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Abstract. Systems of ODEs modelling coupled cells with ‘wreath product’
coupling have been the subject of recent research. For identical cells, such sys-
tems can have interesting symmetries. The basic existence theorem for Hopf
bifurcation in the symmetric case is the equivariant Hopf theorem, which in-
volves isotropy subgroups with a two-dimensional fixed-point subspace (called
C-axial). A classification theorem for C-axial subgroups in wreath products is
presented by Dionne, Golubitsky and Stewart in [8]. However, their classifica-
tion is incomplete: it omits some C-axial subgroups in some cases. We provide
a complete classification of the C-axial subgroups in wreath products. We also
classify the maximal isotropy subgroups for these groups.

AMS classification scheme numbers: 20xx, 57T05



1 Introduction

Over the last few years, there has been increasing interest in the nonlinear
dynamics and bifurcations of systems of coupled identical ‘cells’ - that is, dy-
namical subsystems such as oscillators: see in particular [8, 9]. It is now well
understood that coupled systems of this kind can possess certain types of sym-
metry. In particular, the individual cells can have a ‘local’ (or ‘internal’) group
of symmetries £ (a subgroup of O(k)), and the network of couplings can have
a ‘global’ symmetry group G (a subgroup of the permutation group Sy). Two
types of couplings have attracted particular attention, the so-called ‘wreath
product’ case, in which the coupling is invariant under any local symmetry of
any cell, and the ‘direct product’ case when a local symmetry must be applied
simultaneously to all cells. The symmetry group of the coupled system is the
wreath product £1G, and the direct product £ x G, respectively. In this paper
we will study only the wreath product case.

There are many naturally occurring nonlinear systems with wreath product
structure. Golubitsky, Stewart and Dionne [13] list four types of examples, as
follows:

1. Coupled arrays of Josephson junctions [17, 1] where the symmetry group
is S 1 Sn.

2. Discretizations of PDEs with gauge symmetry, such as the Ginzburg-
Landau equation.

3. Molecular dynamics, where to a good approximation coupling between
atoms is invariant under symmetries of each individual atom.

4. Heteroclinic cycles, like the Guckenheimer and Holmes [15] example of a
structurally stable heteroclinic cycle obtained by abstracting a model for
rotating convection developed by Busse and Heikes [2]. Also, with slight
modification, the ‘instant chaos’ scenario of Guckenheimer and Worfolk
[16], which involves a subgroup of index two of Zy 1 Zj4.

More generally, there are now several more recent examples:

5. In [4], Dellnitz et al. present numerical evidence that it is possible to
replace the equilibria in the heteroclinic cycle presented by Guckenheimer
and Holmes (mentioned above) by chaotic sets, once more obtaining cy-
cling behaviour, but now between chaotic sets.

6. Silber and Knobloch [18] study Hopf bifurcation on a square lattice. Their
system can be viewed as a wreath product coupling system, and the group
here is O(2)1S..

7. Callahan and Knobloch [3] study steady-state bifurcations on various cubic
lattices. These correspond to various representations of O ®Z$+T?3, where
O is the octahedral group, Z$ represents inversion through origin and T3
is the three-torus of translations. This group is isomorphic to O(2) 1 Ss.



Our approach applies to the 6-dimensional representation (for the simple
cubic lattice), but not to the 8- or 12-dimensional representations (for the
face-centred and body-centred cubic lattices).

8. More generally, the Weyl group of type B, denoted by W(B,) can be
viewed as the wreath product Z, 1S, [11]. This crystallographic group is
also called the hyperoctahedral group because it is the symmetry group
of the N-dimensional cube. It is the holohedry of a lattice in dimension
N. If we extend it by the N-torus T, we obtain a compact subgroup
of the Euclidean group E(NN) that leaves invariant the space of functions
from R¥ to R that are spatially periodic with respect to this lattice [6, 7].
Again we get a wreath product group: O(2)1Sy.

An appropriate general setting for such questions is the theory of symmetric
dynamical systems [12, 14]. In that theory, we study a system of ODEs & =
g(z, ), for g : V x R — V', where V is a finite-dimensional vector space. It
turns out that the symmetry of g imposes restrictions on the bifurcations that
can occur, and the main aim of the theory is to understand the effect that these
restrictions have.

A central part of the theory is the study of bifurcations to periodic solutions
in systems commuting with a compact Lie group I'. Here the main result is the
equivariant Hopf theorem [14], which guarantees (with certain nondegeneracy
conditions) that for each isotropy subgroup ¥ of I x S! with a two-dimensional
fixed-point subspace (called C-axial) there exists a branch of periodic solutions
with that symmetry. This theorem reduces part of the existence problem for
Hopf bifurcations to an algebraic problem: the classification of C-axial sub-
groups.

A classification theorem for the C-axial subgroups in wreath products groups
is presented in [8]. However, the proposed classification omits some C-axial
subgroups, and is therefore incomplete. In theorem 3.1 of this paper we provide
a complete classification theorem for the C-axial subgroups of wreath products
groups. The structure of the extra C-axial groups is more complicated than
in [8]. However this structure is explicitly described, and depends very clearly
on the C-axial subgroups of £ x S' and on the possible blocks that can be
obtained from the permutation group G. More precisely, we prove that the C-
axial groups, up to conjugacy, of a general (£1G) x S! are the groups that we
denote by ¥ = %(BY, J,0,J1,p) and that we define in section 3. Here BY is
C-axial in £ x S and J is a block. For BY and J chosen, there is a permutation
o € G that splits J as disjoint union of subsets of the form o?(.J;) where for
some power s we end up with J;. Finally, depending on this power and on the
twist image 1(B), there is a cyclic group Z, of S' on which the structure of
¥ depends. The C-axial groups obtained by [8] are those groups ¥ with twist
image equal to the twist image ¢ (B).

In [10] there is the analogous result to the equivariant Hopf theorem, in
which ¥ can be any maximal isotropy subgroup of T' x S'. We also describe
the maximal isotropy subgroups for I' x S! where T is a wreath product group.
The description of these subgroups is easily obtained from the method used for



C-axial groups. More generally, we find that any submaximal isotropy subgroup
can be seen as an intersection of isotropy subgroups that have a structure like
the one for C-axial groups where now the isotropy group BY of £ x S! can be
any (not necessarily maximal).

Finally, we can conclude that in order to find the isotropy lattice of a general
group (£1G) x S!, we start up by finding the isotropy lattice of £ x S*. Once
this is obtained, we have to know the block structure of G. Finally, putting
together this information, we are able to obtain the complete classification with
the groups that we denote by %(BY,J, 0, J1,p).

The paper is organized as follows. In section 2 we introduce wreath product
groups and summarize the mains results obtained in [8] about the linear theory
of wreath products. We also present the C-axial groups obtained in [8].

In section 3 we complete the classification of C-axial subgroups of I' x S!
where I' is a general wreath product group £1G.

In section 4 we derive the analogous classification for the maximal isotropy
subgroups of T x S!.

In section 5 we also prove that isotropy subgroups with an algebraic structure
that is a generalization of the one obtained for C-axial groups can be used to
describe any isotropy subgroup of ' x S!.

Finally in section 6 we illustrate the classification of section 3 for the wreath
product group O(2)1Ss, for a representation that is isomorphic to the one used
in [18]. The same C-axial subgroups are obtained as those found in [18], but
in a much more systematic way. We also obtain the C-axial groups for O(2)1Ss3.
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2 Background

We begin this section by introducing the terminology and results of [8] for wreath
products. These will be needed in the following sections.

One way of defining a coupled system of ODEs of N identical cells is the
following. Let X; € R* denote the state variables of the jth cell and suppose
that Xj = f(X;) governs the internal dynamics of each cell, where f commutes
with £ C O(k). Let X = (X1,...,Xn) € (R¥)N be the state variables for the



entire N-cell system. A system of ODEs

dX
© =F(X) M

is a system of coupled cells if
Fj(X) = f(X;) + h;(X)

where h; governs the coupling between cells.

We say that (1) has symmetry the wreath product £1G, where G is a subgroup
of the permutation group Sy, if the symmetry group that commutes with F is
the group generated by the groups £V and G. This is, for example, the case
when h; is invariant under £V 1 acting on (X1, X2,-..,X;j-1, Xj+1,---, XN),
and equivariant under £ acting on Xj.

As in [8] we may assume that
(Hr) G is a transitive subgroup of Sy.

This assumption does not lead to a loss of generality, because if the action of G
is intransitive, we can consider the group orbits of cells under G, which reduces
the discussion to a finite list of cases in each of which the condition (Hr) holds.

2.1 Group structure of the wreath product

Let V = R* and let V'V be the state space of the system (1). The action of
L£1G on V'V is given by

(l,a).(Xl, .. ,XN) = (llXo-—l(]_), .. ,lNXo-—l(N))

where 1 = (In,...,Ix) € LY, 0 € G and (X1,...,Xn) € VV.
The permutations act on I € £V by

U(l) = (l0—1(1)7 ey lo-—l(N))
and it follows that the group product in £ G is given by

(h,7)(1,0) = (hr(l),T0).

2.2 The linear theory

Throughout, let I' = £1G. By [14], when considering Hopf bifurcation we may
assume the generic hypothesis

(Hg) T acts I'-simply on the centre subspace.

It is important to understand how I' decomposes the state space into irreducible
subspaces. We are interested in studying bifurcations with combined local and
global symmetries. Let W C V' be a I'-irreducible subspace. This subspace is
invariant under £V. If £V acts trivially on W, then the local symmetries will
have no effect on a bifurcation supported by this representation and we end up
with a bifurcation problem with symmetry G which is not the aim of this work.



Therefore, as in [8], it is assumed
(Hc) LN acts nontrivially on W.

It is proved in [8] that T' acts absolutely irreducible on V¥ if and only if
L acts absolutely irreducibly on V. For Hopf bifurcation points, the centre
subspace is generically I'-simple. That is, it has the form W & W where W is
absolutely I'-irreducible or is a nonabsolutely I'-irreducible subspace. Assuming
(Hr) and (Hg), lemmas 3.2 and 3.1 of [8] imply that the centre subspace is
either (U @ U)" where U is absolutely L-irreducible, or it is UYN where U is
nonabsolutely L-irreducible. That is, U is L£-simple. See [8] (end of section 3).

2.3 C-axial subgroups

For a compact Lie group I' acting on a vector space V, the isotropy subgroup of
v € V is the group
Ty,={yel:y-v=uv}

Recall that points in V' that are in the same I'-orbit have conjugate isotropy
subgroups.

An isotropy subgroup X of I is maximal if there does not exist an isotropy
subgroup A of T satisfying ¥ C A C T.

As mentioned before, we say that a subgroup ¥ C T x S' is C-azial if it is
an isotropy subgroup having a two-dimensional fixed-point subspace (over R).

In the classification of C-axial subgroups of wreath products groups £1G,
the structure of these subgroups is determined by the possible blocks that are
derived from the permutation group G. We define: a subset of indices J C
{1,...,N} is a block if there exists a subgroup H of G that leaves J invariant
and acts transitively on J.

To each block J we can associate the permutation subgroup

Qr={o€G:0(J)=J}

which acts transitively on J.

Assume (Hp) and consider the natural action of S' on the centre subspace
obtained by giving a complex structure to this space as in [14]. Consider a
block J and let B¥ a C-axial subgroup of £ x S! where 1) : B — S! is an
homomorphism and

BY = {(b,4(b)) : b € B}.
Following [14] we call the group BY a twisted subgroup of £ x S!. The image
¥ (B) is a closed subgroup of S!. The closed subgroups of St are 1, Z,, (n =
2,3,4,...) and S!. We say that BY is of finite twist type if the image ¥ (B) is
not St.

Consider

S(BY,J) = (1V,Qs,0) + ((1°,£77%),1,0) + ((B,1V*),1,9)

where + indicates ‘group generated by’ as in [8]. Here it is assumed that J =
{1,...,s} and the subgroup B is defined by

B={(b1,...,bs) € B* :p(b1) = -+ = 1)(bs)}.



It is proved in [8] that $(BY, J) is a C-axial subgroup of (£1G) x S*. It is also
claimed that every C-axial subgroup is of this type. However, we show in the
next section that not all the C-axial subgroups of (£1G) x S! are of this type.

3 Classification of C-axial subgroups

Our aim in this section is to give a complete description up to conjugacy of
all the C-axial subgroups of the groups of the type (£1G) x S'. We begin by
describing subgroups that we denote by X(BY,.J,0,.J;,p). We will show that
these subgroups are C-axial and that any C-axial subgroup is conjugate to one
of these.

As in the previous section we assume the generic hypothesis (Hg), so that
we can write the centre subspace as V¥, where either £ acts nonabsolutely
irreducibly on V, or V =U @& U and L acts absolutely irreducibly on U. That
is, the space V is L-simple. If £ acts trivially on V', then the action of T' on
VN is reduced to the action of G on V' and in this case, Hopf bifurcation with
symmetry I is reduced to that with symmetry G. We are therefore interested in
the cases where £ does not act trivially on V. We note that for these actions,
Fixy (L) = {0}.

From now on consider I' = £1G where we are considering the action of £L1G
on the I'-simple space V¥ is as defined in the previous section.

The group X(BY, J,0,J1,p)

Consider a block J C {1,..., N} and let () ; be the subgroup of G that leaves
J invariant. Suppose
J=A{1,...,s}.

Let J; be a subset of J such that for some permutation o € @ s
J=J U a(J1) U--Uo® _I(Jl)

where U is disjoint union and

!

o’ (Jl) = Jl.

In particular it follows that |.J| = s'|Jy|.
Choose notation so that

Ji+1=0'i(<]1), i=1,...,8 —1

and let ,
QJ’le{TEQJ:T(Ji):Jj, iZI,...,S}.

Suppose @, acts transitively on J;. This implies that @ 5, acts transi-
tively on all J;.



Note that by definition of block the group @ acts transitively on J. There-
fore 0 = 1 and J; = J are under those conditions.
Define

Qi ={r€Qs:7(J))=0""1(J;), j=1,...,s },

for k =2,.. .,s'. That is, each permutation in @), 5, interchanges the subsets
J; of J in the same way as o*~1. R

Let BY be a C-axial subgroup of £xS! of finite twist type Z,, and let B be
the subgroup of B? defined by

B = {(bli"'abs) € B’ 1ﬁ(bl) = :'(p(bs)}

Let Z, =< &, > be a cyclic subgroup of S! such that
’ - . i
s =min 1§, € Z,}.

Call £, = €5 . Tt follows that Z, = Z,,+ where Z/ C Z,.
Define By, the subgroup of B® by

’y 'f'GJU---UJ77
Bk={ (bl,...,bs)eBs:¢(bj)= {gr 117 1 k1 }

ifjeJyU---UJ,

Finally denote by X(BY, J, 0, Ji,p) the subgroup of T' x S! generated by the
following groups:

S(BY, J,0,J1,p) = (1%, £V7%),1,0) + ((B,1¥%),1,9) +

+ (]-N;QJ,JUO) + U ((BkalNis)aQJ,Jka‘fgil)'

k:2,...,s'

Note that this group depends on the block J, the permutation ¢ (and so on
J1). Also the group Q;,s, has to act transitively on J;. Finally, it depends on
BY (a C-axial subgroup of £ x S') and on the cyclic subgroup Z, of S! (where
some divisor 7 of r divides p).

We state our main theorem:

Theorem 3.1 An isotropy subgroup ¥ of I x St is C-azial if and only if it is
conjugate to a (C-azial) group of the type L(BY,J,o,J1,p), for some C-azial
group BY of £ x S', a block J, a permutation o of G, a subset J, of J, and a
nonnegative integer p.

The rest of this section is dedicated to the proof of this theorem. First
we show in proposition 3.2 that the groups X(BY, J, 0, J;,p) defined above are
C-axial. Basically, using algebraic calculations, we are able to describe the fixed-
point subspaces of these groups. Then, in proposition 3.6, we show that every
C-axial ¥ of I x S! is conjugate to some group of this type. For that we need to



prove first two lemmas. In lemma 3.4 we prove that once we choose an element
w fixed by X, the nonzero components have indices corresponding to a block and
the projection of X on the group G is a permutation group acting transitively
on that block. In lemma 3.5 we show that if we choose a nonzero component of
w, then the corresponding isotropy subgroup (now of £ x S!) is also C-axial.
Finally, in proposition 3.6, using these two lemmas, we manipulate the vector
w and conclude that, up to conjugacy, we can assume that w (a representative
point for the isotropy subgroup X) belongs to the fixed-point subspace of one
of those groups ©(BY, J, o, J1,Dp).

Proposition 3.2 With the above notation X(BY,J,0,J;,p) is a C-azial sub-
group of T’ x St.

Proof. Let ¥ = X(BY,J,0,J1,p) and w =

(w1,...,wny) € VY be fixed by
Y. Since ((1%,£V7%),1,0) fixes w and Fixy (L)

= {0}, we have w1 = --- =

wy = 0. Thus
w= (wy,...,Ws,0,...,0).
Suppose
s s s , s
J ={1,...,— J =17 1,...,2—, g eeey Jl: —1—, 1,..., .
1 {a ’sl}’ 2 {SI+ S} s {(5 )S + 8}

Since (1V,Qy,4,,0) fixes w and Q,y, is transitive on each part J;, the com-
ponents w; corresponding to each J; are equal. Denote by < w; > the vector
with s/s components equal to w; and £ = &,. Since ((By,1V%), g%~ &k=1)
for k=2,...,s fixes w, it follows that

w=(<w > <E&w; >,...,<E Low >,0,...,0).

Since w is fixed by ((B,1V%),1,4) we have w; € Fixy(B¥). As BY is
C-axial, we see that Fixy~(X) is two-dimensional.

To complete the proof we show that X is the isotropy subgroup of w. Let
3w be the isotropy subgroup of

w=(<w >, <& w >,..., <& oy >,0,...,0).

From the previous discussion and straightforward calculations ¥ C ¥,,. To
verify the reverse inclusion we show that if (I,7,6) € ¥,, then (I,7,6) € . As
((1%,£N—9),1,0) fixes w we have that ((I1,...,1,,1,...,1),7,8) fixes w.

Ifr € Qs,as (AN,Qy.1,,0) fixes w, then v = ((Iy,...,1ls,1,...,1),1,0)
fixes w. But for v-w = w, then (I;,0) € £LxS! fixes w;. Since BY is the
isotropy subgroup of wi, it follows that (I;,6) € BY and § = (l;). Thus
v € ((B,1V=*),1,%) and (I,7,6) € T.

If 8 € Z,, then it follows immediately that 7 € @7, and we have the
previous case.
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If 0 ¢ Z and as ((1,-.-,0s,1,...,1),7,6) fixes w, then ¢ = £ig] for some
i<s andj € {0,...,r—1}. Aswehave ((b,1,...,1),1,&7) € (B,1V7%),1,¢)
for some b € B, then

vy = ((blll,...,bsls71,...,1),7',£i)

fixes w. Suppose that J; = 771(J;41). From v -w = w and since i <
s, then j = i and 7 € Q7,7.4,- There is o= ()N 1,..,1), 7,6 €
((Big1,1V79), Q 1,741, &"). Moreover, we can choose b e B;+1 such that b; =1
for j € Jiy1 U...UJ,. Take ()~' = ((r*(b),1V~%),771,£7%). Now

’

()t = (L0 b1),1¥79),1,0)

fixes w. It follows that 7-'(b'bl) € B with ¢((b'bl),;y) = 0 and | € B*
since b and b are in B®. Therefore Y(ly) = e ifle JU...UJ; and
¢(l1) = fﬁ ifle JiyiU. ..U Js' . It follows that v € ((Bi+1, les)7QJ’Ji+17£z)

and ((l1,...,0s,1,...,1),7,0) € ((Bi+1,1N_8),QJ,Ji+1,§i) + ((B,IN_S),I,w).
O

Some of the groups X%(BY,J,0,J1,p) are the same as the groups X(BY, J)
found by Dionne et al. [8]. Using the notation of the previous section we have:

Corollary 3.3 With the conditions of proposition 3.2, and if
Z,CZ,,

then X(BY, J, 0, J1,p) is conjugate to ©(BY,J) and is of the same twist type as
BY.

Proof. Note that if Z, C Z, then X is conjugate t0 Xy, ,...,u,,0,...,0) Since
any element (I;,6;)w; in V (with w; € Fixy (BY)) is in the L-orbit of w;. O

However, if Z, ¢ Z,, then there are new possibilities. We show that all
C-axial subgroups of finite twist type of I' x S! are conjugate to subgroups of
the form X(BY, J,0,J1,p).

Let IIg : T x S! — G be projection and let

Vi ={(wi,...,wn) € VN :w; =0 for j & J}.
Lemma 3.4 Let ¥ be a C-azial subgroup of T' x S'. Then Ilg(X) acts transi-
tively on some block J, and Fixy~(X) C V.

Proof. Let w be a nonzero vector of Fixy~(X) and let J be the set of
the indices j € {1,..., N} such that w; # 0. We will show that IIg(X) acts
transitively on J. Since (I},0).w,-1(;) = 0 if and only if w,-1(;) = 0, we have
IIg(X)J C J. Suppose that there exist two disjoint subsets J; and Jy of J such
that TIg(X)J; C J; for i = 1,2. If so, construct two vectors y;, y2 € VIV, where

i w;j if j € Ju, i wj if j € Jo,
Bi=10 ifjgn 27V 0 ifjg

11



These vectors in Fixy v (X) are linearly independent. Moreover, we can split
FiXVN(E) =V ® Vs,

if we take )
Vi={y; € Fixyn () :y] =0if j & J;}

for 4 = 1,2. Therefore
Yy CXy, T xS

and ¥,, = ¥ is not maximal. This contradicts the fact that ¥ is C-axial, so
IIg (%) acts transitively on J, and J is a block. O

The projection IIg(X) as a subgroup of G, must decompose the set {1,..., N}
into a union of blocks. Using the above lemma, we get that if ¥ is C-axial, then
a vector w fixed by X is supported on precisely one of these blocks. That is, only
the components corresponding to one of the blocks are nonzero and IIg (X) acts
transitively on that block. This restriction implies information on the vectors
w fixed by X.

We know that all proper isotropy subgroups of I' x S! are twisted subgroups
(see for example [14]). Because I' x S! acts I-simply on V¥ also £ x St acts
L-simple on V and so if $,,, C £ x S is the isotropy subgroup of w; € V then
it is a twisted subgroup of £ x S!.

Lemma 3.5 Let ¥ = H? C T x S! be a twisted C-axial subgroup. Let w be a

nonzero vector fized by ¥ with wy # 0. Let ¥,,, = BY be the isotropy subgroup
of wy in L x S'. Then ¥, is C-axial and y(B) C 6(H).

Proof. For w a nonzero vector of Fixyn~(X), let J be the set of indices
Jj €{1,...,N} such that w; # 0. As we are assuming w; # 0 we have 1 € J.
By lemma 3.4 we know that IIg(X) acts transitively on J. Therefore for all
i € J\ {1} there exists a permutation o; € Ilg(X) such that o; (i) = 1.
Moreover, since
(li, Tj, 01) W =w

for some (1%, 6;) it follows that
w; = (14, 60;) - wy.
Therefore the vector w has the form
w = (wi,(13,0) -wi,...,(1%85) -wi,0,...,0)
and ¥ is conjugate to the isotropy subgroup of

w = (w1,02-wl,...,HS-wl,O,...,O).

Let ¥ = X,/ and define

B={(bs,...,bs) € B* :p(b1) = - = 1)(bs)}.
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Note that B is a subgroup of B?® because v is a group homomorphism. Now
(B,1V="),Ly)C B

and so ¢¥(B) C 0(H).

It remains to show that BY is C-axial. If BY fixes an element ws that is not
a multiple of wy, then ¥ fixes w = (w2,05 - wa,...,0; - w2) and then ¥ is not
C-axial, a contradiction. O

Remark. Let ¥,,, = BY C £ x S' be the isotropy subgroup of w;, and let
w be a nonzero vector fixed by ¥ = H? C T x S! as in lemma 3.5. If &, is
of twist type S! then ¥ also has twist type S'. In this case ¥ is conjugate to
Y(BY,J). Moreover, we shall see later that if ¥ is of twist type S! then X, is
also of twist type S!.

We prove now our main result. Using lemmas 3.4 and 3.5, we show that all
C-axial subgroups of I'x S! are conjugate to groups of the form X(BY, J, o, J1, p).

Proposition 3.6 Let ¥ = H? C T x S! be a twisted C-azial subgroup of finite
twist type. If ¥ = X, withwy # 0, assume that the isotropy subgroup BY = %,
of wy is of twist type Z,.

Then X is conjugate to (BY, J,0,.J1,p) for a block J, a permutation o €
(%), a subset J, of J, and a nonnegative integer p.

Proof. Let w # 0 be a vector fixed by . We know that IIg(X) decomposes
{1,...,N} into a union of blocks. From lemma 3.4, since ¥ is C-axial, w is
supported on precisely one of these blocks J. To simplify notation, assume that
the block J ={1,...,s} where s < N, and let

w = (wy,...,w,,0...,0).

Then the group ((1%,£Y%),1,0) fixes w.

Construct a partition J = Jy U---UJ, of the block J, by putting two indices
l and m in the same part if w; and w,, lie on the same L-orbit. Conjugate w
so that all w; in the same part J; are equal.

If all the components lie on the same L-orbit, then ¥ is conjugate to

E(wi,eeyw1,0,...,0)

which is of the type described in [8], that is, X is conjugate to X(B¥, J). In our
notation it is X(BY, J,1,J,r).

Suppose now that J = J; U...U J, with ¢ > 1. From lemma 3.4, the group
IIg(X) acts transitively on J. Suppose without loss of generality that 1 € Ji,
and choose iy € J. Then there exists (I2,09,6:) € H? with 65 # 0 such that

0'2(1) = i2. So
Wi, = (132,92).11)1.
Similarly, for j = 3,...,q, we can choose i; € J; and find (I, 0;,6;) € H with

0; # 0 such that o;(1) = i;. Now suppose that §(H) = Z;. By lemma 3.5 we
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have Z, C Z;. So 0a,...,0, € Z; \ Z,. Note that if, for example, 05 € Z,, then
w;, would belong to the same L-orbit as wy: since 3 = 1)(b2) for some by € B,
then

Wi, = (l§2,02) cwWp = (Z?sz_l,O)(bQ,eg) cWwp = lib;l W1

Moreover, if [ = kr for some positive integer k, then up to conjugacy we can

always choose
2r 2r
0; € {—,"',(k— 1)—}
l l
Associated with each choice of the 6; we have a permutation o; € Ig(X)
and an element 6; = 6(I*,0;) for some (I*,0;) € H. In fact o; *(J;) = J; for
1=2,...,q, so all the J;s have the same size ¢t where tq = s.
For simplicity, take J; = {1,...,¢t},...,J; = {(¢g—1)t+1,...,s}. Conjugate
w to have the form

w=(<w ><by-w >,...,<b;-w >,0,...,0).
We know from lemma 3.5 that
((B,1N7%),1,9) C 3.

Since 05, ...,0, € Z;, the subgroup < 65,...,0, > generated by these elements
is a cyclic group, say Zp, and there is a generator &, € Z; \ Z,. For some (I, 0)
we have (I,0,£,) € %, so that (I,0,&,)! € T for all i.
Let ) '
— H T
§ = min {&, € Z,}.

Consider J;. Then exists Ja, such that J; NJ, = § and o(J1) = Jo. The
reason is that (I,0,&) € . Also w; = (I;,§) - wy for all i € Jp. Since
(1,0,6)* = (lo(l),0%,&)) € X, there exists J3 such that ¢*(J;) = Js and
JsN(J1UJp) = 0. Again

wi = (Lio(l;), &) - wy
for i € J3. We can do the same for each i < sl, so we eventually have

JLU---UJ, CJ.

Suppose that there is another sub-block J ;. Then for ¢ € J, ; we have w;

in the L-orbit of one of the sub-blocks J; for ¢ < s', which is not the case. For
simplicity, we take Ja,...,Jy as before. Therefore we can take

w=(<w > <& w >,...,<& " w >,0,...,0).
Now define

Quy, = {7 €g(D) :7(J;)) =" (), j=1,...,5 }

14



for k=1,...,s (where ¢ = 1) and take By, as defined before proposition 3.2.
Then ((Bk: lN_S);QJ,Jme_l) C X and ((B, 1N_S)7QJ,J17¢) cX.
Let (I,7,0) € X. Since ((1%,£Y~%),1,0) C ¥, then

v=((1,...,05,1V79),7,0) € .

If 0 € Z,, then from v-w = w we must have 7 € Qs 5, and so 6§ = ¢(l;) =
-~ = 1(l,). Therefore v € (B,1¥7%),Q,.,,¢) C .

If 0 ¢ Z,, then from v-w = w, we have 0 = fli,é"ﬁ for some i < s and
some j € Z¢. As ((b,1,...,1),1,&7) € ((B,1V%),1,¢) for some b € B,
it follows that v = ((brly, ..., bsls,1,...,1),7,&) fixes w. Now we use the
end of the proof of proposition 3.2 and conclude that 7 € Qj,,, and v €

(Biy1, 15, Qrson ) + (B,1N9),1,9). D 1

Corollary 3.7 Let H? =X Cc T x S' be a C-azial subgroup of twist type S*. If
Y =X, with w; # 0, let ¥, be the isotropy subgroup of wy in L x S'. Then
Y., is C-azial of twist type S*.

Proof. From lemma 3.5 the group ¥,,, is C-axial. Suppose X, is of finite
twist type, say Z,. As in the proof of proposition 3.6 we can conjugate w to

w=(<w ><b-w >,...,<0;-w >,0,...,0)

for some 0, ...,8, € 6(H) \ Z,. Moreover < s, ...,0, > is a finite subgroup of
6(H) = St. Let (I,7,0) € ¥y. If 0 € 0(H) \ Z,, then from (I,7,0) -w = w it
follows that 001-0;1 € Z, for some ¢ and j in {2,...,q} and so § = &£ for some

§1€< 0,...,0, > and & € Z,. But §(H) = S'. So T,,, has to be of twist type
. g

Corollary 3.8 Let ¥,, C I' x S! where w; # 0, and let ,,,, the isotropy
subgroup of w1 in £ x S, be C-azial. Then ¥ is of twist type S if and only if
Y., is of twist type St.

Proof. This follows from the last remark and from the corollary 3.7. O

Corollary 3.9 Let £, C T x S! be C-azial and let BY = Y, where wy # 0.
Then X, is conjugate to X.(BY,J) for some block J if and only if ¥, and ¥,
are of the same twist type.

Proof. Let ¥,, = H? and ¥, have the same twist type. By lemma 3.4 the
subgroup IIg(X) of G acts transitively on some block J. Suppose J = {1,..., s}.
Up to conjugacy we need only consider the isotropy subgroups of elements of
the form

w = (< w1y >,0,...,0),
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where the vector < wy > has s components equal to wy, since §(H) = (B).
Note that any element (1;,6;) - wy € V (with 0; € 8(H) and w; € Fixy (BY)) is
in the L-orbit of w;. Therefore ¥ is conjugate to £(BY,J). Now, if HY = ¥ is
conjugate to L(BY, J) for some block J, then §(H) = ¢)(B) from the structure
of S(BY,J). O

4 Maximal isotropy subgroups

We describe now all the maximal isotropy subgroups of the group I' x S! where,
as usual, I' = £1G. Generalizing the classification for the C-axial subgroups, we
prove that these groups are conjugate to subgroups of the form %(BY, J, o, J;,p)
where now BY is any maximal isotropy subgroup of £ x S!. As before denote
by IIg(¥) the projection of ¥ on the permutation group G and for a block J let

VJ={(w1,...,wN)EVN:ijOforjgj}.

Lemma 4.1 Let Y be a maximal isotropy subgroup of I x St. Then Ilg(X) acts
transitively on some block J and Fixy~(X) C Vy.

Proof. Let w be a nonzero vector of Fixy~(X) and let J be the set of
indices j € {1,..., N} such that w; # 0. We show that IIg(X) acts transitively
on J. Since (lj,ﬁ).wa_l(j) =0 if and only if We-1(5) = 0, we have Hg(E)J - J.
Suppose that there are two disjoint subsets J; and J, of J such that IIg(X)J; C
J; for i =1,2. Let

Therefore
Yy CX,, CT xSt

and X, = ¥ is not maximal, a contradiction. Thus IIg(X) acts transitively on
J and J is a block. O

Lemma 4.2 Let &, = H? be a twisted mazimal isotropy subgroup of T x S!.
Suppose that wy # 0. Let ¥,,, = BY be the isotropy subgroup of wy in £ x S'.
Then

(a) dim Fixy (2,,) < dim Fixywv (Zy);

(b) T, is mazimal in L x S and ¢(B) C (H).

Proof. The vector w is nonzero and is fixed by ¥,. Let J be the set of
indices j € {1,..., N} such that w; # 0. By lemma 4.1 the group IIg(X) acts
transitively on some block J. Therefore we can conjugate ¥,, to the isotropy
subgroup of the vector

w = (w1,02-wl,...,ﬂs-wl,o,...,o)

if we take J = {1,...,s}.
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It follows that if there are p linearly independent vectors in Fixy (2, ),
then we can construct p vectors in V¥ that are linearly independent and are in
Fixy~(Xy), so we have proved (a).

Now define

B ={(by,...,bs) € B :4p(by) = --- = 1b(bs)}.
Then .
(B,177%),1,9) C T
and so ¢(B) C 6(H).
Suppose that ¥, is not maximal in £ x S!. This means that there exists
an isotropy subgroup ¥,, = C? of £ x S! such that

Sw, C 5y, C L xS
Let
v=(v1,02-v1,...,05-v1,0,...,0)
and consider the isotropy subgroup X, of v in I x S!. Then
((C,1V79),1,¢) C 5,

and

N

(C,1N%),1,¢) ¢ X,
Moreover,
Yo CY, cI xSt

and so ¥,, is not maximal, a contradiction. Therefore ¥,,, is maximal in £ x S*,
as required. O

Corollary 4.3 Let ., be a mazimal isotropy subgroup of T' x S'. Suppose that
wy # 0 and let $,,, = BY be the isotropy subgroup of wy in L x S*. Then T,
is conjugate to ©(BY,J,a,J1,p) for some block J C {1,...,N}, a permutation
o in G, a subset Jy of J, a positive integer p and BY is mazimal in £ x St.

Proof. The group BY is maximal by lemma 4.2. The rest follows as in the
proof of proposition 3.6 (using lemmas 4.1 and 4.2) if ¥, is of finite twist type,
or as in corollaries 3.7 and 3.9 if ¥, is of twist type S1. O

Remarks.
(a) By proposition 3.2 with BY maximal, it follows that every group ¥ =
Y(BY,J,0,J1,p) is a maximal isotropy subgroup and

dim Fix ~(X) = dim Fixy (BY).

(b) From (a), assuming the conditions of corollary 4.3 we have
dim Fixy v (£4) = dim Fixy (S, ).

In particular,
dimFixyn~(Z,) < dim V.
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5 Isotropy subgroups

We show now that we can describe a general isotropy subgroup of (£1G) x S*
using groups with a structure similar to that obtained for the maximal isotropy
subgroups.

Once again consider V¥, a £ 1 G-simple space. Let I' = £1G and take a
partition of {1,..., N} in p blocks

{1,...,N}=J1U---U J,.
Let ¥1,...,3, be isotropy subgroups in I x S* of the type
S(BY', Ji, 04, Ji, i) (2)

for Bf’ ‘ an isotropy subgroup in £ x S!, a part J} of J;, a permutation o; in G
and a nonnegative integer p;. Note that, if for example J; = {1,...,q}, then a
vector w fixed by ¥ is of the form

w = (wy,,0,...,0), 3)

where if we assume Ji = {1,...,t}, o1(J}) = {t +1,...,2t},..., then

1
wy, = (< wy >, < &p, Wi > L, < YT hwy >),
s; = min;so {§, € Y1(B1)},
wy € FiXV(B;pl)

and so ¢ = s,t.
Let
Y= ﬁleEi.

Proposition 5.1 ¥ is an isotropy subgroup of T x S! acting on VN and every
isotropy subgroup of T x S' is conjugate to such a T.

Proof. Let W; be a (nonzero) vector fixed by ¥;. This means that
W'L = (07"'707in707"'70)

where wj, denotes the components of W; corresponding to the block J; and we
are assuming for simplicity that the blocks J; have consecutive indices. Suppose
that the first components of each wy, are in distinct £ x S! orbits.
Let
w=W1+---+Wp.

By construction X fixes w, i.e., ¥ C ¥,,.
Let now (l,0,6) € ¥,,. As we are assuming that the first components of each
wy, are in distinct £ x S! orbits, we must have

Hg(zw)Jz’ =J;
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and so, from (I,0,0) -w = w we get (I,0,0) - W; = W;, for i = 1,...,p. Thus
YuwCX.

Let ¥, be any isotropy subgroup of I'xS!. Consider the projection Ilg(X,,) =
G. Since G is a subgroup of the permutation group Sy, there is a partition
JiU---UJ, of the set {1,..., N} such that each J; is a G-orbit. That is, each
J; is a block and the components corresponding to each J; are all null or all
nonzero. Consider ¥; the isotropy subgroup in I' x S of the vector

Wz‘ = (0,...,0,in,0,...,0).

Again we are assuming J; formed by consecutives indices. Since G acts transi-
tively on J;, then Vi, iz € J; we can find some (I,0,0) € ¥,, such that

Wiy = (1170) * Wiy -

Thus, if for some ¢; we have w;; = 0, then all the components with indices in J;
are null. If it is not the case, then up to conjugacy, we can suppose that each
wy, has a form like in (3) (see proposition 3.6). Thus each ¥; is of the type (2)
and GJZ' = Ji.

It is now straightforward to prove that ¥, is the intersection of the isotropy
subgroups ¥; with¢=1,...,p. O

6 Examples

We now illustrate our results on the groups O(2)1S2 and O(2)1Ss;.

6.1 Group action of (0(2)1S;) x S!

Let I = O(2)1S2 and let V = C@® C. Consider the following action of O(2) x S*
onV: ) )

0(21,22) = (€921, €% 2) (6 esh)

K(z1,22) = (22,21), (k =1lip in O(2))

P(21,22) = (e W21,6¥2) (Y €S0(2))

Here S, is the group of the identity and the transposition (12) that inter-
changes the indices 1 and 2. Also the group multiplication in ' x S! is given
by

(h,7,601)(1,0,02) = (h7(l),70,0102)

and the action of I' x S! on V2 is given by:
((l17 12)7 g, 0)'111 = ((1179)’“70—1(1)7 (l27 0)’11)0—1(2)),

for (I1,12) € O(2)?, 0 € Sy and § € S* (with w = (w1, wa) € V?).
Note that as V is O(2)-simple, also V2 is I-simple by the results stated in
section 2.
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6.2 C-axial groups for (0(2)1S;) x S!

Using the method of section 3, we first have to calculate the C-axial subgroups
of O(2) x S'. By [14] for example (proposition XVII 1.1.) we have (up to
conjugacy) two types of C-axial subgroups. See table A.

Table A.
Orbit Isotropy subgroup Fixed-point
representative subspace
(a,0), a>0  SO(2) ={(6,0)} {(21,0)}

(a,a), a>0 Z, ® Z5 = {(1,0), (k,0), (m,m), (km,m)} {(#1,21)}

Usually periodic solutions with symmetry §6(2) are called rotating waves
and those with symmetry Zs @ Z$ are standing waves.
We can now compute the isotropy subgroups for I’ x S!:

Proposition 6.1 There are five conjugacy classes of C-axial subgroups for
I x S with the above action on V2. They are listed, together with their or-
bit representatives and fized-point subspaces, in table B.

In table B we use the notation of the sections 2 and 3. Also a denotes a real
positive number.

Table B.
Orbit Isotropy subgroup Fixed-point
representative subspace
(,0,0,0) ;= £(SO(2),{1}) {(21,0,0,0)}
(a,a,0,0) Yo =%(Z, ® Z5,{1}) {(#1,21,0,0)}
(a,0,a,0) T3 = £(SO(2),{1,2}) {(21,0,21,0)}
(a,a,a,a) Yy =3X(Zy @ Z5,{1,2}) {(21,21,21,21)}

(a,a,ia,ia) Y5 =3X(Z: ®Z5,{1,2},(12),{1},4) {(z1,21,0z1,%21)}

Proof of proposition 6.1. Up to conjugacy we need consider only the
blocks
J={1}, J=1{1,2}
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and by lemmas 3.4 and 3.5 of section 3 we need to look for C-axial subgroups
Y with
w = (wy,0)

w = (wy,fwy) ’

where 6, € S and w; € V is such that
dim Fixy (Sq,) = 2.

Here ¥,,, is the isotropy subgroup of w; in O(2) x St.

For ¥,,, up to conjugacy, we have two choices: §6(2) and Z, & Z§. As
the first one is of twist type S!, if w1 € Fixy (SO(2)) we can assume (up to
conjugacy) that w has equal nonzero components and we get X; and X3: for
example, as (62,0:) € /5—6(2)7 then w = (wi,6w1) = (wl,(0;102,02)w1) =
((1,651),1,0)(wy,w;) and so the isotropy subgroup of (wy, 82w, ) is conjugate
to the isotropy subgroup of w = (wy,w;). See also corollaries 3.8 and 3.9.

Let now w; € Fixy (Zs @ ZS). Note that Zo @ Z$§ is of twist type Zy. It
follows that ¥y, 0) is X2 and if 0 € Za, then ¥y, ,.,) is conjugate to X4 by
the same reason as before. Now using proposition 3.6 we end up just with Xs.
Note that, once we fixe s = 2, the possibilities for p are 2 and 4. But for p = 2
we must have 0, € Z,. O

Remark. This action of T' x S! on V? is isomorphic to the action of
(D4+T?)xS! presented in [18]. Moreover, we obtain C-axial subgroups 1, ..., X5
that are in precise correspondence with the C-axial subgroups obtained in [18].

6.3 C-axial groups for (O(2)?S3) x S!

A more detailed discussion of dynamics with this symmetry group can be found
in [5]. Here we limit our discussion to classifying the C-axial subgroups.

Consider I' = O(2)1S; and V = C@® C. We use the same action of O(2) x S*
on V as in section 6.1 and S3 represents the group of permutations of the set
{1,2,3}. The group multiplication in I x S* and the action of I' x S on V? are
the natural extensions of the ones used in section 6.1. We have:

Proposition 6.2 There are eight conjugacy classes of C-axial subgroups for
the group T x S' with the above action on V3. They are listed, together with
their orbit representatives and fized-point subspaces, in table C.

In table C we denote £ = 2% € S!.
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Table C.

Orbit Isotropy subgroup Fixed-point
representative subspace
(,0,0,0,0,0) T = %(S0(2), {1}) {(21,0,0,0,0,0)}
(a,a,0,0,0,0) Yo =3X(Z2 o Z§,{1}) {(#1,71,0,0,0,0)}
(a,0,a,0,0,0) T3 = £(SO(2),{1,2}) {(21,0,2,0,0,0)}
(a,a,a,a,0,0) Yy =3%(Z: ® Z5,{1,2}) {(#1, 21, 21,21,0,0)}
(a,a,ia,ia,0,0) Y5 = X(Z2 @ Z5,{1,2}, (12), {1},4) {(#1,21,%21,%21,0,0)}
(a,0,a,0,a,0) T6 = £(SO(2),{1,2,3}) {(21,0,21,0,2,0)}
(a,a,a,a,a,a) Y7 =3X(Z: ® Z5,{1,2,3}) {(#1,21,21,21,21,21)}

(aa a, ‘saa Eaa §2a7 ‘fza) 28 = E(ZQ D Zg; {17 25 3}7 (123)5 {1}7 3) {(zla 21, £z17£z15 5221, 5221)}

Proof of proposition 6.2. We can follow the proof of proposition 6.1
where now we consider w = (wy,0,0) or w = (w1, 02w1,0) and we obtain the
groups X, ..., %5. In addition, we have to consider the block

J=1{1,2,3},
and again, by lemmas 3.4 and 3.5 we need to look for C-axial groups ¥,, with
w = (w1, 02w, 03w1),

where 05,03 € S' and w; is a vector of V fixed by a C-axial group of O(2) x S*.
If wy is fixed by §6(2), then we obtain a group of the type 3¢g. Suppose now that
wy is fixed by Zo @ Z§. If 65 and 03 are in Z4, then we can conjugate X, to 7.
If some 62 or 65 is not in Z,, then the only possibility for w = (w1, 2wy, 03w1)
to be fixed by a C-axial subgroup (up to conjugacy) is if #2 = £ and 03 = €2
and we have Yg (see proposition 3.6 and note that now with s = 3 we only
need to consider p = 3 or p = 6 since the corresponding isotropy subgroups are
conjugate). O

Remark. Considering now I' = O(2)1S,, acting on V™, we see that C-axial

groups of (0(2)1S,_1) x St are, with appropriate adjustment, included in those
of ' x St.
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