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1 Supersymmetry in Quantum Mechanics

1.1 The Supersymmetric Oscillator

As we will see later the “hermitian supercharges” Qi
α, in the N extended SuperPoincaré Lie

Algebra obey the anticommutation relations:

{Qi
α, Qj

β} = 2(γmC)αβδij Pm (1.1)

where α, β are “spinor” indices, i, j ∈ {1, · · · , N} “internal” indices and (γmC)αβ a bilinear
form in the spinor indices α, β.

When specialized to 0-space dimensions ((1+0)-spacetime), then since P0 = H, relations
(1.1) take the form (with a little change in notations):

{Qi, Qj} = 2δij H (1.2)

with N “Hermitian charges” Qi, i = 1, · · · , N . Let us see some imediate consequences of
relations (1.2:

• The supercharges Qi are constants of motion. In fact:

[H, Q] = [Q2, Q] = 0 (1.3)

where Q is any of the Qi.

• The Hamiltonian H is an hermitian positive operator, and so the energy spectrum
is always positive definite. In fact:

H = Q2
1 = · · · = Q2

N (1.4)

So, ∀|ψ〉 ∈ H we have:

〈ψ|H|ψ〉 = 〈ψ|Q2|ψ〉 = 〈ψ|Q†Q|ψ〉 = ‖Q|ψ〉‖2 ≥ 0

where Q is any of the Qi. This also proves that:

•
ker H = ∩i ker Qi (1.5)

Since the Hamiltonian H is a positive operator, any eigenstate |ψ0 > of H with zero
eigenvalue is a “ground state”, and for such a ground state we have that Qi|ψ0 >= 0, ∀i.
We then say that the “supersymmetry is unbroken”. When there is no eigenstate with zero
eigenvalue, then the ground state |ψ0〉 has energy Eψ0 > 0. This implies that Q|ψ0〉 6= 0 and
we then say that we have “spontaneous susy breaking”.

Now we focus our attention in the N = 2 model, which we call the:
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“Supersymmetric Oscillator”

In this case let us define the following two “nonhermitian supercharges”, adjoint of each
other:

S
def
=

1

2
(Q1 + iQ2)

S = S† =
def
=

1

2
(Q1 − iQ2) (1.6)

Then we have the following “representation” for the above (N = 2)-Susy algebra:

H = Q2
1 = Q2

2 = {S, S}
S2 = S

2
= 0 (1.7)

We also have [H,Q] = 0, where Q is any of the Qi, S or S.

Consider the Hilbert space H with basis:

|nB, nF 〉 nB = 0, 1, 2, · · · ,∞ nF = 0, 1 (1.8)

where nB and nF are “boson” and “fermion occupation numbers” respectivelly, and let a, a†

“anihilation-creation” bosonic operators, and f, f † “anihilation-creation” fermionic opera-
tors, acting on H in the standard way. They satisfy the following commutation and anti-
commutation relations:

[a, a†] = 1

{f, f †} = 1 f 2 = (f †)2 = 0

[a, f ] = 0 (1.9)

Then if we put:

S
def
= k af † “destroy a boson ⊗ create a fermion”

S
def
= k a†f “create a boson ⊗ destroy a fermion” (1.10)

where k is a constant so that S and S are adjoints of each other (S = S†), we see that:

S |nB, nF 〉 = k af †|nB, nF > ∝ |nB − 1, nF + 1〉
S |nB, nF 〉 = k a†f |nB, nF > ∝ |nB + 1, nF − 1〉 (1.11)

so that these operators convert a boson into a fermion and vice-versa. Moreover we can
verify properties (1.7), using (1.9).
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Now what about the Hamiltonian? We compute:

H = {S, S}
= k2(af †a†f + a†faf †)

= k2(a†a +
1

2
) + k2(f †f − 1

2
)

def
= HB + HF (1.12)

So the H is the sum of two non-interacting terms: the Hamiltonian of the bosonic
oscillator HB with energy spectrum EB, and the Hamiltonian of the fermionic oscillator HF

with energy spectrum EF given respectivelly by:

HB = k2(a†a +
1

2
) EB = k2(nB +

1

2
) nB = 0, 1, 2, 3, · · ·

HF = k2(f †f − 1

2
) EF = k2(nF − 1

2
) nB = 0, 1 (1.13)

Note that:
n2

F = f †f f †f = f †{f, f †}f = f †f = nF

and so in fact the eigenvalues of nF are 0, 1 which is the “Pauli exclusion principle”. Note
also that the frequencies ω = k2 of these two oscillators are the same.

1.2 Witten Index

For the above (N = 2)-Susy QM model, we can define an operator:

(−1)F def
= (−1)nF 1l

such that:
{(−1)F , Qi} = 0 ((−1)F )2 = 1l ((−1)F )† = (−1)F (1.14)

Converselly, given an Hilbert space H and hermitian operators H, Q, (−1)F such that
(−1)F is bounded and:

H = Q2 ((−1)F )2 = 1l {Q, (−1)F} = 0 (1.15)

we can define a (N = 2)-Susy QM model by putting:

Q1 = Q and Q2 = i(−1)F Q

We explore now the abstract data given by an Hilbert space H and hermitian operators
H, Q, (−1)F , with (−1)F bounded, and verifying conditions (1.15).

Here follows some properties of this “abstract Susy model”, {H, Q, (−1)F}, which are
imediate consequences of conditions (1.15):
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I •

[(−1)F , H] = [(−1)F , Q2]

= {(−1)F , Q}Q−Q{Q, (−1)F} = 0 (1.16)

II • We have a decomposition of H in eigenspaces of (−1)F corresponding to the
eigenvalues ±:

H = Hb ⊕Hf

with:

Hb = {ψ ∈ H : (−1)F ψ = +ψ }
Hf = {ψ ∈ H : (−1)F ψ = −ψ } (1.17)

so that (−1)F acts on H as:

(−1)F =

[
1lb 0
0 −1lf

]

III • The involution (−1)F induces also a decomposition on the algebra of
operators acting on H. If:

K =

[
A B
C D

]

acts on H = Hb ⊕Hf , then:

- K is “bosonic” or “even” iff [(−1)F , K] = 0 iff K =

[
A 0
0 D

]

- K is “fermionic” or “odd” iff {(−1)F , K} = 0 iff K =

[
0 B
C 0

]

IV • In particular, since Q is hermitian and anticommutes with (−1)F , we have
that Q is odd and:

Q =

[
0 A†

A 0

]
(1.18)

So, applying Q to a vector ψ = ψb ⊕ ψf ∈ H, we have:

Qψ =

[
0 A†

A 0

] [
ψb

ψf

]
=

[
A†ψf

Aψb

]

and since this belongs to Hb ⊕Hf we must have:

QbHb = A : Hb −→ Hf

QbHf = A† : Hf −→ Hb (1.19)

Note also that:

H =

[
A†A 0

0 AA†

]
(1.20)
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V • Now we turn to the fundamental property of this Susy model. Let ψ be an
eigenvalue of H with positive energy E > 0:

Hψ = Eψ E > 0

Then, as [H, Q] = 0 we have:

H(Qψ) = Q(Hψ) = E (Qψ)

which means that Qψ is again an eigenvalue of H with the same positive energy E > 0.
Note that if E = 0 we can not apply this reasoning, since Hψ = 0 implies that:

0 = 〈ψ|H|ψ〉 = 〈ψ|Q2|ψ〉 = 〈ψ|Q†Q|ψ〉 = ‖Qψ‖2

and so Qψ = 0 which is not an eigenvector.

As we have seen, if ψ ∈ Hb (resp., Hf ) then Qψ ∈ Hf (resp., Hb) (we call Qψ the
“superpartner” of ψ), and so we conclude that “all eigenstates with energy E > 0 are paired”:

dim ker[(H − E)bHb)] = dim ker[(H − E)bHf )] ∀E > 0 (1.21)

E > 0
Hb

Bosonic sector

Q←→ Hf

Fermionic sector
...............................................

E = 0
Hb

Nb

Hf

Nf

︸ ︷︷ ︸
Q = 0 here

Here we have put:

Nb = dim ker(HbHb)

Nf = dim ker(HbHf ) (1.22)

If either Nb or Nf are nonzero, then there exists a state of zero energy (a ground sate)
and supersymmetry is unbroken. So if we can compute Nb or Nf we can decide about Susy
breaking. In general this is a difficult problem, and the only thing available is the difference
Nb −Nf .

Thus we define the “Witten index” as:

∆W = Nb −Nf (1.23)
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This has remarkable stability properties. In fact “small perturbations” of the system don’t
affect ∆W , since the states of non-zero energy move always in Bose-Fermi pairs.

Since Q has the form (1.18), i.e., Q =

[
0 A†

A 0

]
, with A an elliptic operator, then by

(1.19), we have that:

∆W = Nb −Nf

= dim ker A− dim ker A†

= index (A) (1.24)

1.3 A fundamental example: The Laplacian on forms

Assume that M is a compact oriented closed smooth n-dimensional Riemannian manifold,
and let Ωk(M) be the Hilbert space obtained by completion of the space of smooth k-forms,
with respect to the usual inner product:

< α, β >=
∫

M
α ∧ ∗β

Now we construct an “abstract Susy model” {H,Q, (−1)F}, on the Hilbert space:

H def
= ⊕n

k=0 Ωk(M) (1.25)

by defining:

• H = ∆ = dd∗ + d∗d, the operator closure of the usual laplacian on smooth forms.

• (−1)F bΩk(M) = (−1)k1l. Thus the bosonic-fermionic sectors of H are:

Hb =
⊕

k even
Ωk(M)

Hf =
⊕

k odd
Ωk(M) (1.26)

• Q = d+d∗, where d : Ωk(M) → Ωk+1(M) is the operator closure of the usual differential
on forms, and d∗ : Ωk+1(M) → Ωk(M) its adjoint (codifferential).

So, with respect to the bosonic-fermionic grading of H, Q =

[
0 d∗

d 0

]
.

It’s easy to see that conditions (1.15) hold, namelly:

Q2 = (d + d∗)2 = ∆ {(−1)F , Q} = 0 ((−1)F )2 = 1l

Thus in particular, property (1.21) takes, in this case, the following form:

∑
{k even} dim ker ((∆− E)bΩk(M)) =

∑
{k odd} dim ker ((∆− E)bΩk(M)) (1.27)
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or equivallently:
∑n

k=0 dim ker ((∆− E)bΩk(M)) = 0 (1.28)

On the other hand, by Hodge theory, we know that:

dim ker(∆bΩk(M)) = dim Hk(M)

= bk(M) the k-Betti number of M (1.29)

Recall also that the Euler characteristic of M is:

χ(M) =
n∑

k=0

(−1)k bk(M)

and that Poincaré duality asserts that:

bk(M) = bn−k(M) ∀k = 0, · · · , n

1.4 Witten’s proof of Morse Inequalities

Recall that a smooth function f : M → R is called a “Morse function” if it has finitely many
critical points and each critical point is nondegenerate. Then we can prove that around each
critical point p ∈ M it’s possible to choose local coordinates {xi : i = 1, · · · , n}, such that f
has the local expression:

f(x1, · · · , xn) = f(p)− x2
1 − · · · − x2

Ikp︸ ︷︷ ︸
Ikp terms

+ x2
Ikp+1 + · · ·+ x2

n︸ ︷︷ ︸
n−Ikp terms

(1.30)

where Ikp is the index of the critical point p.

For a Morse function f : M → R, and for each integer Ik = 0, 1, · · · , n, let:

mIk(f)
def
= number of critical points of f of index Ik

Then we have the following theorem:

Morse Theorem...

Let M is a compact oriented closed smooth n-dimensional manifold, and f : M → R a
Morse function on M . Then we have:

(i). for each integer Ik = 0, 1, · · · , n, the “weak Morse inequalities”:

mIk(f) ≥ bIk(M)

(ii). for each integer l = 0, 1, · · · , n, the “strong Morse inequalities”:
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Figure 1: Examples of critical points
.

∑l
Ik=0 (−1)l−Ik mIk(f) ≥ ∑l

Ik=0 (−1)l−Ik bIk(M)

(iii). the “Morse index Theorem”:

∑n
Ik=0 (−1)Ik mIk(f) =

∑n
Ik=0 (−1)Ik bIk(M) = χ(M)

Our aim now it’s to explain the main ideas of Witten’s proof of this theorem.

• The first thing it’s to “deform” the abstract Susy model of the previous section:
{H = ∆, Q = d + d+, (−1)F}, on the Hilbert space H = ⊕n

k=0 Ωk(M), by defining the
t-dependent (t ∈ R) abstract Susy model:

{Ht, Qt = dt + d∗t , (−1)F}

again on the same H, where:

dt = e−tfd etf

d∗t = etfd∗ e−tf

Ht = dtd
∗
t + d∗t dt (1.31)

and the same involution.

As dt is obtained from d, by conjugation with etf , the cohomology of (Ω(M), d) is the
same as the cohomology of (Ω(M), dt), and so ker ∆ ∼= ker Ht, which implies for the Betti
numbers that:

bk(M) = dim ker(HtbΩk(M)

• Now recall that on H = Ω(M) we have, for each 1-form α ∈ Ω1(M), a pair of
fermionic creation-anihilation (0-order) operators, given respectivelly by exterior multiplica-
tion:

εα : ω → εα(ω) = α ∧ ω ω ∈ Ω(M)
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and interior multiplication (or contraction with g(·, α)):

ια : ω → ια(ω) = (−1)nk+n+1 ∗ (α ∧ ∗ω) ω ∈ Ωk(M)

We can prove that these operators are adjoint of each other, and that:

{εα, ιβ} = g(α, β)

Now we have ∀ω ∈ H:

dtω = e−tfd (etfω) = dω + t df ∧ ω = (d + t εdf )(ω)

d∗t ω = etfd∗ (e−tfω) = (d∗ − t ιdf )(ω)

(1.32)

and so:
Qt = dt + d∗t = d + d∗ + t(εdf − ιdf ) = Q + tBf

where Bf is the endomorphism of the exterior bundle (i.e., a 0-order operator) given by
εdf − ιdf .

Now it’s easy to see that B2
f is given by multiplication by ‖df‖2, and that {Q,Bf} is also

a 0-order operator, say Af . Putting all this together we have that:

Ht = ∆ + t2‖df‖2 + tAf (1.33)

In local orthonormal flat coordinates xi we have:

Ht = ∆ + t2(δij ∂f

∂xi

∂f

∂xj

) + t
∂2f

∂xi∂xj

[a∗i , aj] (1.34)

def
= ∆ + Vf

where a∗i = εdxi
and ai = ιdxi

.

• The above computation shows that Ht is a Schrödinger type operator with potential
Vf , which for large t is dominated by the t2‖df‖2 term. When t → ∞ this potential is
enormeous, except at the critical points of f (where df vanishes), and so it looks like finitely
many harmonic oscilators wells centered at each one of the critical points of f , and separated
by large barriers.

Thus, assume that p1, · · · , ps are the critical points of f , each with index pa = Ika, a =
1, · · · , s. Then locally, around each pa, we can choose Morse coordinates {xi} where f has
the local expression (1.30). By stipulating that dx1, · · · , dxn are orthonormal we obtain a
metric in some neighborhood of pa, and the local expression of Ht is, by (1.34):

H
(a)
t = −∆ + 4t2(

n∑

i=1

x2
i )− 2t

Ika∑

i=1

[a∗i , ai] + 2t
n∑

i=Ika+1

[a∗i , ai]

= −∆ + 4t2x2 + 2t
n∑

i=1

λi [a
∗
i , ai] (1.35)
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(λi = −1, if i = 1, · · · , Ika, and λi = +1, if i = Ika + 1, · · · , n), and where ∆ acts on k-forms
as follows:

∆(h dxi1 ∧ · · · ∧ dxik) =
n∑

i=1

∂2h

∂x2
i

dxi1 ∧ · · · ∧ dxik

Since the critical points pa of f are isolated, we can patch together such local metrics
using a partition of unity, to obtain a metric on all M .

• Now we write (1.35), in the form:

H
(a)
t =

n∑

i=1

(
− ∂2

∂x2
i

+ 4t2 x2
i + λi [a

∗
i , ai]

)
(1.36)

We see that each − ∂2

∂x2
i

+ 4t2 x2
i is an harmonic oscillator of frequency w = 2t, which

commutes with the 0-order operator [a∗i , ai], and so can be simultaneously diagonalized.

Therefore, the eigenvalues of
∑n

i=1

(
− ∂2

∂x2
i

+ 4t2 x2
i

)
are:

2t
n∑

i=1

(1 + 2µi) µ1, µ2, · · · , µn = 0, 1, 2, · · ·

Each eigenform, is of type:

ψ dxi1 ∧ · · · ∧ dxik 1 ≤ i1 < i2 < · · · < in ≤ n

where ψ is an harmonic oscillator eigenfunction, and each of this eigenforms is also an
eigenform of the 0-order operator [a∗i , ai], with eigenvalue +1 (if i ∈ {i1, i2, · · · , ik}) or −1 (if

i 6∈ {i1, i2, · · · , ik}). So the spectrum of H
(a)
t is:

spect H
(a)
t = { 2t

n∑

i=1

((1+2µi) + λiεi) : µ1, µ2, · · · , µn = 0, 1, 2, · · · and εi = ±1} (1.37)

and when acting on k-forms the spectrum of H
(a)
t is as above but with the additional re-

striction that exactly k of the εi are equal to +1.

• Now we want to make contact with Betti numbers, and so we will look for
the multiplicity of the zero eigenvalue, of the restriction of H

(a)
t to k-forms. By the above

considerations we see that (since
∑n

i=1 λiεi ≥ −n) we will have zero eigenvalue iff µi = 0, ∀i
(and the corresponding eigenspace is the 1-dimensional ground state of the oscillator) and
εi = −signal λi. Thus we must have exactly Ika = index pa of the εi equal to +1, and so
dim ker (H

(a)
t bΩk) = 1 iff k = Ika = index pa, which implies that:

dim ker (⊕a H
(a)
t bΩkM) = mk

the number of critical points of index k.

But remember that we are working with an approximation! If this approximation was
exact then we will have that bk = mk. Taking into account the approximation means that
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some of the zero eigen-k-forms may disappear in an exact computation, and so we will have
the weak Morse inequalities:

bk(M) ≤ mk(f)

Of course this deserves a more rigourous argument!... (see [1], for this and also for the
proof of the strong Morse inequalities and Morse index theorem).
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2 Supergeometry and Supersymmetry

2.1 Field Theory. A quick review

• Actions. Euler equations

Fields ϕ in a field theory are sections of a bundle E → M , with fiber F , over a smooth
manifold M . We call F the target manifold and:

Φ = {space of fields, or “histories”}
For example, In a scalar field theory F is a linear space, in a spinor field theory E → M is a
spin bundle, while in Yang-Mills with gauge group G, E is an affine bundle whose sections
are connections in some principal G-bundle over M . M will be flat Minkowski spacetime,
Euclidean space, a Riemann surface, etc....

The dynamics of fields is determined by an action functional S : Φ → C which in general
is “local”, i.e., is given by:

S[ϕ] =
∫

M
L[ϕ(x)] x ∈ M ϕ ∈ F (2.1)

where the Lagrangian density L is a function of ϕ(x) and a finite number of its derivatives.

Example ... Scalar field theory or nonlinear σ-model theory

We take the trivial bundle E = M ×F , where M is D-dimensional flat Minkowski spacetime or
Euclidean space RD, with cartesian coordinates xa, a = 1, · · · , D, and the target is a Riemannian
manifold M with metric G and local coordinates ϕI . The space of fields Φ is the space of smooth
maps ϕ = (ϕ1, · · · , ϕd) : M → F for which the action:

S[ϕ] = −1
2

∫

M
dD(x) ‖dϕ‖2

= −1
2

∫

M
dDx GIJ(ϕ) ∂aϕI∂aϕ

J ∂a =
∂

∂xa
, a = 1, · · · , D (2.2)

is finite.

Of particular importance will be σ-models on complex manifolds M of real dimension d = 2n,
with local real coordinates ϕI , I = 1, · · · , 2n. Choose local complex coordinates wi, i = 1, · · · , n,
such that:

ϕi = Re wi =
1
2
(wi + wi) ϕi+n = Imwi =

1
2i

(wi − wi)

If the metric G is Hermitian, then:

G = 2Gij̄dwi dwj Gjī = (Gij̄)
∗

and the action (2.2) is rewritten in the form:

S[w, w] = −
∫

M
dDx Gij̄(w, w) ∂awj∂aw

i (2.3)
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Example ... Bosonic string theory

Here M = Σh a Riemann surface of genus h with local smooth coordinates σa, a = 1, 2. The
space of fields Φ is the space:

Φ = Emb(Σh,Rd)×Met(Σh)

where Emb(Σh,Rd) is the space of smooth embeddings ϕ : Σh → Rd, of Σh into d-dimensional
flat Minkowski spacetime Rd, with cartesian coordinates Xi, i = 1, · · · , d, Met(Σh) is the space of
Riemannin metrics g on Σh, and the action is the Polyakov action:

S[ϕ, g] =
∫

Σh

dµg ‖dϕ‖2

=
∫

Σh

d2σ
√

g gab(σ) ∂aϕi∂bϕi ∂a =
∂

∂σa
, a = 1, 2 (2.4)

with ϕi = Xi ◦ ϕ.

The action functional (2.1) determines the dynamical field equations or Euler equations:

δS[ϕ]

δϕi(x)
= 0 (2.5)

where the functional derivatives are defined by:

δS[ϕ] = S[ϕ + δϕ]− S[ϕ] =
∫

M
δϕi(x)

δS[ϕ]

δϕi(x)

with δϕi(x) ∈ TϕΦ are arbitrary field variations.

Every solution of Euler equations is called a dynamical field history, and the set of all
those solutions forms a subset Φo ⊆ Φ called the dynamical subspace or “mass shell surface”:

Φo = {ϕ ∈ Φ :
δS[ϕ]

δϕi(x)
= 0}

Example ... Scalar field theory or nonlinear σ-model theory

The Euler equations corresponding to the action (2.2) are:

δS[ϕ]
δϕi

= ∂a∂aϕ
i + Γi

jk∂
aϕj∂aϕ

k = 0 i = 1, · · · , d (2.6)

where Γi
jk is the Levi-Civita connection of the metric G on F = Rd. Solutions ϕ of (2.6) are called

harmonic maps because they satisfy a generalized Laplace equation.

Example ... Bosonic string theory
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The Euler equations corresponding to the action (2.4) are:

δS[ϕ]
δgab

≡ T ab = 0

δS[ϕ]
δϕi

= 0 i = 1, · · · , d (2.7)

.

We can combine the above two models in a “string σ-model”, by considering the following
generalized harmonic map problem. We take a Riemannian manifold (M,G) (the target
space), a sympletic form B on M (the B-field), and the action:

S[ϕ, g] =
∫

Σ
(dµg ‖dϕ‖2 + ϕ∗B) +

1

8π

∫

Σ
Ψ · sg (2.8)

where g is an arbitrary riemannian metric on a Riemann surface Σ (the worlsheet), sg is the
scalar curvature of g, and Ψ is a scalar field (the “dilaton”) on Σ.

• Symmetries

In general one considers action functionals that are invariant under some symmetry group.
More preciselly we have an action of a (Lie) group G on the space of fields Φ:

(g, ϕ) 7→ g · ϕ
and we have that:

S[ϕ] = S[g · ϕ] ∀g ∈ G

Traditionally we consider the infinitesimal (derived) action of the Lie algebra g on Φ, given
through the differential of the “orbital map” ηϕ : G → Φ (defined by ηϕ(g) = g · ϕ):

dηϕ : g −→ TϕΦ

with:

dηϕ(ξ) =
d

dt
|t=0 etξ · ϕ ≡ δξϕ ∈ TϕΦ

Example ... Relativistic field theory

In the case of a field theory in Minkowski space, the Poincaré group P = ISO(1, 3) is assumed
to act on the space of fields Φ, by means of spacetime symmetries, i.e., a symmetry of the base
space M , represented in Φ by:

(g, ϕ) 7→ g · ϕ(x) ≡ ϕ(g−1x)

For example, translations in a flat spacetime can be written as:

δξϕ = −ξa∂aϕ ∈ TϕΦ

When the “mass shell surface” Φo ⊆ Φ is P-invariant:

δS[ϕ]
δϕi(x)

= 0 =⇒ δS[g · ϕ]
δϕi(x)

= 0 ∀g ∈ P
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then we say that we have a relativistic field theory. This will be the case if for example the action
functional is a scalar with respect to P: S[ϕ] = S[g · ϕ].

In contrast to the above spacetime symmetries, we have the internal symmetries which
act on ϕ ∈ Φ at each point of M , i.e., acts without spacetime derivatives. For example a
U(1)-algebra acts on a complex field ϕ as:

δλϕ = iλϕ

When the transformation prameters are constant over M , like the above ξa or λ, we
say that the symmetry is global or rigid. When they are functions over M , λ = λ(x), then
the symmetry is called local, like for example, gauge transformations on Yang-Mills fields.
Sometimes it is possible to promote a global symmetry to a local one. The prescription to
do this is called gauging the symmetry.

The commutator of two infinitesimal symmetries is a symmetry and so they form a Lie
algebra in general infinite dimensional. Sometimes an infinite dimensional symmetry algebra
acts as a finite dimensional algebra on the dynamical fields ϕ ∈ Φo. In this case we say that
we have an on shell representation of that algebra.

Example ... Nonlinear σ-model

The symmetries of the action (2.2) are of two types: The spacetime ones are the isometries of
flat Minkowski spacetime M , i.e., the Poincaré group P. The internal symmetries are the isometries
of the target (F, G). These are global symmetries generated by Killing vector fields of F :

(δXϕ)(x) = (XAKA)(ϕ(x))

where KA = ki
A∂i is a basis for the Lie algebra of the isometry group of F .

Example ... String theory

The symmetries of the Polyakov action (2.4) are:

• translations in Rd:

S[ϕi + ci, g] = S[ϕ, g] ∀ci ∈ Rd

• the group of (orientation preserving) diffeomorphisms: Diff+(Σh):

S[f∗ϕ, f∗g] = S[ϕ, g] ∀f ∈ Diff+(Σh)

• the group of conformal (pointwise) rescallings of the metric: C∞(Σh,R):

S[ϕ, eλg] = S[ϕ, g] ∀λ ∈ C∞(Σh,R)

So if we quotient these symmetries, we see that the action functional is defined in the so called
moduli space M:

M =
Emb(Σh,Rd)×Met(Σh)

Rd ×Diff+(Σh)× C∞(Σh,R)
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2.2 SuperEuclidean Space

Consider the (Z2-graded) supercommutative, associative, with unit element 1l, complex
“Grassmann algebra” Λ = ΛL = ∧CL:

Λ = ΛL = Λ0 ⊕ Λ1

with a finite number (sufficiently large, eventually L = ∞,...) of generators {1l, ζk : k =
1, 2, · · · , L}, and with a normed topology (such that Λ ∼= C2L

). We have for homogeneous
elements:

αβ = (−1)|α||β| βα α, β ∈ Λ

where the notation |α| means “grassmann parity”, equal to 0 if α ∈ Λ0 and equal to 1 if
α ∈ Λ1. In particular, elements in Λ0 commute (Λ0 is a commutative subalgebra of Λ) and
elements in Λ1 anticommute. Thus we call the elements in Λ0, “c-numbers” and the elements
in Λ1 “a-numbers”, and we put:

Cc = Λ0 Ca = Λ1

Every element z ∈ Λ splits as:

z = zb + zs ∈ C⊕ Λs

where zb ∈ C is the “body” and zs = z−zb ∈ Λs is the “soul” of z (its nilpotent part, because
zN

s = 0 if N > L).

We define the “SuperEuclidean space” Cm|n of “even dimension” m and “odd dimension”
n, by:

Cm|n = (Cc)
m × (Ca)

n (2.9)

with a normed topology (so that Cm|n ∼= C(m+n)2L−1
), and denote an element of Cm|n by

(x; Θ), with:

x = (xi) = (x1, · · · ,xm) xi ∈ Ca i = 1, · · · , m
Θ = (θα) = (θ1, · · · , θn) θα ∈ Ca α = 1, · · · , n (2.10)

(x1, · · · ,xm) are called “bosonic coordinates” and (θ1, · · · , θn) “fermionic coordinates”. The

“body” of (x; Θ) ∈ Rm|n is by definition xb = (x1
b , · · · , xm

b ) ∈ Cm, and this defines the
“body projection”:

b : Cm|n −→ Cm

which is a continuous open surjective map.
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2.3 Reality Conditions

We define an involution ∗ on Λ, which we call “complex conjugation”, as follows:

ζ∗k = ζk k = 1, · · · , L
(αz)∗ = α z∗ ∀α ∈ C ∀z ∈ Λ

(z + w)∗ = z∗ + w∗ ∀z,w ∈ Λ

(zw)∗ = w∗z∗ ∀z,w ∈ Λ (2.11)

An element z ∈ Λ is called “real” if z∗ = z, and “imaginary” if z∗ = −z. The set of
real elements in Cc (the real c-numbers), form a real commutative subalgebra in Λ, which is
denoted by Rc. The set of real elements in Ca (the real a-numbers) is denoted by Ra. Note
that the product of a real c-number and a real a-number is a real a-number, and finally the
product of two real a-numbers is a bodiless imaginary c-number:

Rc ·Rc ⊆ Rc Rc ·Ra ⊆ Ra Ra ·Ra ⊆ iRa

The “real SuperEuclidean space” Rm|n of “even dimension” m and “odd dimension” n,
is defined by:

Rm|n = (Rc)
m × (Ra)

n (2.12)

2.4 Supersmooth functions

Given a smooth (C∞) Λ-valued function f in an open set of U ⊆ Rm:

f : U ⊆ Rm −→ Λ

we define its “Grassmann analytic continuation”:

Zf : b−1(U) ∩Rm
c −→ Λ

by the following (finite) Taylor expansion:

Zf(x1, · · · ,xm) = Zf(x1
b + x1

s, · · · , xm
b + xm

s )

=
∑

j1,···,jk

1

j1! · · · jk!

∂j1+···+jk f

∂xj1
b · · · ∂xjk

b

(x1
b , · · · , xm

b ) (x1
s)

j1 · · · (xm
s )jk

=
∑

J

1

J !

∂|J | f
∂xJ

b

(xb)x
J
s (2.13)

where in the last line we have used multiindice notation: J = (j1, · · · , jk), J ! = j1! · · · jk!,
xb = (x1

b , · · · , xm
b ), |J | = j1 + · · ·+ jk, and xJ

s = (x1
s)

j1 · · · (xm
s )jk .
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Now we define a (H∞), or “supersmooth function” Φ in (an open set of) Rm|n as a
Λ-valued function of the form:

Φ(x; Θ) = Φ(x1, · · · ,xm; θ1, · · · , θn)

=
∑
α

φα(x) Θα

def
=

∑

α={α1<···<αk}
Zfα(x) Θα

=
∑
α

Zfα1,···,αk
(x1, · · · ,xm) θα1 · · · θαk (2.14)

where each “component function” φα = Zfα is a Λ-valued function of the form (2.13), which

depends only on the bosonic coordinates x ∈ (Rc)
m ∼= Rm|0. Note that the above expansion

(2.14) contains only a finite number of terms.

We denote by SF(Rm|n) the algebra of supersmooth functions on Rm|n. This is a Z2-
graded supercommutative algebra: SF = SF+ ⊕ SF−, where SF+ are the Cc-valued, or
“even supersmooth functions”, and SF− the Ca-valued, or “odd supersmooth functions”.

Examples ...

(i). An even supersmooth function on R1|1 is of the form:

Φ(t, θ) = φ(t) + ψ(t)θ t ∈ Rc θ ∈ Ra

with φ : R1|0 ∼= Rc → Rc and ψ : R1|0 ∼= Rc → Ra obtained by Z-extension: φ = Zf and ψ = Zg.

(ii). In R2|2, which we can think as the superspace extension of 2-dimensional Minkowski
space-time R(1,1), we consider the coordinates (x1,x2; θ1, θ2). In supersymmetric field theories we
must think of θ1, θ2 as coordinates with respect to a basis {Q1,Q2} of the space S of (Majorana)
Spin(1)-spinors, in such a way that the pair (θ1, θ2) describes a spinor of R(1,1), with (real) a-
number coefficients.

An “even superfield” is an even supersmooth function of the form:

Φ(x1,x2; θ1, θ2) = φo(x1,x2) + φ1(x1,x2) θ1 + φ2(x1,x2) θ2 + φ12(x1,x2) θ1θ2

where φo = Zfo is an even function, called the “bosonic component” of Φ, φ1 = Zf1, φ2 = Zf2 are
odd functions (of spinorial character) called the “fermionic components” of Φ, and φ12 = Zf12 =
−φ21, is even and must be viewed as a section of ∧2S.

Consider two superfields Φ =
∑

α φα(x) Θα ∈ SF , Ψ =
∑

α ψβ(x) Θβ ∈ SF and assume
that φα = Zfα, ψβ = Zgβ.

We define for each i = 1, · · · ,m:

∂Φ

∂xi
(x; Θ) =

∑
α

∂φα

∂xi
(x) Θα

=
∑
α

∂(Zfα)

∂xi
(x) Θα

=
∑
α

Z(
∂fα

∂xi
b

)(x) Θα (2.15)
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where ∂φα

∂xi (x) is the Grassmann analytic continuation of ∂fα

∂xi
b

(xi
b is the body of xi). Then ∂

∂xi

is an “even derivation” on SF :

∂(Φ + Ψ)

∂xi
=

∂Φ

∂xi
+

∂Ψ

∂xi

∂(λΦ)

∂xi
= λ

∂Φ

∂xi
∀λ ∈ R

∂(ΦΨ)

∂xi
=

∂Φ

∂xi
Ψ + Φ

∂Ψ

∂xi

(2.16)

Now, for each α = 1, · · · , n, we define ∂
∂θα , by putting:

∂

∂θα
θβ = δβ

α

and extending this to all SF as an odd derivation, so that:

∂(Φ + Ψ)

∂θα
=

∂Φ

∂θα
+

∂Ψ

∂θα

∂(λΦ)

∂θα
= λ

∂Φ

∂θα
∀λ ∈ R

∂(ΦΨ)

∂θα
=

∂Φ

∂θα
Ψ + (−1)Φ Φ

∂Ψ

∂θα
(2.17)

for homogeneous Φ. We can prove that:

[
∂

∂xi
,

∂

∂xj
] = 0

[
∂

∂xi
,

∂

∂θα
] = 0

{ ∂

∂θα
,

∂

∂θβ
} = 0 α 6= β (2.18)

Consider the graded vector space:

R{ ∂

∂xi
} ⊕R{ ∂

∂θα
} (2.19)

and let us tensor it with the graded module SF+⊕SF−. Then we obtain the graded module
of “supervector fields” on Rm|n:

X(Rm|n) = X+(Rm|n)⊕ X−(Rm|n)

where:

X+(Rm|n) = SF+{ ∂

∂xi
} ⊕ SF−{ ∂

∂θα
} (2.20)

consists of the “even supervector fields”, and:

X−(Rm|n) = SF−{ ∂

∂xi
} ⊕ SF+{ ∂

∂θα
} (2.21)
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consists of the “odd supervector fields”.

Example ...

In R1|1 the supervector field D = ∂
∂θ − θ ∂

∂t is odd, and satisfy D2 = − ∂
∂t .

2.5 Supermanifolds

A (H∞) “Supermanifold Mm|n, of dimension (m|n)”, is an Hausdorff, paracompact topo-

logical space M, locally modelled on R(m|n), with supersmooth transition functions.

Note that every ordinary m-dimensional manifold M , can be extended to a (bosonic) su-
permanifold Mm|0 = ZMm|0, by replacing each open set of M homeomorphic to an open set
U ⊂ Rm, by the open set b−1(U) ⊂ Rm

c
∼= Rm|0, and taking as transition functions between

two such open sets the Z-expansion (2.13), of the transition functions of the corresponding
open sets in Rm.

2.6 Lie Superalgebras

A “Lie Superalgebra” is a Z2-graded (real or complex) vector space:

G = g0 ⊕ g1

where:

(i). g0 is a Lie algebra.

(ii). g1 is a g0-module, i.e., the carrier space of a representation of the Lie algebra g0.

(iii). G is endowed with a graded Lie bracket defined by the following conditions:

• This graded Lie bracket when restricted to g0, is the same as the Lie bracket defined
in the Lie algebra g0. Thus, ∀X,Y, Z ∈ g0:

[X,Y ] = −[Y, X] (2.22)

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]] (2.23)

(i.e., [X, ·] = adX is an even derivation on g0.)

• For an element X ∈ g0 and ψ ∈ g1:

[X,ψ] ≡ −[ψ,X] = X · ψ ∈ g1 (2.24)

is the element of g1 given by the g0-action on g1. Thus, ∀X, Y ∈ g0,∀ψ ∈ g1:

[[X, Y ], ψ] = [X, Y ] · ψ = X · (Y · ψ)− Y · (X · ψ) = [X, [Y, ψ]]− [Y, [X, ψ]] (2.25)
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• The graded Lie bracket when restricted to g1, is given by a bilinear symmetric mapping:

{·, ·} : g1 × g1 −→ g0

that behaves like an anticommutator:

[φ, ψ] ≡ {φ, ψ} = {ψ, φ} ∀φ, ψ ∈ g1 (2.26)

Moreover we must have the following Jacobi identities:

[X, {φ, ψ}] = {[X,φ], ψ}+ {φ, [X,ψ]} (2.27)

[{φ, ψ}, η] = {φ, ψ} · η
= −{φ, η} · ψ − {ψ, η} · φ
= [ψ, {φ, η}] + [φ, {ψ, η}] (2.28)

∀φ, ψ, η ∈ g1,∀X ∈ g0.

We can put (2.22),(2.24) and (2.26) in the short form

[A,B] = (−1)|A||B|+1 [B,A]

and the Jacobi identities (2.23), (2.25), (2.27) and (2.28) in the form:

(−1)|A||C| [A, [B, C]] + (−1)|B||A| [B, [C,A]] + (−1)|C||B| [C, [A,B]] = 0

for homogeneous elements A,B, C ∈ G.

If {ta;Tα}, a = 1, · · · ,m; α = 1, · · · , n, is a linear basis for G = g0⊕g1, then the structure
constants of G are:

• Cc
ab - the structure constants of the Lie algebra g0.

• Cβ
aα - where Ca = (Cβ

aα), (a = 1, · · · ,m), are n× n-matrices which satisfy the relations
of the Lie algebra g0 and generates one of its representations.

• Ca
αβ are symmetric (in the indices α, β) structure constants, which verifies certain

constraints imposed by Jacobi identities.

Example ...

Given a Z2 graded vector space V = V+ ⊕ V− then End(V) is a Lie superalgebra, defining the
gradation End(V) = End+(V)⊕ End−(V), by:

End+(V) = Hom(V+,V+)⊕Hom(V−,V−)
End+(V) = Hom(V+,V−)⊕Hom(V−,V+) (2.29)

and the graded bracket as the “supercommutator”:

[A,B] = AB − (−1)|A||B|BA
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for homogeneous elements of End(V). In terms of a graded basis {ea; eα}, a = 1, · · · ,m; α =
1, · · · , n, for V = V+ ⊕ V−, End+(V) is represented by “even supermatrices”:

[
A 0
0 D

]
(2.30)

while End−(V) is represented by “odd supermatrices”:
[

0 B
C 0

]
(2.31)

Example ...

The algebra Mk(m; n) of (k = R,C,H) matrices of the form:

M =

[
A B
C D

]
(2.32)

with even part given by even supermatrices of type (2.30), odd part given by odd supermatrices of
type (2.31), and graded bracket the corresponding supercommutator.

For a supermatrix M, of type (2.32) we define its “supertrace” strM, by:

strM = trA− trD

Then the subset of Mk(m; n) of all matrices M with strM = 0 is a Lie subsuperalgebra,
denoted by slk(m; n).

Example ... The Orthosympletic algebras osp(2p; N)

Consider a Z2 graded real vector space V = V+ ⊕ V−, of dimension (m = 2p; N), and assume
that we give a sympletic linear form Ω on V+, and a positive definite inner product G on V−. We
can always choose a graded basis {ea; eα}, a = 1, · · · ,m = 2p; α = 1, · · · , N such that the matrices
of Ω and G satisfy:

Ω2 = −1l ΩT = −Ω GT = G

Now we consider the supermatrix:

K =

[
Ω 0
0 G

]

and the subset of MR(2p;N) of all supermatrices M which verify:

MsTK + (−1)‖M |KM = 0 (2.33)

where the “supertranspose” MsT , of M is defined by:

MsT =

[
A B
C D

]sT

=

[
AT (−1)‖M |CT

(−1)|M|+1 BT DT

]
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Working the definitions, we see that if M =

[
A 0
0 D

]
is even, then (2.33), says that:

AT Ω + ΩA = 0 DTG = GD

i.e., A is sympletic and D is orthogonal. Thus the even part of osp(2p; N) is the Lie algebra:

g0 = sp(2p)⊕ so(N)

If M =

[
0 B
C 0

]
is odd, then (2.33), says that:

B = ΩCTG

Example ... (N = 1, D = 2)-Poincaré Lie Superalgebra SP(1; 2)

Let us begin with the construction of the “(N = 1, D = 2)-Poincaré Lie Superalgebra”. Con-
sider the Poincaré Lie algebra on (D = 2)-dimensional Minkowski spacetime R(1,1), with metric
ηab of signature (−, +), and cartesian coordinates (x0 = ct, x1), c = 1:

g0 = so(1, 1)®R2

the semi-direct sum of the Lorentz Lie algebra so(1, 1) with its 2-dimensional vectorial representa-
tion space R2. The Lie bracket in so(1, 1)®R2 is given by:

[(Λ1,x1), (Λ2,x2)] = ([Λ1,Λ2],Λ1x2 − Λ2x1) (2.34)

Now we choose for the odd part g1 of our Lie superalgebra, the carrier space of the spinor
representation of so(1, 1). Recall how this is constructed.

We begin with the Clifford algebra F = Cl(1,1) of Minkowski spacetime R(1,1), i.e., the 22-
dimensional real algebra generated by 1l and R2, subject to the relations:

xy + yx = −2η(x,y)1l ∀x,y ∈ R2

F = Cl(1,1) has a 2-dimensional real (Majorana) representation linearly generated by:

1l =

[
1 0
0 1

]
γ0 = σ2 =

[
0 −i
i 0

]
γ1 = iσ1 =

[
0 i
i 0

]
W = γ0γ1 =

[
+1 0
0 −1

]

where γm, m = 0, 1, are the “gamma matrices” and W = γ0γ1 is the “Chiral (or Weyl) operator”.
Note that W2 = 1l, and that {W, γm} = 0.

Now we know that so(1, 1) ∼= F2 = R{W = γ0γ1}, and so is 1-dimensional. Denote its
generator by Λ01 = 1

2γ0γ1. Since [W, Λ01] = 0, we see that this representation is Majorana-Weyl
(or Chiral), and the spinor space g1 = R2 splits into a direct sum:

g1 = R2 = Rl ⊕Rr
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corresponding to the eigenspaces of W associated to its eigenvalues ±1, respectivelly. Elements of
Rl are called left spinors and elements of Rr right spinors.

Thus, the Chiral representation of so(1, 1) reduces to the direct sum of two irreducible 1-
dimensional representations Γ = Γl ⊕ Γr, whose action on the spinor space is given by:

[
θ1

θ2

]
Γ−→ 1

2

[
+1 0
0 −1

] [
θ1

θ2

]
=

[
+1

2θ1

−1
2θ2

]

where θα are coordinates with respect to a basis {Qα}α=1,2 for g1.

These Qα are called “spinor charges”,“supercharges”, or “supersymmetric generators”.

So for the moment we have defined the Lie superbracket on g0 = so(1, 1) ®R2 by (2.34), so
that, if {Λ01,P0,P1} is a basis for g0, then:

[Λ01,Pa] = 0 = [Pa,Pb]

Now we define, according to the previous discussion:

[Λ01,Q1] = +
1
2
Q1 [Λ01,Q2] = −1

2
Q2 [Pa,Qα] = 0

Finally we must define the anticommutator {Qα,Qβ} of two spinor charges. General considera-
tions (based on the constraints imposed by Jacobi identities, together with the previous definitions)
show that {Qα,Qβ} must be a linear combination only of the linear momentum basis Pa. So we
must construct a vector with a symmetric combination of two spinors. Usually this is achieved by
defining (if possible) a “charge conjugation” matrix C, which in this particular case (where we are
using the Majorana-Weyl representation) is given by:

C = −σ2 =

[
0 i
−i 0

]

and verifies:

• C is antisymmetric.

• The matrices γmC are real and symmetric. In fact in this case γ0C = −1l =

[
−1 0
0 −1

]

and γ1C = σ3 =

[
+1 0
0 −1

]
.

Now we define:

{Qα,Qβ} = −
1∑

m=0

(γmC)αβPm α, β = 1, 2 (2.35)

In this case we have:

{Q1,Q1} = P0 −P1 {Q2,Q2} = P0 + P1 {Q1,Q2} = 0
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Our Lie superalgebra, “the (N = 1, D = 2)-Poincaré superalgebra”:

SP(1; 2) = (so(1, 1)®R2)⊕ S

has real graded dimension (3|2), with basis {Λ10,P0,P1;Q1,Q2}.

Example ... (N = 2, D = 2)-Poincaré Lie Superalgebra SP(2; 2)

Here we simply add to the odd part of the Lie superalgebra SP(1; 2), another spinor space S ′
with a corresponding basis {Q′

1,Q
′
2} of spinor charges, such that:

{Q′
α,Q′

β} = −
1∑

m=0

(γmC)αβPm

{Qα,Q′
β} = 0 α, β = 1, 2 (2.36)

Thus we put:
SP(2; 2) = (so(1, 1)®R2)⊕ (S ⊕ S ′)

with real graded dimension (3|4) and basis {Λ10,P0,P1;Q1,Q2,Q′
1,Q

′
2}.

2.7 Super Lie groups

Given a Lie superalgebra G = g0⊕g1, with linear basis {ta;Tα}, a = 1, · · · ,m; α = 1, · · · , n,
we consider the ordinary 2L−1(m + n)-dimensional complex Lie algebra, given by the even
part of Λ⊗G, i.e:

GΛ
def
= Cc ⊗ g0 ⊕Ca ⊗ g1

with Lie brackett:

[xata + θαTα,ybtb + ηβTβ] =

xayb[ta, tb] + xaη
β[ta,Tβ] + θαyb[Tα, tb]− θαηβ{Tα,Tβ} =

xayb[ta, tb] + (xaη
β − yaθβ)[ta,Tβ]− θαηβ{Tα,Tβ} (2.37)

We call GΛ the “Grassmann shell” of the Lie superalgebra G. The associated (connected
and simply connected) Lie group:

G = exp GΛ

has a natural supermanifold structure and a group structure, obtained via Campbell-Haussdorff
formula:

eaeb = e(a+b+ 1
2
[a,b]+ 1

12
[a,[a,b]]+ 1

12
[b,[b,a]]+···) (2.38)

which we call the “Super Lie group” associated with G. Elements of G take the form:

exp(xata + θαTα) xa ∈ Cc, θ
α ∈ Ca

Example ... Super-Poincaré group SP(1; 2)
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The Grassmann shell of the (N = 1, D = 2)-Poincaré superalgebra SP(1; 2) = (so(1, 1)®R2)⊕
S, with real graded dimension (3|2), and basis {Λ10,P0,P1;Q1,Q2}, has the form:

SP(1; 2)Λ = {λ01Λ01 + x0P0 + x1P1 + θ1Q1 + θ2Q2 : λ10,x0,x1; θ1, θ2 ∈ (Rc)3 × (Ra)2}
endowed with the Lie brackett (2.37).

Note that SP(1; 2)Λ is the semi-direct sum of two subalgebras:

so(1, 1)Λ
def= {λ01Λ01 : λ01 ∈ Rc}

and the “supersymmetric algebra”:

m
def= {x0P0 + x1P1 + θ1Q1 + θ2Q2 : x0,x1; θ1, θ2 ∈ (Rc)2 × (Ra)2}

i.e.:
[so(1, 1)Λ, so(1, 1)Λ] ⊆ so(1, 1)Λ [m,m] ⊆ m [so(1, 1)Λ,m] ⊆ m (2.39)

By definition, the elements of the Super-Poincaré group:

SP(1; 2) def= expSP(1; 2)Λ

are of the form:

g(λ01,x0,x1; θ1, θ2) = exp(λ01Λ01 + x0P0 + x1P1 + θ1Q1 + θ2Q2) (2.40)

with (λ10,x0,x1; θ1, θ2) ∈ (Rc)3 × (Ra)2 = R3|2.

2.8 Rigid Superspace

We first recall some geometrical properties of homogeneous spaces. Let G be a Lie group
with Lie algebra g, and H a closed subgroup with Lie algebra h. H acts on the right on G
by right translations, and as we know, G has a structure of H-principal fiber bundle over
the homogeneous space of H-left cosets G/H:

G
π ↓
G/H

G acts on itself by left translations Lg : k → gk, and this induces a left action on G/H:
lg : kH → (gk)H, since π ◦ Lg = lg ◦ π:

G
Lg−→ G

π ↓ ↓ π

G/H
lg−→ G/H

Let exp : g → G the exponential map of G, and define a map g → X(G/H) by:

X̃π(g)
def
=

d

dt
|t=0 π(exp(tX)g) X ∈ g, g ∈ G
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so that X̃ ∈ X(G/H) is the infinitesimal generator of the G-left action on the homogeneous
space G/H. Consider also the right-invariant vector field X̂ ∈ X(G), determined by X ∈ g:

X̂g
def
= (Rg)∗(X)

Then, for all g ∈ G:

π∗X̂g = π∗(Rg)∗(X) =
d

dt
|t=0 π ◦Rg ◦ exp(tX) = X̃π(g)

and so π∗X̂ = X̃ ◦ π, which means that the right-invariant vector field X̂ on G is π-related
to the field X̃ on G/H, determined by the left action of G on G/H:

TG
π∗−→ T (G/H)

X̂ ↑ ↑ X̃

G
π−→ G/H

Moreover the map X̂ 7→ X̃ is a Lie algebra homomorphism from the Lie algebra of
right-invariant vector fields on G, into X(G/H).

On the other hand, if Ad : G → GL(g) is the adjoint representation of G on its Lie
algebra, then:

lgX̃ = ˜AdgX ◦ lg

Assume now that m is a direct sum complement to h in g. With respect to an appropriate
basis for g = h⊕m, the restriction to H of the adjoint representation Ad : G → GL(g) takes
the form:

Adh =

[
A B
O C

]
h ∈ H

since H is a subgroup of G. The submatrix B will be O, ∀h ∈ H, iff the adjoint action of H
on g, which is already reducible to an action on the subspace h of g, is also reducible to an
action on m; thus B = O, ∀h ∈ H iff AdbH is reducible to the direct sum of representations
of H on h and m.

A homogeneous space G/H is called “reducible”, if there exists a vector space decompo-
sition g = h⊕m (called a “ reductive decomposition”), such that:

AdH(m) ⊆ m

If H is connected, g = h⊕m is a reductive decomposition iff:

[h,m] ⊆ m

Given a reducible homogeneous space G/H, with reductive decomposition g = h ⊕ m,
then the h-component (with respect to the reductive decomposition) of the canonical Maurer-
Cartan 1-form Θ on G, defines a connection on the H-principal fiber bundle G(G/H, H),



2.8 Rigid Superspace 29

which is invariant by the left translations Lg on G. The corresponding horizontal subspace
is m, under the identification g ∼= TeG, and the curvature form Ω of this canonical invariant
connection is:

Ω(X,Y ) = −1

2
[X, Y ]h

where [X, Y ]h means h-component, and X, Y are arbitrary left invariant vector fields on G,
belonging to m.

Now we apply these results to our supersymmetric situation, starting with the reductive
decomposition (2.39) of the Grassmann shell g = SP(1; 2)Λ.

Example ... The rigid superspace S2|2

By definition the rigid superspace of graded dimension (2|2) is the homogeneous space:

S2|2 def=
SP(1; 2)

H
=

expSP(1; 2)Λ
exp(so(1, 1)Λ)

where H = exp(so(1, 1)Λ). Note that (locally) we can write every element g ∈ SP(1, 1) in the form:

g = g(x0,x1; θ1, θ2; λ01) def= exp(x0P0 + x1P1 + θ1Q1 + θ2Q2) exp(λ01Λ01)) (2.41)

with (x0,x1; θ1, θ2) ∈ (Rc)2 × (Ra)2 = R2|2 and λ10 ∈ Rc. So, the homogeneous space S2|2 can
be parametrized by local coordinates (zM ) = (x1,x2; θ1, θ2) ∈ R2|2, using the exponential chart
(2.41). It is to be considered as a generalization of Minkowski space R(1,1) and it is expected to
have a richer structure, since now the supersymmetric algebra m is not abelian.

S2|2 is a reductive homogeneous space, with reductive decomposition (see (2.39)):

SP(1; 2)Λ = so(1, 1)Λ ⊕m

where, as before, m is the supersymmetric algebra with generators {P1,P2;Q1,Q2}.

In fact S is a very particular reductive homogeneous space, since in this case m is a (graded)
Lie algebra (recall that [m,m] ⊆ m). So exponentiation of m give us a subgroup:

M def= exp(m)

of SP(1; 2). Let us see their left action on SP(1; 2), using BACH-formula (2.38), (2.37) and the
supercommutation relations in SP(1; 2):

g(a0,a1; η1, η2;0)g(x0,x1; θ1, θ2; λ01)

= e(a0P0+a1P1+η1Q1+η2Q2) e(x0P0+x1P1+θ1Q1+θ2Q2) e(λ01Λ01)

= e((a
0+x0−η1θ1−η2θ2)P0+(a1+x1+η1θ1−η2θ2)P1+(η1+θ1)Q1+(η2+θ2)Q2) e(λ01Λ01)

= g(a0 + x0 − η1θ1 − η2θ2,a1 + x1 + η1θ1 − η2θ2; η1 + θ1, η2 + θ2)

So the induced M-left action lg = lg(a0,a1;η1,η2;0) on the superspace S2|2, is given in local coordi-
nates, defined by the exponential chart (2.41), by the so called “rigid supersymmetric translations”:

zA = (x0,x1; θ1, θ2) 7→ z′A = (x0 + a0 − η1θ1 − η2θ2,x1 + a1 + η1θ1 − η2θ2; θ1 + η1, θ2 + η2)
(2.42)
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Note an important point: if we decompose each even coordinate, for example x0, on body and soul:
x0 = x0

b + x0
s, we see that the above supersymmetric translations, with a0 = 0), change the soul

leaving the body invariant, i.e.::

x0
b → x0

b x0
s → x0

s − η1θ1 − η2θ2

so, even if x0 were soulles before a susy transformation, it acquires some soul afterwords!

The susy transformation (2.42) can be interpreted as infinitesimal coordinate transformations
z′A = zA + XA, generated by the super vector field:

X = (a0 − η1θ1 − η2θ2)
∂

∂x0
+ (a1 + η1θ1 − η2θ2)

∂

∂x1
+ η1 ∂

∂θ1
+ η2 ∂

∂θ2

where:
∂

∂zA
= (

∂

∂x0
,

∂

∂x1
,

∂

∂θ1
,

∂

∂θ2
)

represents the coordinate basis on super tangent space TzS2|2.

To determine the basis of TzS2|2 which is induced by the (left) action of the group element
g(a0,a1; η1, η2;0) ∈M, we rewrite the above super vector field X in the form:

X̃ = a0P̃0 + a1P̃1 + η1Q̃1 + η2Q̃2

with:

P̃0 =
∂

∂x0
P̃1 =

∂

∂x1

Q̃1 =
∂

∂θ1
− θ1(

∂

∂x0
− ∂

∂x1
)

Q̃2 =
∂

∂θ2
− θ2(

∂

∂x0
+

∂

∂x1
) (2.43)

We can compute that the Lie bracket between the tangent vector fields {P̃0, P̃1, Q̃1, Q̃2} vanish
except the (graded) brackets:

{Q̃1, Q̃1} = P̃0 − P̃1 {Q̃2, Q̃2} = P̃0 + P̃1

So, while the { ∂
∂zA } forms an holonomic frame for TzS2|2, {P̃0, P̃1, Q̃1, Q̃2} defines an anholo-

nomic frame characterized by the structure constants given by the above brackets.

We call the tangent vector fields {P0,P1,Q1l,Q2} (we omit the hats), given by (2.43), the
supersymmetric generators on superspace.

2.9 Covariant Derivatives

For simplicity, we continue to analyse the case of superspace S2|2, parametrized by local
coordinates (xi; θα) ∈ R2|2, given by the exponential chart (2.41):
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Since the rigid supersymmetric transformations are induced by left action on the group SP(1; 2),
the natural way to obtain a theory on S2|2 which is invariant under these transformations is to rely
on the fact that left and right translations on a group commute. So one must express all geometric
quantities on S2|2, with respect to the basis {DA} = {∂0, ∂1,D1l,D2} of TzS2|2 (or its dual) which
is induced by right action of M on SP(1; 2). Using the same reasoning as before (BACH-formula
(2.38), (2.37) and the supercommutation relations in SP(1; 2)), we deduce that this basis is given
by:

∂0 =
∂

∂x0
∂1 =

∂

∂x1

D1 =
∂

∂θ1
+ θ1(

∂

∂x0
− ∂

∂x1
)

D2 =
∂

∂θ2
+ θ2(

∂

∂x0
+

∂

∂x1
) (2.44)

We can compute that the Lie bracket between the tangent vector fields DA vanish except the
(graded) bracket:

{D1,D1} = −P0 + P1 {D2,D2} = −P0 −P1

Moreover:
[Qα,DA] = 0

which means that the frame {DA} is left-invariant, i.e., invariant under rigid supersymmetric
transformations on superspace. We call the left-invariant tangent vector fields DA the:

“supersymmetric covariant derivatives”

on superspace. In fact, they can be considered as covariant derivatives with respect to the canonical
connection on the reductive homogeneous space S2|2.

3 APPENDIX. Clifford Algebras and Spin Groups

3.1 Clifford Algebras

Motivation. Clifford maps

“Dirac problem”: Consider the Minkowski quadratic form in R4:

q(x) = −t2 + x2 + y2 + z2 x = (t, x, y, z) ∈ R4

and try to find a “linear function”:

ϕ(x) = αt + βx + γy + δz
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such that (ϕ(x))2 = −q(x), ∀x ∈ R4, ie.:

(αt + βx + γy + δz)2 = t2 − x2 − y2 − z2

A computation shows that:

α2 = −β2 = −γ2 = −δ2 = 1l

αβ + βα = αγ + γα = · · · = 0 (3.1)

and so if there exists a solution, the coefficients of ϕ must belong to a noncommutative
algebra. In fact, up to isomorphism, there exists only one solution which can be obtained
with complex (4× 4)-matrices α, β, γ, δ - the Dirac matrices.

Let us generalize the above setup. Let Ik denote R or C, and consider again the following:

“Dirac problem”: Let (V , q) a Ik-vector space with a non-degenerate quadratic form q,
and let β the associated symmetric bilinear form. Try to find a linear map:

ϕ : V → A

where A is an associative k-algebra (with unit 1l = 1lA), such that:

(ϕ(x))2 = −q(x) 1l ∀x ∈ V (3.2)

or equivalently, such that:

ϕ(x)ϕ(y) + ϕ(y)ϕ(x) = −2β(x,y) 1l ∀x,y ∈ V (3.3)

We call such a linear map ϕ : V → A, a “Clifford map” from (V , q) to the algebra A.

Example ... (V, q) = (R, q(x) = x2).

Then if A = C, considered as a real algebra, the real linear map ϕ : R → C defined by
ϕ(x) = ix is a Clifford map.

Example ... (V, q) = (R3, q(x) = −(x2 + y2 + z2)).

Then if A = C(2) is the algebra of complex (2× 2)-matrices, considered as a real algebra, the
real linear map ϕ : R3 → C(2) defined by:

ϕ(x) = ϕ(x, y, z) =

[
z x− iy

x + iy −z

]

is a Clifford map.
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Clifford Algebras

Definition 1 ... Let (V , q) a Ik-vector space with a quadratic form q. An associative Ik-
algebra (with unit 1l) Cl(V , q) is called a Clifford algebra of (V , q), if there exists a Clifford
map:

c : V → Cl(V , q) (3.4)

such that:

(i). Cl(V , q) is generated by 1l and c(V).

(ii). The following “universal property” holds: for every associative Ik-algebra A (with
unit), and every Clifford map ϕ : V → A, there exists a Ik-algebra morphism Φ : Cl(V , q) →
A, such that the diagram:

V c−→ Cl(V , q)

ϕ ↓ Φ

A

(3.5)

commutes.

Since we assume q to be a non-degenerate quadratic form, the Clifford map c : V →
Cl(V , q) is injective, and so we identify hereater x ∈ V with its image c(x) ∈ Cl(V , q). So in
Cl(V , q), we have that:

x2 = −q(x)1l xy + yx = −2β(x,y)1l (3.6)

∀x,y ∈ V c
↪→ Cl(V , q). In particular we see that x and y are ortoghonal iff they anticommute

in Cl(V , q), and that x is invertible in Cl(V , q) iff x is nonisotropic q(x) 6= 0. In this case
the inverse of x ∈ V is:

x−1 = − x

q(x)
(3.7)

To construct Cl(V , q) we consider the tensor algebra (over Ik) of V , ⊗V = ⊕r≥0 ⊗rV and
the two-sided ideal Jq(V) generated by all the elements of the form x ⊗ x + q(x)1l, x ∈ V ,
and we put:

Cl(V , q) =
⊗V
Jq(V)

(3.8)

So we may consider Cl(V , q) as the algebra generated by 1l and V ↪→ Cl(V , q) , subject
to the relations:

xy + yx = −2β(x,y)1l (3.9)

If dimV = n and if {e1, · · · , en} is a Ik-basis of V , then the 2n elements:

1l, e1, · · · , en, e1e2, · · · , eiej (i < j), · · · , e1e2...en (3.10)

form a Ik-basis of Cl(V , q) and so dim Cl(V , q) = 2n.
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Example ... If q = 0 then Cl(V, q) ∼= ∧V the exterior algebra of V over Ik.

Example ... Cl(R, q(x) = x2) = C considered as a real algebra.

Example ... Cl(V, q) = Cl(R2, q(x) = x2 + y2) ∼= H, the “real quaternion algebra”. In
fact, let us consider a q-orthonormal real basis {i, j} for R2. Then:

1 i j k ≡ ij

is a basis for Cl(R2, x2 + y2), which has dimension 4. The relations in Cl(R2, x2 + y2) are:

i2 = j2 = −1 k2 = (ij)2 = ijij = −i2j2 = −1

jk = jij = −j2i = i, ki = iji = −i2j = j (3.11)

and we see that:
Cl(R2, x2 + y2) = H (3.12)

the “real quaternion algebra” H. Let us recall some concepts about quaternions. Given a quater-
nion:

h = a1 + bi + cj + dk ∈ H (3.13)

we define:

(i). the “conjugate” of h:
h∗ = a1− bi− cj− dk

(ii). the “norm” of h:
Q(h) = hh∗ = a2 + b2 + c2 + d2

It’s easy to see that:
Q(hh′) = Q(h)Q(h′) ∀h, h′ ∈ H (3.14)

and that (H, Q) is linear isomorphic to (R4, qe), where qe is the usual euclidean norm in R4.
Besides, H is a noncommutative field.

We also use the representation of H as the real algebra of matrices of the form:

h =

[
u v
−v u

]
u, v ∈ C (3.15)

In this representation we have that the conjugate of h is h∗ = h
t, the norm of h is Q(h) = hh∗ =

hh
t = (deth) 1l, and:

1 = 1l = σ0 i = iσ1 j = iσ2 k = iσ3

where:

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]

are the Pauli matrices. Thus the real quaternion (3.13) is written in the form:

h = x0σ0 + i(x1σ1 + x2σ2 + x3σ3)
def= x0 + i ~x · ~σ (3.16)
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Note also that i, j and k generate the 3-dimensional space of skew-hermitian matrices of zero trace.
We know that the Pauli matrices anticommute and:

σ2
i = 1l σ1σ2σ3 = i 1l

σ1σ2 = iσ3 σ2σ3 = iσ1 σ3σ1 = iσ2 (3.17)

Moreover if ~x, ~y ∈ R3 and ~σ = (σ1, σ2, σ3), then we have in H:

(~x · ~σ)(~y · ~σ) = (~x · ~y)1l + i(~x× ~y) · ~σ

The real quaternions of unit norm, form the group SU(2):

SU(2) = {
[

u v
−v u

]
: |u|2 + |v|2 = 1}

Involutions in V

Consider the ortoghonal group of (V , q):

O(V , q) = {f : V → V : f ∗q = q}

If we take A = Cl(V , q) and ϕ = c ◦ f in definition 1:

V c−→ Cl(V , q)

ϕ = c ◦ f ↓ Φ=f̃

A = Cl(V , q)

then, since ϕ = c ◦ f is a Clifford map (ϕ(x)2 = c(f(x))2 = −q(f(x))1l = −q(x)1l), we
conclude that there exists a unique algebra morphism f̃ ∈ Aut(Cl(V , q) ) that extends f ,
and so it’s uniquelly determined by its action on the elements of V . We shall see later that
this embedding:

O(V , q) ↪→ Aut(Cl(V , q) )

actually lies in the subgroup of inner automorphisms.

In particular if f(x) = −x, x ∈ V , then we obtain the so called “main involution” or
“degree involution” f̃ = α:

α : Cl(V , q) → Cl(V , q) (3.18)

which verifies α2 = Id. So there exists a decomposition:

Cl(V , q) = Cl0(V , q) ⊕ Cl1(V , q) (3.19)

where Cl0(V , q) = {h ∈ Cl(V , q) : α(h) = h} is the “even part”, which is a subalgebra, and
Cl1(V , q) = {h ∈ Cl(V , q) : α(h) = −h} is the “odd part”, which is a subspace.
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Note that Cl(V , q) endows the structure of “superalgebra” (or Z2-graded algebra), i.e.:

Cli(V , q)Clj(V , q) ⊆ Cli+j(V , q) (3.20)

where (i + j) is taken mod 2. Moreover if dimV = n, then dim Cl0(V , q) = dim Cl1(V , q) =
2n−1.

Now if we take A = Cl(V , q) op and ϕ = c in definition 1, we conclude that there exists
a unique algebra morphism in Aut(Cl(V , q) ) that extends ϕ = c, and that we call the
“transpose” or “main anti-involution”. The image of a product x1x2...xk ∈ Cl(V , q) under
this transpose is:

(x1x2...xk)
t = xkxk−1...x1

and we see that:

(hh′)t = h′tht ∀h, h′ ∈ Cl(V , q)

Finall y we define the “conjugation” in Cl(V , q) , by:

h∗ def
= α(h)t (3.21)

so that:

(x1x2...xk)
∗ = (−1)k xkxk−1...x1

Representations

Definition 2 ... Let K ⊇ Ik a field containing Ik. Then a K-representation of the Clifford
algebra Cl(V , q) is a Ik-homomorphism:

ρ : Cl(V , q) −→ EndK(W )

into the algebra of linear transformations of a finite dimensional K-vector space W .

W is called a Cl(V , q) -module over K, and the action:

ρ(h)(w)
def
= h ·w h ∈ Cl(V , q) w ∈ W

is called the Clifford multiplication.

As usual we treat complex representations as the basic objects, viewing real and quater-
nionic representations as complex representations with additional structure. Thus, if W is a
complex module, a real structure on W is an anti-linear Cl(V , q) -map R such that R2 = Id,
while a quaternionic structure on W is an anti-linear G-map J such that J 2 = −Id. R
or J are called “structure maps”. A complex representation is called of “real type” (resp.
“quaternionic type”, if it admits a real (resp., quaternionic) structure.

Our main interest are the cases:
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• V = Rn = Rr+s with quadratic form:

q(x1, · · · , xn) = x2
1 + · · ·+ x2

r︸ ︷︷ ︸
r

− x2
r+1 − · · · − x2

n︸ ︷︷ ︸
s=n−r

(3.22)

The corresponding Clifford algebra will be denoted by Clr,s.

• V = Cn with quadratic form:

qC(z1, · · · , zn) = z2
1 + · · ·+ z2

n (3.23)

The corresponding Clifford algebra will be denoted by Cln.

Note that the complexification of Clr,s is just the Clifford algebra (over C) corresponding to
the complexified quadratic form q ⊗C, where q is given by (3.22), i.e:

Clr,s ⊗R C ∼= Cl(Cr+s, q ⊗C)

However, since all non-degenerate quadratic forms on Cn are equivalent, we have that:

Cln ∼= Clr,s ⊗R C (3.24)

∀r, s : r + s = n.

Theorem 1 ... Assume that V = V1 ⊕ V2 and that there exists a nondegenerate bilinear
pairing between V1 and V2, denoted by <,>: V1 × V2 → Ik. Consider the nondegenerate
bilinear form β on V given by:

β(v1 ⊕ v2,w1 ⊕w2)
def
= −1

2
[< v1,w2 > + < w1,v2 >] (3.25)

and let q be the corresponding quadratic form. Then:

Cl(V , q) ∼= EndIk(∧V1) (3.26)

Proof...

We define for each v1 ∈ V1 a “creation operator” εv1 , in ∧V1, by:

εv1 : ∧V1 → ∧V1 εv1 α = v1 ∧ α ∀α ∈ ∧V1 (3.27)

and for each v2 ∈ V2, an “anihilation operator” ιv2 , again in ∧V1, first defining ιv2 : V1 → Ik, by
ιv2(w1) =< w1,v2 >, and then extend this to a skew-derivation of ∧V1, i.e.:

ιv2(α ∧ β) = ιv2(α) ∧ β + (−1)deg (α) α ∧ ιv2(β) ∀α, β ∈ ∧V1

Then εv1 and ιv2 are fermionic creation-anihilation operators, i.e.:

ε2v1
= 0

ι2v2
= 0

{εv1 , ιv2} = < v1,v2 > Id (3.28)
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By the universal property of definition 1, to define the Clifford action on ∧V1 we need only
specify it on V. We define it by:

v · α = (v1 ⊕ v2) · α def= (εv1 − ιv2) α v = v1 ⊕ v2 ∈ V = V1 ⊕ V2, α ∈ ∧V1 (3.29)

We only need to verify if v · (v·) = −q(v) 1l, which it’s true since:

v · (v · α) = (v1 ⊕ v2) · (v1 ⊕ v2) · α
= (v1 ⊕ v2) · (εv1 − ιv2) α

= (ε2v1
+ εv1ιv2 + ιv2εv1 + ι2v2

) α

= < v1,v2 > 1lα
= −q(v)1lα (3.30)

Thus this Clifford action extends to a homomorphism:

Cl(V, q) → EndIk(∧V1) (3.31)

Since dimEndIk(∧V1) = (2n)2 = 22n = dim Cl(V, q) , to show that this is an isomorphism it suffices
to show that this is surjective. In fact this follows from the fact that the algebra EndIk(∧V1) is
generated by the above fermionic creation-anihilation operators, CQD.

With the same hypothesis of the previous theorem, sometimes it’s useful to use another
isomorphic representation, constructed as follows:

Let {e1, · · · , en} be a Ik-basis for V1, and let {f1, · · · , fn} be the dual basis, with respect
to the duality < . >, so that:

< ei, fj >= δij

Relativelly to the bilinear form β on V given by (3.25), and the corresponding quadratic
form q, we have:

q(ei) = 0 = q(fj) β(ei, fj) = −1

2
δij

and in Cl(V , q) :

e2
i = 0 = f2

j {ei, fj} = eifj + fjei =
1

2
δij1l

Now we define the “Clifford vacuum”:

Ω = f1f2...fn

and consider the left ideal S in Cl(V , q) :

S def
= Cl(V , q) Ω (3.32)

It’s easy to see that S is in fact the subspace of Cl(V , q) linearlly generated by all the
elements of the form eIΩ, i.e:

S = Ik〈 eI Ω : ∀I = {1 ≤ i1 < i2 < · · · ir ≤ n, 1 ≤ r ≤ n}, ∅〉
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(we put e∅ = 1l). In fact the set of all eIfJ is basis for Cl(V , q) , and fJΩ = 0, ∀J 6= ∅. Now
we consider the left action of Cl(V , q) on S = Cl(V , q) Ω:

h · (h′Ω)
def
= (hh′)Ω (3.33)

which endows S with the structure of Cl(V , q) -module. Of course S is linearlly isomorphic
to ∧V1Ω ∼= ∧V1, and the map α 7→ α · Ω gives an isomorphism:

∧V1 −→ S = ∧V1 · Ω = Cl(V , q) · Ω
of left Cl(V , q) -modules. So we have the following:

Theorem 2 ... Assume the same hypothesis of the previous theorem. Then the (left)
Cl(V , q) -module ∧V1 is isomorphic to a left ideal in Cl(V , q) . In fact, let Ω be a gener-
ator of the top exterior power ∧nV2 (the “Clifford vacuum”). Then:

S def
= Cl(V , q) · Ω ∼= ∧V1 · Ω (3.34)

and the map α 7→ α · Ω gives an isomorphism:

∧V1 −→ S = ∧V1 · Ω = Cl(V , q) · Ω
of left Cl(V , q) -modules.

Theorem 3 ... Let V be a 2n-dimensional vector space with a nondegenerate quadratic
form. Assume that there exists an involution Φ : V → V : Φ2 = Id, which is skew-symmetric
with respect to β, i.e., β(Φv,w) = −β(v, Φw), ∀v,w ∈ V. Then Cl(V , q) is isomorphic to
EndIk(V1) where V1 = ker(Φ− Id).

Proof...

Consider the (±1)-eigenspaces of Φ:

V1 = {v ∈ V : Φv = v}
V2 = {v ∈ V : Φv = −v}

Then V = V1 ⊕ V2, with:

v = v1 ⊕ v2 =
1
2
(v + Φv) +

1
2
(v − Φv) ∈ V1 ⊕ V2

V1 and V2 are totally isotropic with respect to q. In fact, if v1,w1 ∈ V1, then, since Φ is skew:

β(v1,w1) = β(Φv1, Φw1) = −β(Φ2v1,w1) = −β(v1,w1)

whence β(v1,w1) = 0. Similarly β(v2,w2) = 0, ∀v2,w2 ∈ V2. Now we define a bilinear pairing
between V1 and V2, by:

< v1,v2 >
def= −2β(v1,v2) v1 ∈ V1,v2 ∈ V2
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It is nondegenerate, since β is so, and with respect to the direct sum decomposition V = V1 ⊕ V2,
β verifies:

β(v1 ⊕ v2,w1 ⊕w2) = β(v1,w2) + β(w1,v2)

= −1
2
[< v1,w2 > + < w1,v2 >]

and we can apply the previous theorem to conclude that Cl(V, q) ∼= EndIk(∧V1), CQD.

Corollary 1 ...
Cl2n

∼= EndC(∧Cn)

Corollary 2 ...
Clr,r ∼= EndR(∧Rr)

Theorem 4 ... Consider the Clifford algebra Cl(V , q) , and let e ∈ V be a nonzero vector
with q(e) = a 6= 0. Consider the orthogonal W = e⊥ and the quadratic form q⊥(y) =
a q(y), y ∈ W.

Then, the even subalgebra Cl(0)(V , q) is the Clifford algebra of (W , q⊥):

Cl(0)(V , q) = Cl(W , q⊥) (3.35)

Proof...

Consider the diagram of definition 1:

W c−→ Cl(W, q⊥)

ϕ ↓ Φ

A = Cl(0)(V, q)

with ϕ(y) = ye. Then ϕ is Clifford map. In fact, since y and e are q-orthogonal, they anticommute
in Cl(V, q) , and so ∀y ∈ e⊥ = W:

ϕ(y)2 = yeye = −y2e2 = −q(e)q(y) = −a q(y) = −q⊥(y)1l

So ϕ extends to a unique algebra morphism Φ : Cl(W, q⊥) → Cl(0)(V, q) which it’s an isomorphism,
CQD.

Example ... Cl0,3 = C(2)

Let (V, q) = (R3,−qe), where qe(x) = x2 + y2 + z2 is the euclidean quadratic form. We know
that Cl(R3,−qe) has real dimension 8 = 23. Let us apply the previous theorem, fixing an unit
vector e ∈ R3, with q(e) = a = −1, and considering (W = e⊥, q⊥) ∼= (R2, q⊥ = qe |W).
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The theorem says that the even subalgebra Cl(0)(R3,−qe) is the Clifford algebra of (R2, q(x) =
x2 + y2), which is H, as we have seen in a previous example, i.e.:

Cl
(0)
0,3 = Cl2,0 = H

Let us consider now an orthonormal basis B = {e1, e2, e3} of R3, and the element:

ω = e1e2e3 ∈ Cl0,3 (3.36)

which is called the “chirality operator”. Note that if we choose another orthonormal basis B̂ =
{ê1, ê2, ê3}, then êi = gj

i ej with g = (gj
i ) ∈ O(3). Besides it’s easy to see that:

ê1ê2ê3 = (detg) e1e2e3

and so if we choose an orientation for R3 we see that we can define the chirality operator by
(3.36), and this definition is independent of the choice of the orthonormal basis belonging to that
orientation.

Now we compute that:

ω2 = −1l ω ei = ei ω i = 1, 2, 3

and that the center of Cl0,3 is the subalgebra of the elements of the form a1l + b ω, thus isomorphic
to C since ω2 = −1l. So we see that Cl0,3 is a complex algebra, and since ω Cl

(0)
0,3 = Cl

(1)
0,3, then:

Cl0,3 = Cl
(0)
0,3 ⊕ Cl

(1)
0,3

= Cl
(0)
0,3 ⊕ ω Cl

(0)
0,3

= H⊕ ω H

= HC

= C(2) (3.37)

The usual representation of Cl0,3 by matrices of C(2), is the following: if c : R3 ↪→ Cl0,3 is the
canonical injection, and if {e1, e2, e3} is an orthonormal basis of R3, we put:

c(xe1 + ye2 + ze3) =

[
z x− iy

x + iy −z

]

= xσ1 + yσ2 + zσ3 (3.38)

where:

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]

are the Pauli matrices. So c(R3) ↪→ Cl(R3,−qe) = C(2) is the real subspace of hermitian matrices
with zero trace. We know that the Pauli matrices anticommute, and that:

σ2
i = 1l σ1σ2σ3 = i 1l

σ1σ2 = iσ3 σ2σ3 = iσ1 σ3σ1 = iσ2 (3.39)



3.1 Clifford Algebras 42

and we see that {1l, iσ1, iσ2, iσ3} is a basis for the even subalgebra Cl
(0)
0,3, while {1l, iσ1, iσ2, iσ3, i1l,-

σ1,−σ2,−σ3} is a real basis for Cl0,3.

Example ... Cl3,0 = Cl(R3, qe) = H⊕H

In fact, now the chirality operator ω = e1e2e3 verifies: ω2 = 1l and vω = ωv ∀v ∈ R3, i.e., ω
is a central element in Cl3,0.

We can consider now the direct sum decomposition:

Cl3,0 = Cl+3,0 ⊕ Cl−3,0

where:
Cl+3,0

def=
1l + ω

2
Cl3,0 and Cl+3,0

def=
1l− ω

2
Cl3,0

are isomorphic subalgebras such that α(Cl±3,0) = Cl∓3,0.

For the next theorem, assume that (V , qV) and (W , qW) are two vector spaces with
quadratic forms. Define in V ⊕W a quadratic form q = qV ⊕ qW by:

q(v ⊕w) = qV(v) + qW(w)

Recall also that if V = V0⊕V1 and W = W0⊕W1 are two superalgebras then we define its
tensor product V⊗̂W as the superspace:

V ⊗W = (V ⊗W)0 ⊕ (V ⊗W)1

def
= (V0 ⊗W0 ⊕ V1 ⊗W1)⊕ (V0 ⊗W1 ⊕ V1 ⊗W0) (3.40)

together with a multiplication defined by:

(v1 ⊕w1)(v2 ⊕w2) = (−1)(deg w1)(deg v2) v1v2 ⊗w1w2

Theorem 5 ... There exists an isomorphism of superalgebras:

Cl(V ⊕W , qV ⊕ qW) ∼= Cl(V , qV)⊗̂Cl(W , qW) (3.41)

Proof...

Consider the linear map ϕ : V ⊕W → Cl(V, qV)⊗̂Cl(W, qW) defined by:

ϕ(v ⊕w) = v ⊗ 1lW + 1lV ⊗w

Then:

ϕ(v ⊕w)2 = (v ⊗ 1lW + 1lV ⊗w)2

= v2 ⊗ 1lW + v ⊗w − v ⊗w + 1lV ⊗w2

= −[qV(v) + qW(w)]1lV ⊗ 1lW
= −(qV ⊕ qW)(v ⊕w)1lV ⊗ 1lW (3.42)
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i.e., ϕ is a Clifford map and so extends to an algebra morphism:

ϕ̃ : Cl(V ⊕W, qV ⊕ qW) → Cl(V, qV)⊗̂Cl(W, qW)

Now consider η : Cl(V, qV)⊗̂Cl(W, qW) → Cl(V ⊕W, qV ⊕ qW), defined by:

η(v ⊗w) = vw

Then it’s easy to prove that η is an algebra morphism such that η = ϕ−1, CQD.

Now we want to compute the Clifford algebras of (V = Rk,±qe), where qe(x) =
∑k

i=1 x2
i

is the euclidean quadratic form. But before, two useful theorems:

3.2 Pin and Spin groups

Consider again a non-degenerate quadratic space (V , q), and let a ∈ V be a nonisotropic
vector (q(a) 6= 0). Then the reflection sa with respect to a⊥ is the orthogonal map given by:

sa(x) = x− 2
β(x, a)

q(a)
a (3.43)

Let us write this equality in Cl(V , q) :

sa(x) = x− 2
β(x, a)

q(a)
a

= x− (ax + xa)
−a

q(a)

= x− (ax + xa)a−1

= −axa−1 (3.44)

By the theorem of Cartan-Dieudonné, every f ∈ O(V , q) can be written as a product of
those reflections:

(i). in even number if detf = 1, say g = sa1sa2 · · · sa2p , so that in Cl(V , q) :

f(x) = (a1a2 · · · a2p)x (a1a2 · · · a2p)
−1 (3.45)

(i). in odd number if detf = −1, say g = sa1sa2 · · · sa2p+1 , so that in Cl(V , q) :

f(x) = −(a1a2 · · · a2p+1)x (a1a2 · · · a2p+1)
−1 (3.46)

As we know every f ∈ O(V , q) extends uniquely to an algebra morphism f̃ : Cl(V , q) →
Cl(V , q) . If detf = 1 then f̃ is an inner automorphism: f̃(x) = hxh−1, where h is a product
of an even number of nonisotropic vectors in V , while if detf = −1 then f̃ is the compose of
the main involution α with an inner automorphism.
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This lead us to consider the so called “Clifford group” Γ(V , q), of (V , q), as the group of
the invertible elements h ∈ Cl(V , q) such that:

α(h)Vh−1 ⊆ V

By the above discussion, Γ(V , q) contains all nonisotropic vectors in V as well all the
elements of Cl(V , q) that are products of nonisotropic vectors of V .

Note that Γ(V , q) come with a ready-made homomorphism:

Ãd : Γ(V , q) −→ Aut(V) (3.47)

defined by:

Ãd : g 7→ Ãdg(x)
def
= α(g)xg−1 g ∈ Γ(V , q) x ∈ V (3.48)

which is called the “Twisted Adjoint Representation” of Γ(V , q) on V . This representation
is nearly faithful:

Proposition 1 ([LM, prop. 2.4])... The kernel of Ãd : Γ(V , q) −→ Aut(V) is Ik×, the
multiplicative group of nonzero scalar multiples of 1l ∈ Clk.

Consider now the “Norm mapping” N : Clk → Clk defined by:

N(h) = hh∗

where h∗ = α(ht) is the conjugate of h. Note that N(x) = x(−x) = −x2 = q(x) 1l, ∀x ∈ V .
Moreover we can prove (see ([LM, prop. 2.5])) that if g ∈ Γ(V , q) then N(g) ∈ Ik×, and that:

N : Γ(V , q) → Ik×

is an algebra homomorphism.

Proposition 2 ... For all g ∈ Γ(V , q), the transformations Ãdg preserve the quadratic form
q. So there is an homomorphism:

Ãd : Γ(V , q) −→ O(V , q)

Proof...

Note that N(α(g)) = N(g), ∀g ∈ Γ(V, q), since N(α(g)) = α(g)(α(g))∗ = α(g)gt = α(N(g)) =
N(g). So if we consider the subset of all the nonisotropic vectors in V:

V× = {x ∈ V : q(x) 6= 0}

then for each x ∈ V× ⊂ Γ(V, q), we have that N(Ãdg(x)) = N(α(g)xg−1) = N(α(g))N(x)N(g−1) =
N(g)N(g)−1N(x) = N(x), and since N(v) = q(v), ∀v ∈ V, we see that Ãdg preserves all non-zero
q-lengths. Applying Ãdg−1 now shows that Ãdg(V×) = V×, and so Ãdg leaves also invariant the
set of vectors with zero q-length. Thus Ãdg is q-orthogonal, CQD.
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Definition 3 ... We define the Pin group Pin(V , q) of (V , q), as the subgroup of Γ(V , q)
generated by all elements v ∈ V such that q(v) = ±1:

Pin(V , q)
def
= {v1v2 · · ·vr ∈ Γ(V , q) : q(vj) = ±1 ∀j} (3.49)

The associated Spin group of (V , q) is defined by:

Spin(V , q)
def
= Pin(V , q) ∩ Cl(0)(V , q) (3.50)

Example ... Spin(4), SO(4)

Recall that we can identify the euclidean space (R4, qe), where qe(x) = ‖x‖2 is the euclidean
quadratic form, with the linear space H of real quaternions through the linear map:

x = (x0, x1, x2, x3) = (x0, ~x) ∈ R4 7→ X = x01− i ~x · ~σ
= x01 + x1i + x2j + x3k

=

[
x0 − ix3 −x2 − ix1

x2 − ix1 x0 + ix3

]

=

[
u v
−v u

]
(3.51)

with u = x0 − ix3, v = −(x2 + ix1) ∈ C. In this form, the conjugate of X ∈ H is X∗ = Xt, the
norm of X is Q(X) = XX∗ = XXt = (detX) 1l = ((x0)2 + (x1)2 + (x2)2 + (x3)2) 1l = ‖x‖2 1l, and
the real quaternions of unit norm form the group SU(2).

Consider now the Clifford algebra Cl4,0 ≡ Cl(R4, qe). We know that Cl4,0 has real dimension
16 = 24. Recall that (R4, qe) is linear isomorphic to (H, Q). The map c : H → H(2) defined by:

c(h) =

[
0 h
−h∗ 0

]
h ∈ H

where H(2) is the real algebra of quaternionic (2× 2)-matrices, is a Clifford map, since:

c(h)2 =

[
0 h
−h∗ 0

]2

=

[
−hh∗ 0

0 −h∗h

]
= −Q(h) 1l (3.52)

Moreover since H(2) is generated as a real algebra of dimension 16 by the above matrices we see
that:

Cl4,0 = H(2)

R4 ∼= H sits inside Cl4,0 = H(2) through the canonical injection c given by (3.52), and we
identify R4 with c(R4). In particular the images in Cl4,0 = H(2), under c, of the elements ei, i =
0, 1, 2, 3 of the canonical basis of R4 are the so called “Dirac γ-matrices”:

γ0 = c(e0) =

[
0 1l
−1l 0

]
, γk = c(ek) =

[
0 −iσk

iσk 0

]
k = 1, 2, 3 (3.53)
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Now we know that the even subalgebra Cl
(0)
4,0 is isomorphic to Cl3,0 = Cl(R3, qe) where R3

is the subspace of R4 orthogonal to e0. But Cl3,0 = H ⊕H, as we have seen previously, and so
Cl

(0)
4,0 = H⊕H ↪→ H(2) through the map:

h⊕ h′ →
[

h 0
0 h′

]

Such an element h⊕h′ ∈ Cl
(0)
4,0 is invertible iff both h and h′ ∈ H are. Moreover an invertible h⊕h′

is such that:

Adh⊕h′X ∈ R4 ∀X ∈ R4 ∼= c(H) ↪→ CL4,0 = H(2)

iff: [
h 0
0 h′

] [
0 X

−X∗ 0

] [
h−1 0
0 h′−1

]
=

[
0 hXh′−1

−h′X∗h−1 0

]
∈ R4

i.e.:

−h′X∗h−1 = −(hXh′−1)∗

which is equivalent to h′h′∗X∗ = X∗h∗h, i.e., (deth′)X∗ = (deth)X∗, ∀X ∈ R4. Thus deth′ = deth,
and in particular we conclude that:

Spin(4) = {h⊕ h′ ∈ Cl04 = H⊕H : deth′ = deth = 1} ∼= SU(2)× SU(2)

The above computations show also that the adjoint representation is completelly determined
by the action φ of Spin(4) = SU(2)× SU(2) on H ∼= R4, given by:

φ(h1, h2)X = h1Xh−1
2 h1, h2 ∈ SU(2), X ∈ H

Then h1Xh−1
2 ∈ H and det(φ(h1, h2)X) = det(h1Xh−1

2 ) = detX which give us a homomorphism:

ϕ : SU(2)× SU(2) → SO(4)

with kernel consists of the pairs (h1, h2) such that:

h1Xh−1
2 = X ∀X ∈ H

This implies that h1 = h2 = λ1l and since λ1l ∈ SU(2) we see that λ2 = 1 and so Kerϕ =
{(1l, 1l), (−1l,−1l)} = Z2.

Thus we have the identifications:

Spin(4) = SU(2)× SU(2) (3.54)

and:

SO(4) = SU(2)× SU(2)/Z2 (3.55)
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3.3 Spin Representations

We will distinguish the two copies of SU(2) in Spin(4), by writing:

Spin(4) = SU+(2)× SU−(2)

The representations of Spin(4) can be determined using this isomorphism. But first let us recall
the representations of SU(2): the fundamental representation D1/2, is SU(2) acting on C2 in the
usual way, and all the others irreducible representations are symmetric powers:

Dk/2 = Symk D1/2

with k ∈ Z+. We have that dim CDk/2 = dim CSymk D1/2 = k +1, since we can identify this space
with the space of homogeneous polynomials of degree k in 2 variables.

Tensor products of this representations decompose according to Clebsh-Gordon formula:

Dk/2 ⊗Dl/2 = Dk+l/2 ⊕Dk+l−2/2 ⊕ · · · ⊕D|k−l|/2

The spin representations D±
1/2 of Spin(4) = SU+(2) × SU−(2) are the representations ob-

tained by projecting onto SU±(2) and then applying D1/2. So any irreducible Spin(4)-module has
the form:

Sk,l ≡ D+
k/2 ⊗D−

l/2

= Symk D+
1/2 ⊗ Syml D−

1/2 k, l ≥ 0 (3.56)

which has complex dimension (k+1)(l+1) and factors through SO(4) iff k+ l is even. In particular
the basic SO(4)-module which is R4, must be equal to S1,1, i.e.:

(R4)C ∼= S1,1 = C2
+ ⊗C2−

≡ S+ ⊕ S− (3.57)

The spin representations D±
1/2 generate the representation ring of Spin(4).

We know that Cl(4) = Cl4 ⊗R C = H(2) ⊗R C = C(4) = End(C4), the algebra of complex
(4× 4)-matrices. The inclusion:

Spin(4) ⊂ Cl(4) = End(C4)

makes S = C4 into a Spin(4)-representation. Since the chirallity operator:

ω = e1e2e3e4 ∈ Cl(4)

satisfies in this case:
ω2 = 1l

we see that S decomposes into the ±1 eigenspaces of ω:

S = C4 = C2 ⊕C2

= S+ ⊕ S− (3.58)
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with S± = (1l + ω)S, called the spaces of ± Majorana spinors (see [LM], prop.5.10). Moreover,
since ω commutes with all the elements in the even subalgebra Cl04, each of the subspaces S+ and
S− are invariant under Cl04, i.e.:

Cl04 = End(S+)⊕ End(S−)

as Spin(4)-modules. Moreover each x ∈ R4 ⊂ Cl4 gives isomorphisms through Clifford multiplica-
tion:

x : S− → S+ x : S+ → S− (3.59)

which we denote by x : ψ 7→ x · ψ, x ∈ R4, ψ ∈ S±.

In fact, the representations S± are exactly the 2-dimensional complex spin representations D±
1/2

mentioned above.

Now let us see what happens at the Lie algebra level. We know that spin(4) = Lie(Spin(4))
is the Lie subalgebra of (Cl4, [, ]) generated by γiγj , i < j, which is of course isomorphic to ∧2R4

(see [LM], prop.6.1):
spin(4) = ∧2R4 = spanR{γiγj}i<j

through the (non canonical) linear map defined by:

ei ∧ ej 7→ ι(ei)ι(ej) = γiγj i < j (3.60)

Meanwhile, the Lie algebra so(4) is:

so(4) = {A : R4 → R4 : A is linear and skew symmetric}

and there exists a natural isomorphism ∧2R4 ∼= so(4), induced by associating to a pair of vectors
v,w ∈ R4 the skew symmetric endomorphism “v ∧w” defined by:

(v ∧w)(x) =< v,x > w− < w,x > v (3.61)

In particular ei ∧ ej , for i < j, corresponds to the elementary skew-symmetric matrix Eij , with −1
in (i, j)-entry, 1 in (j, i)-entry and all others 0. These matrices form the standard basis of so(4).
These together with (3.60) shows that:

spin(4) = ∧2R4 = so(4) (3.62)

Note however that the Lie algebra isomorphism:

Ψ : spin(4) −→ so(4)

induced by the adjoint representation Ad : Spin(4) → SO(4) is given explicitly on the basis
elements {γiγj}i<j by (see [LM], prop. 6.2):

Ψ(γiγj) = 2 ei ∧ ej (3.63)

and consequently for v,w ∈ R4:

Ψ−1(v ∧w) =
1
4
[v,w] (3.64)
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Now recall that the Hodge star operator ∗ : ∧2 = ∧2R4 → ∧2 defined by:

α ∧ ∗β = (α, β) ω α, β ∈ R4

verifies ∗2 = 1 and so we can decompose ∧2 = ∧2R4 in self dual and anti-self-dual bivectors:

∧2 = ∧2
+ ⊕ ∧2

−

with each of the subspaces ∧2± = 1
2(1± ∗)∧2 being (through (3.61)) a 3-dimensional space of skew

symmetric matrices which we identify to so(3) = su(2). The basis for ∧2± are respectivelly:

{e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 + e4 ∧ e2, e1 ∧ e4 − e2 ∧ e3}

and:
{e1 ∧ e2 − e3 ∧ e4, e1 ∧ e3 − e4 ∧ e2, e1 ∧ e4 − e2 ∧ e3}

So we have the following identifications:

spin(4) = so(4)
= ∧2

= ∧2
+ ⊕ ∧2

−
= su(2)⊕ su(2) (3.65)

Through (3.64) the action of an elementary transformation v ∧w ∈ so(4) = ∧2 on the spinor
space S is given by 1

4 [v,w]· where · is Clifford module multiplication on S. In particular we can
prove that:

(∧2
±)C = [Hom(S±,S±)]o

where .o denotes the component of traceless matrices. The real parts ∧2± consists of traceless
skew-hermitian of S± ∼= C2.

Moreover, since S+ ∼= (S+)∗ symplectically, we also have that:

(∧2
+)C = Sym2 S+ (3.66)

3.4 U(2), spinors and almost complex structures

If we fix a nonzero spinor φ ∈ S+, then this gives rise to a real isomorphism R4 ∼= S− = C2, given
by Clifford multiplication: x 7→ x·φ, and so identifies R4 with a complex vector space, i.e., furnishes
R4 with a (almost) complex structure Jφ ∈ End(R4) wich corresponds with the multiplication by
i in the cited identification R4 ∼= C2:

Jφx · φ = i(x · φ) x ∈ R4

This Jφ is compatible with the metric (is ortoghonal) and orientation. Moreover, multiplying
φ ∈ S+ = C2 by a nonzero scalar λ ∈ C∗ defines the same complex structure: Jλφ = Jφ. Thus the
projective space:

P (S+) ∼= CP (1)

parametrizes a set of compatible complex structures in R4.
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The subgroup of Spin(4) = SU(2) × SU(2) which leaves fixed φ up to a scalar multiple, is
S1 × SU(2), the double covering of U(2) ⊂ SO(4). Hence the projective space P (S+) ∼= CP (1)
is naturally isomorphic to SO(4)/U(2), the space of all complex structures compatible with the
metric and orientation.

There exists a dual way of looking at this, where we take not the Clifford multiplication map
R4 × S+ → S− but its adjoint:

Π : S− −→ R4 × S+ (3.67)

defined by:
Π : ψ 7→

∑

i

ei · ψ ⊗ ei (3.68)

Now, if we are given any φ ∈ S+, we get a map Πφ : S− → (R4)C = C4 given by:

Πφ : ψ 7→
∑

i

ε(ei · ψ, φ) ei (3.69)

where ε is the sympletic form on S+ = C2. The image Πφ(S−) in C4 is the subspace of holomorphic
vectors T (1,0) which equivalently defines the complex structure.

3.5 Spinc(4)

All the preceding discussion can be extended to the complex case. We define the main involution α
and the transposition ()t on Cl4⊗RC = H(2)⊗RC = C(4), the algebra of complex (4×4)-matrices,
by:

α(ϕ⊗ z) = α(ϕ)⊗ z

(ϕ⊗ z)t = ϕt ⊗ z ϕ⊗ z ∈ Cl4 ⊗C (3.70)

and we define N c(ϕ⊗ z) = N(ϕ)|z|2, Φ ∈ Clk ⊗R C.

Definition 4 ...

We define Γc
4 as the subgroup of all invertible elements Φ = ϕ⊗ z ∈ Cl4 ⊗R C, for which:

x ∈ R4 =⇒ ÃdΦ(x) ≡ α(Φ)xΦ−1 ∈ R4

Theorem 6 ... ([ABS], prop. 3.17)

Let Pinc(4) be the kernel of N c : Γc
4 → C∗. Then we have an exact sequence:

1l → U(1) → Pinc(4) Ãd−→ O(4) → 1l

where U(1) = {1l⊗ z ∈ Cl4 ⊗C : |z| = 1}. In particular we have a natural isomorphism:

Pinc(4) ∼= Pin(4)×Z2 U(1) ∼= Pinc(4) (3.71)

where Z2 acts on Pin(4) and U(1) as ±1.
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Definition 5 ...

We define the group Spinc(4) as the inverse image of SO(4) under the homomorphism Pinc(4) →
O(4) of the previous theorem. It follows that:

Spinc(4) ∼= Spin(4)×Z2 U(1)
= (SU(2)× SU(2))×Z2 U(1) (3.72)

The group Spinc(4) is usefull to understand the relation between spinors and complex struc-
tures. In fact a given U(2)-PFbundle over a 4-manifold is an SO(4)-PFbundle under the natural
embedding:

ι : U(2) ↪→ SO(4)

However, this mapping may not lift to Spin(4). Thus the existence of a complex structure on a
bundle of rank 4 does not necessarily yield a Spin-bundle. However it does yield a Spinc-structure,
a less restrictive requirement!

In fact the homomorphism:
l : U(2) → SO(4)× U(1)

defined by:
l(T ) = ι(T )× detT

does lift to Spinc(4): explicitly, the lifted map l̃ : U(2) → Spinc(4) is given as follows. Let T ∈ U(2)
be expressed relative to an orthonormal basis {e1, e2} of C2 by the diagonal matrix:

T =

[
eiθ1 0
0 eiθ2

]

Let {e1, ie1, e2, ie2} the corresponding basis of R4. Then:

l̃(T ) = (cos
θ1

2
+ sin

θ1

2
· e1ie1)(cos

θ2

2
+ sin

θ2

2
· e2ie2)× e

i(θ1+θ2)

2

Thus any U(2)-frame bundle on a 4-manifold M induces a Spinc(4)-structure on M . In certain
cases we shall be able to see that this Spinc(4)-structure reduces to a Spin(4)-structure on certain
real submanifolds of M . We can prove that:

Theorem 7 ...

If H2(M,Z) = 0 then any Spinc(4)-bundle can be reduced to Spin(4)-bundle over M .

Chiral Operator. Self Duality

Definition 6 ... Choose an orientation for Rr,s and let {e1, · · · , en} a positively oriented q-
orthonormal basis (n = r + s). We define the associated “Volume element” by:

ω
def
= e1...en ∈ Clr,s (3.73)
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It’s easy to see that ω doesn’t depend of the choice of the positively oriented q-orthonormal
basis. Moreover, we have that:

ω2 =





(−1)s1l if n ≡ 0, 3 (mod 4)

(−1)s+11l if n ≡ 1, 2 (mod 4)
(3.74)

and:
xω = (−1)n−1ωx ∀x ∈ Rn (3.75)

In particular, if n is odd, then ω is central, while if n is even, then:

hω = ω α(h) ∀h ∈ Clr,s (3.76)

i.e., ω super-commutes with h. If ρ : Clr,s → EndK(W) is a K-representation, then Ω def= ρ(ω)
is called the associated “Chiral operator”.

Definition 7 ... Assume that ω2 = 1l, in Clr,s. Then an element h ∈ Clr,s is called “self-dual” if
ωh = h, and it’s called “anti-self-dual” if ωh = −h

If we assume that ω2 = 1l and n odd, then ω is central, and we have a decomposition of Clr,s
in a direct sum:

Clr,s = Cl+r,s ⊕ Cl−r,s (3.77)

of isomorphic (self-dual and anti-self-dual) subalgebras:

Cl±r,s
def= {h ∈ Clr,s : ω h = ±h} =

1l± ω

2
Clr,s

Moreover α(Cl±r,s) = Cl∓r,s.

Table 1... Clifford Algebras CLr,s. In each case N is computed knowing that r + s = n and
the real dimension of CLr,s is 2n:

r − s (mod 8) Clr,s

0,6 R(N)
2,4 H(N)
1,5 C(N)
3 H(N)⊕H(N)
7 R(N)⊕R(N)

Table 2... The even part CL
(0)
r,s of the Clifford Algebras CLr,s. In each case N is computed

knowing that r + s = n and the real dimension of CL
(0)
r,s is 2n−1:

r − s (mod 8) Cl
(0)
r,s

0 R(N)⊕R(N)
1,7 R(N)
3,5 H(N)
2,6 C(N)
4 H(N)⊕H(N)
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Example ... ...

Cl
(0)
2,0 = Cl

(0)
0,2 = C Cl

(0)
1,1 = R⊕R

Cl
(0)
3,1 = Cl

(0)
1,3 = C(2) Cl

(0)
4,0 = Cl

(0)
0,4 = H⊕H Cl

(0)
2,2 = R(2)⊕R(2)

Table 3... Decomposition in self-dual, anti-self-dual parts

r − s (mod 8) Cl
(0)
r,s

0 R(N)⊕R(N)
1,7 R(N)
3,5 H(N)
2,6 C(N)
4 H(N)⊕H(N)

Definition 8 ... A “Pinnor inner product” ε is an inner product on the pinor space Pr,s with
the property that the adjoint with respect to ε is the conjugation involution on Clr,s, i.e.:

ε(h · φ, ψ) = ε(φ, h∗ · ψ) h ∈ Clr,s φ, ψ ∈ Pr,s (3.78)

In particular ε(x · φ, ψ) = ε(φ,−x · ψ), ∀x ∈ V. We can prove that there always exists such a
inner product which is unique up to a change of scale.

Now we define a symmetric bilinear V-valued mapping on Sr,s:

{ , } : Sr,s ⊗ Sr,s −→ V

by defining {φ, ψ} ∈ V as the unique vector in V such that its inner product with any x ∈ V is
equal to ε(x · φ, ψ):

< {φ, ψ},x >
def= ε(x · φ, ψ) ∀x ∈ V (3.79)

We can prove that { , } is in fact symmetric:

< {φ, ψ},x > = ε(x · φ, ψ)
= ε(φ,−x · ψ)
= ε(x · ψ, φ) since ε is skew
= < {ψ, φ},x > ∀x ∈ V

To construct Lie superalgebras G = g0⊕g1, wih the even part g0 = spinr,s®V, the semi-direct
sum of the Lie algebra of Spinr,s with its fundamental representation V ∼= Rr+s, we choose a spinor
space which is the carrier of a representation of spinr,s and define the anticommutator of two pinors
by the bove formula. It remains to prove that:

Λ · {φ, ψ} = {Λ · φ, ψ}+ {φ, Λ · ψ} ∀Λ ∈ spinr,s, ∀φ, ψ ∈ S (3.80)


