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Abstract

Many problems in equivariant bifurcation theory involve the computa-
tion of invariant functions and equivariant mappings for the action of a torus
group. We discuss general methods for finding these based on some elemen-
tary considerations related to toric geometry, a powerful technique in algebraic
geometry. This approach leads to interesting combinatorial questions about
cones in lattices, which lead to explicit calculations of minimal generating sets
of invariants, from which the equivariants are easily deduced. We also describe
the computation of Hilbert series for torus invariants and equivariants within
the same combinatorial framework. As an example, we apply these methods
to the interaction of two linear modes of a Euclidean-invariant PDE on a
rectangular domain with periodic boundary conditions.

Introduction

Equivariant bifurcation theory is the study of parametrised families of ODEs

dzx

(1)

when the vector field f is equivariant under a group action. More specifically, we
shall work in the following context: x € R™, A € RP? is a bifurcation parameter, and
f is a smooth vector field on R™. Let I be a compact Lie group acting linearly on
V =R™. We say that a vector field A on V is I'-equivariant if

h(yx) = yh(z) Vy el



and a function ¢ : V — R is I'-invariant if

g(yr) =g(x) Vy el

In equivariant bifurcation theory we usually assume that I' acts trivially on the
bifurcation parameter A and that f is equivariant in z, so that f(yz, ) = vf(z, A).

The analysis of (1) depends upon obtaining fairly detailed information about
equivariant maps f. For the following discussion we temporarily suppress the pa-
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rameter A\, to simplify notation. The space £y (I') of smooth equivariants is a
%

module over the ring (') of smooth invariants. Moreover, the structure of £y (I')

as a module over &y (I') can be inferred easily from their analogues 5‘/ (T') and
Py (T') for polynomial mappings, by virtue of well known theorems of Poénaru and
Schwartz; see Golubitsky et al. [17]. These results place the problem within the
ambit of classical invariant theory, so that in essence it becomes an algebraic (or
algebro-geometric) question.

It is usually fairly difficult to determine Py (I") and 7_5‘/ (T'), however, except in
simple cases. For example, when I' = SO(3) and R™ is the 7-dimensional space of
spherical harmonics of degree 3, this calculation is already quite complicated and
technical (see for example Lauterbach [30]).

From the point of view of invariant theory, one of the best-behaved classes of
groups comprises the torus groups

TF~8'x---x 8!

—_—
k

where S! = R/27Z is the circle group. Any torus action can be diagonalized over
the complex numbers. Each invariant polynomial (under T¥) is a linear combination
of invariant monomials. In particular, there are minimal generating sets for the ring
of invariants that contain only monomials. Moreover, the invariant monomials are
in one-to-one correspondence with the elements of a semigroup S. See for example
Wehlau [41] and Kempf [29]. This semigroup was studied by Gordan [22] (see also
Danilov [12]), where the ring of T*-invariant polynomials is proved to be a finitely
generated algebra by showing that S is finitely generated as a semigroup. This fact
permits the introduction of combinatorial methods when determining invariants and
equivariants. Moreover, the equivariants can easily be deduced from the invariants,
Gomes and Stewart [20]. The invariant theory of torus actions falls within the area
of algebraic geometry known as toric geometry, the study of toric varieties, surveyed
in Danilov [12].

Torus actions are natural in a variety of equivariant bifurcation problems arising
from applications. Typically, the appropriate symmetry group is not a torus as
such, but a finite extension of a torus. That is, the connected component I'° of the
identity of I' is a torus, and Q = I'/T"° is finite (as it must be for compact I'). The
invariants and equivariants for I' can therefore be found by first restricting to I'°,
and then symmetrizing over (). Circumstances in which such groups arise include:

e Bifurcating waves on a crystallographic lattice. The torus is generated by
translations modulo the dual lattice, and @ is the holohedry.



e Problems with circular or cylindrical geometry. Here there is a rotational
T' symmetry, and in the cylindrical case with periodic boundary conditions,
translations modulo the period convert this to T?. See for example the dis-
cussion of Couette-Taylor flow in Golubitsky and Stewart [16], Golubitsky et
al. [17].

e Say that a PDE posed on a domain Q C R¥ is Euclidean-invariant if the image
of any solution under a Euclidean transformation of R¥ (that is, a rigid motion)
is again a solution, see for example Melbourne [33]. Euclidean-invariant PDEs
on multidimensional rectangular domains with periodic boundary conditions
have torus symmetry. This fact has been extensively exploited in connection
with ‘hidden symmetries’ in analogous problems with Neumann or Dirichlet
boundary conditions. References include Crawford [5, 6, 7, 8], Crawford et
al. [9, 10], Armbruster and Dangelmayr [1], Dangelmayr and Armbruster [11],
Ashwin [2], Ashwin et al. [3], Castro [4], Gomes [18, 19], Gomes and Stew-
art [20, 21], Healey and Kielhofer [23, 24, 25], Impey [26], Impey et al. [27, 28],
Manoel [31], Manoel and Stewart [32], and Riley and Winters [36].

In this paper we make a start on putting together the powerful techniques of
toric geometry and the prevalence of torus group symmetry in equivariant bifur-
cation theory. Most of our discussion takes place within one family of examples:
steady-state mode interactions between solutions of a Euclidean-invariant PDE on
a rectangle Q C R?, subject to periodic boundary conditions. In section 2 we in-
troduce some elementary ideas and terminology from toric geometry. In section 3
we discuss invariants and equivariants for a special class of torus actions arising
in connection with mode interactions in a rectangular domain. Section 4 develops
intuition on an example, the (3,2) — (1,3) mode interaction. Section 5 extends the
analysis to a general (ky, 1) — (kg, 2) mode interaction. In section 6 we compute the
Hilbert series of torus invariants for a (kq,#1) — (k2, f2) mode interaction. Section 7
relates volumes of fundamental lattice parallelotopes with the number of candidates
for the generators of the T?-invariants. In section 8 we compute the Hilbert series
of torus equivariants for a (k1, 1) — (k2, £2) mode interaction. Finally section 9 sets
up an analogous discussion of general torus actions.

2 Toric Geometry

In the algebro-geometric treatment of the topic, it is usual to work over the field Q
of rational numbers. Bifurcation theorists, on the other hand, will prefer to work
over R D Q. The elementary parts of the theory (which are all we need here) work
equally well in both contexts, so bifurcation theorists should read Q but think R,
especially when visualising the geometry.

Let V be a finite-dimensional vector space over Q. Let L : V — Q be a Q-linear
map, so that (for non-zero L) the zero-set

L’ ={veV:L(k) =0}



is a hyperplane. The complement of L° decomposes into positive and negative open
linear half-spaces
LT={veV:Lk) >0}

L~ ={veV:L() <0}

and of course (—L)* = L¥. Our main interest is in the closed linear half-space
LY={veV:LWw)>0}=L"uUlL’®

A cone o C V is the intersection of finitely many closed linear half-spaces:

k
o= )L

=1

A face of o is a subset of the form o N LY. A face of a cone is a cone, and the
intersection of finitely many faces is a face. A fan in V is a collection X of cones
such that: (a) every cone of ¥ has a vertex; (b) if 7 is a face of a cone o € ¥, then
T €35 (¢) if 0,0 € X, then 0 N o’ is a face both of o and o'

For any set of vectors {vi,...,u} C V we let (vy,...,vs) be the smallest cone
containing {vy, ..., v,}. Every cone can be written in this form. If the v; are linearly
independent, then the cone (vy,...,v,) is said to be simplicial. The dimension of a
cone ¢ is the dimension over Q of the Q-vector space spanned by . Similarly, a
fan is said to be simplicial if it consists of simplicial cones.

A lattice M C V is a free Abelian group of finite rank: its rank is called its
dimension. A cone in M is a cone in the Q-vector space spanned by M. If ¢ is a
simplicial cone in M and o = (vy, ..., vx) where the v, belong to M (and are linearly
independent), call PM = {>F  wv; : 0 < p; < 1} its fundamental parallelotope.
If o is a cone in M then 0 N M is a (commutative) subsemigroup. The following
lemma goes back to Gordan, see Danilov [12] or Fulton [14]:

Lemma 2.1 (Gordan) The semigroup o N M is finitely generated.

Proof

The proof is straightforward, but for completeness we give it here. By breaking
o up into a union of simplicial cones, we may without loss of generality assume that
o is simplicial, so that o = (v, ..., v;) where the v; belong to M and are linearly
independent. Form the fundamental parallelotope PM = {3% | pw; 1 0 < py < 1}
Since PM is compact and M is discrete, the intersection P N M is finite. Clearly
any element v of o N M can be represented (uniquely) in the form Y% | r;v; with
r; > 0, so r; = m; +1; with m; a nonnegative integer and 0 < ¢; < 1. Then
v =Y m;v; + ', with each v; and v' = ¥ t;v; in PM N M. Therefore the finite set
PM N M generates 0 N M as a semigroup. |



<1 <2 <3 24
01 eikl [ 2 eikl [ 29 eik201 23 eik201 2
02 eiel ‘D) 2 e*iflez 29 611202 23 67%292 24
P1 Z2 Z1 Z4 Z3
P2 22 <1 <4 <3

Table 1: Group action for the (k1,¢1) — (k2, f2) mode interaction.

3 Mode Interactions in a Rectangle

Let  C R? be arectangular domain in the plane, say Q = [0, A]x[0, B](A # B), and
consider a parametrised family of Euclidean-invariant PDEs 2 +7P(u, A) = 0 subject
to periodic boundary conditions (PBC). Steady-state solutions correspond to zeros
of the partial differential operator P. Because of Euclidean invariance and PBC, this
problem is invariant under a torus group T? consisting of translations in R* modulo
the lattice generated by (4,0) and (0, B). It is also invariant under reflections in
the two coordinate directions, leading to a symmetry group O(2) x O(2). Since
A # B there are no further obvious domain symmetries (although in some cases
there may be ‘hidden rotations’, see Crawford [7]). This symmetry implies that
linearized solutions are superpositions of eigenfunctions

sin <2km;> sin <2€ﬂ> n <2k7rx> cos (ﬁﬂ)
A B A B

coS <2k7r:r> sin <2£—7Ty> 0s <2k7rx> cos <%ﬂ>
A B A B

where £,/ € N are known as mode numbers.

If the parameter A can be chosen so that modes (ki,¢1) and (ko,¢3) bifurcate
simultaneously, then the equation undergoes a mode interaction at such a value:
see Gomes and Stewart [20] for details. At such a mode interaction the bifurcation
can be reduced to a finite-dimensional problem, the so-called (Liapunov-Schmidt)
reduced bifurcation equation, see Golubitsky et al. [17]. The reduced bifurcation
equation inherits the symmetries of the original problem (provided the reduction
procedure is carried out using group-invariant subspaces, which is always possible)
and hence is equivariant under a torus group

T2 = {(01,02) . 01,02 S Sl}

and reflections py, p2. The group action of O(2) x O(2) for this mode interaction is
shown in Table 1. The amplitudes z1, zo belong to the (kq,#¢;) mode and z3,z4 to
the (ko, £3) mode.

We focus on the subgroup T?. Because the T’-action is diagonal, all T*-
invariants are generated by monomials

a1501 as=sP2 az=Ps as=B4

N 2y Ty 2 T 2 2y, B EN
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In order to be invariant, these monomials must satisfy the conditions
ki(n +72) + k(s +7) =0 (2)

Ci(y1 = 72) + La(ys — 74) =0 (3)
where
Vi = o — ,BJ (] = 1,2,3,4.)

Equations (2,3) define a 2-dimensional lattice £ C Z*. We study this lattice further
in section 5.

Lemma 3.1 The T?-invariants on C* are (non-minimally) generated by |z;|?, (j =
1,2,3,4) and all monomials of the form w," wy wl* W where w; = z; if v; > 0,
wj =%, if v; <0, and the y; satisfy (2,3).

Proof
Clearly |z;|* = 2,Z; is invariant. Let m = 20170 292702 00705 104784 1o an invari-
ant monomial. Let
§; =min(ey, B5), 1=1,...,4

and write m in the form

m=(j2a®)" ()" (1) (j2al?) " m

— — Qg __ [o yyu . . .
where m/ = 2’ szZQ 252233253244224. Then m' is also invariant, and for each
J = 1,..,4 either o = 0 or §; = 0. Moreover, v; = o — 8; = 7;, so m' =

wwnwm\wmwww‘;y

|
The following theorem, presumably well known, reduces the computation of
equivariants to that for invariants:

Theorem 3.2 Let T% act diagonally on C* with coordinates 2j,Zj for g =1,..k.
(a) If I, ..., I; generate the C-valued invariants, then the equivariants are generated
over the invariants by the mappings:

o

rowj —

—~
=~
~—

for1<j<kandl<g<s.

(b) If I, . . ., I, is a set of invariant monomials that spans the space of invariants of
degree d+ 1, then the maps (4), for 1 < j <k and 1 <i < p, span the equivariants
of degree d.



Proof

Part (a) is proved in Gomes and Stewart [20]. Exactly the same calculations
prove part (b). |

A monomial of the form w,™ wilwl w4l where w; is either equal to z; or Zj, is
said to be reduced. Equivalently, a reduced monomial is one that is not divisible by
any z;Z;. So Lemma 3.1 states that the invariants are generated by the |z;|? together
with certain reduced monomials. The form of w/"lw/™wiw! as a polynomial in
the z; and Z; depends on the signs of the 7;. It is this dependence that introduces
cones into the analysis, as we see below.

We next describe £ explicitly, making the following simplifying assumptions:

|€al
4

th(kl, kg) =1 th(El, 52) =1 (5)

If these assumptions do not hold we can factor out the kernel of the group action and
thereby ensure that they do hold. This procedure does not change the invariants or

equivariants: all it does is replace k; by k;/hcf(ky, k3) and £; by ¢; /hef(4y, £,).

Lemma 3.3 With the assumptions (5), we have that L is generated (as a lattice)
by the following vectors:

Type A:
ko ly 5 (ko + £5)
ka —Lo 5 (ko — £3)
SV I R N I
—ky 121 2(—k1 + 61)

if one pair of mode numbers is of type (odd, odd) and the other pair is either (odd,
odd) or (even, even). Here either the first or second generator can be omitted (the
third generator is their mean).

Type B:
ko 1)
ko —Ly
—ki —b
—ky 4

if at least one pair of mode numbers has distinct parities.

Proof
We can solve (2,3). By (2), ko divides 71 + 2 and k; divides 3+ 4. Hence there
exists a € Z such that

T+ e = aky, 3+ v = —ak (6)
Similarly, there exists b € Z such that

Y — Y2 = bly, 73— = —bl; (7)



Solving (6,7) we get

Y1 = %(akg + bgz)
72 = %(a,kg — bﬁg) (8)
Y3 = %(—(Lkl — bﬂl)

Y4 = %(—(Lkl + bgl)

In addition, we require ; € Z, which leads to the two distinct cases as we now
show. From (8) we have the following constraints on the parities of ¢ and b: see
Table 2. A similar table holds for (k1,/;). Note that both tables must be satisfied
simultaneously by the same a and b.

kg 12 a b

odd odd | same parity
even odd | any even
odd even | even any
even even | any  any

Table 2: Parities of a and b according to the parities of ks and /5.

Interchanging (kq,{;) with (ko,(s) if necessary we have 10 possibilities for the
parities of k1, [1, ko, Iy, five of each violate assumptions (5) and so we do not consider.
Using Table 2 we get information on the parities of a and b for the remaining cases.
See Table 3. Finally, it follows that for the cases 1 and 4 we can take generators for
L the vectors of Type A. For the cases 2, 3, 6 we have the generators for £ of the

Type B. |
Case | k; I ko Iy a and b
1 odd odd odd odd | same parity
2 odd odd even odd | both even
3 |odd odd odd even | both even
4 odd odd even even |same parity
5 |even odd even odd | violates (5)
6 |even odd odd even | both even
7 |even odd even even | violates (5)
8 |odd even odd even | violates (5)
9 |odd even even even | violates (5)
10 | even even even even | violates (5)

Table 3: Parities of ky, [1, ko, [ versus parities of a and b.



4 An Example

To motivate the algebra, we consider a typical example, the (3,2) — (1,3) mode
interaction. That is,

This is Type B of Lemma 3.3. Equations (2,3) become:
B(vi+72)+ (s +)=0

201 =) +3(s =) =0
which imply that

1 1
V3= —6(1171 +7%) Y= —6(771 + 117,) 9)

Thus we can parametrise solutions by pairs (71,72) in the lattice M C Z? defined
to be the projection of £ onto the first two coordinates of Z*.

The ~; are integers if and only if 74 = 7 (mod 6). The interpretation of a
solution v = (71,72, 73,7a) changes when the sign of any ; changes; that is, on
crossing any of the four lines y; = 0 in M. These lines have equations

7 11
711=0 7=0 71=—ﬁ72 ’}’12—7’}’2
respectively.

Figure 1 shows the half-space v; > 0 in the (7, 72)-plane, the lattice M, and
the lines 7; = 0. Points in M are shown as black or open dots. The half-space
71 < 0 decomposes in the same manner, but rotated by 180°, which has the effect of
complex conjugation on the corresponding reduced monomials. The figure divides
into four cones (eight including conjugates). The set of these cones and their faces
form a fan. Within each cone the choice w; = z; or Z; is fixed, so the product of two
reduced monomials in the same cone is again reduced. We may therefore obtain a
(minimal) generating set of reduced monomials, under multiplication, by finding a
(minimal) generating set for o N M for each cone o, under semigroup addition, and
taking the union of these sets.

Each cone o has a fundamental parallelotope PM, as defined in the proof of
Lemma 2.1, whose sides are determined by the vectors 0, v;,vy, where v; and v,
are the non-zero elements of M of minimal length subject to lying on the faces of
the cone. The fundamental parallelotopes are shown shaded in Figure 1. As in the
proof of Gordan’s Lemma, any minimal generating set lies inside the fundamental
parallelotope.

Say that a non-zero element of o N M is o-irreducible if it is not the sum of
two non-zero elements of o N M. Clearly the o-irreducible elements lie inside the
fundamental parallelotope PM. Tt is easy to see that each o N M has a unique
minimal generating set, which consists of the o-irreducible elements of the finite set

9
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Figure 1: Lattice geometry for the (3,2) — (1,3) mode interaction.

PM N M. These elements can be found by inspection: in Figure 1 they are marked
with a black dot. Reducible elements are marked with an open dot.

In summary, the torus invariants for the (3,2) — (1, 3) mode interaction are min-
imally generated by the monomials listed in Table 4, together with the complex
conjugates of all but the first four entries (which equal their complex conjugates).
The table also lists the degrees of these generating monomials. There are 28 gener-
ators, whose degrees range from 2 to 30.

One implication of this table for equivariant bifurcation theory is worth empha-
sising. The table lists the four obvious invariants z;Z;. Apart from these, the lowest
degree term that appears has degree 8. Taking Theorem 3.2 into account, we see
that the lowest degree equivariant that is not generated from the 2;Z; is one of degree
7. The equivariants generated from the z;Z; are equivariant under any of the torus
actions in Table 1, independently of the mode numbers. Indeed, they are equivari-
ant under the orthogonal group O(8) acting on R® = C*, which has dimension 28,

10



monomial | degree || monomial | degree
2171 2 2$22252, | 12
29Z2 2 23737222 | 10
2373 2 2Z5z32p | 12
24Z4 2 21Z52528 | 18
257575t 24 2Z5782, | 20
25z317! 24 2275 z32] | 20
nzZezs | 8 2'z5z? 1 30
29792527 | 18 2zitzi2 30

Table 4: Minimal generators for torus invariants for the (3,2) — (1,3) mode inter-
action.

whereas the dimension of T? is 2. Thus any analysis that does not take degree 7
terms into account will find a profusion of spurious O(8) group-orbits of solutions.
Indeed, any special qualitative features of the (3,2) — (1,3) mode interaction, such
as the detailed geometry of regions in parameter space for which solution branches
exist, cannot be detected by truncating Taylor series at a degree less than 7. So it
is necessary to retain terms of relatively high degree in order to obtain qualitatively
accurate bifurcation diagrams. This phenomenon is quite subtle and deserves fur-
ther study; the most appropriate framework is singularity theory, as in Golubitsky
and Schaeffer [15].

In saying this we acknowledge that because torus groups are Abelian, the complex
structure of Table 1 implies that there are no axial subgroups, so the Equivariant
Branching Lemma [17] cannot be applied here. For torus-equivariant problems, we
expect Hopf bifurcations to travelling waves. When the torus action is extended by
some finite group, especially one containing reflections, axial subgroups can some-
times occur, and the above remarks remain valid. We have chosen the action of
Table 1 because it is convenient to illustrate the general ideas of this paper.

5 The General Mode Interaction

The analysis of the general (ky, ¢1) — (ko, 2) mode interactions follows similar lines.
We solve equations (2,3) for 73, y4 in terms of 71, 72, leading to:

Y3 = 5 [(k}1€2 + kgﬁl)’yl + (k1£2 - kQEl)’YQ] (10)
2]{3252
—1
Y4 = [(k1£2 - kggl) Y1 + (k1€2 + kggl) ")/2] . (11)
2koly
Define
A = koly + k1l
- kQ—gl — klEQ '

Then 73 = 0 when v, = Ay, and 4 = 0 when v, = %71.

11



When we project Z* with coordinates (71, 7s,73,74) onto Z® with coordinates
(71,72), the hyperplanes in Z* defined by (10,11) project to the lines in Z? defined
by the same equations, since those equations do not depend explicitly on 73, ;4.
Therefore we can decompose £ C Z*, and simultaneously M C Z?, into cones on
which the signs of the 7, remain constant. So addition in each cone corresponds
to multiplication of monomials. On the boundaries of those cones, some 7; = 0.
Moreover, we can draw the picture in the (71, y2)-plane.

The analysis now proceeds as in section 4. For each cone o we define a funda-
mental parallelotope PM, and o-irreducible elements, in exactly the same way as
for the example. The key computational result is:

Lemma 5.1 FEach lattice cone 0 N M has a unique minimal generating set, which
consists of the o-irreducible elements of the finite set PM N M. |

Again these elements can be found by inspection.

Theorem 5.2 The ring of the T?-invariants on C* has a unique minimal basis
consisting of monomials. This basis is formed by |z;|* (j = 1,2,3,4) and the union
of the sets of the T*-invariant reduced monomials corresponding to the o-irreducible
generators in PN M of o N M, for each cone o.

Proof

Clearly, by Lemma 3.1, the union U of the |z;|? together with the T?-invariant
reduced monomials corresponding to the o-irreducible generators in PM N M of
o N M for each cone o generate the ring of the T?-invariant polynomials.

Suppose that ¢/ is not minimal. Then there is a reduced monomial m in U that
is the product of at least two other reduced monomials, say my, msy, that are in U.
By Lemma 5.1 the monomials my, ms have to correspond to two irreducible lattice
points of M that lie in two distinct cones.

The reduced monomials are of the type (a) w|™ wy?lw!w, or (b) wli“ lwl-?é |wz|~§i3|,
where w; is either equal to z; or Z;. We have three possibilities for m;, mq. (Case
1) both are of type (a). (Case 2) both are of type (b). (Case 3) one is of type (a)
and the other of type (b).

(Case 1) Since my, mo are in distinct cones, then at least one of the w; is z; in
one cone and z; in the other cone. Thus a power of |z;|* appears in m = myma,
which contradicts the hypothesis of m being a reduced monomial.

(Case 2) For this case, m; and mgy correspond to lattice points of M that lie in
two faces of two distinct cones. Therefore at least two of the w; of m; are distinct
from two of the w; of my. Again, for this case, a power of some |z;|? appears in the
product m;msy and m is not reduced. For exan}pl§, iI,1 Figure 1 an element in face o,

is of type 29°Z3*Z)* and in face o3 is of type 2] Zy2Zs>. The product of two elements

lying in faces o; and o3 contains a power of |z;|%.
(Case 3) is similar to (Case 1). |

12
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Figure 2: Lattice geometry for the (1,3) — (3,1) mode interaction.

Example 5.3 We consider the (1,3) — (3, 1) mode interaction, which is of Type A.
Here
ki=1 41 =3 ko=3 lr=1

The lattice £ is generated by

3 1 2
3 -1 1
-1 -3 -2
-1 3 1

The cone boundaries are the v,-axis, the vys-axis, and the lines v3 = 0, v, = 0, whose
equations are respectively v, = 271 and v, = %71, since A = %. Furthermore,

_ —5’)/1 + 4’)/2
3

_dn -5

V3 3

Y4
and the +; are integers if and only if 4, + v, = 0 (mod 3).

The appropriate picture is shown in Figure 2. We can read off a minimal gen-
erating system of reduced monomials (omitting complex conjugates), see Table 5.
This time there are 20 monomials in a minimal generating set, with degrees ranging
from 2 to 12.

13



monomial | degree || monomial | degree
AV 2 Z% zﬂg Z4 6

29Z2 2 222575 12
2323 2 Z:f Zg Z3Z4 8

Z4Z4 2 Z1 Z% 2322 6
21ZeZ5728 | 8 212378 12
232525 12 232575 12

Table 5: Minimal generators for torus invariants for the (1,3) — (3,1) mode inter-
action.

6 Hilbert Series

The Hilbert series for a group " acting on a vector space V' is the generating function
for the dimensions of the spaces of invariants of given degree. We compute now
Hilbert series for torus actions corresponding to (ki1,l;) — (ke,l2) mode interactions
using the elementary part of toric geometry considered in this paper. Hilbert series
for general torus actions are discussed by Stanley [38] and Renner [35], and the
relation between their methods and our results deserves further investigation (but
not in this paper).

Let PZ(T") be the space of homogeneous polynomial invariants of degree d for
the action of I' on V. Then the Hilbert series for this action is the formal power
series

o
r(t) = ) dim(Py ()t
d=0
in the indeterminate ¢. For a compact Lie group action there is an explicit integral
formula, Molien’s Theorem:

1
Pr(t) :/Fmdur

where pr is normalised Haar measure on I' and v € I'. See Molien [34] (or Sturm-
fels [40]) for the original proof of the finite case, and Sattinger [37] for the extension
to a compact group. It is difficult (though not impossible) to use this formula to
compute the Hilbert series, but it is often better to proceed by other means — as is
the case here.

Let I' = T? in the action of section 3, the (ki,l;) — (ka,l2) mode interaction,
for ki, L1, ks, I € N. Let m = w!™w,” w w* be a reduced invariant monomial.
Then the integers 1, 9, 73, 74 satisfy the equations

ki(y1 +72) + ka(ys +74) =0
(12)

(v —72) +La(y3 —7a) =0
that define a 2-dimensional lattice £ C Z* (Lemma 3.3). These solutions can be
parametrised by pairs (71, 72) in a lattice M C Z? defined to be the projection of £
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onto the first two coordinates 7y, v, of Z*:

T8 = 2koly [(k1ly + ko) 1 + (k1ly — koly) o]

212

1 (13)
Yy = —2k 7 [(k1€2 - k2£1)’)/1 + (kIEZ + k2£1)72]

212

Moreover, for the description of the reduced invariant monomials we just need to
consider the half-space 7y, > 0 in the (71, 72)-plane. The lines v =0, 72 =0, 7o =
Ay (when 3 = 0) and 75 = £y (when 74 = 0), with

. koly + k1l

A= 2t T2
kol — kibs’

divide this half-plane into four cones, say A, B,C, D, with faces o1, 09,03, 04,05,
defined by these lines. We consider here the case when

kggl — kleg 7é 0. (14)

(When kol = k145, in terms of Hilbert series, we just need to consider for example
the cone corresponding to the quadrant v;, 7, > 0. The theory developed in this
section also applies to this simplified case.) Within each cone the choice w; = z; or
Z; is fixed (j = 1,...,4). On crossing any of the four lines 7; = 0 in M, some v;
changes sign. From the half-space v, < 0, we obtain the conjugates of the reduced
invariant monomials of the half-space 7v; > 0. Thus in terms of the Hilbert series
for the action of T? on C* considered here, the study of the half-space v; > 0 will
be enough. Note that since ki, 11, ks, lo are natural numbers,

|A| > 1.

We have two kinds of pictures for the disposition of the half-space y; > 0 into cones,
according to whether A > 1 (picture (a)) or A < —1 (picture (b)). We show these
two cases in Figure 3 to fix notation for the rest of this section.

The degree of a reduced invariant monomial m = w!™ W/ w W is om =
11| + 72| + 73] + |[74]- On each cone A, B,C, D, the formula for dm is linear in
(71,72). Figures 5 and 6 of section 6.1 show the lines 9m = ¢ in the four cones, for
the (3,2)—(1,3) and (1,3) — (3, 1) mode interactions respectively. For the first case
the number ¢ takes values that are integer multiples of 8, 6, 10, 6. For example, on

cone B in Figure 5 we have 73 > 0,7 < 0,73 < 0,7, <0, so

[74]
4

om =y —72— 7 — 71 =471 + 27

using (9). For the second case ¢ is multiple of 4, 6, 4, 6 respectively.
Let Q% be the space of reduced invariant monomials of degree d, and define the
reduced Hilbert series

DE(1) = 3 dim(Q")

d=0

15



1 y1=0
(o) [e)
5 Vo= Ay (¥3=0) !
04
D
C o Yo=VAy; (y4=0)
A
B
02 y2=0 0y,  Yp=0
B
A
C O3
D _ _
Yo=UA Yy, (y4=0)
04
[¢) =A =0
oy 5 Y, A (y3 )

(€) (b)
Figure 3: Pictures: (a) A > 1. (b) A < —1.

which is a Hilbert series for the lattice £ graded by degree in each cone. Lemma 3.1
lets us express ®r(t) in terms of ®f(¢). In fact, since the [z;]? (j = 1,...,4) are
algebraically independent over the reduced monomials, we have:

1
125 (1)

=Ty

For any cone o we define
B7(1) = 3 dim(Q2)t*
d=0

where Q2 is the subspace of Q¢ spanned by monomials corresponding to lattice
points in o.

Applying the inclusion-exclusion principle (and recalling that from the region
v1 < 0 we get the complex conjugates of the invariant monomials obtained in the
region ; > 0), using notation of Figure 3, we get:

Lemma 6.1

Bf(t) = 2[@f(t) + DE(t) + BF (1) + BP (1)]
(15)
—2 (B9 (t) + B2 (1) + BF(t) + B (1)) + 1

where o is either of the two half-rays along which v; = 0, origin included.

Formula (15) converts the computation of ®£ to a series of analogous computa-
tions within cones (the regions A, B,C, D and their common boundaries, the faces

16



o;, for j =1,...,4). We next show that the cones B and D (and corresponding
faces) have the same Hilbert series, as the apparent symmetry in the figure suggests.

Lemma 6.2
O (t) = BF(t)

and
7 (t) = @72 (2), O (t) = DR (2).

Proof

Let m = w!™wy?w®w™ be a reduced invariant monomial determined by
v = (7,72,73,71). Consider first the case A > 1, corresponding to picture (a) of
Figure 3. Then ~ belongs to cone B if and only if it satisfies equations (12) and
1 >0, 9 >0, v3 <0, 74 > 0. Similarly v belongs to cone D if and only if it
satisfies (12) and ;3 > 0, v > 0, 73 > 0, 74 < 0. It follows that v belongs to cone
B if and only if ¥ = (2,71, V4,73) belongs to cone D. Moreover, |y| = |v|.

Similarly for the case A < —1 (picture (b) of Figure 3), -y satisfying (12) belongs
to cone B if and only if v; > 0, v < 0, 73 < 0, 74 < 0, and it belongs to cone
D if and only if v > 0, 79 <0, 73 > 0, 74 > 0. Now 7 belongs to cone B if and
only if v = (=72, =71, =74, —73) belongs to cone D, and again |y| = |y|. Thus
OF(t) = ©F (2).

Restricting to the boundaries of the cones B and D, it follows that ®7!(¢) =
O72(t) and D73(t) = 74 (¢). |

Thus using Lemma 6.2, expression (15) now becomes

O (1) = 2P (1) + 287 () + OF ()] — 427 (t) + 7 (¢)] + 1 (16)

Definition 6.3 Let o be a simplicial cone of dimension two in the lattice M C Z?
(projection of £ C Z* on (v1,72)). Denote the faces of o by oy, 05. Let vy, v, be the
two non-zero elements of M of minimal length subject to lying on the faces oy, o9 of
the cone, and let u;, uy be the corresponding elements in £ C Z* (and so satisfying
equations (12)). Define the fundamental parallelotope PM of the lattice M relative
to the cone o to be the polytope with vertices 0, vy, vo, vy +vy € M C Z%. (It
is actually a parallelogram in this case, but it is useful to set up terminology for a
general setting.) Define the fundamental parallelotope polynomial P to be

PEt) =1+ Y ¢ (17)

verf

where
If = {(m1,7%,73,7) €L : (11,72) € int(PM A M)}

Here |y| = |y1| + -+ + |[74l-

17



We prove now that P% and the degrees of the reduced invariant monomials with
exponents uj, ug determine ®% and ®7'.

Lemma 6.4 Let o be any of the simplicial cones A, B,C or D (of dimension two)
in the lattice M C Z* (projection of L C Z* on (y1,72)), and let the faces of o be
o1, 09. Let vy, vy be the two non-zero elements of M of minimal length subject to
lying on the faces, and let uy, uy be the corresponding elements in L C Z*. Then

PE()
(1=t} (1 = )

Or (1) = (18)

and 1
[ — ;o —
(I)l" (t) - (1—t|u1‘) (7’_1:2)

Proof

We have 0 =< vy, v9 > since vy, vy lie in the two distinct faces of the cone. For
v € 0 N M define

Uvz{v—i-v T EU}.

We can think of o, as a cone equal to o but with apex at v (instead of the origin).

Consider uy, uy € £ C Z* the corresponding elements to vy, v, € M C 7Z2. Let
m be a reduced invariant monomial determined by v = (71, 5, V3, 74) € £ such that
(Y1, Ys) € 0y, N M. Then (7;,7,) = v1 + (71, 72) for some (y1,72) € 0N M. Since v,
and (7y1,72) are in 0 N M, let m be the reduced invariant monomial corresponding
toy = uy + 7y, where v = (71, 72,73, V4), is the lattice point of £ corresponding to
the lattice point (y1,72) of 0 N M. Then the degree of m is given by

om = || = |ua| + ||

since u; and v have components with same signs. Therefore, if we define an analo-
gous ®1"', then
oL (1) =t f(1)

Similarly
O (1) = ¢ ©F (1)

and
Ptz (t) = tlueltlulpe(t),

Note also that
Ovi14vy = Oy N Ov,

(see Figure 4).

Thus
OF (1) = PE(H) + (¢ + ¢l — ghaltleel) o ()
and so Pﬁ( )
t
Pr(t) = <

(1= del) (1 — £))°

18



Figure 4: Geometry for the cones o, o0y, 0y, and gy, 14,.

Recalling again the notation of Figure 3, it is now straightforward to obtain a
formula for ®% (and ®r) depending on the fundamental parallelotope polynomials
for each of the cones A, B, C.

Theorem 6.5 The Hilbert series for the action of ' = T? on C* of section 3 is:

1

Pr(t) = mq’f(t)
where
c c c
P (O Ph(1) , PEW)
(1 — tlualy (1T —tla)) (1 —tusl) (1 — tlusl)
(19)
1 1
Aa Ty A ey T
Proof
Use Lemmas 6.1, 6.2 and 6.4. |

Remark 6.6 For the particular case

kily — kaly =0
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03

Figure 5: Hilbert series geometry for the (3,2) — (1, 3) mode interaction.

it follows from (13) that 73, 74 are integers if and only if 74 = 0 (mod l3) and
v2 =0 (mod l). If we consider the cone A defined by v, 72 > 0, then

1 A o1
dp(t) = m(mr(t)—mr )

G —1152)4 <(1 - 31”2)2 - a _;lhm)) |

6.1 Examples

For illustration, we consider the Hilbert series of the T%-invariants for the (3,2) —
(1,3) mode interaction of section 4, and for the (3,1) — (1,3) mode interaction of
section 9.
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Example 6.7 Let I' = T? in the action of section 4, the (3,2) — (1,3) mode inter-
action. Figure 5 shows the lines Om = c in the four cones, for various values of ¢. In
cones A, B, C, D, the number c¢ takes values that are integer multiples of 8, 6, 10, 6
respectively. The figure also shows the fundamental parallelotope of the lattice M
for each of the cones. Applying Lemma 6.4 to each cone, we have:

(1 _ t24)2

1412 118 4 ¢ 4 130 4 430 44
(1 — 124)(1 — 13)

1 4 t10 4 320 3430 4 3440 4 ¢50

O (t) =

(1) = @P(1) =

C —

(pI‘ (t) - (1 _ t30)2
o1 g2 1

or (75) = &r (t) = 1 _ 424
o o 1

(I>Fg (t) = q)F4 (t) = 1 — 30

By Theorem 6.5, we obtain an explicit formula for ®r:

(1)
(1 _ t2)4(1 _ t24)2(1 _ t30)2

q)l" (t) =

= 1+ 4¢2 +10t* + 20t® + 37¢% + 66¢'°
+ 116¢'2 + 1964 + 3176 + 494¢'8 + - -

Here

F(t) = 1425 426" + 48" + 26" + 48" + 6170 + 8¢™ + 126% + 26% — 44> — 44
+ 8% — 4t®? — 126" — 4¢"0 — 9¢"® 4 200 — 326" + 24°° — 9% — 4% — 124%
— 4% 4 8t% — 41T — 4™ 4 2670 + 1247 + 813 + 61%° + 4% 4 2177 + 44
+ 267 4+ 2410 4 41%

Example 6.8 Let I' = T? in the action of section 5, the (1,3) — (3,1) mode inter-
action. Figure 6 shows the lines Om = c in the four cones, for various values of c.
In cones A, B, C, D, the number ¢ takes values that are integer multiples of 4, 6, 4,
6 respectively. Applying Lemma 6.4 to each cone, we compute:

148 4 ¢16

B0 = W0 =

21



Figure 6: Hilbert series geometry for the (1,3) — (3,1) mode interaction.

1+ +¢17 4+ ¢18

O = WO = e

g; 1 -
ori(t) = 12 (1=1,2,3,4)

By combining the above equations (using Theorem 6.5), an explicit formula for
dr is:

1+ 415 + 4¢% 4+ 10t'2 + 4¢'6 4 4418 4+ 24
(1 _ t2)4(1 _ t12)2

(I)F (t) -

= 1+ 482+ 10t* + 24¢% + 558 + 112¢1°
+ 216¢'2 + 388t + 653t + 1048418 + - - -

22



7 Volume, Lattice Points and (Generators

As before let I' = T? in the action of section 3, the (ky, 1) — (k2, ls) mode interaction,
for ky, 11, ko, 1> € N. In this section we calculate the number of lattice points NI*
of the lattice M that lie in the interior of each fundamental parallelotope PM,
where ¢ is any of the cones A, B,C or D. This is derived from the volume of the
fundamental parallelotope normalized by the volume of one unit cell of M. Recalling
Theorem 5.2 of section 5 this number estimates the maximum number of points that
we need to check for finding the generators of the reduced monomials for each cone.
Moreover, NI% +1 = P%(1) where P~ is the fundamental parallelotope polynomial
of the lattice £ relative to the cone o. Since the coefficients of P* are nonnegative
integers, NI* + 1 provides a measure of the ‘complexity’ of P, namely, the sum of
its coefficients. It is therefore of some interest to compute NI* explicitly.

We also calculate the maximum degree of the generators of the ring of the T?-
invariants (generators given by monomials), which gives another way of quantifying
how complicated the invariants are.

It is well known that if £ is a full sublattice of Z* and D is a fundamental
domain for £, then the number of points of Z* that lie inside D is equal to the
volume vol(L) = (D), where y is k-dimensional Lebesgue measure. (Sketch proof:
the quotient map ¢ : R¥ — R*/Z* = T* is volume preserving. The images under
¢ of translates of a fundamental domain for Z* by elements of Z*¥ N D cover T*
disjointly. Each such translate has measure 1.)

It follows easily that if £L; C L C ZF are full lattices, and D is a fundamental
domain of £;, then
VO](,Cl)
vol(L)

#{r: ze LND}= (20)
(Sketch proof: map L linearly onto Z* and note that volumes are scaled according
to the determinant of L£.)

Let PM be a fundamental parallelotope of the lattice £ relative to the cone o as
defined in Definition 6.3 (so that o is one of the cones A, B,C or D). Let NI* be
the number of interior points of P N M. By Lemma 6.2

NIg = NIj

Note that if P# is the fundamental parallelotope polynomial as in Definition 6.3,

then
PL(1) =1+ NI-

By Lemma 3.3, the volume of one lattice cell (of M) is ksls if the mode interaction
is of Type A, and 2k,l5 if the mode interaction is of Type B. Note that M (projection
of £ onto the first two coordinates 71, 72) is generated by the vectors (ko, k) and
(1/2(ko+12),1/2(ky—12)) in the first case, and by (kq, k2) and (I, —l3) in the second
case.

If vy, vy are the two non-zero elements of M of minimal length subject to lying
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on the faces g1, o9 of the cone o, then

vol(PM) =

and so by (20) we have:

Lemma 7.1

det ( U1 > ‘
(%]

kals

Pr(1) =
if the mode interaction is of Type A, and

det ( U1 > ‘
V2

2ksls

PE(1) =

iof the mode interaction is of Type B.

We calculate now the elements v; for each of the cones A, B,C and D. By
Lemma 6.2 from v; (or vs) and v3 on the faces o, (or o5) and o3 (recall Figure 3),
we obtain the other v;. Specifically, if v; = (0,a) then vy = (—sgn(A)a,0), and if
vs = (b, ¢) then vy = (sgn(A)c, sgn(A)b).

Lemma 7.2 Let v; be the nonzero element of o1 N M with minimal length (recall
Figure 3). Then

v = (07 —sgn(A)’y;)
where ,
r ) lem (kg,lo) if Type A mode interaction
= 2lem(kq, l3) if Type B mode interaction

Herelem(a, b) denotes the lowest (positive) common multiple of a and b, andlem’(a, b)
the lowest common multiple of a and b from the common (positive) multiples of a
and b, say m, such that m/a and m/b have the same parity.

Proof
Elements in o1 N M satisfy 73 = 0 and so from (13)

(klgg — kggl) Yo = 0 (mod 2]€2£2) (21)
(k1£2 + k2€1) Yo = 0 (mod 2k2€2)
Thus
2k2£1’)’2 =0 (mod 2]{2[2) (22)
(klfg — kgﬁl) Yo = 0 (mod 2k2£2) (23)
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From (22), it follows that 7, = 0 (mod #5) since hef(4y, 3) = 1. From (23), it follows
that v = 0 (mod k») since hcf(ky, ko) = 1. Thus there are ni,ny € Z such that
Y2 = nika = nafy. Substituting in (23) it follows that kyny — f1ne = 0 (mod 2). Now
if ny, mo are integers such that v9 = niks = noly and kyng — 1ne = 0 (mod 2), then
equations (21) are satisfied.

Note that if k1, £; have the same parity and also ks, £5 have the same parity, then
n1,ng also have to have the same parity. If k1, ¢; or ko, £5 have different parity, then
n1,n9 have to be both even. |

Lemma 7.3 Let v3 be the nonzero element of o3 N M with minimal length (recall

Figure 3). Then
! 1 ’
vs = (71, N 71)

where
o m/ kggl + klgg
h= Vel
m = min {m : mMEZ“L
m€Z+ 2k1£1
A— koly + k1ly
kggl — klgg
Proof

Elements in o3 N M are of type (71,1/A7;) where from (13) the integer 7,
satisfies .
(k1£2 + kzﬁl) Y1 + (klgg — kzzl) K’Yl =0 (mod nggg),
that is ok 0Ok f
ob12k1 6o
e N = d 2ky¢
Tty 1kt 1 = 0 (mod 2ksts),
and so

2%yl
. e S d 1
Tt kg =0 (mod 1)

Note that |[(y1, 1/A7)|? = v3(1 + |1/A?) and so ||(71,1/A%1)]|]? is minimum if
72 is minimum. n

Proposition 7.4 With the notation of Lemmas 7.2 and 7.3, and Figure 3

lcm’ (kg, lg) 2

if Type A mode interaction
kalo

QICIII(]{JQ, lg) 2

if Type B mode interaction
kol
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m'lem’ (ka, o) | kaly — ki1ls]
2k1£1k2£2

if Type A mode interaction
PE1) =PE) =1
m lcm(kg, l2)|k2£1 — k1£2‘

if Type B mode interaction

leglkggg
m/2
A if Type A mode interaction
161
PE(L) =
2
ST if Type B mode interaction
Proof
Use Lemmas 7.1, 7.2 and 7.3. |

Let m be a reduced monomial w|*lw}?lw* w* where w; = 2 if v; > 0 and

w; = Z; if 7; < 0, and where v = (71, 72,73, 74) € £. The degree of m is given by

om = || = || + |ve| + 73] + 74

Using Lemmas 7.2 and 7.3, we calculate now the degrees of the reduced mono-
mials determined by the u; € £ corresponding the lattice points v; € o; N M.

Proposition 7.5

7;<1+£—1> if A >0

by
1| = usg| =
' k1 ,
Yo l1+-—] fA<O
ko
where )
v | lem (ko,lo)  if Type A mode interaction
T2 2lem(ko, l3) if Type B mode interaction
k1 + k
m Rl if A >0
k1
|us| = |ua| = 0
m = +h if A <0
4
where

, k
m = min {m : m72£1 L €zt
meZ™* 2k14y
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8 Equivariants for the General Mode Interaction

In section 6 we computed the Hilbert series for the rings of invariants under the
torus actions corresponding to (ki,l1) — (k2,ls) mode interactions. In this section
we calculate the Hilbert series for the modules of equivariants for the same torus
actions. N

Consider a group I' acting on a vector space V. Let Py (I') be the space of
equivariants with polynomial components for the action of I' on V. This is a graded
module over the ring Py (I') of the invariants and its Hilbert series is the generating
function o

Up(t) = 3 dim(P(D)) ¢
d=0

where 735(1“) is the space of I'-equivariants with polynomial components that are
homogeneous of degree d. See Worfolk [42], Dias and Stewart [13] and Stewart
and Dias [39] for further details. For a compact Lie group action there is an ex-
plicit integral formula, that generalizes the Molien Theorem for the equivariants,
the Equivariant Molien Theorem:

Wp(t) = trace(y?)

= | ——————>dur. 24
b det(1 — 1) FT (24)

where ur is again the normalised Haar measure on I and v € I". For the proof see
Sattinger [37], Worfolk [42].
Using the notation of section 6, we prove:

Theorem 8.1 The Hilbert series for the equivariants 7_3>V (T) for the action of T' =
T? on C* of section 3 is:

Ur(t) = s Fo(0) (25)

where
Fr(t) = 4(1+2) (9 (1) + ©E (1)) +8(1 +#3) D (£) — (10 + 6t7) (2 (¢) + BF* (1)) +4

Proof

By Theorem 3.2 (part (b)) every T’-equivariant (with polynomial components)
of degree d can be written as a real linear combination of equivariants of the type
(4) for 1 < j < 4 and where I, is a T*-invariant monomial of degree d + 1. Thus
the number of distinct equivariants of degree d of type (4) (for j =1,...,4) is equal
to the number of distinct invariants I, of degree d + 1 such that z; divides I, (for
j=1,...,4), up to a real constant.

By Lemma 3.1 any such I, can be written uniquely as

I, = kr (26)

where k£ is a product of terms z;Z;, and r is an invariant reduced monomial.
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Suppose that
8m1 _ 8m2

8zj 82 j
(up to a constant multiple) for invariant monomials my, my. Then m; = my. Since
there is a unique representation

my = ki1, Mg = kot

where k; is a product of terms 2,;Z;, and r; is an invariant reduced monomial, k; = ks
and r; = ry. Note that ry, ry correspond to points of the lattice M. Thus different r;
give rise to different m; (since the representation (26) is unique). Each r; corresponds
to a unique point of the lattice. Therefore, the calculation of the number of distinct
equivariants of degree d reduces to the calculation of the number of distinct invariant
monomials k7 of degree d + 1, such that Z; divides £r, and where r belongs to one
of the cones or one of the faces, for j =1,...,4.

We start with invariants k7 where r is a reduced invariant monomial correspond-
ing to a lattice point in the interior of a cone. For easy of explanation, consider the
interior of cone A and A > 1. The corresponding reduced monomials are of type
2*z3?ZP2]*. Thus invariants m = k(2)2]'z3*z1*2]* are divided by z, and z3, and
if k(2) = |21|?k (2) where again k'(z) is a product of terms z%Z;, then it is divided
by z;. Similarly, if k(2) = |24|?k" (2), then m is divided by Z;. Now the conjugates
k(2)z]" 29’ 23°Z}* are also invariant and are divided by Zz; and z4, and also by z, or
Z3 in case k(z) contains the factor |z|? or |z3/2. Thus from equivariants of type (4),
where I, = k(z)r(z) and r is a reduced monomial corresponding to a lattice point

in the interior of cone A (or conjugate to it), the contribution to ¥r is given by

1
2y (1+2) (2 (1) — 22 (1) — DR (1) +1)

For the interior of the other cones (and for A < —1) the same formula is obtained
(with the corresponding faces).

Consider now the faces, for example o7, and again suppose that A > 1. Reduced
monomials are of the type z3°z3°2]* (and conjugates z3°23°z)*). Thus invariants
k(2)z3?z3 z]* are divided by Zo,7Z3, and by z1,z, if k(2) contains a factor |2;|* and
|z4|* respectively. For the invariants k(z)23%23°z,", these are divided by z4, and by
Z1, 2o, 23 if |21]%, | 22]?, |23|? are factors of k(z). From these, the contribution to ¥r is
given by:

2 3+ 5t2) (B (1) — 1)

1
Tl

Repeat the same reasoning for the other cones and faces and use Lemma 6.2.
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Finally, invariant monomials of type k(z) give rise to equivariants of the type

ki(2) | %

where k1(z) is again a product of 2;Z;’s. These equivariants contribute to ¥ with
9 4t
(1 —1¢2)%

Summing we get (25). |

8.1 Examples

For illustration, we consider the Hilbert series for the T?-equivariants again for the
(3,2) — (1,3) mode interaction and the (3,1) — (1,3) mode interaction as in the
examples of section 6.1.

Example 8.2 Let I' = T? in the action of section 4, the (3,2) — (1,3) mode inter-
action. Using Theorem 8.1 and recalling Example 6.7,

Wr(t) = 8t + 32> + 80> + 168t" + 328t° + 616¢'" + 1104¢'* + 1872¢'° + 3024¢'" + - - -

Example 8.3 Let I' = T? in the action of section 5, the (1,3) — (3,1) mode inter-
action. Using Theorem 8.1 and recalling Example 6.8,

Wr(t) = 8t+ 32t> + 96> + 25617 + 584¢° + 1192¢'" + 2248t'% + 3936¢'° + 6504¢'" + - - -

For both examples we have also computed ¥ to degree 11 using Maple and the
Molien formula (24), as a check, and we obtain the coefficients stated above to that
degree.

9 General Torus Actions

We end by describing the first few steps in extending the above analysis to an
arbitrary torus action. Let (6, ..., ;) be coordinates on T¥, where §; € R/27Z = S'.
Let (21, ..., 2-) be coordinates on C". The general torus action takes the form

n;i;0

OiZj =€ iZj

e
Hizj =€ Y z,Zj
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=1t : :
where N = [n]{Z;”"7 is an integer matrix. Let

be a monomial. Then m is invariant under the action of ; if and only if Z;Zl NV =
0 (i =1,..., k) for integers v;, where v, = a; — ;. Solutions depend only on the
differences a; — f;, reflecting the obvious fact that each |z;]? is invariant. We may
therefore write m uniquely in the form m = (|z1/%)™ -+ (|z,[2)" m', where m/ is
reduced.

The above equations define a lattice £ whose dimension d equals the rank of
N. The possible m' are in one-to-one correspondence with elements of £, as before.
Decompose £ into cones on which the «; have constant sign.

Each cone o has a fundamental parallelotope P~, and the o-irreducible elements
(which lie inside P£) form a finite generating set for the semigroup o N L.

Suppose o is simplicial and it has dimension d. Then it is generated by vy, ..., vq4
for some v; € L. Consider the rays consisting of positive multiples of each v;. Take
Ui, - - ., Ug the elements in £ of minimal length subject to lying on these rays. Then
formula (18) of Lemma 6.4 generalizes to

Py (t)
(1- t\ull) s (11— t\Ud\)

o7(2) =

where P~ is the fundamental parallelotope polynomial as in (17) taking now P~, the
fundamental parallelotope of the lattice £ relative to the cone o, the polytope with
vertices 0, uy, ..., ug and all sums of distinct u;. Similarly Theorem 8.1 generalizes,
though we do not attempt to state the general formula here since it involves tedious
definitions.

Thus the basic set-up generalises to an arbitrary torus action — which is not
surprising, given the original source of toric geometry. It seems plausible that more
detailed analysis of torus-equivariant bifurcation problems will be able to exploit
deeper features of toric geometry, for example to organise singularity-theoretic classi-
fications (as in Golubitsky and Schaeffer [15], Manoel [31], Manoel and Stewart [32]).
Potentially, toric geometry is a rich area for equivariant bifurcation theory.
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