
POINTLIKE SETS WITH RESPECT TO R AND J
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Abstract. We present an algorithm to compute the pointlike subsets of a
finite semigroup with respect to the pseudovariety R of all finite R-trivial
semigroups. The algorithm is inspired by Henckell’s algorithm for computing
the pointlike subsets with respect to the pseudovariety of all finite aperiodic
semigroups. We also give an algorithm to compute J-pointlike sets, where J

denotes the pseudovariety of all finite J-trivial semigroups. We finally show
that, in contrast with the situation for R, the natural adaptation of Henckell’s
algorithm to J computes pointlike sets, but not all of them.

1. Introduction

The notion of pointlike set in a finite semigroup or monoid has emerged, in a
particular case, from the type II conjecture of Rhodes [19] proved by Ash [13]. It
proposed an algorithm to compute the kernel of a finite monoid with respect to finite
groups, that is, the submonoid of elements whose image by any relational morphism
into a group contains the neutral element of the group. The notion of kernel has
then been generalized to other semigroup pseudovarieties: for a pseudovariety V

and a semigroup S, a subset X of S is V-pointlike if any relational morphism from
S into a semigroup of V relates all elements of X with a single element of T . The
kernel consists in those G-pointlike sets which are related with the neutral element,
for any relational morphism into a finite group (where G denotes the pseudovariety
of groups).

Ash’s theorem has a number of deep consequences. It can be used to derive
a decision criterion for Mal’cev products U©m V of two pseudovarieties U and V.
It is known [22, 23, 15] that this operator does not preserve the decidability of
the membership problem. Yet, a semigroup is in U©m G if and only if its kernel
belongs to U. Hence, Ash’s result implies that if U is a decidable pseudovariety,
then so is U©m G. (This also gives the decidability of semidirect products of the
form U∗G for local decidable pseudovarieties U.) Pin and Weil [21] described U©m V

by a pseudoidentity basis obtained by substituting from a basis of U variables
{x1, . . . , xn} by pseudowords {w1, . . . , wn} such that V satisfies w2

1 = w1 = w2 =
· · · = wn. The projection of such a set {w1, . . . , wn} into a finite semigroup by an
onto continuous homomorphism is called V-idempotent pointlike. It follows that if
U is decidable and V has decidable pointlikes, then U©m V is decidable.
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There are relatively few results concerning the computation of pointlike sets.
Henckell presented algorithms for computing A-pointlike sets [17] and A-idempotent
pointlike sets [18] for the pseudovariety A of aperiodic semigroups. As a conse-
quence, the Mal’cev product V©m A is decidable for any decidable pseudovariety V.
The kernel computation for the pseudovariety of Abelian groups was settled by
Delgado [16]. For further properties of pointlike sets, see [24, 23, 25, 14].

This paper presents an algorithm to compute R-pointlike subsets of a given finite
semigroup, where R is the pseudovariety of all R-trivial semigroups. Although it is
already known that R has decidable pointlikes, the algorithms derived from [10, 9]
are not very effective. In contrast, the algorithm presented in the present paper only
uses the Green structure of the power semigroup of S. It is adapted from Henckell’s
construction [17] for the pseudovariety A. The algorithm could be adapted to the
computation of idempotent pointlike sets, which would provide a new proof of the
decidability of V ©m R if V is decidable (this also follows from the complete κ-tameness
of R [8, 9]).

We also present an algorithm to compute J-pointlike sets, where J is the pseu-
dovariety of all J-trivial semigroups. Perhaps surprisingly, the algorithm inspired
by Henckell’s construction does not work for J, and a counterexample is exhibited.

The paper is organized as follows: notation is settled in Section 2, the algorithm
for computing R-pointlikes is presented in Section 3, and the one for computing
J-pointlikes is presented in Section 4. We finally give several examples in Section 5.

2. Notation

We assume that the reader is acquainted with notions concerning semigroup
pseudovarieties and profinite semigroups. See [5] for an introduction, and [4, 2] for
more details. We recall some notation and terminology.

2.1. Semigroups. Let S be a semigroup. The Green equivalence relation R ⊆
S × S is defined by s R t if sS1 = tS1, where S1 is the semigroup S itself if it
has a neutral element, or the disjoint union S ⊎ {1} otherwise, where 1 acts as a
neutral element. When T is a subsemigroup of S, we write s RT t for sT 1 = tT 1.
A semigroup S is R-trivial if the relation R on S coincides with the equality on S.
We also recall that the Green equivalence relation J ⊆ S × S is defined by s J t if
S1sS1 = S1tS1 and call J-trivial a semigroup in which this relation is the equality.

The power semigroup P(S) of S is the semigroup of subsets of S under the
multiplication defined by XY = {xy : x ∈ X, y ∈ Y }, for X,Y ⊆ S. Let U be a
subsemigroup of P(S). We define DR(U) to be the subsemigroup generated by the
singleton sets {s} (s ∈ S) together with the subsets of the form

⋃

R =
⋃

X∈RX ,
where R is an R-class of U . We also define ↓U to be the set

⋃

X∈U P(X) and we note

that ↓U is again a subsemigroup of P(S). We let CR(U) = ↓DR(U). We let C0
R
(S)

be the subsemigroup of P(S) consisting of all singleton subsets of S. For n > 0, we
define, recursively, Cn

R
(S) = CR(Cn−1

R
(S)). Finally, we put Cω

R
(S) =

⋃

n>0 C
n
R
(S).

2.2. Pro-V semigroups. In the following, A denotes a finite set, and V a semi-
group pseudovariety. We let S be the pseudovariety of all finite semigroups, R be
the pseudovariety of all finite R-trivial semigroups and J be the pseudovariety of all
finite J-trivial semigroups. The A-generated relatively V-free profinite semigroup
is denoted by ΩAV. Its elements are called pseudowords. We denote by ΩAV the
subsemigroup of ΩAV generated by A.

2.3. Relational morphisms and pointlike sets. Denote by pV : ΩAS → ΩAV

the unique continuous homomorphism sending each free generator to itself. Let Sl

be the pseudovariety of all finite semilattices (that is, idempotent and commutative
semigroups). It is well known that ΩASl is isomorphic to P(A), the union-semilattice
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of subsets ofA. The projection pSl is commonly denoted by c, and called the content.
For a word x ∈ A+, the content c(x) of x is the set of letters occurring in x.

A relational morphism µ between two semigroups S and T is a subsemigroup of
S × T whose projection on S is onto. For s ∈ S, we let µ(s) = {t ∈ T : (s, t) ∈ µ}.
A subset X of S is called µ-pointlike if

⋂

x∈X µ(x) 6= ∅. and V-pointlike if it is
µ-pointlike for every relational morphism µ between S and a semigroup of V. We
denote by PV(S) the set of V-pointlike subsets of S. It is easy to check that PV(S)
is a subsemigroup of P(S). Given a finite A-generated semigroup S and an onto
continuous homomorphism ϕ : ΩAS → S, we denote by µV the relational morphism
pV ◦ ϕ−1 between S and ΩAV. The morphism µV is called universal, in the sense
that it can be used to test whether a subset of an A-generated semigroup is V-
pointlike [3, 4].

Proposition 2.1. Let ϕ : ΩAS → S be a continuous onto homomorphism into an
A-generated semigroup, and let µV = pV ◦ ϕ−1. Any subset of S is V-pointlike if
and only if it is µV-pointlike.

In other words, V pointlike sets of an A-generated semigroup are obtained by
projecting onto S pseudowords of ΩAS whose pV-values coincide.

2.4. The pseudovariety R. The pseudovariety R has been extensively studied in
[11, 10, 12, 7, 8, 9]. We will use two useful and basic properties of this pseudovariety.
For x ∈ ΩAS, a factorization of the form x = x1ax2 with a /∈ c(x1) and c(x1a) = c(x)
is called a left basic factorization of x. Using compactness of ΩAS, continuity of
the content function, and the fact that ΩAS is dense in ΩAS, it is easy to show
that every non-empty pseudoword admits at least one left basic factorization. The
following result from [6] is the fundamental observation for the identification of
pseudowords over R.

Proposition 2.2. Let x, y ∈ ΩAS and let x = x1ax2 and y = y1by2 be left basic
factorizations. If R |= x = y, then a = b and R satisfies the pseudoidentities x1 = y1
and x2 = y2.

If the content of x2 is still the same as the content of x, then one may factorize
x2, taking its left basic factorization. Iterating this process yields the factorization
x ∈ ΩAS as

(2.1) x = x1a1x2a2 · · ·xkakx
′

k

where each xi · ai · (xi+1ai+1 · · ·xkakx
′

k) is a left basic factorization, and c(xiai) is
constant. We call (2.1) the k-iterated left basic factorization of x. If k is maximum
for such a factorization of x (that is, c(x′k) 6= c(x)), then we set ‖x‖ = k. If there
is no such maximum, we set ‖x‖ = ∞. The following results can be found in [12].

Proposition 2.3. Let x, y ∈ ΩAS such that R |= x = y. Then, c(x) = c(y) and
‖x‖ = ‖y‖.

The function ‖·‖ also characterizes idempotents over R.

Proposition 2.4. Let x ∈ ΩAS. Then R |= x = x2 if and only if ‖x‖ = ∞.

From the above propositions, we deduce the following technical result.

Corollary 2.5. Let S ∈ S be an A-generated semigroup, and let ψ : ΩAS → S be an
onto continuous homomorphism. Let x1, . . . , xn ∈ ΩAS be such that R |= xi = xj

for 1 6 i, j 6 n. Let B = c(x1) and k 6 ‖x1‖. Then each xi has a factorization

(2.2) xi = xi,1a1xi,2a2 · · ·xi,kakzi,k,
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where

(2.3)
c(xi,ℓ) = B \ {aℓ}, R |= xi,ℓ = xj,ℓ and R |= zi,k = zj,k

(1 6 ℓ 6 k and 1 6 i 6 n).

Further, either no pR(xi) is idempotent and c(zj,k) $ B for k = ‖x1‖, or all
pR(xi) are idempotents. In the later case, there exist indices p and q such that
1 6 p, q 6 |S|n + 1 and, for i = 1, . . . , n, we have

(2.4) ψ(xi,1a1 · · ·xi,pap) = ψ(xi,1a1 · · ·xi,pap) · ψ(xi,p+1ap+1 · · ·xi,p+qap+q)
ω

Proof. By Proposition 2.3, c(xi) and ‖xi‖ are constant. By Proposition 2.4, pR(xi)
are all idempotent, or none of them is. Next, (2.2) and (2.3) simply express prop-
erties of the k-iterated left basic factorization (for k = ‖xi‖ if ‖xi‖ is finite, and
for all k otherwise). Finally, αk = (ψ(xi,1a1 · · ·xi,kak))16i6n ∈ Sn, so there exist
1 6 p, q 6 |S|n + 1 such that αp = αp+q, which yields (2.4). �

3. An algorithm to compute R-pointlike sets

The aim of this section is to establish the following result.

Theorem 3.1. If S is a finite semigroup then Cω
R
(S) = PR(S).

Observe that Cω
R
(S) can be computed iteratively, so that Theorem 3.1 establishes

an algorithm to compute PR(S). It is similar to Henckell’s algorithm to compute
PA(S). We first treat one inclusion of Theorem 3.1.

Lemma 3.2. Let S be a finite semigroup. If T is a subsemigroup of PR(S), then
so is C

R
(T ).

Proof. Obviously C
R
(T ) is a subsemigroup of P(S). Hence, it suffices to show

that for X ∈ T , we have
⋃

Y RT X Y ∈ PR(S). Let {X1, . . . , Xn} be the R-class of
X in T . There exist Y1, . . . , Yn ∈ T such that Xi+1 = XiYi for 1 6 i < n and
X1 = XnYn. Therefore, we have X1 = X1(Y1 · · ·Yn) = X1(Y1 · · ·Yn)ω, and for

i > 1, Xi = X1(Y1 · · ·Yn)ω
∏i−1

k=1 Yk. Hence

⋃

Y RT X

Y = X1(Y1 · · ·Yn)ω

n
⋃

i=1

i−1
∏

k=1

Yk

Now, X1 and all Yi’s are R-pointlike since T is a subsemigroup of PR(S). There-
fore, there exist x1, y1, . . . , yn ∈ ΩAR such that X1 ⊆ µ−1

R
(x1) and for i = 1, . . . , n,

Yi ⊆ µ−1
R

(yi). Since R |= x1(y1 · · · yn)ωy1 · · · yi−1 = x1(y1 · · · yn)ω, we obtain
⋃

Y RT X Y ⊆ µ−1
R

(x1(y1 · · · yn)ω). �

Since C0
R
(S) is a subsemigroup of PR(S), we obtain one of the inclusions of

Theorem 3.1.

Corollary 3.3. If S is a finite semigroup then Cω
R
(S) ⊆ PR(S).

In the rest of the section, we complete the proof of Theorem 3.1, which depends
on several intermediate results.

3.1. Behaviour of CR and Cω
R

under onto homomorphisms. The following
result is crucial in the sequel. It is part of a well-known lifting property of Green’s
relations under onto homomorphisms [20, Fact 2.1, p. 160].

Lemma 3.4. Let ψ : U → V be an onto homomorphism between finite semigroups.
Then, for every R-class R′ of V there is an R-class R of U such that ψ(R) = R′.

Given an homomorphism ϕ : S → T between finite semigroups, we let ϕ̄ :
P(S) → P(T ) be the associated homomorphism defined by taking subset images.
Note that if ϕ is onto, so is ϕ̄.
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Proposition 3.5. Let ϕ : S → T be an onto homomorphism between finite semi-
groups. Let U be a subsemigroup of P(S) and let V = ϕ̄(U) be its image in P(T ).
Then CR(V ) = ϕ̄(CR(U)).

Proof. Obviously, the singleton subsets of S map onto the singleton subsets of T .
Since ϕ respects the Green relations, given an R-class R of U , ϕ̄(R) is contained in
some R-class R′ of V and so ϕ̄(

⋃

R) ⊆
⋃

R′. It follows that ϕ̄(DR(U)) ⊆ CR(V ).
Moreover, if X ⊆ S is such that ϕ̄(X) ∈ CR(V ) and Y ⊆ X , then the set ϕ̄(Y )
is contained in ϕ̄(X) and therefore it also belongs to CR(V ). Hence ϕ̄(CR(U)) ⊆
CR(V ).

For the converse, suppose that R′ is an R-class of V . Then, by Lemma 3.4,
there is an R-class R of U such that ϕ̄(R) = R′. It follows that ϕ̄(

⋃

R) =
⋃

R′.
Together with the earlier observation on the behaviour of ϕ̄ on singleton sets, this
implies that DR(V ) ⊆ ϕ̄(DR(U)). Suppose next that X ′ ∈ DR(V ) and Y ′ ⊆ X ′.
Then there exists X ∈ DR(U) such that ϕ̄(X) = X ′, which implies that Y ′ = ϕ̄(Y ),
where Y = ϕ̄−1(Y ′) ∩ X , and whence Y ∈ CR(U). Hence CR(V ) ⊆ ϕ̄(CR(U)),
which completes the proof of the proposition. �

Iterating the application of Proposition 3.5, we obtain the following result.

Corollary 3.6. If ϕ : S → T is an onto homomorphism between finite semigroups,
then ϕ̄(Cω

R
(S)) = Cω

R
(T ).

We say that a semigroup S has a content homomorphism c if there exists an
onto continuous homomorphism ψ : ΩAS → S and a homomorphism c : S → P(A)
into the union-semilattice of subsets of A, such that c ◦ ψ sends each a ∈ A to the
singleton subset {a}. In this case, the content of s ∈ S is c(s).

Corollary 3.7. If the equality Cω
R
(S) = PR(S) holds for all finite semigroups with

a content homomorphism, then it holds for all finite semigroups.

Proof. Let T be a finite A-generated semigroup, let ψ : A+ → T be an onto
homomorphism, and let S be the subsemigroup of T ×P(A) generated by all pairs
(ψ(a), a). Then, S has a content homomorphism given by the projection on the
second component.

It is easy to see that, for every pseudovariety V and every onto homomorphism
ϕ : S → T between finite A-generated semigroups, ϕ̄(PV(S)) = PV(T ). (If X ⊆ S
is V-pointlike and µT : T → U ∈ V is a relational morphism, use the relational
morphism µT ◦ϕ : S → U to show that ϕ(X) is µT -pointlike; if Y ⊆ T is V-pointlike
and µS : S → U ∈ V is a relational morphism, use µS ◦ ϕ−1 : T → U to find a µS-
pointlike set X ⊆ S such that ϕ(X) = Y .) Since the projection (ψ(x), x) 7→ ψ(x)
from S to T is indeed an onto homomorphism, in view of Corollary 3.6 it suffices
to prove the equality Cω

R
(S) = PR(S) to prove that Cω

R
(T ) = PR(T ). �

3.2. Structure of PR(S). In this subsection, we assume that we are given an A-
generated finite semigroup S with an onto homomorphism ψ : A+ → S and a
content homomorphism.

Lemma 3.8. Let X be an R-pointlike subset of S which consists of idempotents.
Then all elements of X have the same content B, and Xψ(B+) is an R-pointlike
subset of S.

Proof. Since X ∈ PR(S), there exists, by Proposition 2.1, a function δ : X →
ΩAS such that pR ◦ δ is a constant function, and ψ(δ(e)) = e for every e ∈ X .
Since e is idempotent, we obtain ψ(δ(e)ω) = e, and we may as well assume that
each δ(e) is idempotent. Since the semilattice P(A) belongs to R, the continuous
homomorphism c ◦ ψ factors through ΩAR. Hence all elements e of X have indeed
the same content B = c(e).
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Extend δ to a function ε : Xψ(B+) → ΩAS by choosing for each element s
of Xψ(B+) \ X a word w ∈ B+ and e ∈ X such that s = eψ(w) and letting
ε(s) = δ(e)w. Then ψ(ε(s)) = s for every s ∈ Xψ(B+) and pR ◦ ε is a constant
function with the same value as pR ◦ δ. Hence Xψ(B+) belongs to PR(S). �

Let U be the subsemigroup of P(S) generated by the singleton subsets together
with the subsets of the form Xψ(B+), where X ∈ PR(S) consists of idempotents
and B is the content of the elements of X .

Proposition 3.9. We have PR(S) = ↓U .

Proof. By Lemma 3.8, we have the inclusion U ⊆ PR(S) and, therefore, also the
inclusion ↓U ⊆ ↓PR(S) = PR(S). For the reverse inclusion, let X = {s1, . . . , sn} ∈
PR(S). By Proposition 2.1, there exist x1, . . . , xn ∈ ΩAS such that ψ(xi) = si

for i = 1, . . . , n and R |= x1 = · · · = xn. By Proposition 2.3, all xi’s have the
same content B. We show by induction on |B| that X ∈ ↓U . If |B| = 0, then
X = ∅ ∈ ↓U . For the induction step, by Corollary 2.5 we have a factorization (2.2)
for each xi.

Assume first that no pR(xi) is idempotent. Then k = ‖xi‖, which does not de-
pend on i by Proposition 2.3, is finite by Proposition 2.4. By Corollary 2.5, we have
c(xi,ℓ) $ B and c(zi,k) $ B for 1 6 i 6 n and 1 6 ℓ 6 k, and also R |= xi,ℓ = xj,ℓ

and R |= zi,k = zj,k. This makes it possible to apply the induction hypothesis to the
subsets Xℓ = {ψ(xi,ℓ) : i = 1, . . . , n} (ℓ = 1, . . . , k) and Z = {ψ(zi,k) : 1 6 i 6 n} of
S, which therefore belong to ↓U . Now, X ⊆ X1{ψ(a1)}X2{ψ(a2)} · · ·Xk{ψ(ak)}Z,
hence X ∈ ↓U .

Assume next that all xi’s are idempotent over R, so that by Corollary 2.5, there
exist indices p and q such that 1 6 p, q 6 |S|n + 1 and (2.4) holds for all 1 6 i 6 n.
Choose zi ∈ B+ such that ψ(zi) = ψ(zi,p) and set ei = ψ(xi,p+1ap+1 · · ·xi,p+qap+q)

ω,
so that si = ψ(xi,1a1 · · ·xi,pap)·ei·ψ(zi) . By Corollary 2.5, we have c(xi, ℓ) $ B and
R |= xi,ℓ = xj,ℓ for all 1 6 i, j 6 n and 1 6 ℓ 6 k. Therefore, the setsXℓ = {ψ(xi,ℓ) :
i = 1, . . . , n} belong to ↓U by induction hypothesis. Further, E = {e1, . . . , en} is
a set of idempotents and is R-pointlike. Hence E{ψ(zi) : 1 6 i 6 n} ⊆ Eψ(B+)
belongs to U , by definition of U . Therefore, X ⊆ X1{ψ(a1)} · · ·Xp{ψ(ap)}Eψ(B+)
also belongs to ↓U . �

3.3. The algorithm à la Henckell.

Lemma 3.10. Let F be a set of idempotents of S and suppose that there are
X,Y,Q ∈ Cω

R
(S) such that F ⊆ XQY . Then F ∪ FQ also belongs to Cω

R
(S).

Proof. Let W be the union of the R-class of (XQY )ω in Cω
R
(S). Note that W ∈

Cω
R
(S). Since F consists of idempotents, certainly F is contained in (XQY )ω

and therefore also in W . Since (XQY )ωX RCω

R
(S) (XQY )ω, we deduce that also

FX ⊆ W . Hence F ∪ FX ∈ Cω
R
(S). Next, let Z be the union of the R-class of

(WQY )ω in Cω
R
(S), which is again an element of Cω

R
(S). Since FX ⊆ W and

F ⊆ XQY , we have F ⊆ (FXQY )ω ⊆ (WQY )ω ⊆ Z. Finally, since F ⊆ W ,
we have FQ ⊆ WQ. Again since F consists of idempotents, FQ ⊆ F · (FQ) ⊆
(WQY )ω ·WQ RCω

R
(S) (WQY )ω which implies that also FQ ⊆ Z. Hence F ∪ FQ

is contained in Z, whence it belongs to Cω
R
(S). �

Lemma 3.11. Let F be a set of idempotents of S, let Q1, . . . , Qn ∈ Cω
R
(S), and

suppose that F ∪ FQi ∈ Cω
R
(S) (i = 1, . . . , n). Then F ∪

⋃n

i=1 FQi also belongs
to Cω

R
(S).

Proof. Proceeding by induction, we assume that the set X = F ∪
⋃n−1

i=1 FQi be-
longs to Cω

R
(S) and we let Y = F∪FQn. Let Z be the union of the R-class of (XY )ω

in Cω
R
(S). Then Z ∈ Cω

R
(S) and, since F consists of idempotents and F ⊆ X ∩ Y ,
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we have F ⊆ (XY )ω ∩ (XY )ω−1X , which implies that X ⊆ FX ⊆ (XY )ωX ⊆ Z
and Y ⊆ FY ⊆ (XY )ω−1X · Y = (XY )ω ⊆ Z. This shows that X ∪ Y ⊆ Z and
proves the lemma. �

Lemma 3.12. Let F be a set of idempotents of S, Q1, . . . , Qm ∈ Cω
R
(S), and

suppose that there exist Xi, Yi ∈ Cω
R
(S) such that F ⊆

⋂m

i=1XiQiYi. Then F ∪
FQ1 · · ·Qm belongs to Cω

R
(S).

Proof. The case m = 1 is given by Lemma 3.10. Proceeding by induction on m, we
may as well assume that F ∪ FQ1 · · ·Qm−1 ∈ Cω

R
(S). Since F ∪ FXm is contained

in the union of the R-class of (XmQmYm)ω, we also have F ∪ FXm ∈ Cω
R
(S). By

Lemma 3.11, we deduce that W = F ∪ FXm ∪ FQ1 · · ·Qm−1 belongs to Cω
R
(S).

Let Z be the union of the R-class of (WQmYm)ω. Since F consists of idempotents,
F ⊆ XmQmYm, and FXm ⊆ W , we have F ⊆ (WQmYm)ω ⊆ Z. On the other
hand, since FQ1 · · ·Qm−1 ⊆W we also have FQ1 · · ·Qm ⊆ (WQmYm)ωWQm ⊆ Z
(since (WQmYm)ωWQm RCω

R
(S) (WQmYm)ω). Hence F ∪FQ1 · · ·Qm is contained

in Z, which shows that it belongs to Cω
R
(S). �

Proof of Theorem 3.1. We have Cω
R
(S) ⊆ PR(S) by Corollary 3.3. For the

reverse inclusion, we first use Corollary 3.7 to reduce it to the case where S is an
A-generated semigroup, under an onto continuous homomorphism ψ : ΩAS → S,
with a content homomorphism c : S → P(A). For X ⊆ S, let c̄(X) =

⋃

x∈X c(x).
We show, by induction on |c̄(X)|, that for all X ∈ PR(S) and for all a ∈ c̄(X), we
have

C(X, a) ∃Xa, Ya ∈ Cω
R (S) such that X ⊆ Xaψ(a)Ya.

Note that proving C(X, a) for all X ∈ PR(S) and a ∈ c̄(X) entails that PR(S) ⊆
Cω

R
(S). In case |c̄(X)| = 0, then X = ∅ and so certainly C(X, a) holds. Let

X ∈ PR(S) be nonempty, let c̄(X) = B, and assume inductively that C(Y, a) holds
for every Y ∈ PR(S) and a ∈ c̄(Y ) with |c̄(Y )| < |c̄(X)|. By Proposition 3.9,
X is included in a product U1 · · ·Uk, where each Ui is either a singleton, or of the
form Fψ(C+), where F is a pointlike set of idempotents of content C. Replacing
such a subset F by F ∩ ψ(B+), and C by C ∩ B, we may as well assume that
C ⊆ B, since c̄(X) = B. Furthermore, proving C(Fψ(C+), a), for such F and C,
and a ∈ C, yields in particular Ui ∈ Cω

R
(S), which then implies C(X, a). Therefore,

one can assume that X is of the form Fψ(C+) for an R-pointlike set F of idem-
potents of content C ⊆ B. If C $ B, then the induction hypothesis immediately
yields C(X, a), so we may as well assume that C = B.

Let F = {s1, . . . , sn}. Since F ∈ PR(S), there exist x1, . . . , xn ∈ ΩAS such that
ψ(xi) = si and R |= xi = xj (1 6 i, j 6 n). Since si is idempotent, ψ(xω

i ) = si and
one can assume that xi is idempotent. Let p, q be the integers given by Corollary 2.5.
Consider the k-iterated left basic factorizations (2.2) of xi for k > p + q, whose
factors satisfy (2.3) and (2.4). Choose zi ∈ B+ such that ψ(zi) = ψ(zi,p) and let
ei = ψ(xi,p+1ap+1 · · ·xi,p+qap+q)

ω and E = {e1, . . . , en}.
By (2.4), we have si = ψ(xi,1a1 · · ·xi,pap)eiψ(zi). By (2.3), the set Xℓ =

{ψ(xi,ℓ) : 1 6 i 6 n} is R-pointlike for 1 6 ℓ 6 p + q, and |c̄(Xℓ)| < |B|. By
induction hypothesis, C(Xℓ, a) holds for a ∈ c̄(Xℓ), and in particular Xℓ ∈ Cω

R
(S).

Therefore, Y = Xp+1ψ(ap+1) · · ·Xp+qψ(ap+q) ∈ Cω
R
(S), and E ⊆ Y ω also belongs

to Cω
R
(S). Let Z = {ψ(zi) : 1 6 i 6 n}. We have F ⊆ X1ψ(a1) · · ·Xpψ(ap)EZ and

EZ ⊆ Eψ(B+), so Fψ(B+) ⊆ X1ψ(a1) · · ·Xpψ(ap).E.Eψ(B+). Since all factors
of the right hand side of this inclusion are in Cω

R
(S), except perhaps Eψ(B+), and

since E itself appears as a factor of content B, to show that C(Fψ(B+), a), it is
sufficient to verify that:

(i) Property C(E, a) holds for all a ∈ B, and
(ii) Eψ(B+) ∈ Cω

R
(S).
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Clearly C(E, a) holds for a ∈ {ap+1, . . . , ap+q}, since E ⊆ Y ω, and Xℓ ∈ Cω
R
(S).

Otherwise, choose m ∈ {p + 1, . . . , p + q} such that a ∈ c(xi,m) for 1 6 i 6 n.
By induction hypothesis, there are X ′, Y ′ ∈ Cω

R
(S) such that Xm = X ′ψ(a)Y ′.

Hence E ⊆ Xaψ(a)Ya for Xa = Y ω−1Xp+1ψ(ap+1) · · ·Xm−1ψ(am−1)X
′ and Ya =

Y ′ψ(am)Xm+1ψ(am+1) · · ·Xp+qψ(ap+q). This proves (i) since Xa, Ya ∈ Cω
R
(S).

From Lemma 3.12, we deduce that, if w ∈ B+, then E ∪ Eψ(w) ∈ Cω
R
(S).

By Lemma 3.11, it follows that Eψ(B+) = E ∪
⋃

w∈B+ Eψ(w) ∈ Cω
R
(S) since

ψ(B+) is a finite set. This shows (ii), completes the induction step and proves the
theorem. �

3.4. Alternative proofs using tameness and canonical forms. We give al-
ternative proofs of Proposition 3.9 and Theorem 3.1. Recall that the canonical
implicit signature κ is { · , ω−1}. The V-free κ-semigroup over A is denoted Ωκ

AV.
We use a weak form of κ-tameness for R [7], and the canonical form of κ-terms
defined in [12]. These proofs require more knowledge on the pseudovariety R, but
are somewhat shorter and more elegant. They rely on the following statement.

Proposition 3.13. Let w1, . . . , wn ∈ Ωκ
AS be such that pR(wi) is independent of i.

Then each wi admits a factorization

(3.1) wi = u0v
ω
i,1ri,1u1 · · · v

ω
i,pri,pup

where:

(a) each uj is a possibly empty word,
(b) each vi,j and each ri,j is given by a κ-term,
(c) c(ri,j) ⊆ c(vi,j),
(d) the first letter of the first nonempty factor after ri,j, if there is such a factor,

does not belong to c(vi,j),
(e) the canonical form v̄j of vi,j is independent of i,
(f) the ω-term u0v̄

ω
1 u1 · · · v̄

ω
p up is in canonical form.

Proof. Each element w of Ωκ
AS has a representation as a term in the signature

{ . , ω−1}, consisting of the multiplication . and the unary (ω − 1)-power. We
recall from [12, Theorem 6.1] that we can associate to w a canonical form cf(w), ob-
tained by rewriting w using the following identities: (xy)ω = (xy)ωx = (xy)ωxω =
x(yx)ω , (xω)ω = xω, (xr)ω = xω, r > 2, and such that two terms have the same pro-
jection under pR if and only if their canonical forms are equal. Let u0v̄

ω
1 u1 · · · v̄ω

p up

be the common canonical form of w1, . . . , wn, where u0, . . . , up are possibly empty
words. This form is obtained using the above identities, which are either valid in
Ωκ

AS, or which add or remove a term u after an idempotent vω of larger content than
u. One can track back these rewritings, so that each wi has a factorization (3.1)
satisfying properties (a)–(f). Note that we use the identity xω−1 = xω.xω−1 to re-
place an (ω− 1)-power by an ω-power followed by a remainder, and that (d) comes
from the corresponding property for canonical forms. �

Alternative proof of Proposition 3.9. The inclusion ↓U ⊆ PR(S) follows from
Lemma 3.8. We have to show that PR(S) ⊆ ↓U . Let X ∈ PR(S). Since R is
κ-tame for systems of equations of the form x1 = · · · = xn [7], it follows that there
exists a function δ : X → ΩAS such that ψ(δ(s)) = s for every s ∈ X , pR ◦ δ is
a constant function, and each δ(s) is given by a κ-term. Let X = {s1, . . . , sn}
and let wi = δ(si) (i = 1, . . . , n). Then there are factorizations (3.1) satisfying
conditions (a)–(f) of Proposition 3.13. It follows that for j = 1, . . . , p, each set
Xj = {ψ(vω

i,j) : i = 1, . . . , n} is an R-pointlike subset of S consisting of idempotents.

Moreover, if Bj = c(vi,j), which is independent of i by (e), then {ψ(vω
i,jri,j) : i =

1, . . . , n} is contained in Xjψ(B+
j ). Hence X ∈ ↓U , which completes the proof of

the proposition. �
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Alternative proof of Theorem 3.1. As in the first proof, of Theorem 3.1, we
can assume that S has a content homomorphism. We show C(X, a) by induction
on |c̄(X)|, for all X ∈ PR(S) and all a ∈ c̄(X). The case |c̄(X)| = 0 is trivial. Let
X = {s1, . . . , sn} and assume inductively that C(Y, a) holds for every Y ∈ PR(S)
with |c̄(Y )| < |c̄(X)| and all a ∈ c̄(Y ). Since R is κ-tame for systems of the
form x1 = · · · = xn [7], by Proposition 3.13 there exist κ-terms wi such that
ψ(wi) = si and wi admits a factorization of the form (3.1) satisfying conditions
(a)-(f) of Proposition 3.13. Hence it suffices to show C(Fψ(B+), a) for all a ∈ B,
where F = ψ{vω

1 , . . . , v
ω
n} and the vi are given by κ-terms such that v̄ = pR(vi) is

independent of i, v̄ω is in canonical form, and B = c(v̄). Since F ⊆ F · Fψ(B+), it
suffices to show that

(i) Property C(F, a) holds for all a ∈ B, and
(ii) Fψ(B+) ∈ Cω

R
(S).

By definition of canonical form, v̄ has the form

(3.2) v̄ = z̄1a1 · · · z̄mam

for some z̄j given by ω-terms and some aj ∈ A such that c(v̄) = c(z̄jaj) % c(z̄j). By
the results of [12], each vi admits a corresponding factorization vi = zi,1a1 · · · zi,mam

such that zi,j ∈ Ωκ
AS and pR(zi,j) = z̄j (i = 1, . . . , n; j = 1, . . . ,m). Therefore, for

j = 1, . . . ,m, the sets Xj = ψ{z1,j, . . . , zn,j} are R-pointlike, and |c̄(Xj)| < |B|.
By the induction hypothesis applied to Xj, we conclude that C(Xj , a) holds for all
a ∈ c̄(Xj). In particular all Xj belong to Cω

R
(S). Now, F ⊆ X1ψ(a1) · · ·Xmψ(am),

which shows C(F, a) if a ∈ {a1, . . . , an}. Otherwise, let ℓ ∈ {1, . . . ,m} be such
that a ∈ c(z̄ℓ). Then, by induction hypothesis there are X ′, Y ′ ∈ Cω

R
(S) such that

Xℓ = X ′ψ(a)Y ′. Hence F ⊆ Xaψ(a)Ya for Xa = X1ψ(a1) · · ·Xℓ−1ψ(aℓ−1)X
′ and

Ya = Y ′ψ(aℓ)Xℓ+1ψ(aℓ+1) · · ·Xmψ(am). This proves (i) since Xa, Ya ∈ Cω
R
(S).

From Lemma 3.12, we deduce that, if w ∈ B+, then F ∪ Fψ(w) ∈ Cω
R
(S). By

Lemma 3.11, it follows that Fψ(B+) = F ∪
⋃

w∈B+ Fψ(w) ∈ Cω
R
(S) since ψ(B+)

is a finite set. This proves (ii), and by the above reductions, this completes the
induction step and proves the theorem. �

4. An algorithm to compute J-pointlike sets

In this section, we describe an algorithm to compute J-pointlike subsets of a finite
semigroup S. While the algorithm for R consists in replacing H by R in Henckell’s
construction, replacing H by J does not work, as explained in Section 5. Recall
from Subsection 3.1 that, taking an expansion if necessary, one can assume that S
has a content homomorphism.

A well-known characterization of equality of idempotents over J [1] states that,
given two pseudowords x, y ∈ ΩAS, xω and yω have the same projection onto J if
and only if c(x) = c(y). Furthermore, for all z ∈ ΩAS such that c(z) ⊆ c(x), we
have J |= zxω = xω = xωz. Using these properties, one immediately deduces that
a set F ⊆ S of idempotents is J-pointlike if and only if all elements of F have the
same content. Moreover, for such a set F , we have ψ(B+)Fψ(B+) ∈ PJ(S), a result
analogous to Lemma 3.8.

We also have a notion of J-canonical factorization of a pseudoword, which plays
here the same role as the factorizations of Corollary 2.5 or Proposition 3.13 for R.

Theorem 4.1 ([1], [2, Theorem 8.1.11]). Every pseudoword x ∈ ΩAS has a factor-
ization x = x1 · · ·xk, called J-canonical, satisfying the following properties:

– for every i = 1, . . . , k, either xi ∈ A+ or pJ(xi) is idempotent;
– xi and xi+1 are not both in A+;
– if pJ(xi) and pJ(xi+1) are idempotent, then c(xi) and c(xi+1) are not comparable;
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– if pJ(xi) is idempotent and xi+1 (resp. xi−1) is in A+, then the first (resp. the
last) letter of xi+1 (resp. xi−1) does not belong to c(xi).

Moreover, if x = x1 · · ·xk and y = y1 · · · yℓ are J-canonical factorizations and if
J |= x = y, then k = ℓ and J |= xi = yi for all 1 6 i 6 k. This implies that either
xi and yi are both in A+, or their projections into J are both idempotent. In the
first case, they are equal and in the second case, they have the same content.

Theorem 4.1 makes it possible to repeat for J, mutatis mutandis, the proof of
Proposition 3.9 to deduce Proposition 4.2 below. Observe however that Proposi-
tion 4.2 gives an algorithm to compute J-pointlike sets. This is in contrast with
Proposition 3.9, where the candidates for the set F , belonging to PR(S), could not
be computed directly. The point here is that for J, we know how to characterize and
to compute sets of idempotents which are pointlike, just by inspecting the contents
of their elements.

Proposition 4.2. Let S be a finite semigroup with a content homomorphism and
ψ : ΩAS → S be an onto continuous homomorphism. Let U be the subsemigroup
of P(S) generated by the singleton subsets together with the sets ψ(B+)Fψ(B+),
where B ⊆ A and F is a set of idempotents of S, all of them of content B. Then
PJ(S) = ↓U .

5. Some examples

5.1. Behavior of Henckell’s construction for J. For a subsemigroup U of P(S),
denote by DJ(U) the subsemigroup generated by all singleton sets of P(S) together
with the subsets of the form

⋃

X∈J X , where J is a J-class of U . Let then CJ(U) =

↓DJ(U). Define C0
J
(S) =

{

{s} : s ∈ S
}

and, for n > 0, let Cn
J
(S) = CJ(C

n−1
J

(S)).
Finally, let Cω

J
(S) =

⋃

n>0 C
n
J
(S).

It is tempting to guess that Cω
J
(S) = PJ(S). Perhaps surprisingly, this is not

the case, as shown by the following counterexample. Let S1 be the semigroup on
two generators a, b given by the following presentation: (bab)2 = bab, (aba)2 = aba,
a2ba2 = a2, b2ab2 = b2, a3 = b3 = (ba)2 = (ab)2 = a2b2 = b2a2 = 0. Its
Green relation structure is summarized in the diagram of Figure 1. Call J0 and

ba

baab

∗ab
2

ab
2
ab ab

2
a

bab
2

∗bab bab
2
a

b
2

b
2
ab ∗b

2
a

∗a
2
b a

2
ba a

2

aba
2
b ∗aba aba

2

ba
2
b ba

2
ba ∗ba

2

∗0

Figure 1. The semigroup S1

J1 the regular nontrivial J-classes. Then, the subset F of all idempotents of S1

is J-pointlike since all idempotents have content {a, b}. Consequently, the subset
X = S1 \ {a, b, ab, ba} = J0 ∪ J1 ∪ {0} is also J-pointlike, because it is obtained
by multiplying F by elements of content contained in {a, b}. On the other hand,
one can compute Cω

J
(S1). By definition, DJ(C

0
J
(S1)) is the subsemigroup of P(S1)
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generated by the singletons and the J-classes of S1. For ℓ = 0, 1, multiplying an
element from Jℓ by any element of S1 yields an element of Jℓ∪{0}. Hence C1

J
(S1) ⊆

↓
{

{a}, {b}, {ab}, {ba}, J0∪{0}, J1∪{0}
}

. For the same reason, no element of C1
J
(S1)

intersecting J0 can be J-equivalent with an element intersecting J1. Therefore, we
have C2

J
(S1) = C1

J
(S1) = Cω

J
(S1) and X = J0 ∪ J1 ∪ {0} ∈ PJ(S1) \ Cω

J
(S1).

5.2. Subsemigroup of P(S) generated by PR(S) and PL(S). Another question
is whether PJ(S) = ↓〈PR(S)∪PL(S)〉. The answer is negative, as is again witnessed
by the semigroup S1 of Figure 1. Since J ⊆ R∩L, we have ↓〈PR(S)∪PL(S)〉 ⊆ PJ(S)
for all S. On the other hand, we claim that J0∪J1∪{0} /∈ ↓〈PR(S1)∪PL(S1)〉. Let
indeed {s0, s1} ∈ PR(S1) with s0 6= s1, and let ui be an element of ΩAS projecting
to si and such that pR(u0) = pR(u1). In particular, u0 and u1 have the same prefix
of length 4. This implies that their images in S1 lie in the same ideal J0 ∪ {0}
or J1 ∪ {0}. Dually, no L-pointlike can intersect both J0 and J1. Therefore, this
property also holds for elements of ↓〈PR(S1) ∪ PL(S1)〉, which proves the claim.

5.3. Pointlike subsets of a join. In general, being both V and W-pointlike does
not entail being V ∨ W-pointlike [26]. The diagram of Figure 2 gives the Green
relation structure of a semigroup S2 with a subset which is both R and L-pointlike
but which is not R ∨ L-pointlike. The semigroup S2 is given by the following pre-
sentation: the set of generators is A = {a, b, c, d} and the relations are aba = a,
bab = b, dab = abc, da2b = ab2c, ac = ad = cb = c2 = cd = db = dc = d2 = 0,
a3 = b3 = a2b2 = b2a2 = a2bd = cab2 = cabd = 0. Then

∗ab a

b ∗ba

c d

a
2
b a

2

ba
2
b ba

2 cab ca
abd

bd

ab
2

ab
2
a

b
2

b
2
a

ca
2
b ca

2 abc da

bc ∗bca

ab
2
d

b
2
d

ab
2
c da

2

b
2
c ∗b

2
ca

∗0

Figure 2. The semigroup S2

{abc, ab2c} = {(ab)ωc, (ab)ωbc} ∈ PR(S2)

and
{abc, ab2c} = {dab, da2b} = {d(ab)ω, da(ab)ω} ∈ PL(S2)

but {abc, ab2c} /∈ PR∨L(S2) since, for the natural continuous homomorphism ϕ :
ΩAS → S2,

ϕ−1(abc) = (ab)+ c (ab)∗ ∪ (ab)∗ d (ab)+

ϕ−1(ab2c) = (ab)+ bc (ab)∗ ∪ (ab)∗ da (ab)+



12 JORGE ALMEIDA, JOSÉ CARLOS COSTA, AND MARC ZEITOUN

where L denotes the topological closure of L in (ΩAS)1. Indeed, by a result of the
first author and Azevedo [6] (see [2, Theorem 9.2.13]), there is no pseudoidentity
valid in R∨L in which one side belongs to ϕ−1(abc) and the other to ϕ−1(ab2c), and
so the set {abc, ab2c} is not pointlike with respect to the relational morphism µR∨L.

5.4. An example where C1
R
(S) differs from Cω

R
(S). Our algorithm for comput-

ing R-pointlike sets does not stop, in general, after the first iteration. An example
is given by the semigroup S3 whose Green relation structure is given in Figure 3. A
presentation on {a, b} is a3 = a, b2 = (ba)2ab = ba(ab)2 = 0, (ba)2b = bab = a(ab)2,
(ba2)2b = ba2b.

a

∗a
2 b

a
2
b

ab
ba

2
ba

a
2
ba

2
a
2
ba

aba
2

aba

R5,0 (ba)2a ∗(ba)2 bab

R5,1 ∗(ab)2a2 (ab)2a ∗(ab)2

∗(a2
b)2a2 (a2

b)2a ∗(a2
b)2 R6,0

(aba)2a ∗(aba)2 aba
2
b R6,1

∗(ba2)2 ba
2
ba ba

2
b R6.2

∗0

Figure 3. The semigroup S3

By definition, the elements of C1
R
(S) are the subsets of elements of the semigroup

generated by the singletons and the R-classes. One can check that it is exactly
made up of the subsets of the R-classes and of the following nine subsets of the
semigroup S3:

J2 = J0J1

J4 = J2J3

(J2R6,0)
2 = {0} ∪R6,0 ∪R6,1

R6,2R6,2 = R6,2 ∪ {0}

(J1J4)
2 = {0, ba2ba, (ba2)2, (ba)2, (ba)2a}

X = (J4J1)J2 = {0, bab, ba2b}

J0X = {0, (a2b)2, aba2b, (ab)2, bab}

J0XJ0 = {0, (a2b)2a, (a2b)2a2, aba2ba, a(ba2)2, (ab)2a, (ab)2a2, (ba)2, (ba)2a}

J0XR5,2 = {0, (ab)2, (ab)2a, (ab)2a2, bab, (ba)2, (ba)2a}.

However, it does not contain {(ab)2a, (a2b)2}, which is R-pointlike since (ab)2a =
(aω+1b)ωa and (a2b)2 = (aωb)ω, and R |= (aω+1b)ωa = (aωb)ω.

It should be possible to use the same idea to show that, for every n > 0 there
exists a finite semigroup S for which Cn

R
(S) 6= Cω

R
(S), but we have not attempted

to prove it.
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6. Conclusion

In this paper, we have presented two algorithms which can be used to test
whether a subset X of a finite semigroup is R or J-pointlike. Both algorithms
work by generating pointlike subsets until X is found or all pointlike subsets have
been generated. We do not know whether there are more efficient algorithms, whose
complexity would depend also on X . One possible track would be to compute the
closures of the preimages of elements of X in ΩAS and testing emptiness of the
intersection of their projections on R or J.

References

1. J. Almeida, Implicit operations on finite J–trivial semigroups and a conjecture
of I. Simon, J. Pure Appl. Algebra 69 (1990), 205–218.

2. , Finite Semigroups and Universal Algebra, Series in Algebra, vol. 3,
World Scientific, 1995.

3. , Some algorithmic problems for pseudovarieties, Publ. Math. Debrecen
54 (1999), 531–552, Automata and formal languages, VIII (Salgótarján, 1996).
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