
A COUNTEREXAMPLE TO A CONJECTURE CONCERNING

CONCATENATION HIERARCHIES

JORGE ALMEIDA AND ONDŘEJ KLÍMA

Abstract. We give a counterexample to the conjecture which was originally formulated by
Straubing in 1986 concerning a certain algebraic characterization of regular languages of level
2 in the Straubing-Thérien concatenation hierarchy of star-free languages.

1. Introduction

This paper contributes to one of the most interesting open problems in the theory of reg-
ular languages, namely the effective characterization of languages of the second level in the
Straubing-Thérien concatenation hierarchy of star-free languages. For a detailed overview,
missing definitions, and complete references we refer to the basic survey paper [5], where Sec-
tion 8.1 is devoted to the Straubing-Thérien hierarchy and Section 8.5 contains a conjecture
concerning the second level, which is the main topic of this paper.

The individual levels of the Straubing-Thérien hierarchy are defined inductively by alternately
taking polynomial and Boolean closures, starting from the trivial variety of languages. It is
decidable whether a given regular language belongs to each of the levels 0, 1/2, 1 and 3/2,
but no algorithm is known to decide the same problem for level 2 or higher. Since the class
V2 of all languages from the second level forms a variety of languages, one can consider the
corresponding pseudovariety of monoids V2 according to Eilenberg’s correspondence. Thus the
main longstanding open problem in the topic is the membership problem for the pseudovariety
of monoids V2, i.e. the problem of deciding whether a given finite monoid belongs to V2.

It was proved in [6] that the languages from the second level V2 are the finite Boolean combi-
nations of the languages of the form A∗

0a1A
∗

1a2 . . . akA
∗

k, where the ai’s are letters and the Aj ’s
are subsets of A. Also some algebraic characterizations of the class V2 were established in [6].
Here we only recall that V2 = PJ, where PJ is the pseudovariety of finite monoids generated by
all power monoids P(M), where M is an arbitrary finite J -trivial monoid. Unfortunately, there
is no general algorithm to compute the power operator [2], even though many computations on
specific pseudovarieties have been carried out [1, Chapter 11]. Perhaps surprisingly, none of the
mentioned nontrivial results has so far led to any solution of the membership problem for V2.

Straubing conjectured that V2 is equal to a certain pseudovariety CJ which is given by an
effective description. Straubing’s conjecture was originally formulated in [12], while it was not
repeated in the full version of that paper [13]. Later Straubing and Weil corrected a certain
technical error contained in [13] and stated the equality V2 = CJ as Conjecture 2.5 in [14].
Straubing proved the inclusion V2 ⊆ CJ and that the classes V2 and CJ do not differ on monoids
generated by two elements. It has also been shown by Cowan [3, 4] that the two classes contain
precisely the same inverse monoids. The notation CJ is not used in [5], but it is used for example
in [1, page 400], where defining pseudoidentities for the variety CJ can be found.

We will use the alternative formulation of the Straubing conjecture based on the equality
CJ = B1 ©m Sl, which follows from non-trivial general results given by Pin and Weil in [7] (see
also [5, Theorem 6.5]). Here ©m is the Mal’cev product [5, Section 6], B1 is the pseudovari-
ety of finite semigroups corresponding to the variety of languages of dot-depth one, and Sl is
the pseudovariety of finite semilattices. A general conjecture [5, Conjecture 8.1] concerning
the Boolean-polynomial closure was formulated by Pin and Weil originally in [9]. Although
the general conjecture was corrected in [10], all these adaptations did not change the original
Straubing conjecture for the class V2, so the present-day conjecture is the following.
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Conjecture (Pin, Straubing, Weil [9, 10, 12, 13, 14]). V2 = B1 ©m Sl.

In this paper we provide a counterexample to this conjecture, and consequently also to the
generalization from [10].

Theorem. V2 6= B1 ©m Sl.

This of course does not solve the original problem of effectively characterizing V2 and in a
sense it shows that the situation is rather more complicated than expected. Yet, our method
does provide a tighter upper bound for V2 which opens new paths for attacking the problem.

In Section 2, we recall the few preliminaries that are required for the proof of the theorem,
which is presented in Section 3.

2. Preliminaries

There are two parallel theories of varieties of languages, namely ∗-varieties of languages
and +-varieties of languages. In the first case, languages are subsets of A∗ and ∗-varieties of
languages correspond to pseudovarieties of monoids according to Eilenberg’s correspondence,
while, in the second case, languages are subsets of A+ and +-varieties of languages correspond
to pseudovarieties of semigroups. See [5, Section 1 and 4] for details. Here we note only
that some operations have a different interpretation in these two theories, such as language
complementation. Positive varieties of languages have been considered in both cases [5, Section
4].

By Reiterman’s Theorem [11], pseudovarieties of algebras are defined by pseudoidentities.
We will need this concept only for pseudovarieties of monoids. In this case, pseudoidentities
are formal equalities of implicit operations, which are operations whose interpretation in finite
monoids commutes with homomorphisms. Reiterman’s Theorem has been extended by Pin and
Weil [8] in particular to pseudovarieties of ordered monoids, the equality (of implicit opera-
tions) being replaced by the order relation. A pseudovariety of monoids can be viewed as a
pseudovariety of ordered monoids by endowing its elements with all possible compatible partial
orders.

Besides so-called explicit operations given by words, the most familiar example of implicit
operation is the ω-power, which associates to each element m of a finite monoid its unique
idempotent power mω = mn (n > 0). All implicit operations over a fixed finite set A form a
compact monoid under a natural topology, namely the free profinite monoid FA on the set A,
in which the discrete submonoid generated by A, whose elements are the explicit operations, is
a free monoid and thus is identified with A∗. In particular, if we let PA denote the monoid of all
subsets of A under the union operation, endowed with the discrete topology, then the natural
mapping A → PA induces a continuous homomorphism α : FA → PA. The restriction of α to
A∗ is the familiar content function and, more generally, a letter a ∈ A belongs to α(u) for a
given implicit operation u ∈ FA if and only if there is a factorization of the form u = xay with
x, y ∈ FA. Thus, α is still called the content function. See [1, Section 8.1] for further details.

Trivially, PA is a semilattice, i.e. a commutative and idempotent monoid. Moreover, since
PA is a relatively free profinite monoid on the set A in the class Sl, for u, v ∈ FA, we have
Sl |= u = v if and only if α(u) = α(v). Note that the ∗-variety of languages corresponding to
Sl is formed by finite Boolean combinations of languages of the form A∗aA∗, where a is a letter
from an alphabet A. The pseudovariety Sl is also often denoted J1, for example in [5].

A subset of A+ is a language of dot-depth one if it is a finite Boolean combination of lan-
guages of the form w0A

∗w1A
∗ . . . A∗wk−1A

∗wk, where k ≥ 0, w0, . . . , wk ∈ A∗, and at least one
wi ∈ A+. The languages of dot-depth one constitute a +-variety of languages and the corre-
sponding pseudovariety of semigroups is the B1 of Straubing’s conjecture. For the definition
of the dot-depth hierarchy, connections to the Straubing-Thérien hierarchy, and details on the
pseudovariety B1, we refer to [5, Section 8.2].

Finally, we recall the characterization of V3/2, the level 3/2 of the Straubing-Thérien hierarchy.
It consists of finite unions of languages of the form A∗

0a1A
∗

1a2 . . . akA
∗

k, where each Ai ⊆ A and
each aj ∈ A, and it forms a positive ∗-variety of languages.
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Proposition 1 ([9, Theorem 8.7], [5, Theorem 8.9]). A language is of level 3/2 if and only
if its ordered syntactic monoid satisfies the pseudoidentity uωvuω ≤ uω for all u, v such that
α(u) = α(v).

Note that the aperiodicity pseudoidentity xω+1 = xω is a consequence of pseudoidentities
from Proposition 1. The pseudovariety of ordered monoids corresponding to V3/2 is denoted
V3/2.

3. Proof of the theorem

For the proof of the theorem, we give a certain pseudoidentity which is satisfied in V2 and a
monoid M ∈ B1 ©m Sl such that M does not satisfy this pseudoidentity. In other words we have
M ∈ B1 ©m Sl and M 6∈ V2.

The following proposition gives new pseudoidentities for the pseudovariety V2.

Proposition 2. Let u and v be implicit operations such that V3/2 |= u ≤ v. Then V2 |= uω =
uωvuω.

Proof. Since V2 is the Boolean closure of V3/2, it is clear that V2 |= s = t if and only if
V3/2 |= s = t, i.e. if and only if V3/2 |= s ≤ t and V3/2 |= t ≤ s.

From the assumption V3/2 |= u ≤ v, we deduce that α(u) = α(v) because Sl ⊆ V3/2. From
Proposition 1, we obtain immediately V3/2 |= uωvuω ≤ uω.

When we multiply u ≤ v by uω from both sides, we obtain uωuuω ≤ uωvuω. Since V3/2 |=

xω+1 = xω, we conclude that V3/2 |= uω ≤ uωvuω. �

We consider the following implicit operations over the set of variables X = {x, y, z}:

π = (xy)ωx , ρ = z π π z , σ = z π z .

Proposition 3. The pseudovariety of finite monoids V2 satisfies the following pseudoidentity

(1) ρω = ρωσ ρω.

Proof. Applying Proposition 1 to the pair of explicit operations xy and xxy, we obtain that
V3/2 satisfies the pseudoidentity (xy)ωxxy(xy)ω ≤ (xy)ω. If we multiply it by x on the right,
then we deduce that V3/2 |= ππ ≤ π. Hence V3/2 |= ρ ≤ σ and the statement follows from
Proposition 2. �

In the sequel, we consider a monoid M which is the transformation monoid of the automaton
over the alphabet A = {a, b, c} given in Figure 1.

1 2

3

ac

a

b

a, b

b, c

Figure 1. An automaton representation of the monoid M .

Note that the automaton is incomplete since there is no action of the letter c on state 2.
Hence the elements of the monoid M are partial transformations. In Figure 2 we can see the
structure of the monoid M using the usual eggbox representation of J -classes, where a ∗ marks
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∗
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Figure 2. The eggbox picture of the monoid M .

a subgroup H-class. A crucial observation is that the partial transformation c has incomplete
domain and one-element range. Hence each transformation given by a word containing the letter
c has one-element range or it is the empty transformation, i.e. the element 0. An elementary
calculation shows that all partial transformations from M which have one-element ranges are
J -related. Further, the ideal generated by the element c, denoted by McM , consists of the two
bottom J -classes of M and hence it is a completely 0-simple semigroup.

Proposition 4. M ∈ B1 ©m Sl.

Proof. To prove the statement, we describe a relational morphism [5, Section 6] τ from M to the
semilattice PA. Let ϕ : A∗ → M be the morphism identifying letters from the fixed alphabet
A = {a, b, c} with the corresponding elements of M , i.e. with partial transformations on the
three element set {1, 2, 3}.

Now we consider the relational morphism τ : M → PA, given by the formula

τ(m) = {α(w) | w ∈ A∗, ϕ(w) = m}, for m ∈M.

It is clear that τ is indeed a relational morphism as τ = α ◦ϕ−1. Since PA ∈ Sl, it is enough to
prove that for each B ∈ PA we have τ−1(B) ∈ B1.

For B = ∅, the subsemigroup τ−1(B) is a singleton. Now assume that B 6= ∅ and c 6∈ B. The
automaton obtained from that in Figure 1 by changing the action of the letter c to let it act
like the letter b is the minimal automaton of the language A∗aaA∗, which is of dot-depth one.
The transformation semigroup of this automaton, i.e. the syntactic semigroup of the language
A∗aaA∗, is the subsemigroup of M generated by the letters a and b, which is usually denoted
A2 in the literature. This syntactic semigroup belongs to B1, whence so does its subsemigroup
τ−1(B).

If we assume that c ∈ B, then τ−1(B) is a subsemigroup of the completely 0-simple semigroup
McM . Note that every aperiodic completely 0-simple semigroup is locally a semilattice. It
is well known [5, Theorem 5.18] that the pseudovariety of semigroups consisting of all local
semilattices LSl corresponds to the +-variety of all locally testable languages, which are Boolean
combinations of languages of the form wA∗, A∗w or A∗wA∗ with w ∈ A+. Since every locally
testable language is of dot-depth one, we conclude that McM ∈ LSl ⊆ B1. The required
property τ−1(B) ∈ B1 follows. �

We finish the proof of the theorem with the following observation.

Proposition 5. The monoid M does not satisfy the pseudoidentity (1).
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Proof. We consider the substitution ψ : FX → M given by the rules ψ(x) = a, ψ(y) = b,
ψ(z) = c. Then it is easy to check that ψ(π) = (ab)ωa = a, ψ(ρ) = caac = c, ψ(σ) = cac = 0.
Finally, we have ψ(ρω) = c 6= 0 = ψ(ρωσ ρω). �
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