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Abstract

Field, Golubitsky and Stewart (Bifurcations on Hemispheres. J. Nonlin-

ear Sci. 1 (1991) 201-223.) consider the steady-state bifurcations of reaction-
diffusion equations defined on the hemisphere with Neumann boundary con-
ditions on the equator. We consider Hopf bifurcations for these equations.
We show the effect of the hidden symmetries on spherical domains for the
type of Hopf bifurcations that can occur. We obtain periodic solutions for the
hemisphere problem by extending the problem to the sphere and finding then
periodic solutions with spherical spatial symmetries containing the reflection
across the equator. The equations on the hemisphere have O(2)-symmetry
and the equations on the sphere have spherical symmetry. We find orbits
of periodic solutions for the sphere problem containing multiple periodic so-
lutions that restrict to periodic solutions of the Neumann boundary value
problem on the hemisphere lying on different O(2)-orbits.

Mathematics Subject Classification: 35B32, 35K57, 35B10

1 Introduction

It is known that the bifurcation behavior of reaction-diffusion equations on certain
domains with certain boundary conditions can be nongeneric taking into account

∗CMUP is supported by FCT through POCTI and POSI of Quadro Comunitário de Apoio III
(2000-2006) with FEDER and national fundings.
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only the symmetries of the equations. Let ut = P(u) be a system of reaction-diffusion
equations posed on a bounded domain N ⊂ Rn with Neumann boundary conditions
(NBC) on the boundary of N . It follows that the group of the physical symmetries
of the equations is the compact subgroup Γ of E(n) that preserves the domain
N and the boundary conditions. For certain domains these problems possess more
symmetry than it is immediately apparent, and these ‘hidden symmetries’ in E(n)\Γ
can be responsible for subtle changes in the generic bifurcations of such systems.
These extra symmetries naturally appear when the equations may be extended to
larger domains with larger symmetry groups. This was first noticed by Fujii et al. [7]
and formalized by Armbruster and Dangelmayr [1] for reaction-diffusion equations
on an interval with NBC. See the review paper of Gomes et al. [10] and references
therein.

Field et al. [6] studied hidden symmetries on hemispherical domains, and de-
scribed a general setting for hidden symmetries induced by Neumann and Dirichlet
boundary conditions on a large class of spatial domains. Moreover, these authors
considered steady-state bifurcations for reaction-diffusion equations defined on the
hemisphere with NBC along the equator. As they pointed out, such equations have
a natural O(2)-symmetry but may be extended to the full sphere where the natural
symmetry group is O(3). They show that the expected bifurcations are governed
not by circular symmetry but by spherical symmetry. More precisely, solutions to
the Neumann boundary problem on the hemisphere can be found by first finding
solutions to the extended problem on the sphere invariant by the reflection across
the equator (the boundary of the hemisphere). Their results were recently applied
when modelling the growth of plants, see Nagata et al. [13]. Much of the growth of
plants occurs by the elongation of cylindrical stalks or roots by action mainly at a
dome-shaped tip, as referred in [13]. This fact suggested the authors that a hemi-
sphere would be a reasonable working approximation for mathematical study. Other
applications include elastic buckling of hemispherical shells, see Bauer et al. [2, 3].

In this paper we show the effects of the hidden symmetries on spherical domains
for the type of Hopf bifurcations that can occur. Specifically, we consider the Hopf
bifurcations of reaction-diffusion equations defined on the hemisphere with NBC
along the equator.

Golubitsky and Stewart [8] give a list of those conjugacy classes of isotropy
subgroups of O(3) × S1 (action on Vl ⊕ Vl for each l) that have two-dimensional
fixed-point subspaces. Here, Vl denotes the space of spherical harmonics of order l.
See Tables 2 and 3 for the natural representation of O(3). The Equivariant Hopf
Theorem guarantees the existence, in generic Hopf bifurcation problems with O(3)
symmetry, of a branch of periodic solutions for each isotropy subgroup in each of
the conjugacy classes.

We obtain periodic solutions for the hemisphere problem by extending the prob-
lem to the sphere and finding then periodic solutions with spherical spatial sym-
metries containing the reflection across the equator. Namely, we determine group
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orbits of periodic solutions in generic O(3)-equivariant Hopf bifurcations problems
that have representative solutions with symmetry containing the above reflection.
Each orbit contains multiple periodic solutions that restrict to periodic solutions of
the Neumann boundary value problem on the hemisphere lying on different O(2)-
orbits. See Theorems 4.1, 4.2, 5.2, 5.5. In this way we find solutions to the hemi-
sphere problem that would not have been expected if we would have considered only
the circular symmetry of the hemispherical domain.

t = 0 t = 1/12 t = 1/6 t = 1/4

t = 1/3 t = 5/12 t = 1/2 t = 7/12

t = 2/3 t = 3/4 t = 5/6 t = 11/12

Figure 1: Oscillations of a sphere deformed by spherical harmonics of order l = 6:
spatial symmetry D2⊕Zc

2 and spatio-temporal symmetry (T⊕Zc
2)

θ (and twist type
Z3).

We conclude the introduction by illustrating two examples contained in our re-
sults. The Equivariant Hopf Theorem guarantees the generic existence for each l of
an orbit of periodic solutions with an axis of rotation for the sphere problem. In
Theorem 4.1, we prove that when l is even, this orbit of periodic solutions restricts
to solutions of the hemisphere problem as follows: an isolated solution with O(2)-
symmetry, and an O(2)-orbit of solutions with D−

2 -symmetry. The Equivariant Hopf
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t = 0 t = 1/12 t = 1/6  t = 1/4

t = 1/3 t = 5/12 t = 1/2 t = 7/12

t = 2/3 t = 3/4  t = 5/6 t = 11/12

Figure 2: (Orbit 1) Restriction of solution of Figure 1 to hemisphere with spatial
symmetry D−

2 .

Theorem also guarantees the existence of an orbit of periodic solutions with twisted
tetrahedral symmetry of twist type Z3, when l = 2, 4, 6 (see entry 6 of Table 2). In
Theorem 5.2 (e), we show that this orbit of periodic solutions restricts to the hemi-
sphere problem to three O(2)-orbits of solutions with spatial dihedral symmetry D−

2

of trivial twist type, that is, they have no spatio-temporal symmetries. We show
in Figures 1, 2 periodic one-parameter families of deformations of the sphere with
twisted tetrahedral symmetry and their restriction to the hemisphere for l = 6. See
Section 6 for details.

This paper is organized in the following way. In Section 2 we state the main
results on Hopf bifurcation with spherical symmetry. The problem of Hopf bifur-
cations of reaction-diffusion equations defined on the hemisphere with Neumann
boundary conditions along the equator is described in Section 3. The main results
of this paper are obtained in Sections 4 and Section 5. Theorems 4.1 and 4.2 de-
scribe solutions of the sphere problem with an axis of rotation, for l even and odd
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respectively, that restrict to solutions of the hemisphere problem. In Theorems 5.2
and 5.5 we consider periodic solutions with finite spatial symmetry, for l even and
odd respectively. Figures illustrating the results obtained in the previous theorems
are presented in Section 6. A more abstract formulation of the extension problem
is presented in Section 7.

2 Hopf Bifurcation with O(3)-symmetry

In this section, we study the existence of branches of periodic solutions for O(3)-
equivariant bifurcation problems. We state, without proofs, the main results on Hopf
bifurcation with spherical symmetry ( [8], see also [9, Section XVIII 5]). Namely,
we give, for each irreducible representation Vl of the orthogonal group O(3), a list of
isotropy subgroups Σ ⊂ O(3) × S1 for which the Equivariant Hopf Theorem proves
the existence of a branch of periodic solutions. Specifically, we give a classification of
those isotropy subgroups Σ for which dim FixVl⊕Vl

(Σ) = 2, when Vl is any irreducible
representation of O(3).

Consider the smooth O(3)-equivariant system of ordinary differential equations

dx

dt
= F (x, λ) (2.1)

and assume that the system has a generic Hopf bifurcation at the origin. Generically
Hopf bifurcation in such systems occurs when the center subspace E = V ⊕V , where
V is an absolutely irreducible representation of O(3). Moreover, after an equivariant
change of coordinates and a rescaling of time one can assume that (dF )0,0|E has the
form

J =

(
0 −Im
Im 0

)

where m = dim(V ).
Observe that O(3) × S1 acts on V ⊕ V , where the action of θ ∈ S1 is given by

eiθJ . Generically, we can also assume that the complex eigenvalues that extend ±i
when λ = 0 cross the imaginary axis with nonzero speed.

The subgroup Σ ⊂ O(3) × S1 is C-axial if Σ is an isotropy subgroup and if
dim FixE(Σ) = 2. The Equivariant Hopf Theorem states that for every C-axial
Σ there exists a branch of small amplitude periodic solutions with spatiotemporal
symmetries Σ. That is, if x(t) is on the branch of solutions and if (σ, θ) ∈ Σ, then

σx(t) = x(t+ θ)

Finally we observe that every isotropy subgroup Σ is a twisted group, that is,
there is a homomorphism θ : H → S1, where H is a subgroup of O(3), such that

Σ = {(h, θ(h)) : h ∈ H}

Let K denote the group of spatial symmetries of a solution x(t), that is, γx(t) = x(t)
for every t. It follows that K = Σ ∩ O(3).
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Representations of the group O(3)

The orthogonal group O(3) consists of all 3 × 3 matrices A such that At = A−1.
That is det(A) = ±1. The special orthogonal group SO(3) consists of the elements
in O(3) with positive determinant. Algebraically, the orthogonal group is just a
direct sum

O(3) = SO(3) ⊕ Z2
c

where Z2
c = {±I}. Each irreducible representation of SO(3) gives rise to two

irreducible representations of O(3) corresponding to the possibilities of −I acting
trivially or as minus the identity. In the natural action (or standard action) of O(3)
the element −I acts trivially if l is even and nontrivially when l is odd.

The irreducible representations of the rotation group SO(3) have dimension 2l+
1, l = 0, 1, 2, . . . Up to isomorphism, for each l there is only one such representation,
denoted by Vl, the spherical harmonics of order l and the action of SO(3) on Vl is
induced from the standard action on R3. See for example Miller [12].

Subgroups of O(3)

The closed subgroups of O(3) fall in three classes [12]:
Class I. Subgroups of SO(3).
Class II. Subgroups of O(3) that contain −I.
Class III. Subgroups of O(3) that do not fall into the classes I and II.

The subgroups of class I consist of the planar subgroups O(2), SO(2), Dm (m ≥
2), Zm (m ≥ 1), and the exceptional subgroups I, O, T. The planar subgroups are
the symmetry groups of the unoriented and oriented circle and m-gon respectively.
The exceptional subgroups are the rotation groups of the icosahedron, octahedron
and tetrahedron.

The subgroups of class II are of the form Σ⊕Z2
c where Σ is a subgroup of class

I.
From [11, Lemma 2.7] each subgroup Σ of class III is determined by two sub-

groups K and L of SO(3) where K is isomorphic to Σ, and L is of index 2 in K.
Moreover, K = π(Σ), L = Σ ∩ SO(3), where π is the projection

π : O(3) → SO(3) π(±Iγ) = γ for all γ ∈ SO(3)

See Table 1. Note that

O(2)− = SO(2) ∪̇ (−κ)SO(2)

where

−κ =




−1 0 0
0 1 0
0 0 1
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Σ K L Σ K L

O(2)− O(2) SO(2) D
d
2m (m ≥ 2) D2m Dm

O
−

O T D
−
m = D

z
m (m ≥ 2) Dm Zm

Z
−

2m (m ≥ 1) Z2m Zm

Table 1: The subgroups Σ of O(3) of class III.

and ∪̇ denotes disjoint union.
If Σ is a subgroup of O(3), its normalizer NO(3)

(Σ) is the group

NO(3)
(Σ) = {γ ∈ O(3) : γ−1Σγ = Σ}

This is the largest subgroup of O(3) in which Σ is normal. Moreover,

NO(3)
(Σ) = NSO(3)

(π(Σ)) ⊕ Z2
c

In particular, we have

NO(3)
(O(2)−) = O(2) ⊕ Z2

c, NO(3)
(O(2) ⊕ Z2

c) = O(2) ⊕ Z2
c

Isotropy Subgroups of O(3) × S1

Recall that in the natural representation of O(3), arising in most applications, the
element −I acts trivially if l is even and nontrivially when l is odd. (These are the
natural representations induced on spherical harmonics by the standard actions of
O(3) on the 2-sphere in R3.) It is the natural representation that we shall consider
in this paper.

Golubitsky and Stewart [8] give a list of those conjugacy classes of isotropy
subgroups of O(3) × S1 (action on Vl ⊕ Vl for each l) that have two-dimensional
fixed-point subspaces. The Equivariant Hopf Theorem guarantees the existence of
a branch of periodic solutions, in generic Hopf bifurcation problems with O(3) sym-
metry, for each isotropy subgroup in each of those conjugacy classes. We reproduce
their results for the natural representation in Tables 2 (even l) and 3 (odd l). Re-
call that any isotropy subgroup of O(3) × S1 is a twisted subgroup Hθ where H is
the projection of Σ on O(3) and θ : H → S1 is a group homomorphism. Denote
by K = ker(θ). Suppose now that Hθ is an isotropy subgroup of O(3) × S1 with
two-dimensional fixed-point space. It turns out that H must be a closed subgroup
of O(3) of type II, so that H = J ⊕ Z2

c where J ⊂ SO(3). To see this note that



8

for the plus representation, (−I, 0) lies in every isotropy subgroup, and for the mi-
nus representation, (−I, π) lies in every isotropy subgroup. Therefore H is a closed
subgroup of O(3) that contains Z2

c and so it is of type II. It also follows that for
the plus representation, K is of type II, and for the minus representation, K is of
type I or III. The strategy of Golubitsky and Stewart [8] for finding the isotropy
subgroups with two-dimensional fixed-point subspaces was to classify first by twist
type, and second by the type (I,II, or III) of K.

Value of l
Plus

J K Twist θ(H) Representation

1 O(2) O(2) ⊕ Z2
c 1 even l

2 SO(2) Zk ⊕Z2
c

S
1 even l
[k = 1, . . . , l]

3 I I⊕ Z2
c 1 6, 10, 12, 16, 18,

20, 22, 24, 26, 28
32, 34, 38, 44

4 O O⊕Z2
c 1 4, 6, 8, 10, 14

5 O T⊕ Z2
c

Z2 6, 10, 12, 14, 16, 20
6 T D2 ⊕ Z2

c
Z3 2, 4, 6

7 Dn Dn/2 ⊕ Z2
c

Z2 l < n ≤ 2l

(even n) even l

Table 2: Isotropy subgroups Σ = Hθ of O(3)× S1 on Vl ⊕ Vl when l is even, for the
natural representation of O(3), having two-dimensional fixed-point subspaces. Here
H = J⊕Z2

c where J ⊂ SO(3) and K = ker(θ). For S1 twists, θ : SO(2)⊕Z2
c → S1

is given by θ(ψ) = kψ for ψ ∈ SO(2) and k = 1, . . . , l occur; also θ(−I) = 0.

3 Hopf Bifurcation on Hemispheres

In this paper we study Hopf bifurcations of reaction-diffusion equations defined on
the hemisphere with Neumann boundary conditions along the equator. In [6] the
authors studied steady-state bifurcations for the same class of equations. As they
pointed out, such equations have a natural O(2)−-symmetry but may be extended to
the full sphere where the natural symmetry group is O(3). Field et al. [6] show that
the expected bifurcations are governed not by circular symmetry but by spherical
symmetry – subject to a final restriction back to the hemispherical domain. We
show that the same is true for Hopf bifurcations.
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Value of l
Minus

J K Twist θ(H) Representation

1 O(2) O(2)− Z2 odd l
2 SO(2) Z

−

2k S
1 odd l
[k = 1, . . . , l]

3 I I Z2 21, 25, 27, 31, 33,
35, 37, 39, 41, 43,
47, 49, 53, 59

4 O O Z2 9, 13, 15, 17, 19, 23
5 O O

−
Z2 3, 7, 9, 11, 13, 17

6 T D2 Z6 5, 7, 9
7 Dn Dn Z2 l/2 < n ≤ l

odd l

Table 3: Isotropy subgroups Σ = Hθ of O(3) × S1 on Vl ⊕ Vl when l is odd, for the
natural representation of O(3), having two-dimensional fixed-point subspaces. Here
H = J⊕Z2

c where J ⊂ SO(3) and K = ker(θ). For S1 twists, θ : SO(2)⊕Z2
c → S1

is given by θ(ψ) = kψ for ψ ∈ SO(2) and k = 1, . . . , l occur; also θ(−I) = π.

Denote the coordinates on R3 by (x1, x2, x3), the unit sphere in R3 by S and
the upper hemisphere of S, {x ∈ S : x3 ≥ 0} by H. Let ∆ denote the Laplacian
on S and f : R2 → R be a smooth map. Consider the reaction-diffusion equation
defined on H by

∂u

∂t
= ∆u+ f(u, λ) (3.2)

where u : H × [0,+∞[→ R. Assume (3.2) satisfies Neumann boundary conditions
on ∂H = {(x1, x2, x3) ∈ H : x3 = 0}:

∂u

∂x3
(x1, x2, 0, t) = 0 on ∂H × R+

0 (3.3)

Solutions of (3.2) on H that satisfy the boundary condition (3.3) can be extended
to solutions of (3.2) on S by defining u on the lower hemisphere by reflection.
Namely, if τ : S → S denotes the reflection across ∂H defined by

τ(x1, x2, x3) = (x1, x2,−x3) (3.4)

then we can define u on the lower hemisphere by

u(τ(x), t) ≡ u(x, t) ∀x ∈ H, ∀t ∈ R+
0
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A function u on S is τ -invariant if and only if

u(τ(x), t) = u(x, t) ∀x ∈ S, ∀t ∈ R+
0

The extension u defined on S is τ -invariant. See Theorem 7.2 for the regularity of the
extended solution along ∂H. Conversely, suppose that u is a τ -invariant solution for
the reaction-diffusion equation (3.2) on S. Then u|H is a solution for the Neumann
boundary value problem (3.2) on H. We follow the approach of Field et al. [6]
for finding solutions to the Neumann problem on the hemisphere by first finding
solutions to the extended problem on S that are τ -invariant.

Observe that the equation (3.2) defined on the hemisphere H and satisfying
boundary conditions (3.3) has symmetry group O(2)−, whereas (3.2) defined on the
sphere S has symmetry group O(3).

Suppose that
f(0, λ) ≡ 0

Thus, equation (3.2) has the trivial group-invariant steady-state solution u = 0. If a
Hopf bifurcation occurs then let E be the imaginary eigenspace of the linearization
of (3.2) about u = 0 at λ = 0. It follows then that the group of symmetries of
the equation leaves the space E invariant. Moreover, generically the action of the
symmetry group O(2)− on E is O(2)−-simple. See [9, Proposition XVI 1.4]. Let
ES be the imaginary eigenspace of the linearization of (3.2) on the sphere (about
u = 0 at λ = 0). Then E consists of those eigenfunctions in ES that are τ -
invariant. The irreducible representations of O(2)− have dimension either one or
two. A direct application of the general O(2)−-symmetric Hopf theory would imply
that generically we should expect the dimension of E to be two or four. However,
from the general O(3)-symmetric Hopf theory for the reaction-diffusion equation on
the full sphere, we expect the action of O(3) on ES to be O(3)-simple. That is, the
direct sum of two isomorphic absolutely O(3)-irreducible spaces. The irreducible
representations of O(3) correspond to the action of O(3) on the spherical harmonics
of order l which have dimension 2l + 1. Moreover, the vectors in ES that are
τ -invariant form a subspace of dimension approximately (1/2) dimES. Thus the
space E may be of higher dimension than would have been expected from the O(2)−-
symmetric Hopf bifurcation problem. We show in the next sections that periodic
solutions to the hemisphere problem that would not be expected if the extension
property was not valid can exist.

O(3)-symmetric Hopf bifurcation problems have been studied [8,9]. In particular,
subgroups of O(3) × S1 that are known to support branches of periodic solutions.
Recall Tables 2, 3 and Section 2. Using that, we can determine group orbits of
periodic solutions in generic O(3)-equivariant Hopf bifurcations problems that have
representative solutions with isotropy containing τ . Observe that a solution to the
O(3)-symmetric equation (3.2) on S restricts to the hemisphere if and only if it is
invariant under the reflection τ . Specifically, we determine the subgroups in the
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conjugacy classes of the groups Hθ in Tables 2 and 3 that support periodic solutions
on the hemisphere problem. That is, those subgroups Σ of O(3) × S1 with two-
dimensional fixed-point subspace such that τ ∈ Σ. We classify such solutions up to
O(2)−-symmetry, the symmetry group of the hemisphere. We find that some group
orbits of periodic solutions contain multiple periodic solutions with symmetry τ .
Each of these periodic solutions then restricts to solutions of the Neumann boundary
value problem on the hemisphere lying on different O(2)−-orbits.

Remark 3.1 Let Σ = Hθ be an isotropy subgroup of O(3) × S1 (for the action of
O(3)×S1 on Vl⊕Vl, for a given value of l). Then τ ∈ Σ if and only if τ ∈ K = ker(θ).
Moreover, we have that τ belongs to an isotropy subgroup of O(3) × S1 in the
conjugacy class of Hθ if and only if τ belongs to a subgroup of O(3) in the conjugacy
class of K = ker(θ). Note that if τ ∈ γKγ−1 for some γ ∈ O(3), and K = ker(θ)
for some homomorphism θ : H → S1 such that Hθ is a two-dimensional isotropy
subgroup of O(3) × S1, then τ ∈ γHθγ−1 and γHθγ−1 is conjugate to Hθ. 3

Definition 3.2 Denote the identity map on R3 by IR3. Given a map f : R3 → R3,

let Fix(f) = {x ∈ R3 : f(x) = x} denote the fixed-point set of f . We define:

(i) A linear map σ : R3 → R3 is an involution if σ 6= IR3 and σ2 = IR3 .

(ii) An involution σ ∈ O(3) is a reflection if the fixed-point set of σ is two-
dimensional. 3

Remark 3.3 If σ ∈ O(3) is an involution which is not a reflection and not equal
to −IR3 , then −σ is a reflection. 3

Note that τ is a reflection in O(3). Moreover, we have:

Lemma 3.4 An involution σ ∈ O(3) is a reflection if and only if σ is conjugate to
τ . That is, if and only if there exists γ ∈ O(3) such that σ = γτγ−1.

Proof This is [6, Lemma 2.3]. Let σ ∈ O(3) be an involution. Then it has
eigenvalues ±1, and at least one is −1. Moreover, it is a reflection if and only if it
has precisely one eigenvalue equal to −1. Hence, σ is a reflection if and only if it is
conjugate to τ . 2

4 Axisymmetric Solutions

There are two types of twisted isotropy subgroups of O(3)×S1 that contain SO(2):
those with spatial group O(2)⊕Z2

c (when l is even) and O(2)− (when l is odd). See
entries 1 of Tables 2 and 3 respectively. We call those solutions axisymmetric since
they have an axis of rotation. We discuss now solutions to the hemisphere problem
having axisymmetric symmetry.
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Theorem 4.1 Suppose we have an orbit of axisymmetric periodic solutions to the
sphere problem with spatial symmetry group O(2) ⊕ Z2

c (entry 1 of Table 2 for l
even). On restriction we obtain the following orbits of solutions to the hemisphere
problem:

(a) An isolated axisymmetric solution with the x3-axis as axis of symmetry. The
symmetry of the solution is O(2)−.

(b) A unique orbit of solutions with spatial symmetry group D−

2 (inside O(2)−).

Proof See [6, Theorem 3.1]. We include a more detailed proof. We begin by
determining those subgroups of O(3) conjugate to O(2)⊕Z2

c (when l is even) that

also contain τ . An element in the conjugacy class of O(2)⊕Z2
c in O(3) is Õ(2)⊕Z2

c,

where Õ(2) = S̃O(2) ∪ (−σ̃)S̃O(2) and S̃O(2) contains all rotations of the plane
orthogonal to the axis of symmetry that fix this axis. Here we can take σ̃ any

reflection with fixed point set containing the axis of symmetry of S̃O(2). Therefore

Õ(2) is generated by S̃O(2) and −σ̃.

Let Σ = Õ(2)⊕Z2
c be such that τ ∈ Σ. Since τ reverses orientation (det τ = −1),

then τ 6∈ S̃O(2). Since τ ∈ Σ, then τ leaves the axis of rotation of S̃O(2) invariant
(all the elements of Σ fix or transform in −v an element v in the axis of rotation of

S̃O(2)). That is, τ is in the normalizer of S̃O(2). As τ(x1, x2, x3) = (x1, x2,−x3)

and τ maps the axis of rotation of S̃O(2) into itself, then this axis is either: (a) the
x3-axis or (b) perpendicular to the x3-axis.
Case (a) In this case Σ = O(2) ⊕ Z2

c, where O(2) = SO(2) ∪ κSO(2). The
elements of Σ are of one of the following types: Rθ ∈ SO(2) ⊂ SO(3), κRθ ∈
κSO(2) ⊂ SO(3), −Rθ ∈ −ISO(2), −κRθ ∈ −κSO(2). Note that τ 6∈ SO(3) since
det τ = −1. Moreover τ = −Rπ (where Rπ ∈ SO(2)) (and −τ = Rπ). Thus τ ∈ Σ.
Moreover,

(O(2) ⊕ Z2
c) ∩ O(2)− = O(2)−

since O(2)− = SO(2) ∪ (−κ)SO(2).
Case (b) Suppose the axis of rotation is R{a1} where a1 = (a, b, 0) (and a2+b2 6= 0).

Now τa1 = a1. Thus τ is a reflection fixing the axis of rotation and so −τ ∈ Õ(2).

We conclude that τ ∈ Σ = Õ(2) ⊕ Z2
c.

We show that
(Õ(2) ⊕ Z2

c) ∩ O(2)− = D−

2

To see this, note that the elements of Σ are of one of the following four types:

(b.1) R̃θ ∈ S̃O(2) ⊂ SO(3) with positive determinant;

(b.2) −σ̃R̃θ ∈ Õ(2) \ S̃O(2) ⊂ SO(3) with positive determinant;
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(b.3) −R̃θ ∈ O(3) with negative determinant;

(b.4) σ̃R̃θ ∈ O(3) with negative determinant.

Recall that σ̃ fixes the rotation axis a1 and O(2)− = SO(2) ∪ (−κ)SO(2), where
det (Rθ) = 1 and det (−κRθ) = −1, for Rθ ∈ SO(2). We consider the four cases,
each corresponding to the intersection of O(2)− with the set of elements of one of
the four types that we have in Σ.
Case (b.1): the intersection of O(2)− with the set of elements of type R̃θ is formed

by the elements of the type R̃θ ∈ S̃O(2) ⊂ SO(3) that are also of type Rθ ∈ SO(2) ⊂
SO(3). One element in these conditions would have to fix the a1 axis and the x3

axis of rotation of SO(2), so it can only be the identity.

Case (b.2): the intersection of O(2)− with the set of elements of type −σ̃R̃θ is given

by the elements of type −σ̃R̃θ ∈ Õ(2) ⊂ SO(3) that are of type Rθ ∈ SO(2) ⊂

SO(3) since the elements −σ̃R̃θ have positive determinant. The second ones fix the

x3-axis, so they have 1 as an eigenvalue. The first ones are such that −σ̃R̃θ(a1) =

−a1 because −σ̃R̃θ ∈ Õ(2) \ S̃O(2). They have −1 as an eigenvalue. The third
eigenvalue must be −1 because these elements are in SO(3). Therefore θ = π
and Rθ = Rπ. Moreover, taking the orthogonal basis (a1, b1, (0, 0, 1)), where b1 =

(−b, a, 0), we can take R̃θ = I and σ̃ such that −σ̃ = Rπ in this basis (and in the
canonical basis).

Case (b.3): the intersection of O(2)− with elements of type −R̃θ1
∈ O(3). In this

case we must find θ such that γ = −κRθ = −R̃θ1
. Since γ fixes the x3-axis and

maps a1 into −a1, where a1 is the rotation axis of Õ(2), then as det(γ) = −1, it

follows that −R̃θ1
= −R̃π (and so θ1 = π). Moreover, γ has eigenvalues −1, 1, 1 and

−κRθ =




−1 0 0
0 1 0
0 0 1







cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 =




− cos θ sin θ 0
sin θ cos θ 0

0 0 1




in the canonical coordinates x1, x2, x3. Recall that this is a reflection on the line
x2 = tan(π/2 − θ/2)x1 if θ 6= 0 and x1 = 0 otherwise (in the x1x2-plane). On the

other hand −R̃π is a reflection along the axis (−b, a, 0). This axis must coincide
with the line x2 = tan(π/2 − θ/2)x1 if θ 6= 0, otherwise with x1 = 0. If b = 0 we

take θ = 0 and γ = −κR0 = −κ = −R̃π. If not, then θ is the angle such that

tan

(
π − θ

2

)
= −

a

b

In any case,

γ =




−1 0 0
0 1 0
0 0 1
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in the (a1, b1, (0, 0, 1))-basis.

Case (b.4): the intersection of O(2)− with elements of type σ̃R̃θ1
∈ O(3). We must

find θ such that γ = −κRθ = σ̃R̃θ1
. As γ = −κRθ fixes the x3-axis and γ = σ̃R̃θ1

fixes the a1-axis, and det(γ) = −1, it follows that the eigenvalues of γ are 1, 1,−1.
In the basis (a1, b1, (0, 0, 1)) we have

σ̃R̃π =




1 0 0
0 −1 0
0 0 1




Recall that in case (b.2) we chose

σ̃ =




1 0 0
0 1 0
0 0 −1




Note that σ̃R̃π is a reflection on the a1-axis (in the x1x2-plane). Also −κRθ is a
reflection on the line x2 = tan(π/2 − θ/2)x1 if θ 6= 0 and x1 = 0 otherwise (in the

same plane). If a = 0 we take θ = 0 and γ = −κR0 = −κ = σ̃R̃π. If a 6= 0 we
choose θ such that

tan

(
π − θ

2

)
=
b

a

In both cases

γ =




1 0 0
0 −1 0
0 0 1




in the (a1, b1, (0, 0, 1))-basis. Moreover
(
Õ(2) ⊕ Z2

c
)
∩ O(2)− = D−

2

where

D−

2 =








−1 0 0
0 −1 0
0 0 1


 ,




−1 0 0
0 1 0
0 0 1


 ,




1 0 0
0 −1 0
0 0 1


 ,




1 0 0
0 1 0
0 0 1








in the ((a, b, 0), (−b, a, 0), (0, 0, 1)) basis. 2

Theorem 4.2 Suppose we have an orbit of axisymmetric periodic solutions with
O(2)− symmetry (entry 1 of Table 3 for l odd) to the sphere problem. On restriction
we obtain a unique orbit of solutions of the hemisphere problem with spatial symmetry
group Z2

− (inside O(2)−) and spatio-temporal symmetry (D−

2 )θ (inside O(2)−×S1)
where θ has twist type Z2.
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Proof We determine now the subgroups of O(3) conjugate to O(2)− (when l

is odd) that contain τ . We denote by Õ(2)− an element in the conjugacy class

of O(2)− in O(3). Now Õ(2)− = S̃O(2) ∪ σ̃S̃O(2), where S̃O(2) contains all
rotations of the plane orthogonal to the axis of symmetry that fix this axis. Here
we can take σ̃ any reflection with fixed point set containing the axis of symmetry

of S̃O(2). Let Σ = Õ(2)− be such that τ ∈ Σ. Following the same lines as in the
proof of Theorem 4.1, we also have to consider cases (a) and (b) according the axis

of rotation of S̃O(2) is the x3-axis or perpendicular to the x3-axis, respectively. In

case (a) τ /∈ Õ(2)− so these solutions do not occur when l is odd. In case (b) we

have τ ∈ Õ(2)− and

(Õ(2)−) ∩ O(2)− = Z−

2

To see this, note that the elements of Σ are of one of the following two types:

• R̃θ ∈ S̃O(2) ⊂ SO(3),

• σ̃R̃θ ∈ O(3).

Following cases (b.1) and (b.4) of the proof of Theorem 4.1, we obtain

(Õ(2)−) ∩ O(2)− = Z2
− =








1 0 0
0 −1 0
0 0 1


 ,




1 0 0
0 1 0
0 0 1








in the ((a, b, 0), (−b, a, 0), (0, 0, 1)) basis, where (a, b, 0) is a nonzero vector in the

axis of rotation of S̃O(2).

For Hθ ∩ (O(2)−×S1), when l is odd, we need to compute (Õ(2)⊕Z2
c)∩O(2)−.

The above computations, done for even l, are also valid for odd l, so we have

(Õ(2) ⊕ Z2
c) ∩ O(2)− = D−

2

Note that the axis of symmetry of S̃O(2) is perpendicular to x3 (case (b) in the
computations for even l in the proof of Theorem 4.1). 2

5 Solutions with Finite Spatial Symmetry

We consider now periodic solutions with twisted symmetry groups that have finite
spatial symmetry groups for the sphere problem that restrict to solutions of the
hemisphere problem.

We recall that a group G is the disjoint union of subgroups Gi, i ∈ I, if G =
∪i∈IGi and for all i, j ∈ I, i 6= j, Gi ∩ Gj is the identity element of G. We write
G = ∪̇i∈IGi.
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Lemma 5.1 The subgroups I, O, T and O− of O(3) have the following disjoint
union decompositions:

I = ∪̇
6
Z5 ∪̇

10
Z3 ∪̇

15
Z2

O = ∪̇
3
Z4 ∪̇

4
Z3 ∪̇

6
Z2

T = ∪̇
4
Z3 ∪̇

3
Z2

O− = ∪̇
3
Z−

4 ∪̇
4
Z3 ∪̇

6
Z−

2

Here ∪̇
k
Zl (resp. ∪̇

k
Z−

l ) denotes a disjoint decomposition of k copies of subgroups
all conjugate in SO(3) (resp. O(3)) to Zl (resp. Z−

l ).

Proof See [11] or [9, pp. 105, 123]. 2

Theorem 5.2 Suppose that we have an O(3) × S1-orbit of periodic solutions to
the sphere problem with finite group of spatial symmetries given in Table 2 (entries
2− 7). On restriction, we obtain the following O(2)− ×S1 orbits of solutions to the
hemisphere problem:

(a) Spatial group K = Zk ⊕ Z2
c

For each even k (and 2 ≤ k ≤ l) there is one orbit of solutions with spatial
symmetry group Zk, and spatio-temporal symmetry (SO(2))θ where θ(ψ) = kψ
for ψ ∈ SO(2).

(b) Spatial group K = I ⊕ Z2
c (Icosahedral solutions)

There are 15 orbits of solutions with (spatial) symmetry group Z2
−.

(c) Spatial group K = O ⊕ Z2
c (Octahedral solutions)

There are 3 orbits of solutions with (spatial) symmetry group D−

4 .
There are 6 orbits of solutions with (spatial) symmetry group D−

2 .

(d) Spatial group K = T ⊕ Z2
c (Tetrahedral solutions)

There are 3 orbits of solutions with spatial symmetry group D−

2 , and spatio-
temporal symmetry (D−

4 )θ where θ has twist type Z2.

(e) Spatial group K = D2 ⊕ Z2
c (Dihedral solutions)

There are 3 orbits of solutions with spatial symmetry group D−

2 .

(f) Spatial group K = Dn/2 ⊕ Z2
c (Dihedral solutions)

For each odd n/2 (and l < n ≤ 2l) there are n/2 orbits of solutions. The
solutions have spatial symmetry group Z2, and spatio-temporal symmetry (D−

2 )θ

where θ has twist type Z2.
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For each even n/2 (and l < n ≤ 2l) there are n/2 + 1 orbits of solutions. One
orbit consists of solutions with spatial symmetry group D−

n/2, and spatio-temporal

symmetry (D−

n )θ where θ has twist type Z2. The other n/2 orbits consist of
solutions with (spatial) symmetry group D−

2 .

Proof The groups K are of the type ∆⊕Zc
2 where ∆ ⊂ SO(3). By Remark 3.3,

reflections conjugate to τ (Lemma 3.4) are found by composing the involutions in
∆ with −IR3 .

(a) Suppose K = Zk ⊕ Z2
c. When k is odd, K does not contain involutions. When

k is even Rπ ∈ SO(2) is the only involution of Zk. Moreover, τ = −Rπ ∈ K.
Thus by Lemma 3.4 for each even k there is one orbit of solutions.

Let k be even. For the spatial intersection, K ∩ O(2)−, where K = Zk ⊕ Z2
c,

note that O(2)− = SO(2) ∪ (−κ)SO(2) and Zk ⊕ Z2
c = Zk ∪ (−I)Zk. The

intersection SO(2) ∩ Zk is Zk and the intersection [(−κ)SO(2)] ∩ [(−I)Zk]
is empty because every element of (−κ)SO(2) fixes the third coordinate and no
element of (−I)Zk does so. We conclude that the intersection (Zk⊕Z2

c) ∩ O(2)−

is Zk.

In order to calculate Hθ ∩ (O(2)− ×S1) where H = SO(2)⊕Z2
c, we calculate

now (SO(2) ⊕ Z2
c) ∩ O(2)− which is SO(2). Therefore we have that Hθ ∩

(O(2)− × S1) = (SO(2))θ where θ(ψ) = kψ, for ψ ∈ SO(2).

(b) By Lemma 5.1, in I there are 15 involutions in Z2. Composing these involutions
with −I it follows that I ⊕ Zc

2 has 15 distinct reflections (recall Remark 3.3).
Moreover, by Lemma 3.4, these reflections are conjugate to τ .

Geometrically, these 15 (orbits) of solutions to the hemisphere problem corre-
spond to the 15 different ways we may slice (an object with the same symmetry
as) the icosahedron (through the corresponding 15 planes of symmetry). The
solutions for the hemisphere problem in this case have spatial Z−

2 -symmetry.

(c) By Lemma 5.1, in O there are three involutions in Z4 and six in Z2. Composing
these involutions with −I it follows that O ⊕ Zc

2 has 9 distinct reflections.

Geometrically, the nine (orbits) of periodic solutions to the hemisphere problem
that we obtain, correspond to the nine different ways we may slice (an object
with the same symmetry of) the cube as we describe now. Three of them
correspond to slice the cube through the three planes of symmetry parallel
to, and halfway between, two opposite faces of the cube. The solutions for
the hemisphere problem in this case have spatial symmetry D−

4 . The other six
(orbits) of solutions correspond to slice the cube through the planes of symmetry
containing opposite edges of the cube. The solutions for the hemisphere problem
in this case have spatial D−

2 -symmetry.
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(d) By Lemma 5.1, in T there are three involutions in Z2. Composing these invo-
lutions with −I it follows that T ⊕ Z2

c has three distinct reflections conjugate
to τ .

For the intersection K ∩ O(2)−, note that the group T⊕Z2
c can be realized as

Z3+̇Z2
3. The elements of Z3+̇Z2

3 that fix the third coordinate are two groups
isomorphic to Z2, forming the group D−

2 =< Rπ,−κ >.

For the intersection Hθ ∩ (O(2)− ×S1), note that the group H = O⊕Z2
c can

be realized as S3+̇Z2
3. Moreover, H ∩ O(2)− is the group D−

4 =< Rπ/2,−κ >.
Thus Hθ ∩ (O(2)− × S1) = (D−

4 )θ and θ has twist type Z2.

(e) We have that D2 =< Rπ, κ > and so D2 ⊕ Z2
c contains three reflections, τ =

−Rπ, −κ and −κRπ, which are conjugate to τ by Lemma 3.4.

The intersection K ∩ O(2)− where K is (conjugate to) D2 ⊕Z2
c is (conjugate

to) D−

2 (generated by Rπ and −κ).

From the previous item we have that Hθ ∩ (O(2)− × S1) = (D−

2 )θ, and θ has
trivial twist type.

(f) The n/2 elements in Dn/2 \ Zn/2 are involutions in Dn/2. When n/2 is even,
we also have that Rπ ∈ Dn/2 and so −Rπ = τ ∈ Dn/2 ⊕ Z2

c. We conclude
that when n/2 is even there are n/2 + 1 orbits of solutions containing τ for
the sphere problem. When n/2 is odd there are n/2 orbits of solutions for the
sphere problem.

Let n/2 be even. For the intersection K ∩ O(2)− where K = Dn/2 ⊕ Zc
2, note

that

Dn/2 ⊕ Z2
c = Zn/2 ∪ κZn/2 ∪ (−I)Zn/2 ∪ (−κ)Zn/2.

The elements of K that fix the x3-axis belong to Zn/2 ∪ (−κ)Zn/2. This is
the group D−

n/2 (generated by R4π/n and −κ) and it is contained in O(2)−. It

follows then that K ∩ O(2)− is D−

n/2. Now, let H = Dn ⊕Z2
c. The elements of

H that fix the x3-axis form the group D−

n (generated by R2π/n and −κ) which
is contained in O(2)−. It follows then that the intersection Hθ ∩ (O(2)− ×S1)
is (D−

n )θ and θ has twist type Z2.

For the remaining n/2 orbits of solutions when n/2 is even, from the proof of
Theorem 4.1 (b) it follows that the solutions for the hemisphere problem have
spatial symmetry D−

2 and trivial twist type. That is, we have K ∩ O(2)− =
H ∩ O(2)− = D−

2 .

Let n/2 be odd. In this case, again following the proof of Theorem 4.1 (b), we
have that K ∩ O(2)− = Z2 and H ∩ O(2)− = D−

2 . Thus the solutions for the
hemisphere problem have spatial symmetry Z2 and twist type Z2. 2
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Remark 5.3 Consider the natural representation of O(3) on Vl. Then the group
O ⊕ Z2

c is a maximal isotropy subgroup of O(3) for the even values of l greater
or equal to 4. Also the group I ⊕ Z2

c is a maximal isotropy subgroup of O(3) for
the following values of l: 6, 10, 12 and all other even numbers greater or equal to
16. See [9, Theorem XIII 9.8]. Also the normalizer of O ⊕ Z2

c in O(3) is O ⊕ Z2
c.

Similarly, the normalizer of I ⊕ Z2
c coincides with I ⊕ Z2

c. It follows then that
we can use the above facts to show that O ⊕ Z2

c and I⊕ Z2
c are maximal isotropy

subgroups of O(3)×S1 of trivial twist type (for the corresponding action on Vl⊕Vl).
For the above values of l that are not listed in the entries 3 and 4 of Table 2, we
can use Fiedler’s result [4] (see [5] or [9, Theorem XVI 4.5]) to conclude the generic
existence of branches of periodic solutions with symmetry given by the isotropy
subgroups in the conjugacy classes of O ⊕ Z2

c and I ⊕ Z2
c, in Hopf bifurcation

problems with spherical symmetry posed on Vl ⊕ Vl. It follows then that the results
of Theorem 5.2 (b)-(c) are also valid for those values of l. 3

Lemma 5.4 The periodic solutions to O(3)-equivariant Hopf bifurcation problems
with isotropy conjugate to the twisted groups with spatial group I or O or Dn (see
Table 3, entries 3, 4, 6 and 7) cannot restrict to solutions of the Neumann problem
on the hemisphere.

Proof The groups I, O, D2 and Dn contain no orientation-reversing elements.
Therefore, they do not contain reflections. 2

Theorem 5.5 Suppose that we have an O(3) × S1-orbit of periodic solutions to
the sphere problem with finite group of spatial symmetries given in Table 3 (entries
2, 5). On restriction, we obtain the following O(2)− × S1 orbits of solutions to the
hemisphere problem:

(a) Spatial group K = Z−

2k

For each odd k (and 1 ≤ k ≤ l) there is one orbit of solutions with spatial
symmetry group Zk, and spatio-temporal symmetry (SO(2))θ where θ(ψ) = kψ
for ψ ∈ SO(2).

(b) Spatial group K = O− (Octahedral solutions)
There are 6 orbits of solutions with spatial symmetry group Z−

2 , and spatio-
temporal symmetry (D−

2 )θ where θ has twist type Z2.
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Proof

(a) Note that the group Z−

2k is generated by −Rπ/k. If k is even then the involution
of Z−

2k is (−Rπ/k)
k = Rπ which is not a reflection. If k is odd then (−Rπ/k)

k =
−Rπ = τ ∈ Z−

2k.

Let k be odd. The elements of Z−

2k with determinant one form the group Zk,
which is contained in O(2)−. Moreover, the elements in Z−

2k \ Zk do not fix the
third coordinate and so do not belong to O(2)−. Thus Z−

2k ∩ O(2)− = Zk.
Moreover, (SO(2) ⊕ Z2

c) ∩ O(2)− = SO(2).

(b) Recall the decomposition of O− in Lemma 5.1. The reflections in O− are the
order two elements of Z−

2 . Thus by Lemma 3.4 there are six orbits of solutions.

The proof of the intersections follows closely the proof of item (c) of Theorem 5.2.

2

6 Figures

Following Field et al. [6], given l ≥ 2, we identify the spherical harmonics of degree
l (in Vl) with the deformations of a sphere in the following way: since a spherical
harmonic is a real-valued function on the sphere, we can picture it by deforming
the sphere in the radial direction by an amount equal to the value of that spherical
harmonic.

In this section we show periodic one-parameter families of deformations of the
sphere, the parameter being time, to illustrate the symmetries of the periodic solu-
tions predicted by Theorems 4.2, 5.2, and 5.5 for the sphere problem and for their
restriction to the hemisphere.

In Figure 3 (a) we assume l = 3 and we picture a standing wave (of periodic
oscillations) of deformations of the sphere with spatial symmetry O(2)−, twisted
symmetry (O(2) ⊕ Zc

2)
θ (and twist type Z2). Thus the deformations maintain an

O(2)−-symmetric shape and oscillate with twist type Z2. In Theorem 4.2 we show
that this solution may be sliced in one way (up to O(2)−-symmetry) to obtain a
solution to the equation posed on the hemisphere, having spatial symmetry Z−

2

and spatio-temporal symmetry (D−

2 )θ (having twist type Z2). We show that in
Figure 3 (b).

In Figure 4 (a) we assume l = 3 and we picture a rotating wave (of periodic oscil-
lations) of deformations of the sphere with spatial symmetry Z−

6 , twisted symmetry
SO(2)θ (and twist type S1). Thus the deformations maintain a Z−

6 -symmetric con-
stant shape and rotate about the x3-axis. In Figure 4 (b) we picture the restriction
to hemisphere with Z3-symmetric constant shape and rotating about the x3-axis.
Recall Theorem 5.5 (a) for l = 3 and k = 3.
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(a)

(b)

t = 0 t = 1/8 t = 1/4 t = 3/8

t = 1/2 t = 5/8 t = 3/4 t = 7/8

t = 0 t = 1/8 t = 1/4 t = 3/8

t = 1/2 t = 5/8 t = 3/4 t = 7/8

Figure 3: (a) Oscillations of a sphere deformed by spherical harmonics of order l = 3:
spatial symmetry O(2)− and twisted symmetry (O(2) ⊕ Zc

2)
θ (twist type Z2). (b)

Restriction to hemisphere: spatial symmetry Z−

2 , twisted symmetry (D(2)−)θ, twist
type Z2.

In Figure 5 (a) we assume l = 6 and we picture a standing wave (of periodic
oscillations) of deformations of the sphere with spatial symmetry T ⊕ Zc

2, twisted
symmetry (O ⊕ Zc

2)
θ. Thus the deformations are T ⊕ Zc

2-symmetric and oscillate
with twist type Z2. In Theorem 5.2 (d) we show that this solution may be sliced in



22

                            (a)                                                              (b)

Figure 4: (a) Oscillations of a sphere deformed by spherical harmonics of order
l = 3: spatial symmetry Z−

6 and twisted symmetry (SO(2))θ. (b) Restriction to
hemisphere: spatial symmetry Z3 and twisted symmetry (SO(2))θ.

three ways to obtain solutions to the equation posed on the hemisphere, all of them
have spatial symmetry D−

2 and spatio-temporal symmetry (D−

4 )θ (having twist type
Z2). We show that in Figure 5 (b-d).

In Figure 1 (Section 1) we assume l = 6 and we picture a standing wave (of
periodic oscillations) of deformations of the sphere with spatial symmetry D2 ⊕Zc

2,
twisted symmetry (T ⊕ Zc

2)
θ. Thus the deformations are D2 ⊕ Zc

2-symmetric and
oscillate with twist type Z3. In Theorem 5.2 (e) we show that this solution may be
sliced in three ways to obtain solutions to the equation posed on the hemisphere, all
of them have spatial symmetry D−

2 and trivial twist type. We show that in Figures 2
(Section 1), 6, 7.

In Figure 8 (a) we assume l = 2 and we picture a standing wave (of periodic
oscillations) of deformations of the sphere with spatial symmetry D2 ⊕ Zc

2, twisted
symmetry (D4 ⊕ Zc

2)
θ. Thus the deformations are D2 ⊕ Zc

2-symmetric and oscillate
with twist type Z2. In Theorem 5.2 (f) for l = 2 and n = 4, we show that this
solution may be sliced in three ways to obtain solutions to the equation posed on
the hemisphere, all of them have spatial symmetry D−

2 . One it has twisted symmetry
(D−

4 )θ (twist type Z2), and the other two have trivial twist type. We show that in
Figure 8 (b-d).

7 Smoothness of Extended Solutions

In Section 3 we state that solutions of (3.2) on H that satisfy the boundary condition
(3.3) can be extended to solutions of (3.2) on S by defining u on the lower hemisphere
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(a)

(b)

(c)

(d)

t = 0 t = 1/4 t = 1/2 t = 3/4

t = 0 t = 1/4
t = 1/2 t = 3/4

t = 0 t = 1/4 t = 1/2

t = 0 t = 1/4 t = 1/2 t = 3/4

t = 3/4

Figure 5: (a) Oscillations of a sphere deformed by spherical harmonics of order l = 6:
spatial symmetry T ⊕ Zc

2 and spatio-temporal symmetry (O ⊕ Zc
2)

θ. (b-d) (Three
orbits) Restriction to hemisphere: spatial symmetry D−

2 , spatio-temporal symmetry
(D−

4 )θ, twist type Z2.

by the reflection τ : S → S across ∂H. Field et al. [6, Theorem 5.18] prove the
regularity of the steady-state extended solutions along ∂H obtained by this method.
A similar result is valid for periodic solutions of (3.2). Before stating this result, we
briefly describe the abstract setting assumed by [6] and where the results hold.

Let M be a smooth, compact, connected, Riemannian n-dimensional manifold
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t = 0 t = 1/12 t = 1/6 t = 1/4

t = 1/3 t = 5/12 t = 1/2 t = 7/12

t = 2/3 t = 3/4 t = 5/6 t = 11/12

Figure 6: (Orbit 2) Restriction of solution of Figure 1 to hemisphere with spatial
symmetry D−

2 .

without boundary. Suppose K is a finite group of transformations of M generated
by an admissible set R of p reflections. Thus K is isomorphic to Zp

2 and it may
be assumed a group of isometries of M . Take N to be a connected component of
MK = {x ∈M : (k ∈ K ∧ kx = x) ⇒ k = IM}, where IM denotes the identity map
ofM , and note that every isometry onN (for the Riemannian structure induced from
M) extends uniquely to an isometry on M . Denote the boundary of N by ∂N , the
group of isometries of M by ISO(M), and the space of smooth real-valued functions
on M by C∞(M). Recall that the natural action of ISO(M) on C∞(M) is defined
by u → g(u), where for u ∈ C∞(M) and g ∈ ISO(M) we have g(u)(x) = u(g−1x).
Finally, consider P to be a semi-linear elliptic operator on C∞(M) defined by

P(u) = ∆u+ f(u), (7.5)

where ∆ is the Laplace operator associated to the Riemannian structure on M and
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t = 0 t = 1/12 t = 1/6 t = 1/4

t = 1/3 t = 5/12 t = 1/2 t = 7/12

t = 2/3 t = 3/4 t = 5/6 t = 11/12

Figure 7: (Orbit 3) Restriction of solution of Figure 1 to hemisphere: spatial sym-
metry D−

2 .

f : R → R is smooth. Note that the operator P on C∞(M) defined by (7.5) satisfies

P(g(u)) = g(P(u))

for all u ∈ C∞(M) and g ∈ ISO(M) (P is ISO(M)-invariant).
Let C1(M) (respectively, C1(N)) denote the space of C1 real-valued functions

on M (respectively, N), and C([0, T ], C1(M)) the space of continuous mappings
u : [0, T ] → C1(M).
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(a)

(b)

(c)

(d)

t = 0 t = 1/4 t = 1/2

t = 0 t = 1/4 t = 1/2

t = 0 t = 1/4 t = 1/2

t = 0 t = 1/4 t = 1/2

Figure 8: (a) Oscillations of a sphere deformed by spherical harmonics of order l = 2:
spatial symmetry D2 ⊕ Zc

2 and spatio-temporal symmetry (D4 ⊕ Zc
2)

θ (twist type
Z2). (b-d) (Three orbits) Restriction to hemisphere: spatial symmetry D−

2 ; (b) has
spatio-temporal symmetry (D−

4 )θ and so twist type Z2; (c) and (d) have trivial twist
type.
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Proposition 7.1 [14] Consider the equation

∂u

∂t
= ∆u+ F (x, u,∇u, t), u(x, 0) = g (7.6)

for u(x, t) a function on M × [0, T ], where M is a compact manifold without bound-
ary, and F is C∞ in its arguments. Given g ∈ C1(M), the above equation has, for
some T > 0, a unique solution

u ∈ C([0, T ], C1(M)) ∩ C∞(M×]0, T ]). (7.7)

Proof See Taylor [14, Chapter 15, Proposition 1.2]. 2

Given f : M →M , let Fix(f) = {x ∈ M : f(x) = x} denote the fixed-point set
of f .

We recall that a solution u such that u(x, 0) ∈ C1(N) of

∂u

∂t
= P(u)

posed on N satisfies Neumann boundary conditions (NBC) on N if for every τ ∈ R
and all x ∈ ∂N ∩ Fix(τ), we have

∂u

∂n
(x) = 0, (7.8)

where n is the normal direction to Fix(τ) at x.
A solution u (satisfying (7.7)) of the equation (7.6) will be called smooth.
We can now state the extension theorem:

Theorem 7.2 Let P be the K-invariant operator defined by (7.5). Then the fol-
lowing hold:

1. Every smooth K-invariant solution u of

∂u

∂t
= P(u) (7.9)

on M restricts to a smooth solution of the Neumann problem for (7.9) on N .

2. Let u be a solution to the Neumann problem with u(x, 0) ∈ C1(N) for (7.9)
on N . Then:

(a) u is smooth.

(b) u extends uniquely to a smooth K-invariant solution of (7.9) on M .

Proof The proof follows the same lines as [6, Theorem 5.18], where now we
consider the parabolic equation (7.9). In proving item (b) we use Proposition 7.1
above instead of [6, Lemma 5.15]. 2



28

Acknowledgements

We thank Michael Field and Mı́riam Manoel for helpful discussions, and Ian Mel-
bourne for pointing out Remark 5.3. SMCA thanks Universidade Portucalense for
granting leave. The research of SMCA was supported by Centro de Matemática da
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