
The Steady-state Lifting Bifurcation Problem
Associated with the Valency on Networks

Manuela A D Aguiara,c, Ana P S Diasb,c, Pedro Soaresb,c

aFaculdade de Economia, Universidade do Porto, Rua Dr Roberto Frias, 4200-464 Porto,
Portugal
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Abstract

In this paper we consider homogeneous coupled cell networks with asymmetric
inputs – networks where each cell receives exactly one input of each edge type.
The coupled cell systems associated with a network are the dynamical systems
that respect the network structure. There are subspaces, determined solely by
the network structure, that are flow-invariant under any such coupled cell sys-
tem – the synchrony subspaces. For a homogeneous network with asymmetric
inputs, one of the eigenvalues of the Jacobian matrix of any coupled cell system
at an equilibrium in the full-synchrony subspace corresponds to the valency of
the network. In this work, we study the codimension-one steady-state bifurca-
tions of coupled cell systems with a bifurcation condition associated with the
valency. We start by giving an adaptation of the Perron–Frobenius Theorem
for the eigenspace associated with the valency showing that the dimension of
that eigenspace equals the number of the network source components. A net-
work source component is a strongly connected component of the network whose
cells receive inputs only from cells in the component. Each synchrony subspace
determines a smaller network called quotient network. The lifting bifurcation
problem addresses the issue of understanding when the bifurcation branches of
a network can be lifted from one of its quotient networks. We consider the lift-
ing bifurcation problem when the bifurcation condition is associated with the
valency. We give sufficient conditions on the number of source components for
the answer to the lifting bifurcation problem to be positive and prove that those
conditions are necessary and sufficient for a class of networks.
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1. Introduction

A coupled cell network is a directed graph with labels on the cells and edges,
which describe their types. A coupled cell system is a dynamical system given
by an admissible vector field for the network, that is, it must respect the graph
structure. More precisely, the admissible vector fields for a network determine
that the dynamics of each cell is affected by its own state and the state of the cells
with an input edge directed to that cell. Moreover, the admissible vector fields
must respect the type of the cells and edges. In [1, 2], the authors formalize the
concepts of coupled cell network and coupled cell system and enlighten about
their intrinsic relation. They prove the existence of synchrony subspaces that are
flow invariant for any coupled cell system. The synchrony subspaces are given
by the state’s equality of some cells of the network. The restriction of a network
admissible vector field to a synchrony subspace is an admissible vector field for
a smaller network, called a quotient network. A quotient network is obtained by
merging cells that have the same state in the corresponding synchrony subspace.
The original network is said to be a lift of the smaller network.

We focus on homogeneous networks with asymmetric inputs, where all cells
have the same type and each cell has exactly one input of each type. These
kind of networks have been studied in [3, 4, 5, 6]. For each type of input, there
is an adjacency matrix that represents the inputs of that type. Moreover, the
Jacobian matrix of an admissible vector field at a full-synchrony point can be
expressed using the adjacency matrices of the network, and it has a constant
row-sum called the valency of the network. Thus, the valency of the network
is an eigenvalue of the Jacobian matrix. In this paper, we study codimension-
one steady-state bifurcations for coupled cell systems of homogeneous networks
where the bifurcation condition corresponds to the network valency and address
the respective lifting bifurcation problem.

Bifurcation problems on coupled cell systems have been previously studied
by different authors, see for example [7, 8, 9, 10, 11, 12]. These include specific
network examples, classes of networks that have an additional structure such as
(partial) symmetries or a feed-forward structure or even some conditions about
the bifurcation condition which need to be verified in a case-by-case scenario.
Here, we address a bifurcation problem that it is transverse to every homoge-
neous network with asymmetric inputs. We first describe the kernel of generic
coupled cell systems with a bifurcation condition corresponding to the network
valency. This is a technical step where we use a novel recursive argument on the
number of cells of the network. After that, the standard methods of bifurcation
theory are applied to describe the bifurcation branches. Next, we analyze the
lifting bifurcation problem which has been studied in [8, 13, 14, 5, 15]. We ob-
serve that this problem is closely related with the study of synchrony-breaking
bifurcations, since bifurcation branches which do not break the synchrony asso-
ciated with a quotient network are lifted from that quotient network. Despite we
give a complete description of the bifurcation branches for every generic coupled
cell system with a bifurcation condition associated with the network valency,
we present examples suggesting that it is not trivial to fully understand the
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lifting bifurcation problem. Nevertheless, we are able to give a complete answer
to the lifting bifurcation problem for a class of networks. Below, we make this
discussion more precise.

In order to study the bifurcation problem where the bifurcation condition
corresponds to the network valency, we first give an adaptation of the Perron-
Frobenius Theorem to generic coupled cell systems. For real square matrices
with non-negative entries and constant row-sum, it is well-known in stochastic
theory that the row-sum is the greater eigenvalue in absolute value and how to
describe the eigenspace associated with that eigenvalue. See for example [16,
Chapter 4]. This applies to every adjacency matrix of an homogeneous network
with asymmetric inputs since they have constant row-sum 1 and entries 0 or 1.
The Jacobian matrix of a coupled cell system at a full synchrony subspace is not
in general non-negative, but it has constant row-sum that we call the network
valency. Then the valency of the network is an eigenvalue of the Jacobian ma-
trix. In this paper, we describe the eigenspace corresponding to the valency of
the network for generic coupled cell system in Propositions 5.1, 5.5 and 5.6. The
dimension of this eigenspace is equal to the number of source components in the
network. Every network can be partitioned into its strongly connected compo-
nents. We say that a component is a source if every input targeting a cell in that
component starts in a cell also inside that component. After this first step, we
use well-known methods of bifurcation theory to describe the codimension-one
steady-state bifurcations of generic coupled cell systems where the bifurcation
condition corresponds to the network valency, see Proposition 5.7. In particular,
we show that there exists a synchrony-breaking bifurcation branch if and only
if the network has at least two source components.

Given a network and a lift network, the solutions (and the bifurcation
branches) of a coupled cell system in the quotient network lift to solutions of the
corresponding coupled cell system in the lift network. The lifting bifurcation
problem addresses the issue of whether all bifurcation branches occurring in a
coupled cell system of the lift network are lifted from the smaller network. In
the last part of this paper, we study the lifting bifurcation problem of generic
coupled cell systems where the bifurcation condition corresponds to the net-
work valency. We obtain sufficient conditions, given by the number of source
components in the lift and quotient network, to answer the lifting bifurcation
problem, Proposition 6.1. More precisely, if the lift and quotient networks have
the same number of source components then all the bifurcation branches on the
lift network are lifted from the quotient network. On the other hand, if the
quotient network has exactly one source component and the lift network has
at least two source components, then there is a synchrony-breaking bifurcation
branch on the lift network which is not lifted from the quotient network. This
result is expected, since the number of source components equals the dimen-
sion of the kernel of the Jacobian matrix at a full synchronous point associated
with a coupled cell system where the bifurcation condition corresponds to the
network valency. Thereby, it would be expected that if the number of source
components increases for the lift network, then some bifurcation branch on the
lift network would not be lifted from the quotient network. We present, how-
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ever, two examples where this does not hold (Examples 6.3 and 6.4). Despite
the number of source components increases in those examples, every bifurcation
branch in each lift network is lifted from the respective quotient network. In one
of the examples, a condition on the partial symmetries of the quotient network,
called transitive, is broken. In the other example, a condition on the connectiv-
ity of the lift network, called backward connected, is broken. Networks that are
backward connected and transitive have received an extra attention in [17, 18].
Restricting the lifting bifurcation problem to transitive quotient networks and
backward connected lift networks, we prove that every bifurcation branch on
the lift network is lifted from the quotient network if and only if the quotient
and lift network have the same number of source components, Theorem 6.5.

The structure of this paper is the following. In Section 2, we recall some
notions about coupled cell networks such as quotient network, backward con-
nected network and transitive network. In Section 3, we review the definition
of coupled cell systems. In Section 4, we describe coupled cell systems having
a bifurcation condition corresponding to the network valency and the respec-
tive lifting bifurcation problem. In Section 5, we study the codimension-one
steady-state bifurcation problem for those coupled cell systems. In Section 6,
we discuss the lifting bifurcation problem.

2. Coupled cell networks

In this section, we recall definitions and results concerning coupled cell net-
works, connectivity of networks, balanced colorings, quotient networks and net-
work fibrations. We follow the presentation given in [1, 2, 3, 19].

Definition 2.1. A network N is defined by a directed graph with a finite set
of cells C and finite sets of directed edges divided by types E1, . . . , Ek such that
each edge e ∈ Ei starts in a cell s and targets a cell t, where 1 ≤ i ≤ k and
s, t ∈ C. We denote by |N | the number of cells in the network N . In this work
we will assume that all networks are homogeneous with asymmetric inputs in
the sense that each cell c is target by exactly one edge of each type. ♦

Graphically, we use different symbols to distinguish the edge types. As an
example, the network in Figure 1 has two types of edges.

Let N be a network and E1, . . . , Ek the sets of edges in N . By relabeling
the cells, we can assume that C = {1, . . . , n}, with n = |N |.

Given 1 ≤ a1, . . . , an ≤ m, we denote by σ = [a1 . . . an] the function
σ : {1, . . . , n} → {1, . . . ,m} such that σ(j) = aj , 1 ≤ j ≤ n. The identity
function on {1, . . . , n} is denoted by σ0, i.e., σ0(j) = j, for 1 ≤ j ≤ n.

As pointed out by Rink and Sanders [3], a homogeneous network with asym-
metric inputs can be represented using a collection of functions. For each
1 ≤ i ≤ k, consider the function σi = [si(1) . . . si(n)] such that there exists an
edge e ∈ Ei from si(c) to c for 1 ≤ c ≤ n. In fact a homogeneous network with
asymmetric inputs is uniquely determined by the functions (σi)

k
i=1 and we say

that N is represented by (σi)
k
i=1. See the network in Figure 1.
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1 2 3

4 5 6

Figure 1: A homogeneous network with asymmetric inputs represented by σ1 = [1 2 3 6 4 5]
and σ2 = [1 2 3 1 2 3]. The strongly connected components of this network are {1}, {2}, {3}
and {4, 5, 6}.

A network can be also represented by its adjacency matrices. For each
1 ≤ i ≤ k, the n×n-matrix Ai is the adjacency matrix of type i, if (Ai)c σi(c) = 1
and (Ai)c c′ = 0, when σi(c) 6= c′. A network N is uniquely represented by its
adjacency matrices (Ai)

k
i=1. We denote the identity matrix by A0.

Given cells c and d of N , we say that c and d are connected if there exists a
sequence of cells c0, c1, . . . , cl−1, cl such that c0 = c, cl = d and there is an edge
from cj−1 to cj or an edge from cj to cj−1, for every 1 ≤ j ≤ l. In this work,
we always consider connected networks, i.e., networks where every two distinct
cells are connected.

Definition 2.2. Let N be a network. A path in N from the cell c to the cell d
is a sequence of cells c0, c1, . . . , cl−1, cl such that c0 = c, cl = d and there is an
edge from cj−1 to cj , for every 1 ≤ j ≤ l. We say that cells c and d are strongly
connected, if there are paths from c to d and from d to c. A subset B of cells
is a strongly connected component of N , if any two distinct cells c, d ∈ B are
strongly connected and B is a maximal subset of strongly connected cells, i.e.,
for every strongly connected cells c ∈ B and d we have that d ∈ B. ♦

The set of cells of a network can be partitioned into its strongly connected
components, see e.g. [20, Theorem 2.4].

In the network example of Figure 1, the strongly connected components are
{1}, {2}, {3} and {4, 5, 6}.

Definition 2.3. Let N be a network. The network N is strongly connected, if
N has exactly one strongly connected component given by the set of cells. A
strongly connected component S is a source component, if every edge targeting
a cell of S starts in a cell of S. We denote by s(N) the number of source
components of N . ♦

The network in Figure 2 is an example of a strongly connected network and
its unique source component is the set of cells. The networks in Figure 1 and
Figure 3 have three source components: {1}, {2} and {3}.

Definition 2.4. A network N is backward connected for a cell c, if for every
other cell c′ there exists a path from c′ to c. A network N is backward connected
if it is backward connected for some cell. ♦
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1

2 3

Figure 2: A strongly connected network represented by σ1 = [321], σ2 = [132] and σ3 = [213]
which is backward connected for every cell.

1 2 3

4 5

Figure 3: A network represented by σ1 = [1 2 3 1 3] and σ2 = [1 2 3 2 2] with three source
components. This network is not backward connected, as there is no path from cell 4 to cell
5 and vice versa.

Every strongly connected network is backward connected for every cell. Fig-
ure 2 shows an example of a backward connected network. The network in
Figure 1 is backward connected for the cells 4, 5 and 6. On the other hand,
Figure 3 shows an example of a network which is not backward connected.

Let N be a network represented by the functions (σi)
k
i=1 such that |N | = n.

A coloring of the set of cells of N is an equivalence relation on the set of cells. A
coloring ./ is balanced if σi(c) ./ σi(c

′), for every 1 ≤ i ≤ k and 1 ≤ c, c′ ≤ n such
that c ./ c′. It follows from [4, Proposition 7.2] that this definition coincides
with the definition of balanced coloring given in [2, Definition 4.1]. Given a
subset of cells S ⊆ {1, . . . , n}, we denote by [S]./ the set of ./-classes containing
the cells in S, i.e., [S]./ = {[c]./ : c ∈ S}.

Definition 2.5 ([2, Section 5]). LetN be a network represented by the functions
(σi)

k
i=1 such that |N | = n and ./ a balanced coloring in N . The quotient network

of N associated with ./ is the network where the set of cells are the ./-classes
and the edges are represented by the functions (σ./i )ki=1 such that

σ./i ([c]./) = [σi(c)]./, 1 ≤ i ≤ k, 1 ≤ c ≤ n.

We denote the quotient network by N/ ./. We also say that a network L is a
lift of N , if N is a quotient of L for some balanced coloring in L. ♦

The networks in Figures 4 and 5 are examples of quotient networks of the
networks described in Figures 1 and 3, respectively.

Remark 2.6. Let L be a lift of the network N . Any path in L between two
cells in L induces a path in N between the corresponding cells in N . Hence,
s(N) ≤ s(L). Furthermore, N is backward connected, whenever L is backward
connected. ♦
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1 2

4 5 6

Figure 4: The quotient network of the network in Figure 1 associated with the balanced
coloring ./ such that 2 ./ 3. This quotient network is backward connected, since the network
in Figure 1 is also backward connected.

1 2

5

Figure 5: The quotient network of the network in Figure 3 associated with the balanced
coloring ./ such that 1 ./ 3 and 4 ./ 5. This network is backward connected for the cell 5.

Next, we define network fibrations following [19, Definition 2.1.4] and [17,
Proposition 5.3]. Network fibrations are functions between networks that respect
the type of edges and the extreme cells of any edge. For homogeneous networks
with asymmetric inputs, it is sufficient to describe the network fibration in their
sets of cells as each cell receives exactly one edge of each type. In order for a
function between sets of cells to be a network fibration we impose next that the
extreme cells of any edge are preserved.

Definition 2.7. Let N and N ′ be the networks with the set of cells C, C ′ and
represented by the functions (σi)

k
i=1 and (σ′i)

k
i=1. A function ϕ : C → C ′ is a

network fibration from N to N ′, if

ϕ ◦ σi = σ′i ◦ ϕ, i = 1, . . . , k.

We denote a network fibration from N to N ′ by ϕ : N → N ′. We say that
N and N ′ are equal and write that N = N ′ if there exists a bijective network
fibration ϕ : N → N ′. ♦

If N is a network and ./ a balanced coloring of the set of cells of N , the
network fibration induced by ./ is the function ϕ./ : N → N/ ./ given for every
cell c of N by

ϕ./(c) = [c]./.

Example 2.8. Let N be the network in Figure 5. There are three network
fibrations from N to itself: ϕ1 = [1 1 1]; ϕ2 = [2 2 2] and ϕ3 = [1 2 5].

Let L be the network in Figure 3 and ./ the balanced coloring in L such
that 1 ./ 3 and 4 ./ 5. The network L is a lift of N = L/ ./ and ϕ./ = [1 2 1 5 5]
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is a network fibration from L to N , where 1, 2 and 5 are representatives of the
classes [1]./, [2]./ and [5]./, respectively. ♦

Remark 2.9. Let ϕ : N → N ′ be a network fibration between two networks N
and N ′. If S is a source component of N , then ϕ(S) is a source component of
N ′. This follows from the fact that each path in the network N is projected by
the network fibration ϕ : N → N ′ into a path in the network N ′. ♦

The evaluation of a network fibration at each cell of a path can be determined
by the evaluation of the network fibration at the end cell of that path. Since
for a backward connected network there is a cell such that there is a path from
every other cell to it, the network fibrations from such network are uniquely
determined by their evaluation at that cell:

Remark 2.10. Let ϕ : N → N ′ be a network fibration between the networks
N and N ′. If N is backward connected for c, then the network fibration is
uniquely determined by its evaluation at c, ϕ(c). ♦

The self-fibrations of a network are an indicator of the partial symmetries
of that network. Next, we define a class of networks with sufficient partial
symmetries. In particular, this means that there is a cell which can be permuted
with any other cell using self-fibrations.

Definition 2.11. Let N be a network and c a cell of N . We say that N is
transitive for c if for every cell d in N , there is a network fibration φd : N → N
such that φd(c) = d. We say that N is transitive, if it is transitive for some
cell. ♦

The network in Figure 5 is an example of a transitive network, since it
is transitive for the cell 5, see Example 2.8. The network in Figure 4 is not
transitive, because there are only three self-fibrations. Those self-fibrations are
the identity, a self-fibration that sends every cell to the cell 1 and a self-fibration
that sends every cell to the cell 2. In [17], the authors have defined fundamental
networks. A network is fundamental if and only if it is backward connected
and transitive, see [18, Theorem 5.16]. Figure 5 is an example of a fundamental
network.

3. Coupled cell systems

In this section, we recall concepts and results about coupled cell systems,
synchrony subspaces and conjugacies induced by network fibrations, following
[1, 2, 19]. We restrict the phase space of each cell to be the one-dimensional real
space, however the definitions and results are valid for any differential manifold,
see [1, 2, 19].

Let N be a network represented by the functions (σi)
k
i=1 and |N | = n. For

each cell c of the network, we associate a coordinate xc ∈ R. We say that
F : Rn → Rn is an admissible vector field for N , if there is f : R×Rk → R such
that

(F (x))c = f(xc, xσ1(c), . . . , xσk(c)),
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for every cell c of N . The admissible vector fields for N are uniquely defined by
such function f : R×Rk → R. We denote by fN the admissible vector field for
N defined by f .

Let f : R×Rk → R be a smooth function. A coupled cell system associated
with a network N is a system of ordinary differential equations

ẋ = fN (x), x ∈ Rn.

Let (Ai)
k
i=1 be the adjacency matrices of N . The Jacobian matrix of fN at

the origin is

JNf := (DfN )0 =

k∑
i=0

fiAi,

where

fi :=
∂f

∂xi
(0, 0 . . . , 0),

for 0 ≤ i ≤ k and A0 is the identity n×n matrix. Since (1, . . . , 1) is an eigenvalue
of A0, . . . , Ak, then

JNf

1
...
1

 =

(
k∑
i=0

fi

)1
...
1


and

∑k
i=0 fi is always an eigenvalue of JNf that we call the network valency.

A polydiagonal subspace is a subspace of Rn given by the equalities of some
cell coordinates. Given a coloring ./ on the set of cells of N , the polydiagonal
subspace associated with ./ is

∆./ := {x : c ./ d⇒ xc = xd} ⊆ Rn.

We say that a polydiagonal subspace ∆ ⊆ Rn is a synchrony subspace of a
network N if the polydiagonal subspace is invariant by any admissible vector
field of N , i.e., fN (∆) ⊆ ∆, for every f : R×Rk → R. There is a one-to-one cor-
respondence between balanced colorings ./ and synchrony subspaces ∆./, see [2,
Theorem 4.3]. More specifically, the polydiagonal ∆./ is a synchrony subspace
of N if and only if ./ is a balanced coloring. For homogeneous networks, the
coloring with only one color is always balanced and the corresponding synchrony
subspace is called the full-synchrony subspace:

∆0 := {(x, . . . , x) ∈ Rn : x ∈ R}.

Since a synchrony subspace ∆./ is invariant by every admissible vector field
fN , the coupled cell systems of N can be restricted to ∆./. The restricted
systems are coupled cell systems of N/ ./ given by admissibles fN/./, see [2,
Theorem 5.2].

Let N ′ be a network and n′ = |N ′|. Following [19], every network fibration
ϕ : N → N ′ induces a map between the phase spaces of those networks, Pϕ :
Rn′ → Rn such that

(Pϕ(x))c = xϕ(c), 1 ≤ c ≤ n.
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Moreover, the coupled cell systems defined by fN and fN
′

are conjugated

Pϕ ◦ fN
′

= fN ◦ Pϕ.

Any solution y(t) ∈ Rn′
of ẏ = fN

′
(y), induces a solution x(t) = Pϕ(y(t)) of ẋ =

fN (x). In particular, for any balanced coloring ./ in N , the solutions of every
coupled cell system on N/ ./ are lifted by Pϕ./ to solutions of the corresponding
coupled cell system on N and those solutions belong to the synchrony subspace
∆./.

4. Steady-state bifurcations

In this section, we review some concepts related with steady-state bifurca-
tions on coupled cell systems and the lifting bifurcation problem is formulated.

Let f : R×Rk ×R→ R be a one-parameter family of smooth functions and
consider the family of coupled cell systems, depending on the parameter λ,

ẋ = fN (x, λ) x ∈ Rn, λ ∈ R. (1)

Assume that the origin is an equilibrium point of (1) for every λ ∈ R, i.e.
fN (0, 0, . . . , 0, λ) = 0 for every λ ∈ R. If the Jacobian matrix of fN at (x, λ) =
(0, 0), JNf := (DfN )(0,0), is invertible, then the origin is the unique equilibrium
point of (1) in a sufficient small neighborhood of the origin in Rn × R. We say
that a steady-state bifurcation occurs if there exists an equilibrium point of (1)
different from the origin in any small neighborhood of the origin in Rn × R.
Hence a necessary condition for a steady-state bifurcation to occur is that JNf
is non-invertible.

Recall that the network valency
∑k
i=0 fi is an eigenvalue of JNf . In this

paper, we study steady-state bifurcation where the bifurcation condition is given
by the network valency. Let V(N) be the set of smooth functions f : R×Rk×R→
R defined by:

V(N) :=

{
f :

k∑
i=0

fi = 0, f(0, 0, . . . , 0, λ) = 0, λ ∈ R

}
.

Since our study is local, we recall the definition of germ. Let U1, U2 ⊂ R
be open neighborhoods of 0. We say that two smooth functions b1 : U1 → Rn
and b2 : U2 → Rn are germ equivalents if b1(λ) = b2(λ), for every λ ∈ U1 ∩ U2.
Given a smooth function b, we use the term germ b to refer to a representative
element of the equivalence class of b with respect to germ equivalence.

Let f ∈ V(N). We say that a germ b : U → Rn is an equilibrium branch of
f on N , if

fN (b(λ), λ) = 0,

for every λ ∈ U . As f(0, 0, . . . , 0, λ) = 0, we have that x(λ) = (0, . . . , 0) is
an equilibrium branch of f on N , called the trivial branch of f on N . The
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equilibrium branches of f on N different from the trivial branch are called the
bifurcation branches of f on N .

As usual in bifurcation theory, the study of the steady-state bifurcation prob-
lem is posed for a large class of functions called generic functions. The generic
functions are defined using non-degenerated conditions. A non-degenerated con-
dition is given by a polynomial p on some partial derivatives of a function eval-
uated at the bifurcation point. Given a function f , we denote by p(f) the
evaluation of the polynomial p at that function and we say that a function f
satisfies the non-degenerated condition given by p, if p(f) 6= 0.

Given f ∈ V(N), the value of its first partial derivative with respect to
x0 at the origin, f0, is given by its first partial derivatives with respect to xi
at the origin, fi, for i = 1, . . . , k, Also, partial derivatives of any order l > 0
with respect to λ at the origin, ∂lf/∂λl, are zero. Hence, we do not use non-
degenerated conditions which depend on f0 and ∂lf/∂λl for any l > 0. We say
that an assertion holds for generic functions in V(N), if there exists a finite
number of non-degenerated conditions such that this assertion holds for any
function in V(N) satisfying those non-degenerated conditions.

Let N be a network and L a lift of N . If fN is a coupled cell system on
N with a bifurcation condition corresponding to the network valency, then fL

is a coupled cell system on L with a bifurcation condition corresponding to the
network valency. Thus

V(N) = V(L).

In the end of the previous section, it was stated how to lift solutions of a
coupled cell system associated with N to the corresponding coupled cell system
associated with L using network fibrations. In the same way, we can lift bifur-
cation branches of a coupled cell system to another using network fibrations.

Definition 4.1. Let N be a network, L a lift of N and f ∈ V(N). We say
that a bifurcation branch b of f on L is lifted from N , if there exists a network
fibration ϕ : L→ N and a bifurcation branch b′ of f on N such that

b = Pϕ(b′). ♦

Given a network N and a lift network L of N , the lifting bifurcation problem
asks when every bifurcation branch of L is lifted from N .

5. Steady-state bifurcations associated with the valency

In this section, we study the bifurcations branches of (1) where f ∈ V(N) and
N is a homogeneous network with asymmetric inputs. We start by describing the
kernel of the Jacobian matrix JNf , when the network N is strongly connected.

By the Perron-Frobenius Theorem ([20, Theorem 0.3]), the kernel of JNf is
equal to the full-synchrony subspace, when the network N is strongly connected,
f ∈ V(N) and fi > 0 for every 1 ≤ i ≤ k. We show next that this holds for
generic functions f ∈ V(N).
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1 2

34

Figure 6: A strongly connected network.

Proposition 5.1. Let N be a strongly connected network. For generic f ∈
V(N), the kernel of JNf is the full-synchrony subspace

ker(JNf ) = ∆0.

We will prove this result by recursion on the number of cells. In order to do
the recursive step, we create a new network with one cell less. Before the proof,
we present a concrete example to illustrate how the recursive step is done.

Example 5.2. Let N be the network in Figure 6 and f : R×R2×R→ R. The
network N is represented by (σ1, σ2), where σ1 = [4 1 3 3] and σ2 = [2 3 2 2].
Recall that σ0 = [1 2 3 4] corresponds to the hidden self-dependence.

The Jacobian matrix of fN at the origin is

JNf =


f0 f2 0 f1
f1 f0 f2 0
0 f2 f0 + f1 0
0 f2 f1 f0

 ,
where each fi is the partial derivative of f with respect to xi at the origin. The
eigenvalues of JNf are f0 + f1 + f2, f0 (twice) and f0 − f2. Assume f has a
bifurcation condition associated with the valency, that is f0 + f1 + f2 = 0 and
f satisfies the non-degenerated conditions f1 + f2 6= 0 and f1 + 2f2 6= 0. Then
the kernel of JNf is the eigenspace associated with f0 + f1 + f2, that is,

ker(JNf ) = ∆0.

For concrete coupled cell systems, we can explicitly calculate the required
non-degenerated conditions in Proposition 5.1 by computing the eigenvalues of
JNf . Another approach that we present, goes through considering a new network
with one less cell such that we can derive the kernel of the Jacobian matrix on the
origianl network using the kernel of the Jacobian matrix on this new network.

Suppose that f ∈ V(N), i.e., f0 + f1 + f2 = 0. Then the kernel of JNf is
characterized by the following system:

f0 f2 0 f1
f1 f0 f2 0
0 f2 f0 + f1 0
0 f2 f1 f0



v1
v2
v3
v4

 = 0⇔


f0v1 + f2v2 + f1v4 = 0

f1v1 + f0v2 + f2v3 = 0

f2v2 + (f0 + f1)v3 = 0

f2v2 + f1v3 + f0v4 = 0

.
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N M

c n
i

j
c (i,j)

c

n b

a
i

j

c (i,j)

cc n b
i j

c b
(i,j)

c

n

a
i

j

c a
(i,j)

Table 1: Given an n-cell network N with set of cells {1, . . . , n} and k types of edges {1, . . . , k},
we define the (n-1)-cell network M with set of cells {1, . . . , n− 1} and k2 + 2k types of edges
{(0, 1), . . . , (0, k), (1, 0), (1, 1), . . . , (1, k), . . . , (k, 0), (k, 1), . . . , (k, k)} using the rules given by
the table. Each edge in the table is annotated with its type and the cells a, b, c ∈ {1, . . . , n−1}.
Given a cell c 6= n in N , the left hand side of the table displays the edge of type i that targets
c and the edge of type j that targets n where 0 ≤ i, j ≤ k. Depending on the configuration of
the left hand side of the table, we give the corresponding edge in M of type (i, j) that targets
c.

Assume the non-degenerated condition f0 = −f1 − f2 6= 0. From the last
equality in the previous system, we have that

v4 = −f2v2 + f1v3
f0

.

Replacing v4 in the other equalities and multiplying by f0, we obtain the system
f20 v1 + (f0f2 − f1f2)v2 − f21 v3 = 0

f0f1v1 + f20 v2 + f0f2v3 = 0

f0f2v2 + (f20 + f0f1)v3 = 0

. (2)

As the variable v4 does not appear in (2), we remove this cell from the
network N . In order to apply a recursive argument on the number of cells, we
find a network without cell 4 such that (2) defines the kernel of the Jacobian
matrix for a coupled cell system of this new network with a bifurcation condition
associated with the valency. We use the rules described on Table 1 to remove
cell 4 and define the new network.

Fixing the cell n = 4 of N , we define the network M with 3 cells, {1, 2, 3} and
8 edge’s types, (γ(0,1), γ(0,2), γ(1,0), γ(1,1), γ(2,1), γ(2,0), γ(2,1), γ(2,2)). The edges of
M are given by the rules presented in Table 1. See Figure 7. Following the first
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row of the table, the cell 1 receives in N an input of type 1 from the cell 4 and
the cell 4 receives in N a self-input of type 0, then the cell 1 receives in M a
self-input of type (1, 0). Following the second row, the cells 1 and 4 receive in
N an input of type 2 from the cell 2, then the cell 1 receives in M a self-input
of type (2, 2). Following the third row, the cell 1 receives in N an input of type
1 from the cell 4 and the cell 4 receives in N an input of type 1 from the cell 3,
then the cell 1 receives in M an input of type (1, 1) from the cell 3. Following
the fourth row, the cell 1 receives in N an input of type 2 from the cell 2 and the
cell 4 receives in N a self-input of type 0, then the cell 1 receives in M an input
of type (2, 0) from the cell 2. Doing the same for the other cells and inputs, we
see that γ(0,1) = γ(0,2) = γ(2,1) = γ(2,2) = [1 2 3], γ(1,0) = [1 1 3], γ(1,1) = [3 2 3],
γ(1,2) = [2 2 3] and γ(2,0) = [2 3 2]. Note that the network M is also strongly
connected.

Looking to the system of equations (2), we see now that the type of inputs
(i, j) adapt to that system. We find a coupled cell system gM such that the
system (2) corresponds to the kernel of JMg . We define the function g : R×R8×
R→ R as follows:

g(x00, x01, x02, x10, x11, x12, x20, x21, x22, λ) =

f(f(x00,−x01,−x02, λ), f(x10,−x11,−x12, λ), f(x20,−x21,−x22, λ), λ),

where f ∈ V(N). The partial derivative of g with respect to xij at the origin is{
gi0 = fif0, i = 0, 1, 2

gij = −fifj , i = 0, 1, 2, j = 1, 2
.

Note that gM has a bifurcation condition associated with the valency of M :

2∑
i,j=0

gij = f0

2∑
i=0

fi −
2∑
j=1

fj

2∑
i=0

fi = 0.

The Jacobian matrix of JMg at the origin is

JMg =

a+ g10 g12 + g20 g11
g10 a+ g11 + g12 g20
0 g20 a+ g10 + g11 + g12

 ,
where a = g00+g01+g02+g21+g22. Recalling that f ∈ V(N) and so f0+f1+f2 =
0,

JMg =

 f20 f2f0 − f1f2 −f1f1
f1f0 f20 f2f0

0 f2f0 f20 + f1f0

 .
Thus (v1, v2, v3) ∈ ker(JMg ) if and only if (v1, v2, v3) satisfies the system (2). We
could further reduce the network M . After two reductions, we would obtain a
network with only one cell where the kernel of the Jacobian matrix of a coupled

14



1 2

3

(0,1),(0,2),
(1,0),(2,1),
(2,2) (1,0)

(1,2),(2,0)
(0,1),(0,2),
(1,1),(1,2),
(2,1),(2,2)

(1,1) (2,0)

(0,1),(0,2),
(1,0),(1,1),
(1,2),(2,1),
(2,2)

Figure 7: A three-cell homogeneous network with asymmetric inputs obtained from the net-
work in Figure 6 by removing cell 4 and applying the rules in Table 1. The edges are annotated
with their edge types and edges with more than one label represent multiple edges. This net-
work is strongly connected.

cell system with a bifurcation condition associated with the valency is the full
synchrony subspace. Instead, we assume that ker(JMg ) = {(x, x, x) : x ∈ R}, for
generic functions g ∈ V(M). Therefore,

(v1, v2, v3, v4) ∈ ker(JNf )⇔

(v1, v2, v3) ∈ ker(JMg )

v4 = −f2v2 + f1v3
f0

⇔ v1 = v2 = v3 = v4.

Thus ker(JNf ) = ∆0, for generic functions f ∈ V(N). ♦

Proof of Proposition 5.1. Let N be a strongly connected network with n cells
and represented by (σi)

k
i=1 and f ∈ V(N) generic. Recall that σ0 is the identity

function on {1, . . . , n} and it corresponds to the hidden self-dependence. We
recursively prove that

ker(JNf ) = {(x, . . . , x) ∈ Rn : x ∈ R}.

Suppose that the network N has one cell, n = 1. Since
∑k
i=0 fi = 0, we have

that JNf = [0] and ker(JNf ) = R = ∆0.
Suppose that the network N has m+ 1 cells {1, . . . ,m, n} with n = m+ 1.

Since f ∈ V(N), we have that ker(JNf ) is nontrivial. Take v = (v1, . . . , vm, vn) ∈
Rn such that JNf v = 0. Denote by Jc d the (c, d) entry of JNf , i.e.,

Jc d :=
∑

σi(c)=d

fi.

Thus, using this notation, we have that

JNf v = 0⇔


J1 1v1 + J1 2v2 + · · ·+ J1 nvn = 0

...

Jn 1v1 + Jn 2v2 + · · ·+ Jn nvn = 0

. (3)

15



Since N is strongly connected, the cell n receives an edge from some other
cell. Thus Jn n 6=

∑k
i=0 fi and so, we can generically assume on f that

Jn n =

k∑
σi(n)=n

fi = −
k∑

σi(n)6=n

fi 6= 0.

Moreover,

vn = −Jn 1v1 + Jn 2v2 + · · ·+ Jn mvm
Jn n

.

Replacing vn in the first m equations of the system (3), we obtain

m∑
d=1

(Jn nJc d − Jc nJn d)vd = 0, 1 ≤ c ≤ m.

Let J ′ be the m×m-matrix with entries

J ′c d = Jn nJc d − Jc nJn d,

where 1 ≤ c, d ≤ m. Next, we define a network M with m cells and a function
g ∈ V(M) such that

JMg = J ′.

In order to remove cell n from network N and define the network M , we
use the rules presented in Table 1. The type of edges in M are (i, j) where
0 ≤ i, j ≤ k and (i, j) 6= (0, 0), and the edges of type (i, j) are represented by
the function γi j . Following Table 1, each function γi j is given by

γi j(c) =


c, σi(c) = σj(n) = n

c, σi(c) 6= n, σj(n) 6= n

σj(n), σi(c) = n, σj(n) 6= n

σi(c), σi(c) 6= n, σj(n) = n

,

where 1 ≤ c ≤ m and each case corresponds to the corresponding row in the
table.

Each path in N induces a path in M by removing any transition by cell n.
Therefore M is strongly connected, because N is strongly connected.

In order to use a recursive argument, we define now a function g such that
g ∈ V(M) and J ′ = JMg . Let g : R× R(k+1)2−1 × R→ R be the function

g(x00, . . . , x0k, x10, . . . , x1k, . . . , xk0, . . . , xkk, λ) =

f(f(y00, . . . , y0k, λ), f(y10, . . . , y1k, λ), . . . , f(yk0, . . . , ykk, λ), λ),

where f ∈ V(N), yij = βjxij , βj = 1, if σj(n) = n, and βj = −1, if σj(n) 6= n,
for 0 ≤ i, j ≤ k. For 1 ≤ i, j ≤ k, we have that

gij =
∂g

∂xij
(0, 0 . . . , 0, 0) = βjfifj .
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Now, we prove that g satisfies the required conditions: J ′ = JMg and g ∈
V(M). Let 1 ≤ c, d ≤ m. If c 6= d, then

(JMg )c d =
∑

γi j(c)=d

gij =
∑

σi(c)=d

∑
σj(n)=n

fifj −
∑

σi(c)=n

∑
σj(n)=d

fifj = J ′c d.

Recall that
∑

σi(c)<n

fi +
∑

σi(c)=n

fi = 0 as f ∈ V(N). Then

(
JMg
)
c c

=
∑

σi(c)=c
σj(n)=n

fifj −
∑

σi(c)=n
σj(n)=c

fifj +
∑

σi(c)=n
σj(n)=n

fifj −
∑

σi(c)<n
σj(n)<n

fifj =

=J ′c c +
∑

σi(c)=n

fi
∑

σj(n)=n

fj −
∑

σi(c)=n

fi
∑

σj(n)=n

fj = J ′c c.

Hence
J ′ = JMg .

Note that g ∈ V(M), since

k∑
i=0

k∑
j=0

gij =

k∑
j=0

βjfj

k∑
i=0

fi = 0.

Before we apply the recursive argument, we emphasize that, when m > 1,
the generic condition on g can be regarded as a generic condition on f :∑

γij(m)=m

gij =
∑

σi(m)=m

fi
∑

σj(n)=n

fj −
∑

σi(m)=n

fi
∑

σj(n)=m

fj 6= 0,

We can repeat the previous reduction to the network M and the function g.
After a finite number of steps, we obtain a network with only one cell where
the kernel of the Jacobian matrix is the full synchrony subspace. So we assume
that ker(JMg ) is the full-synchrony subspace and prove that ker(JNf ) = ∆0. We

have that v ∈ ker(JNf ) if and only if (v1, . . . , vm) ∈ ker(JMg ) and

vn = −Jn 1v1 + Jn 2v2 + · · ·+ Jn mvm
Jn n

= −
∑m
c=1 Jn c
Jn n

v1 = v1,

because v1 = · · · = vm. Therefore v ∈ ker(JNf ) if and only if v ∈ ∆0.

In the following example, we present a strongly connected network N and
a degenerated function f ∈ V(N) for which the kernel of JNf is not the full-
synchrony subspace.

Example 5.3. Let N be the strongly connected network represented in Figure 2
and f ∈ V(N) such that f1 = f2 = 1 and f3 = −1/2. Then f0 = −3/2,

JNf =

− 1
2 − 1

2 1
− 1

2 − 1
2 1

1 1 −2


17



and
∆0 ( ker(JNf ) = {(2x, 2y, x+ y) : x, y ∈ R}. ♦

Next, we describe the codimension-one steady-state bifurcation of coupled
cell systems associated with strongly connected networks where the bifurcation
condition corresponds to the network valency. As shown below, this bifurcation
does not break the full-synchrony. This result follows from the previous result
and well-know methods in bifurcation theory.

Proposition 5.4. Let N be a strongly connected network and f ∈ V(N) generic.
Then, there exist a neighborhood U ⊂ R of 0 and a germ bf : U → R such that
if b : U → R|N | is a bifurcation branch of f on N then

b(λ) = (bf (λ), . . . , bf (λ)) ∈ ∆0, λ ∈ U.

Proof. Let N be a strongly connected network and f ∈ V(N) generic. By
Proposition 5.1, we know that ker(JNf ) = ∆0. Applying the Lyapunov-Schmidt

Reduction ([21, Chapter VII]), there exists W : R× R→ R|N | such that

fN (b, λ) = 0⇔ b = (x, . . . , x) +W (x, λ) ∧ f(x, x, . . . , x, λ) = 0.

If f(x, x, . . . , x, λ) = 0, then fN ((x, . . . , x), λ) = 0. By uniqueness of W , W ≡ 0.
So b ∈ ∆0.

Assuming non-degenerated conditions on the function f , the equation f(x, x, . . . , x, λ) =
0 has a transcritical bifurcation, see e.g., [22]. There exist a neighborhood U ⊆ R
of 0 and a non-zero germ bf : U → R such that

f(x, x, . . . , x, λ) = 0⇔ x = 0 ∨ x = bf (λ), λ ∈ U.

Moreover

fN (b, λ) = 0⇔ b = (0, . . . , 0) ∨ b = (bf (λ), . . . , bf (λ)), λ ∈ U.

Therefore, if b : U → R|N | is a bifurcation branch of f on N then b(λ) =
(bf (λ), . . . , bf (λ)), λ ∈ U .

Now, we address the same bifurcation problem assuming that the network is
not necessarily strongly connected. Let N be a network and f ∈ V(N) generic.
We start by describing the kernel of JNf . Reordering the cells in the network by

its strongly connected components, we have that the eigenvalues of JNf are the

union of the eigenvalues of JBf for each strongly connected component B of N .

Here JBf is the submatrix of JNf with columns and rows corresponding to the

cells in B. We prove now that the kernel of JBf is trivial, if B is not a source.

Proposition 5.5. Let N be a network, f ∈ V(N) generic and B a strongly
connected component of N which is not a source. Then ker(JBf ) = {0}.
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Proof. Let N be a network represented by (σi)
k
i=1, f ∈ V(N) generic and B a

strongly connected component of N which is not a source. Like in the proof
of Proposition 5.1, we use a recursive argument on the number of cells of B to
prove the result. Denote by c1, . . . , cn the cells of B and by Jp q the (cp, cq)-entry
of JBf . Define θ = (θ1, . . . , θn), where

θp :=
∑

σi(cp)/∈B

fi.

Generically on f , we can assume that θ 6= (0, . . . , 0), i.e., θp 6= 0 for some
1 ≤ p ≤ n, as B is not a source. Since f ∈ V(N),

n∑
q=1

Jp q = −θp, 1 ≤ p ≤ n.

Let v = (v1, . . . , vn) ∈ R|B| be such that JBf v = 0.

Suppose that n = 1. Then JBf = [−θ1] 6= 0, generically, and so

ker(JBf ) = {0}.

Suppose now that n = m+1. We can assume generically on f that Jn n 6= 0,
since B is a strongly connected component. Let J ′ be the m ×m-matrix and
let θ′ = (θ′1, . . . , θ

′
m) which are, respectively, defined by

J ′p q = Jn nJp q − Jp nJn q,

θ′p = Jn nθp − Jp nθn,
for 1 ≤ p, q ≤ m. Generically on f , we assume that θ′ 6= (0, . . . , 0), and if m > 1
we also assume that J ′mm 6= 0. Note that (v1, . . . , vm) ∈ ker(J ′) and

m∑
q=1

J ′p q =Jn n

m∑
q=1

Jp q − Jp n
m∑
q=1

Jn q

=Jp n(Jn n + θn)− Jn n(Jp n + θp) = −θ′p.

As in the proof of Proposition 5.1, we can remove the cell n belonging to B from
the network N and define a network M with a strongly connected component
B′ and a function g ∈ V(M) such that B′ = B \ {n} has m cells and J ′ = JB

′

g .
Hence we can apply the same recursive argument and conclude that

ker(JBf ) = {0}.

In the next result, we describe the kernel of the Jacobian matrix of a coupled
cell system with the bifurcation condition corresponding to the network valency.

Proposition 5.6. Let N be a network and f ∈ V(N) generic. Then ker(JNf )
has dimension equal to s(N). Moreover, if S is a source component of N and
v ∈ ker(JNf ), then

vc = vd, c, d ∈ S.
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Proof. Let N be a network and f ∈ V(N) generic such that s(N) = s. Denote
the source components ofN by S1, . . . , Ss and order the other strongly connected
components by B1, . . . , Br such that any edge targeting a cell in Bi starts in a
cell of S1 ∪ · · · ∪ Ss ∪ B1 ∪ · · · ∪ Bi. Reordering the cells of N by its strongly
connected components, we see that the matrix JNf has the following block form

JNf =



JS1

f 0 . . . 0

0 JS2

f . . . 0
...

...
. . .

...

0 0 . . . JSs

f

0

R
JB1

f 0 . . . 0

R21 JB2

f . . . 0
...

...
. . .

...

Rr1 Rr2 . . . JBr

f


.

By Propositions 5.1 and 5.5, ker(JSi

f ) is one-dimensional for every 1 ≤ i ≤ s and

ker(J
Bj

f ) is trivial for every 1 ≤ j ≤ r. So ker(JNf ) is s = s(N)-th dimensional.

Let v ∈ ker(JNf ) and 1 ≤ i ≤ s. Then vSi
= (vc)c∈Si

∈ ker(JSi

f ) and, it
follows from Proposition 5.1 that vc = vd, for c, d ∈ Si.

Using the previous results, we describe next the codimension-one steady-
state bifurcations of coupled cell systems associated with a network and impos-
ing the bifurcation condition corresponding to the network valency.

Proposition 5.7. Let N be a network and f ∈ V(N) generic. Then there are
2s(N) equilibrium branches of f on N with the following properties:
(i) For every equilibrium branch b, if c, d ∈ S, for some source component S,
then bc = bd = 0 or bc = bd = bf , where bf is defined by Proposition 5.4.
(ii) Given two equilibrium branches b and b′, if bS = b′S for every source com-
ponent S, then b = b′.

Proof. Let N be a network, s = s(N) and f ∈ V(N) generic. Denote by
S1, . . . , Ss the source components of N and by B the set of cells not belonging
to S1 ∪ · · · ∪ Ss.

It follows from the proof of Proposition 5.6 that JBf is invertible. By the

Implicit Function Theorem, there exists W : R|S1|×· · ·×R|Ss|×R→ R|B| such
that

fN (x, λ) = 0⇔

{
fSi(xSi

, λ) = 0, i = 1, . . . , s

xB = W (xS1
, . . . , xSs

, λ)
.

Using Proposition 5.4, it follows that, for each source Si, 1 ≤ i ≤ s, we can
solve as:

fSi(xSi , λ) = 0⇔ xSi = (0, . . . , 0) ∨ xSi = (bf (λ), . . . , bf (λ)),
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Figure 8: Homogeneous network with asymmetric inputs and two source components: {1}
and {2}. Given a generic coupled cell system with a bifurcation condition associated with the
network valency, there are four bifurcation branches.

where bf : U → R is defined in Proposition 5.4 and it does not depend on the
source component. Hence

fN (x, λ) = 0⇔

{
xSi = (0, . . . , 0) ∨ xSi = (bf (λ), . . . , bf (λ)), i = 1, . . . , s

xB = W (xS1 , . . . , xSs , λ)
.

For each source component we have two choices in the previous equation, then
there are 2s(N) equilibrium branches of f on N .

If b is an equilibrium branch of f on N and c, d belong to the same source
component, then bc = bd = 0 or bc = bd = bf . This proves (i).

Let b and b′ be two equilibrium branches of f on N . If bS = b′S for every
source component, then bB = W (bS1

, . . . , bSs
, λ) = W (b′S1

, . . . , b′Ss
, λ) = b′B and

b = b′. Proving (ii).

Example 5.8. Let N be the network in Figure 8 and f ∈ V(N) generic.
The network N has two source components. By Proposition 5.7, there are
4 bifurcation branches of f on N . The bifurcation branches are (0, 0, 0, 0, 0),
(bf , 0, bf , 0, b1), (0, bf , 0, bf , b2) and (bf , bf , bf , bf , bf ), where bf is defined by
Proposition 5.4 applied to (any) of the source components ofN , that is f(bf (λ), bf (λ), bf (λ), λ) =
0, b1 is the unique solution of f(x, bf (λ), 0, λ) = 0 and b2 is the unique solution
of f(x, 0, bf (λ), λ) = 0. ♦

Remark 5.9. Let N be a network and f ∈ V(N) generic. Denote by S1, . . . , Ss
the source components of N . The cells inside a source component receive every
input from a cell inside that source component. Then the coloring that assigns
a different color for each source component and it assigns the same color only
for cells inside the same source component is balanced. The corresponding
synchrony subspace is

∆S1
× · · · ×∆Ss

× R|N |−(|S1|+···+|Ss|),

where ∆Si
= {x ∈ R|Si| : xc = xd, c, d ∈ Si} is the full synchrony subspace in

the source component Sj , for j = 1, . . . , s.
By Proposition 5.7, if b is a bifurcation branch of f on N , then

b ∈ ∆S1
× · · · ×∆Ss

× R|N |−(|S1|+···+|Ss|). ♦
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6. The lifting bifurcation problem associated with the valency

In this section, we give conditions that characterize the lifting bifurcation
problem for generic coupled cell systems with a bifurcation condition associated
with the valency. Those conditions only depend on the number of source compo-
nents. The results follow from the characterization of the bifurcation branches
obtained in Section 5.

Proposition 6.1. Let N be a network, L a lift of N and f ∈ V(N) generic.
Then:
(i) If s(N) = s(L), then every bifurcation branch of f on L is lifted from N .
(ii) If 1 = s(N) < s(L), then there exists at least one bifurcation branch of f
on L not lifted from N .

Proof. Let N be a network, L a lift of N , ./ a balanced coloring in L such that
N = L/ ./ and f ∈ V(N) generic. Denote by ϕ./ : L→ N the network fibration
induced by ./ and by S1, . . . , Ss(L) the source components of L. Note that the
source components of N are ϕ./(S1), . . . , ϕ./(Ss(L)).
(i) Suppose that s(N) = s(L). Let b be a bifurcation branch of f on L. Using
Proposition 5.7, we define the bifurcation branch a of f on N such that

aϕ./(c) := bc, c ∈ Si, 1 ≤ i ≤ s(L).

The bifurcation branch a is defined for each source component because the
network fibration ϕ./ sends each source component of L into a different source
component of N . Therefore the bifurcation branch a is well defined. Note that

bSi = (Pϕ./(a))Si , 1 ≤ i ≤ s(L),

where Pϕ./ is the map between the phase spaces of N and L induced by ϕ./.
So the bifurcation branches b and Pϕ./(a) coincide on the source components
and b = Pϕ./(a), by Proposition 5.7 (ii).
(ii) Suppose that 1 = s(N) < s(L). Denote by S the unique source component
of N . Let b′ be a bifurcation branch of f on N . By Proposition 5.7 (i), we
know that b′S = (0, . . . , 0) or b′S = (bf , . . . , bf ). Returning to the proof of
Proposition 5.7, we have that W (b′S , λ) = b′s(1, . . . , 1) for any s ∈ S, because W :
R|S|×R→ R|N |−|S| is the unique solution of the system fN (b′S+W (b′S , λ), λ) =
0. So b′c = b′d, for any cells c and d of N and

b′ ∈ ∆N ⊆ R|N |,

where ∆N is the full synchrony subspace associated with the network N . For
any network fibration ϕ : L → N , (Pϕb′)c = b′ϕ(c) = b′ϕ(d) = (Pϕb′)d for any
cells c and d of L and

Pϕb′ ∈ ∆L ⊆ R|L|,
where ∆L is the full synchrony subspace associated with the network L. By
Proposition 5.7 there exists a bifurcation branch b of f on L such that b /∈ ∆L,
because s(L) > 1. Moreover b is not lifted from N , because any bifurcation
branch lifted from N belongs to the full-synchrony subspace, ∆L.
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Figure 9: Network with a single cell and two edges types.

The previous result shows that the bifurcation branches of a generic coupled
cell system, associated with a network with only one source component and the
bifurcation condition correspondent to the network valency, are lifted from the
trivial quotient network with a single cell and the same number of edge types.
Thus those bifurcation branches do not break the full-synchrony.

Example 6.2. The network N in Figure 9 is the trivial quotient network of
every network with two types of edges associated with the balanced coloring
with exactly one color. Consider the lifts L1 and L2 of N given in Figures 6 and
8, respectively and f ∈ V(N) generic. Note that 1 = s(N) = s(L1) < s(L2) = 2.

By Proposition 6.1 (i), the bifurcations branches of f on L1 are lifted from
N . On the other hand, by Proposition 6.1 (ii) there exists a bifurcation branch
of f on L2 which is not lifted from N . ♦

In Proposition 6.1 (ii) we assume that 1 = s(N) < s(L). If we change that
assumption to 1 < s(N) < s(L), then it may happen that all the bifurcation
branches of f on L are lifted fromN , as illustrated in the following two examples.

Example 6.3. Let N be the network described in Figure 5 which has 2 source
components, L the lift network of N described in Figure 3 with 3 source com-
ponents and f ∈ V(N) generic. Consider the network fibrations from L to N
given by: ϕ1,2 = [2 2 1 2 5]; ϕ1,3 = [1 2 1 5 5]; and ϕ2,3 = [1 2 2 5 2]. Let b be a
bifurcation branch of f on L. According to Proposition 5.7 (i), the bifurcation
branch b can take one of two possible values on the coordinates of each of the
cells 1, 2 and 3. Then at least one of the equalities b1 = b2, b1 = b3, b2 = b3
holds. Suppose that bi = bj , for some 1 ≤ i < j ≤ 3. Let b′ be the bifurcation
branch of f on N such that b′ϕi,j(c)

= bc, for c ∈ {1, 2, 3}. Then b = Pϕi,jb
′ and

it is lifted from N .
The networks L and N satisfy 1 < s(N) < s(L) and every bifurcation branch

of f on L is lifted from N . ♦

Example 6.4. Let N be the network in Figure 4, L the lift network in Figure 1
and f ∈ V(N) generic. Consider the network fibrations from L to N given by:
ϕ1,2 = [221564]; ϕ1,3 = [212645]; and ϕ2,3 = [122456]. Let b be a bifurcation
branch of f on L. By Proposition 5.7, we know that b1 = b2, b2 = b3 or b1 = b3.
Suppose that bi = bj , for some 1 ≤ i < j ≤ 3. Then b is lifted from N using
ϕi,j .

Again, we have that 1 < s(N) < s(L) and every bifurcation branch of f on
L is lifted from N . ♦

In the previous examples, we saw that increasing the number of source com-
ponents on the lift network is not sufficient to ensure that some bifurcation
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branch on the lift network is not lifted from the quotient network. The lift net-
work in Figure 3 and considered in Example 6.3 is not backward connected. In
Example 6.4, we consider the quotient network given by Figure 4 which is not
transitive. The next result shows that increasing the number of source compo-
nents on the lift network with respect to the quotient network is a necessary and
sufficient condition for the existence of some bifurcation branch on the lift net-
work that is not lifted from the quotient network, provided that the lift network
is backward connected and the quotient network is transitive.

Theorem 6.5. Let N be a transitive homogeneous network with asymmetric
inputs, L a backward connected lift of N and f ∈ V(N) a generic function
with a bifurcation condition associated with the network valency. Then every
bifurcation branch of f on L is lifted from N if and only if s(N) = s(L).

Proof. Let N be a transitive network for the cell t in N and represented by
the functions (σi)

k
i=1 and f ∈ V(N) generic. Let L be a backward connected

network for the cell l, ./ a balanced coloring in L such that N = L/ ./.
If s(N) = s(L), then every bifurcation branch of f on L is lifted from N , by

Proposition 6.1(i).
Next,we suppose that s(N) < s(L) and prove that there is a bifurcation

branch of f on L that is not lifted from N . Denote by ϕ./ : L→ N the network
fibration induced by ./. Note that the network N is backward connected for
the cell l′ = ϕ./(l). Denote by φc : N → N the network fibrations for each cell
c in N such that φc(t) = c.

Since N is backward connected for l′, for every cell c in N there exist 1 ≤
i1, . . . , im ≤ k such that φl′(σi1 ◦ · · · ◦ σim(t)) = σi1 ◦ · · · ◦ σim(φl′(t)) = σi1 ◦
· · · ◦ σim(l′) = c. Then φl′ is surjective and it is also bijective, since N is finite.
Applying the inverse of φl′ to φc, we see that N is transitive for the cell l′.
Assume that l′ = t.

From s(N) < s(L), it follows that there exist two source components S1, S2

of L such that ϕ./(S1) = ϕ./(S2) is a source component of N . Let ϕ : L→ N be
any network fibration from L to N . By Remark 2.10 and ϕ(l) = φϕ(l) ◦ ϕ./(l),
we have that ϕ = φϕ(t) ◦ϕ./. Hence ϕ(S1) = ϕ(S2), for every network fibration
ϕ : L→ N . If b′ is a bifurcation branch of f on N , then

Pϕ(b′)c1 = Pϕ(b′)c2 ,

for c1 ∈ S1 and c2 ∈ S2. However, we know from Proposition 5.7 (i) that there
exists a bifurcation branch b of f on L such that bc1 6= bc2 , for c1 ∈ S1 and
c2 ∈ S2. So b is not lifted from N .

Example 6.6. Let N be the transitive network described in Figure 5 and
f ∈ V(N) generic. Consider the lift networks L1 and L2 of N described in the
Figures 8 and 10, respectively. Note that s(N) = s(L1) = 2, s(L2) = 3 and the
network L1 and L2 are backward connected for the cell 5. Using Theorem 6.5,
we know that every bifurcation branch of f on L1 is lifted from N but there
exists a bifurcation branch of f on L2 that is not lifted from N . ♦
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Figure 10: Homogeneous network with three source components: {1}, {2} and {6}. This
network is a lift of the network in Figure 5, taking the balanced coloring ./ such that 1 ./ 3
and 2 ./ 4 ./ 6.
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