {1, . . . , p}, there are factorizations vi−1 = xiy
αi

i zi and vi = xiy
βi

i zi with xi, zi ∈ (ΩκXA)1,
yi ∈ ΩκXA, and αi, βi ∈ {k, k+1, . . . , ω}. Applying (b) inductively, for each i ∈ {1, . . . , p−1} there exists
an edge v′i ∈ ΩΓ(w)gA such that v′0 = u, v′p = v, λw(v′i) ∼w,k vi, and ̟k−1(v

′
i−1) = ̟k−1(v

′
i). Hence

ϕ(v′i−1) = ξ ◦̟k−1(v
′
i−1) = ξ ◦̟k−1(v

′
i) = ϕ(v′i)

for every i, from which it follows that ϕ(u) = ϕ(v). This proves (c) and establishes the existence of the
homomorphism ψ of partial semigroups. Note that πk(Imµw) may not be a subsemigroup of ΩκXAk.

To prove (d) and (e), suppose that u ∈ ΩΓ(w)gA and v ∈ ΩκXA are such that πk ◦µw(u) θ πk(v). Then
there exist v0, v1, . . . , vp ∈ ΩκXA such that v0 = λw(u), vp = v, and, for each i ∈ {1, . . . , p}, there exist
factorizations πk(vi−1) = πk(xiyizi) and πk(vi) = πk(xitizi) such that xi, zi ∈ (ΩκXA)1, yi, ti ∈ Imµw,
and ψ ◦ πk(yi) = ψ ◦ πk(ti). Proceeding inductively, it suffices to show that πk(v1) ∈ πk(Imµw) and
ψ ◦ πk(v1) = ψ ◦ πk ◦ λw(u) and so we assume that p = 1 and we drop the indices, so that πk ◦ λw(u) =
πk(xyz) and πk(v) = πk(xtz) with x, z ∈ (ΩκXA)1, y, t ∈ Imµw, and ψ ◦ πk(y) = ψ ◦ πk(t).

Let y′ and t′ be edges in ΩΓ(w)gA such that λw(y′) = y and λw(t′) = t. Since ϕ(y′) = ψ ◦ πk(y) = ψ ◦
πk(t) = ϕ(t′), the hypothesis on the factorizability of ϕ through the natural continuous homomorphisms
ΩΓ(w)gA → ΩE(Γ(w))K1 and ΩΓ(w)gA → ΩE(Γ(w))D1 implies that y and t are edges with the same ends.

By (b), there exists u′ ∈ ΩΓ(w)gA such that λw(u′) ∼w,k xyz. Since y ∈ Imµw, the definition of ∼w,k
and (a) imply that there exist x′, z′ ∈ (ΩΓ(w)gA)c such that x′y′z′ = u′, λw(x′) ∼w,k x, and λw(z′) ∼w,k z,
where λw is extended so as to map local identities to 1. Hence v′ = x′t′z′ is an edge in ΩΓ(w)gA such
that λw(v′) ∼w,k xtz, whence πk(v) = πk(xtz) = πk ◦ λw(v′), which shows that πk(v) ∈ πk(Imµw). To
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conclude the proof of (d) and (e), it now suffices to observe that

ψ ◦ πk ◦ λw(v′) = ϕ(v′) = ϕ(x′t′z′) = ϕ(x′y′z′) = ψ ◦ πk ◦ λw(u).

To prove (f), suppose that u ∈ ΩκXA and there exist v ∈ Imµw and x, y ∈ (ΩκXA)1 such that

ψ̂ ◦ πk(xuy) = ψ̂ ◦ πk(v), that is πk(xuy) is θ-equivalent to some element of πk(Imµw). Then, by (d),
πk(xuy) ∈ πk(Imµw), that is πk(u) is a factor of some element of πk(Imµw), which establishes (f) since
the converse is trivial.

For (g), we need to bound the length of the words x and y. Since πk(xuy) ∈ πk(Imµw), by (b) there
exists v ∈ ΩΓ(w)gA such that λw(v) ∼w,k xuy. By the definitions of λw and ∼w,k, there is some special

ω-factor zω of w and zℓ is a prefix of xuy for some ℓ ≥ k. By the minimality hypothesis on the pair (x, y),
it follows that |x| < (k+ 1)|z| for, otherwise, writing x = zx′, we would still have λw(v) ∼w,k x′uy. This
shows that |x| < (k + 1)m and the dual argument shows that we also have |y| < (k + 1)m. Note that
m is an integer by Lemma 8.11. Hence the set of all pairs (x, y) in (g) for a given u is indeed finite. �

The preceding lemma provides the technicalities required to prove the following rather natural result
but for which we do not know of any simpler proof.

Lemma 9.10. Let w ∈ ΩXA be an infinite 1-slim pseudoword. Then the homomorphism λw is injective
on edges of ΩΓ(w)gA.

Proof. Let u and v be distinct edges in ΩΓ(w)gA. We need to show that λw(u) 6= λw(v). There exist some

monoid S ∈ A and some onto continuous homomorphism ϕ : ΩΓ(w)gA → S such that ϕ(u) 6= ϕ(v). Since
K1 ∪D1 ⊆ A, by taking the product mapping induced by ϕ and the natural continuous homomorphisms
̺ : ΩΓ(w)gA → ΩE(Γ(w))K1 and ς : ΩΓ(w)gA → ΩE(Γ(w))D1, we obtain a continuous homomorphism into
a finite aperiodic semigroup such that ϕ, ̺, ς factor through it. Hence, we may as well assume that ̺, ς
factor through ϕ. Let n = ν(w) and let k = max{ind(S)+1, n}. Then the hypotheses of Lemma 9.9 hold
and we proceed to apply it. We obtain a commutative diagram (13) from which we extract the relevant
part for our present purposes in diagram (14) and add the nodes T and R and the arrows involving them
which are described below.

(14) Imλwr�

$$HHHHHHHHH

ΩΓ(w)gA

λw ..

ϕ

..

ΩΓ(w)gA? _oo µw //

((

Imµw
+ �

99rrrrrrrrrr
� � //

��

ΩκXA � � //

��

ΩXA

πk

��
πk(Imµw)

ψ

��

� � // ΩXAk
� � //___

ψ̂

��
�

�

�
ΩXAk

χ

��
�

�

�

S
� � //______ T

ρ //_____ R

As in Lemma 9.9(d) let θ denote the congruence on ΩXAk generated by kerψ, so that θ saturates
πk(Imµw) and its restriction to that subset coincides with kerψ. Hence, if we denote by T the quotient
semigroup ΩXAk/θ, then we may assume that S is a subsemigroup of T in such a way that ψ is the

restriction of the natural homomorphism ψ̂ : ΩXAk → T to πk(Imµw). At this point, we need to
overcome an essential difficulty: the semigroup T may be infinite. We do so by taking a Rees quotient.

Let I = {t ∈ T : S ∩ T 1 t T 1 = ∅}. Then I is an ideal of T such that I ∩ S = ∅. Denote by R the
Rees quotient T/I and let ρ : T → R be the natural homomorphism so that ρ ◦ ϕ still distinguishes
the edges u and v. We claim that R is finite. Since then, by construction, R ∈ Ak, the homomorphism

ρ ◦ ψ̂ factorizes through a continuous homomorphism χ : ΩXAk → R. This completes the commutative
diagram (14). We thus obtain

χ ◦ πk ◦ λw(u) = ρ ◦ ϕ(u) 6= ρ ◦ ϕ(v) = χ ◦ πk ◦ λw(v)

which establishes that λw(u) 6= λw(v).
We proceed to establish that R is finite, which is equivalent to showing that T \ I is a finite set. By

Lemma 9.9(f), T \ I consists of all elements of the form ψ̂ ◦ πk(x) such that x ∈ ΩκXA and πk(x) is a
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factor of some element of πk(Imµw). By Lemma 9.9(g), the number of such elements is bounded by

(|S| + 1)





(k+1)m−1
∑

i=0

|X |i





2

,

where m is given by Lemma 9.9, which shows that R is finite. �

The following is an immediate but useful observation.

Lemma 9.11. Let w ∈ ΩXA be an infinite 1-slim pseudoword and let u be a factor of w. Then ΩΓ(u)gA

is a closed subcategory of ΩΓ(w)gA and λu is the restriction to ΩΓ(u)gA of λw.

Proof. By Theorem 8.7, since u is a factor of the 1-slim pseudoword w, u is also 1-slim. On the other
hand, from the definitions, we see that Γ(u) is a subgraph of Γ(w) and so ΩΓ(u)gA is a closed subcategory

of ΩΓ(w)gA and it is immediate that λu is the restriction to ΩΓ(u)gA of λw. �

A further important property of the homomorphism λw is that it preserves the factor order in a strong
sense.

Lemma 9.12. Let w ∈ ΩXA be an infinite 1-slim pseudoword and suppose that there is an edge w′ in
the category ΩΓ(w)gA such that λw(w′) = w. Let u and v be edges in ΩΓ(w)gA that are factors of w′.
Then u <J v if and only if λw(u) <J λw(v).

Proof. Note that, since x <J y means x ≤J y and y 6≤J x, it suffices to show that

(15) u ≤J v ⇐⇒ λw(u) ≤J λw(v)

The direct implication in (15) follows immediately from the fact that λw is a homomorphism. Conversely,
assume that λw(u) ≤J λw(v). Let s, t ∈ ΩXA be such that λw(u) = sλw(v)t. Since λw(u) and λw(v) are
periodic at the ends, we may assume that so are s and t, with the infinite suffix of s having the same
period as the infinite prefix of λw(v) and the infinite prefix of t having the same period as the infinite
suffix of λw(v).

By Theorem 8.7, s and t are 1-slim. Hence, by Lemmas 9.11 and 9.7, there exist s′, t′ ∈ ΩΓ(w)gA

such that λw(s′) = λs(s
′) = s and λw(t′) = λt(t

′) = t. Note that the matching of periods at the ends
guarantees that s′vt′ is an edge in the category ΩΓ(w)gA. Since λw is a homomorphism, it follows that
λw(s′vt′) = λw(u). By Lemma 9.10, we deduce that s′vt′ = u, which shows that u ≤J v. �

The next lemma describes in detail the encoding procedure on a pseudoword given by an ω-term.

Lemma 9.13. Let w ∈ ΩκXA be periodic at the ends and let w′ ∈ ΩΓ(w)gA be such that λw(w′) = w.
Then w′ ∈ ΩκΓ(w)gA. Moreover, if w′ is an infinite pseudopath then w′ has trivial initial and final portions

if and only if so does w.

Proof. We assume w to be given by its normal form and we transform it according to the application,
in order, of each of the following rules once to the parenthesized form of w:

(a) for each well-parenthesized factor of the form (u), where u /∈ X+, replace it by (u)u;
(b) for each maximal well-parenthesized occurrence of a factor of the form v(u)t, where u ∈ X+ and

v ∈ {(}∗, replace it by (u)v(u)t, unless the occurrence in question is as a prefix or as a suffix of w;
(c) for each factor of the form )(z), where z ∈ X+, replace it by (z)), unless the original factor is

preceded by (z).

Once a rule has been applied to a given factor, it should not be applied again to that factor, although it
may be applied to its factors. This guarantees that the procedure consisting in such application of the
rules terminates.

One can verify that each elementary step in the above procedure does not change the pseudoword that
the ω-term represents in ΩκXA, so that the output remains a representation of w. For condition (c), this
is only true because we started with a κ-term in normal form and we first applied (a) and (b). Moreover,
by induction on the rank of w, it is easy to show that, replacing in the output each factor of the form
(x)y(z), where x, y, z ∈ X+ by the corresponding edge (x)y(z) : (x) → (z) of the graph Γ(w), we obtain
an ω-path w′ ∈ ΩκΓ(w)gA. Hence λw(w′) = w, which proves the lemma, in view of Lemma 9.10. �
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For example, for the ω-term w =
(

(

(a)b
)

a(b)c
)

a(b), applying exhaustively each of the rules produces

successively the following ω-terms where, in each step, we underline the new factors which come from or
are changed by the application of the rules:

(

(

(a)b
)

(a)ba(b)c
)

(

(a)b
)

(a)ba(b)ca(b)
(

(

(a)b
)

(a)(a)ba(b)(b)c
)

(a)
(

(a)b
)

(a)(a)ba(b)(b)ca(b)
(

(

(a)b(a)
)

(a)ba(b)(b)c(a)
)

(

(a)b(a)
)

(a)ba(b)(b)ca(b).

The graph Γ(w) is given by the following diagram, where e = (a)b(a), f = (a)ba(b), g = (b)c(a), and
h = (b)ca(b):

(a) (b)e

f

g
h

The ω-path over this graph given by the proof of Lemma 9.13 is
(

(e)fg
)

(e)fh.
Note that, given an ω-word of rank 1 in normal form, its initial (respectively final) portion is trivial

if and only if it is periodic at the corresponding end. For w ∈ ΩXA, let P (w) be the set of all normal
forms, as well-parenthesized words u ∈ (X ∪ {(, )})+, which are either of rank 0 or have trivial initial
and final portions, such that ǫ(u) ∈ F(w). Note that, since F (w) = P (w) ∩X+, if P (w) is rational then
so is F (w).

Lemma 9.14. Let w ∈ ΩXA be a 1-slim pseudoword that is periodic at the ends and let w′ ∈ ΩΓ(w)gA be
such that λw(w′) = w. Let L be the set of all special ω-factors of w. Then the following equalities hold:

(a) λw
(

P (w′)
)

= P (w) \ (L ∪X+);

(b) λ−1
w

(

P (w) \ (L ∪X+)
)

= P (w′).

Proof. (a) Let u ∈ P (w′). Then u (as an element of ΩΓ(w)gA) is a factor of w′. Since λw is a homomor-
phism, it follows that λw(u) is a factor of λw(w′) = w, and since it is not a finite word, having rank at
least 1, and it contains at least one special factor, it belongs to P (w) \ (L ∪X+).

Conversely, suppose that u ∈ P (w) \ (L∪X+). Then u (as an element of ΩXA), is a factor of w, that
is w = xuy for some x, y ∈ (ΩXA)1. By Theorem 8.7, each of the pseudowords x, u, y is 1-slim and so the
graphs Γ(x), Γ(u), and Γ(y) are well defined contained in Γ(w). Moreover, by definition of P (w), u is
periodic at the ends and so, in case x or y are not empty factors, we may assume that they are also periodic
at the ends, with the special suffix of x coinciding with the special prefix of u and the special suffix of u
coinciding with the special prefix of y. By Lemma 9.7 and since u /∈ L, there exist x′, y′ ∈ (ΩΓ(w)gA)c

and u′ ∈ ΩΓ(w)gA such that λw(x′) = x, λw(u′) = u, and λw(y′) = y. The matching of special prefixes

and suffixes guarantees that x′u′y′ is an edge in ΩΓ(w)gA. Since λw(w′) = w = xuy = λw(x′u′y′) and λw
is injective on edges, we deduce that w′ = x′u′y′. By Lemma 9.13, u′ ∈ ΩκΓ(w)gA. Hence the canonical

form of u′ belongs to P (w′), which shows that u ∈ λw
(

P (w)
)

.
(b) This follows from (a) and Lemma 9.10. �

10. Main theorem

Putting together the main conclusions of the technical lemmas in the preceding section, we are now
ready for the following result.

Proposition 10.1. Let w ∈ ΩXA be n-slim, where n ≥ 1, periodic at the ends, and not the ω-power of
a word. Then there is a unique w′ ∈ ΩΓ(w)gA such that λw(w′) = w. Moreover, w′ enjoys the following
properties:

(a) if v′ ∈ ΩΓ(w)gA is such that λw(v′) = v ∈ F(w) and P (v) is a rational language, then so is P (v′);
(b) r̄(w′) ≤ r̄(w);
(c) if r̄(w) is finite then r̄(w′) = r̄(w) − 1;
(d) if r̄(w) is infinite then so is r̄(w′);
(e) there are no infinite anti-chains of factors of w′ of rank at most n− 1.

In particular, w′ is (n− 1)-slim.
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Proof. The existence and uniqueness of w′ is given, respectively, by Lemmas 9.7 and 9.10.
Part (a) follows from Lemma 9.14(b) for the case where v′ = w′ since the language L of that lemma

is finite. The general case is obtained taking into account Theorem 8.7 and Lemma 9.11.
Since λw is a homomorphism, the same result implies that a strict J-chain of idempotent factors of w′

maps under λw to a strict J-chain of idempotent factors of w, which proves (b). Moreover, we can always
add at the top of such a chain an idempotent of the form zω, where z is a Lyndon word, for instance by
choosing the initial vertex of the topmost idempotent in the given chain.

Conversely, suppose that e1 >J e2 >J · · · >J en ≥J w, where the ei are idempotents. By Theorem 8.7,
each ei is slim. By Lemmas 9.7 and 9.11, there exist factors e′i of w′ in ΩΓ(w)gA and finite words
xi, yi ∈ X∗ such that ei = xiλw(e′i)yi for all i except possibly for i = 1 in case e1 is the ω-power of a
Lyndon word. Since ei is an idempotent, we deduce that

xiλw(e′i)yi = ei = e3i = xiλw(e′i)yieixiλw(e′i)yi.

Say by Theorem 2.6, we may cancel the finite words xi and yi at the ends to deduce that λw(e′i) =
λw(e′i)yieixiλw(e′i), which show that λw(e′i) lies in the same J-class as ei. Moreover, since zωyieixit

ω is

still a factor of w, where e′i is an edge tω → zω, there is some v′i ∈ ΩΓ(w)gA such that λw(e′iv
′
ie

′
i) = λw(e′i).

By Lemma 9.10, it follows that e′iv
′
ie

′
i = e′i, and so the idempotent e′iv

′
i is J-equivalent to e′i. By

Lemma 9.12, we have a chain
(

e′1 >J

)

e′2 >J · · · >J e
′
n ≥J w

′, which proves both (c) and (d). Part (e)
follows taking also into account Lemma 9.12. �

The following is an elementary observation about the Dyck language which we need in the sequel.

Lemma 10.2. Suppose that L is a rational language contained in the Dyck language
⋃

nDn, where
D0 = {1}, Dn+1 = (aDnb)

∗ (n ≥ 0). Then L ⊆ Dn for some n.

Proof. Since L is rational, L is recognized by a finite deterministic trim automaton, say with m states
and initial state q0. We claim that, given any state q, the difference |w|a − |w|b is constant for w in the
language {w ∈ {a, b}∗ : q0w = q}. Indeed, if w1 and w2 are two words in this language and v is any word
such that qv is a terminal state, then w1v and w2v both belong to L and so |wi|a − |wi|b = |v|b − |v|a
(i = 1, 2). Since every state is reachable from q0 by a path of length at most m − 1, it follows that
L ⊆ Dm−1. �

Iterating the application of Proposition 10.1, we obtain the following characterization of the elements
of ΩXA which are given by ω-terms in terms of properties of their sets of factors, which is the main result
of this paper.

Theorem 10.3. Let w ∈ ΩXA. Then w ∈ ΩκXA if and only if (a) there are no infinite anti-chains of
factors of w and (b) P (w) is a rational language.

Proof. Suppose first that w ∈ ΩκXA. Then w is slim by Corollary 7.6 and r̄(w) = r(w) < ∞ by
Propositions 4.4 and 4.5. By Lemmas 9.7 and 9.13, there exist w′ ∈ ΩκΓ(w)gA and x, y ∈ X∗ such that

w = xλw(w′)y. Moreover, r̄(w′) < r̄(w) by Proposition 10.1(c), so that, taking into account Lemma 9.1
and Proposition 9.8, we may view w′ as an ω-word of smaller rank over a finite alphabet. Proceeding
by induction on the rank, we may assume that P (w′) is a rational language. By Lemmas 8.11, 7.5,
and 9.14(a), it follows that P (w) is also a rational language.

To establish the converse, we first observe that, since P (w) is rational, so is the language which is
obtained from it by erasing all letters of X . By Lemma 10.2, it follows that the elements of F(w)∩ΩκXA

have bounded rank. On the other hand, since the two finiteness hypotheses imply in particular that w is
slim, by iterated application of Proposition 10.1 taking into account Corollary 8.12 Proposition 9.8, we
obtain a sequence starting with the pseudoword w0 = w, and continuing with edges wk+1 ∈ ΩΓ(wk)gA,
and words x0, y0 ∈ X∗ and paths xk, yk in Γ(wk−1) such that

(16) wk = xkλwk
(wk+1)yk,

and this sequence can be constructed while k < r̄(w), each term being slim. Now, for wn we can
determine factors of w which are ω-words of rank n: for n > 1, if it is not the last term in the sequence,
then simply take any edge in Γ(wn) and successively apply to it λwn

, λwn−1 , . . . , λw0 to obtain an ω-term
of rank n + 1 which is a factor of w. Now, by the hypothesis that P (w) is rational and the argument
at the beginning of this paragraph, the sequence must stop at some point, that is the graph is trivial,
meaning that wn has no special factors. Since wn is slim, by Lemma 8.14 and Corollary 8.12, we deduce
that either wn is finite or wn is a rank 1 ω-word of the form tuωv, and therefore trivially an ω-word.
Applying successively equation (16) for k = n− 1, n− 2, . . . , 0, it follows that w is also an ω-word. �
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Note that, for a singleton alphabet, both conditions (a) and (b) of Theorem 10.3 are trivially verified.
For an alphabet X with at least two letters, there are uniformly recurrent non-periodic pseudowords
w ∈ ΩXA. Since w is then J-maximal among infinite pseudowords, the very definition of uniformly
recurrent pseudoword entails condition (a), whereas condition (b) fails by Theorem 6.2. We conjecture
that condition (a) is always a consequence of condition (b). The following result proposes a considerable
reduction in the proof of this conjecture.

Proposition 10.4. Suppose that, for every finite alphabet X and every pseudoword w ∈ ΩXA such that
P (w) is a rational language, there are no infinite anti-chains of factors of w of rank at most 1. Then,
every pseudoword w ∈ ΩXA such that P (w) is a rational language is an ω-word.

Proof. Let w ∈ ΩXA be a pseudoword such that P (w) is a rational language. It has already been
observed that the rationality of P (w) implies that the language F (w) is also rational. Note that, by
Lemma 10.2, there is an upper bound on the rank of the members of P (w). Let M(w) be the least such
upper bound. We proceed by induction on M(w) to show that w is an ω-word. If w is finite, then it is
in particular an ω-word. Assume that w is infinite and, inductively, that, for every pseudoword v such
that P (v) is rational and M(v) < M(w), v is an ω-word.

By hypothesis, w is 1-slim and infinite. Hence, by Corollary 8.12 and Proposition 10.1, w may be
encoded as w = xλw(w′)y for a unique edge w′ ∈ ΩΓ(w)gA and some words x, y ∈ X∗ where w′ is such
that P (w′) is rational. Moreover, by Proposition 10.1(c) and taking into account Lemma 9.11, the ranks
of the elements of P (w′) are bounded above by M − 1. Hence, by the induction hypothesis, w′ is and
ω-word and, therefore, so is w. This completes the induction step and the proof of the proposition. �

With a little extra effort, tracing through sections 8–10 where the anti-chain hypothesis has been
used, one can actually weaken the hypothesis in Proposition 10.4 to the following condition: if P (w) is
rational, then there are no infinite anti-chains of factors of w which are finite, idempotents or bridges.

Acknowledgements This work was partly supported by the Pessoa French-Portuguese project Egide-
Grices 11113YM Automata, profinite semigroups and symbolic dynamics. The work of the first author
was supported, in part, by Fundação para a Ciência e a Tecnologia (FCT) through the Centro de
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28. L. Ribes and P. A. Zalesskĭı, On the profinite topology on a free group, Bull. London Math. Soc. 25 (1993), 37–43.
29. , Profinite groups, Ergeb. Math. Grenzgebiete 3, no. 40, Springer, Berlin, 2000.

30. H. Straubing, Finite semigroup varieties of the form V ∗ D, J. Pure Appl. Algebra 36 (1985), 53–94.
31. B. Tilson, Categories as algebra: an essential ingredient in the theory of monoids, J. Pure Appl. Algebra 48 (1987),

83–198.
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(Marc Zeitoun) LaBRI, Université Bordeaux & CNRS UMR 5800. 351 cours de la Libération, 33405 Talence

Cedex, France.

E-mail address: mz@labri.fr

31


	1. Introduction
	2. Preliminaries
	3. Set of all finite words open
	4. The rank
	5. Properties of the Green relations on k-words
	6. The prefix order on factors
	7. Key properties of factors of k-words over A
	8. Slim pseudowords over A
	9. Encoding 1-slim pseudowords
	10. Main theorem
	References

