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Abstract

We study some issues related to the notion of generalized holonomies, providing a rigorous
mathematical framework where to discuss early heuristic ideas from the physics literature,
mainly due to R. Gambini and its colaborators, who have tryed to formulate an “Extended
Loop Representation” of Quantum Gravity in Ashtekar variables. We also define a BACH

(Baker-Campbell-Hausdorff) series for the formal generalized holonomy and prove its
convergence in some particular cases. Finally we discuss the issue of covariance of generalized

holonomies, and prove the covariance for nilpotent connections.2

0.1 Introduction

Let us begin with the following example. Consider an abelian gauge field theory (source
free electromagnetism) on a compact oriented 3-dimensional manifold M , whose classical
(physical) configuration space C, is the space Ω1M of smooth one forms, modulo gauge
transformations, i.e.:

C ≡ Ω1M/dC∞M

As in the scalar field theory an important role in quantum electromagnetism will be
played by the dual of the classical configuration space, in a sense the ”quantum configu-
ration space”:

C∗ ≡ (
Ω1M/dC∞M

)∗

1E-mail adress: jntavar@fc.up.pt
2Work partially supported by the research programs: “F́ısica Matemática” Praxis/2/2.1/MAT/19/94,

and “Alguns Aspectos da Gravitação Clássica e Quântica” PBICT/C/MAT/2150/95.
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The reason for this, is the fact that there are well defined measures in C∗ and all the cyclic
representations of the electromagnetic Weyl algebra can be realized in an Hilbert space:

L2(C∗, µ)

consisting of square integrable functions on C∗, with respect to some quasi-invariant mea-
sure µ (see [9]).

Let us now study C∗. This space is the space of DeRham 1-currents R, that vanish on
dC∞M , i.e., of closed DeRham 1-currents. Recall that we define the boundary ∂R, of a
DeRham 1-current R, by < ∂R, f >=< R, df >, ∀f ∈ C∞M , and that R is called closed
if ∂R = 0.

Every (picewise smooth) loop γ defines an element of C∗, i.e., a DeRham closed 1-
current Rγ on M , by integration:

Rγ(A) =

∫

γ

A, A ∈ C

In fact, Rγ(df) = 0.

Let us define the following equivalence relation on the space of picewise smooth free
loops in M :

α ∼ β ⇔ Rα = Rβ

The quotient space will be denoted by HL, and its elements will be called holonomic
loops, or briefly loops for simplicity. It follows that any (finite) IR-linear combination of
loops belongs to C∗. Let us denote by HLIR the IR-linear subspace of C∗, generated by all
the Rγ.

♣ Proposição 0.1 ... The space HLIR is dense in C∗ ≡ (
Ω1M/dC∞M

)∗
(in the

weak ?-topology).

Proof...

We use the following facts (see [15]):

• (i). The weak ?-topology in the dual X∗ of a TVS X, makes X∗ into a locally convex
TVS, whose dual (X∗)∗ is X, i.e., every (weak-?) continuous linear functional on X∗ has the
form R 7→ Rf for some f ∈ X, ∀R ∈ X∗.

• (ii). As a corollary of Hahn-Banach Theorem, in a locally convex TVS X, a subspace S
is dense iff the only continuous linear functional that vanishes on S, is the null functional.

Now, if F is a (weak ?) continuous linear functional on X = C∗, then, by (i), F takes the
form R 7→ Rω, for some ω ∈ (

Ω1M/dC∞M
)∗. If F vanishes on HLIR, then 0 = F (Rγ) =

Rγ(ω) =
∫
γ ω, ∀γ, which implies that ω = 0. So F = 0, and by (ii), HLIR is dense in C∗, QED.
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We call the elements of the completion H̃LIR of HLIR, (abelian) generalized loops, and
we will denote them by α̃, β̃, etc. Therefore, proposition above says that DeRham closed
1-currents are equivalent to generalized loops. Notice that along with the “distributional
elements” of the type Rα, the space of generalized loops contains also “smooth elements”,
namelly closed 2-forms e : ω → ∫

M
ω ∧ e.

Consider again an abelian gauge field theory with gauge group G = U(1), so that
G = iIR and let A = iω be an abelian connection 1-form. In this case we define, for a
loop γ ∈ HL, the holonomy Uγ(A), of A along γ, by:

Uγ(A) = e
∫

γ A = 1 +
∑

k≥1

(i)k

k!

(∫

γ

ω
)k

Note now that we can generalize this definition, by taken instead a loop γ, a generalized

loop α̃ ∈ H̃LIR, and then define a generalized holonomy Uα̃(A), by:

Uα̃(A) = Uα̃(iω) = ei α̃(ω) = 1 +
∑

k≥1

(i)k

k!
α̃(ω)k (0.1.1)

If g(x) = ei f(x) ∈ U(1) = iIR, is a gauge transformation, then:

Ag = g−1Ag + g−1dg = A + i df = i(ω + df)

and so:

Uα̃(Ag) = ei α̃(ω+df) = ei α̃(ω) ei α̃(df) = ei α̃(ω) = Uα̃(A)

since α̃(df) = 0. So in this case we have gauge covariance (invariance) of the generalized
holonomy.

Our aim in this note is to generalize the above concepts in a non abelian context,
considering “non abelian generalized loops” and non abelian connection forms. More
exactly, we try to give a rigorous mathematical framework where to discuss early heuristic
ideas from the physics literature, mainly due to R. Gambini and its colaborators, who have
tryed to formulate an “Extended Loop Representation” of Quantum Gravity in Ashtekar
variables (see [2], [3], [4], [16]) .

The paper is organized as follows. In section 2, we review the main definitions and
properties of generalized loops, based on Chen integrals, as was developed in our early
work [18]. In section 3, we define (formal) generalized holonomies along generalized loops,
and study some of its properties. We also define a BACH (Baker-Campbell-Hausdorff)
series for the formal generalized holonomy and prove its convergence in some particular
cases. Finally in section 4, we discuss the issue of covariance of generalized holonomies,
recovering the same results of [16], and analyzing the particular case of nilpotent connec-
tions.
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0.2 The Group of Generalized Loops and its Lie Al-

gebra

Let M be a smooth real compact n-dimensional manifold. Let us define the so called
Shuffle Algebra of M. Consider the real vector space Ω1M of real 1-forms on M, and
the tensor algebra (over IR) of Ω1M:

T (Ω1M) =
⊕
r≥0

(
r⊗

Ω1M) (0.2.1)

For simplicity we use the notation:

ω1...ωr = ω1 ⊗ ...⊗ ωr ∈
r⊗

Ω1M

for r ≥ 1, and set ω1...ωr = 1, when r = 0. Now we replace the tensor multiplication in
T (Ω1M) by the shuffle multiplication •, defined by:

ω1...ωr • ωr+1...ωr+s =
∑′

σ
ωσ(1)...ωσ(r+s) (0.2.2)

where
∑′

σ denotes sum over all (r, s)-shuffles, i.e., permutations σ of r + s letters with
σ−1(1) < ... < σ−1(r) and σ−1(r + 1) < ... < σ−1(r + s).

(T (Ω1M), •) is then an associative, graded commutative real algebra, with unity 1 ∈
IR ⊂ T (Ω1M), which is called the Shuffle Algebra of M and is denoted by Sh(M), or
simply by Sh. We endow Sh(M) with the structure of nuclear LMC topological algebra
in the way indicated in [18].

Sh has also a real Hopf algebra structure. This means (see [1], [17] (Chp.XII)) that, in
adition to the above real algebra stucture, we have three IR-linear maps ∆ : Sh → Sh⊗Sh,
called comultiplication, ε : Sh → IR, called counity, and J : Sh → Sh, called antipode,
defined respectivelly, by the formulas:

∆(ω1...ωr) =
r∑

i=0

ω1...ωi ⊗ ωi+1...ωr (0.2.3)

ε(ω1...ωr) =

{
0 if r ≥ 1
1 if r = 0

(0.2.4)

J(ω1...ωr) = (−1)rωr...ω1 (0.2.5)

which verifies the usual Hopf algebra identities.

Now, let us fix a point p ∈ M, and consider the based Loop Space LMp of picewise
smooth loops based at p, and the so called Group of loops of the manifold M, based at p,
(LMp/∼, ¦), which is denoted by LMp. Elements of LMp will be called simply (usual
or geometrical) loops, and we denote simply by αβ, the product α ¦ β of two elements
α, β ∈ LMp (see [18], for definitions and details).
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Each loop γ ∈ LMp, gives rise to a (continuous) linear functional Xγ, on Sh = Sh(M),
defined in each homogeneous element, through iterated Chen integration:

Xγ(ω1...ωr) =

∫

γ

ω1...ωr

=

∫

∆r

f1(t1)f2(t2) · · · fr(tr) dt1dt2 · · · dtr (0.2.6)

where ∆r = {(t1, · · · , tr) ∈ IRr : 0 ≤ t1 ≤ · · · ≤ tr ≤ 1} and fj(t) = ωj(γ(t)) · γ̇(t).

We deduce from the properties of the iterated Chen integrals, the following properties
for these linear functionals Xγ ∈ Sh∗:

Xγ(u • v) = Xγ(u)Xγ(v) ∀u,v ∈ Sh (0.2.7)

i.e, each Xγ is a multiplicative linear functional (a character) in Sh, and:

Xαβ = Xα ? Xβ

≡ (Xα ⊗Xβ) ◦∆ (0.2.8)

Xα−1 = Xα ◦ J (0.2.9)

∀α, β ∈ LMp. Moreover, these Xγ satisfy the following differential constraints:

Xγ(df) = 0 (0.2.10)
Xγ((df)ω1...ωr) = Xγ

(
(fω1)ω2...ωr

)− f(p).Xγ(ω1...ωr) (0.2.11)
Xγ(ω1...ωr(df)) =

(
Xγ(ω1...ωr)

)
.f(p)−Xγ

(
ω1...ωr−1(ωrf)

)
(0.2.12)

Xγ

(
ω1...ωi−1(df)ωi+1...ωr

)
= Xγ

(
ω1...ωi−1(fωi+1)ωi+2...ωr

)

−Xγ

(
ω1...(ωi−1f)ωi+1...ωr

)
(0.2.13)

∀f ∈ C∞M and for all ω1, ..., ωr ∈ Ω1M.

Let us consider the algebra of functions Ap, defined on the loop group LMp, generated
by the functions F ω1...ωr : LMp → k defined by:

F ω1...ωr(γ) = Xγ(ω1...ωr)

=

∫

γ

ω1...ωr (0.2.14)

We know that Ap is a topological LMC algebra of separating functions on LMp, which
is isomorphic to the quotient algebra Sh/Jp:

Sh(M)/Jp ' Ap. (0.2.15)

Here Jp is the ideal:
Jp = Ip+ < dC > (0.2.16)

where < dC > is the ideal generated by dC∞(M), in Sh(M) and Ip is the ideal in Sh,
generated by all the elements of the type:

(df)ω1...ωr − (fω1)ω2...ωr + f(p).(ω1...ωr) (0.2.17)
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ω1...ωr(df)− (ω1...ωr).f(p) + ω1...ωr−1(ωrf) (0.2.18)

and:

ω1...ωi−1(df)ωi+1...ωr − ω1...ωi−1(fωi+1)ωi+2...ωr + ω1....(ωi−1f)ωi+1...ωr (0.2.19)

∀f ∈ C∞M and for all ω1, ..., ωr ∈ Ω1M.

The algebra Ap admits also a real Hopf Algebra structure, by defining the comulti-
plication ∆ : Ap → Ap ⊗ Ap, the counity ε : Ap → k and the antipode J : Ap → Ap ,
respectivelly by:

∆
(
F ω1...ωr

)
=

r∑
i=0

F ω1...ωi ⊗ F ωi+1...ωr (0.2.20)

ε
(
F ω1...ωr

)
=

{
0 if r ≥ 1
1 if r = 0

(0.2.21)

J
(
F ω1...ωr

)
= (−1)rF ωr...ω1 (0.2.22)

Now consider the spectrum ∆p of the algebra Ap, consisting of all nonzero continuous
characters α̃ ∈ A∗

p, or equivallently consisting of all nonzero continuous linear functionals
α̃ : Sh → IR that satisfy the two conditions:

α̃(u • v) = α̃(u)α̃(v) ∀u,v ∈ Sh (0.2.23)

α̃(Jp) = 0 (0.2.24)

Elements of ∆p are called Generalized Loops, based at p ∈ M. We can define a
structure of group on ∆p, through:

α̃ ? β̃ ≡ (α̃⊗ β̃) ◦∆ (0.2.25)

where we have used the identification IR⊗ IR ' IR . More explicitly:

α̃ ? β̃(ω1...ωr) =
r∑

i=0

α̃(ω1...ωi).β̃(ωi+1...ωr) (0.2.26)

We define also the inverse of α̃ ∈ ∆p, by α̃ ◦ J , i.e.:

α̃−1(ω1...ωr) = (−1)rα̃(ωr...ω1) (0.2.27)

and take ε, given by (0.2.4), as the unit element.

We call the above mentioned topological group (∆p, .), the Group of Generalized Loops

of M, based at p ∈M, and we denote it by L̃Mp.

We have a natural embedding of LMp as a subgroup of L̃Mp, given by the “Dirac

map” X : LMp → L̃Mp,defined by:

γ 7→ Xγ (0.2.28)
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where Xγ is given by (0.2.6). Since the functions F ω1...ωr separate “points” in LMp, we
see that this is an injective embedding. So we identify LMp with its image under X,
in ∆p, and endow LMp with the induced topology. In this topology, a sequence (αn)
converges to α, in LMp iff limn→∞ Fu(αn) = Fu(α), ∀u ∈ ShM.

Hereafter, we always identify an usual loop γ ∈ LMp with its image Xγ in L̃Mp ⊂ Sh∗.

We define the Lie algebra l̃Mp, of the group of generalized loops L̃Mp, as the subspace
of Sh∗ consisting of the so called point derivations at ε, that vanish on Jp, i.e., an element

Θ ∈ Sh∗ belongs to l̃Mp, iff Θ satisfy the two conditions:

Θ(u • v) = ε(u)Θ(v) + Θ(u)ε(v) (0.2.29)

Θ(Jp) = 0 (0.2.30)

The Lie brackett in l̃Mp, is defined through:

[Θ1, Θ2] ≡ Θ1 ? Θ2 −Θ2 ? Θ1 (0.2.31)

Note that any point derivation Θ, at ε, verifies:

Θ(ω1...ωr • ωr+1...ωr+s) = 0 (0.2.32)

∀r ≥ 1,∀s ≥ 1, and from this we can deduce that:

Θn(ω1...ωr) = 0 ∀n > r ≥ 0 (0.2.33)

where Θn+1 ≡ Θn ? Θ, ∀n ≥ 1.

Now, for each Θ ∈ l̃Mp, we can define exp Θ by:

exp Θ ≡ ε +
∑

n≥1

Θn

n!
(0.2.34)

where, as always, this means that, for each ω1...ωr, exp Θ(ω1...ωr) is defined by:

exp Θ(ω1...ωr) ≡
(
ε +

∑
n≥1

Θn

n!

)
(ω1...ωr) (0.2.35)

if, of course, this series converges. But from (0.2.33), it follows that the series (0.2.35) is
in fact a finite sum, and so exp Θ is well defined, in the above sense. Moreover, we can
prove that exp Θ is a generalized loop, i.e., satisfy the conditions (0.2.23) and (0.2.24).

0.2.1 Example

Let R : ∧1(M) → IR a compactly suported closed DeRham 1-current, and define an element
ΘR ∈ ˜lMp, through:

ΘR(ω1...ωr) =
{

0 if r 6= 1
R(ω1) if r = 1
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Recall that ΘR must obey the differential constraints (0.2.10) and (0.2.11), i.e., ΘR(df) = 0 and
ΘR(fω) = f(p)ΘR(ω). This last condition implies that ΘR must be extremelly “singular”. One
such ΘR is obtained for R = δv, v ∈ TpM , the Dirac current δv(ω) = ωp(v).

Then, we can compute that:

expΘR(ω1) = ΘR(ω1) = R(ω1)

expΘR(ω1ω2) =
1
2!

R(ω1)R(ω2)

expΘR(ω1ω2ω3) =
1
3!

R(ω1)R(ω2)R(ω3)

expΘR(ω1ω2ω3ω4) =
1
4!

R(ω1)R(ω2)R(ω3)R(ω4)

and so on.

Converselly, given α̃ ∈ L̃Mp, we define:

log α̃ ≡
∑

n≥1

(−1)n−1

n
(α̃− ε)n (0.2.36)

where (α̃− ε)n ≡ (α̃− ε)n−1 ? (α̃− ε), ∀n ≥ 1. Since

(α̃− ε)n(ω1...ωr) = 0, ∀n > r ≥ 0 (0.2.37)

log α̃ is also a well defined element in the above sense, which moreover, belongs to l̃Mp.

By the calculus of formal power series, we know that:

exp(k log α̃) = α̃k ∀k ∈ IZ

log(exp δ) = δ

Let us define, for each t ∈ IR:

α̃t ≡ exp(t log α̃) (0.2.38)

Then we can easilly prove that t 7→ α̃t is a one-parameter subgroup of L̃Mp, generated
by log α̃, i.e.:

α̃0 = ε

α̃t ? α̃s = α̃t+s

lim
t→0

α̃t − ε

t
= log α̃

this last limit in the above (weak) sense.

0.3 Generalized Holonomies

Note that the above definition (0.2.6), work equally well for 1-forms A, on M, with
values in an associative algebra A (p.ex., C or any subalgebra of gl(p) = gl(p, C), the
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algebra of p × p complex matrices). Of course in this case the functions Xγ, defined by
(0.2.6), take values on A. So, for example, if A ⊆ gl(p), then Xγ(A1A2) =

∫
γ
A1A2, with

A1, A2 ∈ Ω1M⊗ A (i.e., A1, A2 are two matrices of usual 1-forms in M), denotes the
matrix in A ⊆ gl(p):

(∫

γ

A1A2

)i

j

=

∫

γ

(A1)
i
k ⊗ (A2)

k
j

=

∫

γ

(A1)
i
k(A2)

k
j (0.3.1)

and the same for
∫

A1...Ar.

Xγ(A1...Ar) =
∫

γ
A1...Ar satisfy the same differential constraints, namelly (note the

order of the products):

Xγ(dF ) = 0 (0.3.2)
Xγ(dFA1...Ar) = Xγ

(
(FA1)A2...Ar

)− F (p).Xγ(A1...Ar) (0.3.3)
Xγ(A1...ArdF ) =

(
Xγ(A1...Ar)

)
.F (p)−Xγ

(
A1...Ar−1(ArF )

)
(0.3.4)

Xγ

(
A1...Ai−1(dF )Ai+1...Ar

)
= Xγ

(
A1...Ai−1(FAi+1)Ai+2...Ar

)

−Xγ

(
A1...(Ai−1F )Ai+1...Ar

)
(0.3.5)

∀F ∈ C∞M⊗A and for all A1, ..., Ar ∈ Ω1M⊗A. (Note that A1...Ar means the product
of the matrices A1, A2, ..., Ar, the entries being multiplied through ⊗).

In particular, if {T a}a=1,...,n is a basis for A, and if:

A =
n∑

a=1

ωa T a ωa ∈ Ω1(M) (0.3.6)

is an A-1-form in M, we can write, using (0.3.1):
∫

γ

A =
∑

a

( ∫

γ

ωa

)
T a

∫

γ

AA =
∑

a,b

( ∫

γ

ωaωb

)
T aT b

· · ·∫

γ

AA · · ·A︸ ︷︷ ︸
r

=
∑

a1,··· ,ar

( ∫

γ

ωa1ωa2 · · ·ωar

)
T a1T a2 · · ·T ar (0.3.7)

If ‖A(t)‖ = ‖Aγ(t)(γ̇(t))‖ ≤ M, ∀t ∈ [0, 1], then:

‖
∫

γ

AA · · ·A︸ ︷︷ ︸
r

‖ = ‖
∫

∆r

A(t1)A(t2) · · ·A(tr)dt1dt2 · · · dtr‖

≤
∫

∆r

‖A(t1)A(t2) · · ·A(tr)‖dt1dt2 · · · dtr

≤ M rvol (∆r) =
M r

r!
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and so, the series:

Id +

∫

γ

A +

∫

γ

AA +

∫

γ

AAA + ... (0.3.8)

converges in Gl(p). When A = G is the Lie algebra of a Lie group G ⊆ Gl(p), and
A ∈ Ω1(M)⊗G represents a connection 1-form, then its parallel transport (or holonomy):

U : PM→ G ⊆ Gl(p)

is given exactly by the above chronological series of iterated integrals (see [8] for all this):

Uγ(A) = Id +

∫

γ

A +

∫

γ

AA +

∫

γ

AAA + ...

= Id +
∑
r>0

∑
a1,··· ,ar

( ∫

γ

ωa1ωa2 · · ·ωar

)
T a1T a2 · · ·T ar

= Id +
∑
r>0

∑
a1,··· ,ar

Xγ(ωa1ωa2 · · ·ωar) T a1T a2 · · ·T ar (0.3.9)

Under a gauge transformation g : U ⊆M→ G ⊂ Gl(p), we have that:

A → Ag ≡ g−1Ag + g−1dg (0.3.10)

and (see [12]):

Uγ(A
g) = g−1(p)Uγ(A)g(p) (0.3.11)

where p = γ(o), and so we obtain a gauge independent loop functional, defined by:

Wγ(A) = Traço Uγ(A) (0.3.12)

which is usually called Wilson loop variable.

Now we would like to define generalized holonomies and generalized Wilson loop vari-
ables, through formulas similar to (0.3.9) and (0.3.12), but instead of the usual loop

γ ∼= Xγ, we would like to put a generalized loop α̃ ∈ L̃Mp (see the discussion in the
introduction).

♣ Definição 0.1 ... Given a connection 1-form A ∈ Ω1(M) ⊗ G, and a generalized

loop α̃ ∈ L̃Mp, we define the formal generalized holonomy Uα̃(A), through the formal
series:

Uα̃(A) ≡
∑
r≥0

α̃(AA · · ·A︸ ︷︷ ︸
r

)

≡ Id +
∑
r>0

∑
a1,··· ,ar

α̃(ωa1ωa2 · · ·ωar) T a1T a2 · · ·T ar (0.3.13)

where {T a} is a basis for G, and A =
∑

a ωaT
a.
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Note that the formal generalized holonomy Uα̃(A), given by (0.3.13), is a series in
IR〈〈T a〉〉 the algebra of power series in the noncommutative indeterminates {T a}(a=1,··· ,n),
with coefficients in IR.

Every element F ∈ IR〈〈T a〉〉 can be written in the form F =
∑

r≥0 Fr, where Fr is a
homogeneous form of degree r. F =

∑
r≥0 Fr ∈ IR〈〈T a〉〉 will be called a Lie element if

F0 = 0 and if every Fr with r > 0, belongs to the free Lie algebra L[T a] (with respect
to the brackett [G,H] = GH − HG) generated by {T a}(a=1,··· ,n), over IR. Thus note
that, in the present context, we are interpreting {T a}a=1,··· ,n as formal noncommutative
indeterminates. By the universal property of free Lie algebras we know that there exists
a unique Lie algebra homomorphism:

L[T a] −→ G (0.3.14)

which sends each formal noncommutative indeterminate T a in the basis element T a for G,
(we hope there is no danger of confusion in the use of the same symbol T a in the previous
two contexts).

Recall that given a power series U = Id + S ∈ IR〈〈T a〉〉, we define its logarithm,
〈U ∈ IR〈〈T a〉〉, through:

〈U = 〈(Id + S) =
∑
r≥1

(−1)r−1

r
Sr (0.3.15)

Moreover, for a power series F ∈ IR〈〈T a〉〉, with zero constant term, we define its expo-
nential by:

expF =
∑
r≥0

Fr

r!
(0.3.16)

As usual one has the formulas:

exp(〈(U)) = U and 〈(exp(F)) = F (0.3.17)

Finally, define the symbol
[
T a1 , T a2 , · · · , T ar

]
inductivelly by:

[T a1 ] = T a1

· · ·[
T a1 , T a2 , · · · , T ar

]
=

[
[T a1 , T a2 , · · · , T ar−1 ], T ar

]
(0.3.18)

♣ Proposição 0.2 ...

If A ∈ Ω1(M)⊗ G, and α̃ ∈ L̃Mp, then Fα̃(A) ≡ 〈(Uα̃(A)
)

is a Lie element.

In fact we have that:

Fα̃(A) =
∑
r>0

(Fα̃)r

=
∑
r>0

∑
a1,··· ,ar

1

r
(log α̃)(ωa1ωa2 · · ·ωar)

[
T a1 , T a2 , · · · , T ar

]
(0.3.19)

where log α̃ was defined in (0.2.36).
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Proof...

That Fα̃(A) is a Lie element is a direct application of theorem 3.2 in [14] (pag. 54), and
depends only on the fact that α̃ : Sh → IR is an algebra morphism, i.e,

α̃(u • v) = α̃(u)α̃(v) ∀u,v ∈ Sh

So, we see that:
Fα̃(A) ≡ 〈(Uα̃(A)

)

can be written in the form:
Fα̃(A) =

∑

r>0

(Fα̃)r

where each (Fα̃)r is homogeneous of degree r, and belongs to the free Lie algebra generated by
{T a}(a=1,··· ,n), over IR. We can write:

(Fα̃)r =
∑

a1,··· ,ar

Θ(ωa1ωa2 · · ·ωar) T a1T a2 · · ·T ar (0.3.20)

where:
Θ(ω1...ωk • ωk+1...ωk+s) = 0

∀k ≥ 1, ∀s ≥ 1 (by theorem 2.2 in [13] (pag.214)).

Now substituting:

Sα̃ ≡
∑

r>0

∑
a1,··· ,ar

α̃(ωa1ωa2 · · ·ωar) T a1T a2 · · ·T ar

in (0.3.15) and computing, we obtain that:

Θ(ωa1ωa2 · · ·ωar) = (log α̃)(ωa1ωa2 · · ·ωar)

Finally, by Dynkin-Specht-Wever theorem (see theorem 2.3 in [13] (pag.214)), we have that:

r (Fα̃)r =
∑

a1,··· ,ar

(log α̃)(ωa1ωa2 · · ·ωar)
[
T a1 , T a2 , · · · , T ar

]
(0.3.21)

QED.

We call the series Fα̃(A), given by (0.3.19), the BACH series (Baker-Campbell-Haus-
dorff) for the formal generalized holonomy Uα̃(A).

When α̃ = Xγ is a usual loop, we can give a sufficient condition for the convergence of
the corresponding BACH series FXγ (A) = Fγ(A), using a reasoning similiar to that used
in the classical case (see [11]). In fact consider the image in G of each term (Fα̃)r under the
homomorphism (0.3.14). Denote it by the same symbol. Consider also a multiplicative
norm ‖ · ‖ in G, such that ‖[X, Y ]‖ ≤ ‖X‖‖Y ‖ (this always exist (see [11])), and let:

δ = max{‖T a‖ : a = 1, · · · , n}
Then by induction we have that:

‖[T a1 , T a2 , · · · , T ar
]‖ ≤ δr
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Now we compute (log α̃)(ωa1ωa2 · · ·ωar). For example, we have:

log α̃(ω1) = α̃(ω1)

log α̃(ω1ω2) = α̃(ω1ω2)− 1
2
α̃(ω1)α̃(ω2)

log α̃(ω1ω2ω3) = α̃(ω1ω2ω3)− 1
2
[α̃(ω1)α̃(ω2ω3) + α̃(ω1ω2)α̃(ω3)]

+
1
3
α̃(ω1)α̃(ω2)α̃(ω3)

log α̃(ω1ω2ω3ω4) = α̃(ω1ω2ω3ω4)− 1
2
[α̃(ω1)α̃(ω2ω3ω4) + α̃(ω1ω2)α̃(ω3ω4)

+α̃(ω1ω2ω3)α̃(ω4)] +
1
3
[α̃(ω1)α̃(ω2)α̃(ω3ω4)

+α̃(ω1)α̃(ω2ω3)α̃(ω4) + α̃(ω1ω2)α̃(ω3)α̃(ω4)]

−1
4
α̃(ω1)α̃(ω2)α̃(ω3)α̃(ω4)

and so on. Now with α̃ = Xγ each term is given by Chen iterated integration, and we
have that:

|Xγ(ωa1ωa2 · · ·ωar)| ≤
M r

r!
(0.3.22)

where:
M = max{|Xγ(wa)| : a = 1, · · · , n}

So we obtain:

‖(Fγ)r‖ ≤ ‖1

r

∑
a1,··· ,ar

(log α̃)(ωa1ωa2 · · ·ωar)
[
T a1 , T a2 , · · · , T ar

]‖

≤
r∑

k=1

Dr Λr (0.3.23)

with (recall that n = dimG):
Λ = nMδ

and:

Dr =
1

r

r∑

k=1

1

k

∑
j1,··· ,jk

1

j1! · · · jk!

where the sum
∑

j1,··· ,jk
is made for all j1 ≥ 1, · · · , jk ≥ 1 such that j1 + · · ·+ jk = r. Now

the term
∑

j1,··· ,jk

1
j1!···jk!

is the coefficient in tr of the Taylor series in t = 0 of (et − 1)k,
and so rDr is the coefficient in tr of the Taylor series in t = 0 of:

r∑

k=1

1

k
(et − 1)k

or, what is the same, of:

f(t) =
∑

k≥1

1

k
(et − 1)k
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We compute that:
∑
r≥1

DrΛ
r =

∫ Λ

0

f(t)

t
dt

But the series for f(t) converges ∀t : |et − 1| < 1, i.e., ∀t : t < log 2, and so
∑

k≥1 Dr Λr

converges if Λ < log 2. Thus, by (0.3.23), we see that the BACH series Fγ(A) converges
if:

Λ = nMδ < log 2 (0.3.24)

0.3.1 Examples

(i). When the connection is abelian, say A = iω, then:

Uα̃(iω) = 1 +
∑

k≥1

ik

k!
α̃(ω)k

and we recover formula (0.1.1) of the introduction. The corresponding BACH formula is:

Fα̃(iω) = i
∑

k≥1

(−1)k−1

k
α̃(ω)k

and so is convergent if |α̃(ω)| < 1.

(i)... If α̃ = expΘR like in example 2.1, then:

Fα̃(A) =
∑

a

R(ωa)T a ∈ G

(ii)... If α̃ = Xt
γ ≡ exp(t log Xγ), then:

FXt
γ
(A) = tFXγ (A) ∈ G

if condition (0.3.24) is verified.

♣ Proposição 0.3 ...

Let A ∈ Ω1(M)⊗ G. Then the set G ≡ {Uα̃(A)}α̃ of formal generalized holonomies,
it’s a group. In fact:

Uα̃(A)Uβ̃(A) = Uα̃?β̃(A)
[
Uα̃(A)

]−1
= Uα̃−1(A)

∀α̃, β̃ ∈ L̃Mp, where:

[
Uα̃(A)

]−1
= Id +

∑
r>0

∑
a1...ar

(−1)r
(
α̃(ωarωar−1 · · ·ωa1)

)
T a1T a2 · · ·T ar

So the map α̃ 7→ Uα̃(A) is an homomorphism of groups L̃Mp → G.
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Proof... (See also corollary 3.3 in [14], pag. 55).

Uα̃(A) Uβ̃(A) = (Id + α̃(ωa1)T
a1 + · · · ) + α̃(ωa1ωa2)T

a1T a2 + · · · )
(Id + β̃(ωa1)T

a1 + · · · ) + β̃(ωa1ωa2)T
a1T a2 + · · · )

= Id + (α̃(ωa1) + β̃(ωa1))T
a1

+(α̃(ωa1ωa2) + α̃(ωa1)β̃(ωa2) + β̃(ωa1ωa2))T
a1T a2

+ · · ·+
(α̃(ωa1 · · ·ωar) + α̃(ωa1)β̃(ωa2 · · ·ωar) + · · ·

+ · · ·+ β̃(ωa1 · · ·ωar))T
a1 · · ·T ar + · · ·

= Id + (α̃ ? β̃)(ωa1)T
a1 + (α̃ ? β̃)(ωa1ωa2)T

a1T a2

+ · · ·+ (α̃ ? β̃)(ωa1 · · ·ωar)T
a1 · · ·T ar + · · ·

= Uα̃?β̃(A)

QED.

0.4 (Non) Covariance of Generalized Holonomies

Now let g : M→ G ⊂ Gl(p) be a gauge transformation and A ∈ Ω1(M)⊗G a connection
1-form. g acts on A by:

A 7→ Ag = g−1Ag + g−1dg

To obtain the corresponding infinitesimal action put g(t) = etξ, so that g(o) = Id and:

ξ =
d

dt
|t=0 g(t) : M→ G ⊂ gl(p)

is an infinitesimal gauge transformation. Then the infinitesimal affine action on A is given
by:

ξ 7→ Aξ = A + DAξ (0.4.1)

where DAξ = dξ + Aξ − ξA = dξ + [A, ξ] is the covariant derivative of ξ. That is DAξ is
a tangent vector in A to the affine space of gauge connection 1-forms.

Now let α̃ ∈ L̃Mp. We want to study the change in the formal generalized holonomy
when the connection A suffers an infinitesimal gauge transformation A 7→ Aξ. So we want
to compute Uα̃(Aξ), using only the differential constraints (0.3.2) to (0.3.5). However to
simplify matters we compute the “differential” of Uα̃ at A:

d(Uα̃)A(DAξ) =
d

dt
|t=0 Uα̃(A + tDAξ) (0.4.2)
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Calling B = DAξ = dξ + [A, ξ] we have formally the following:

d(Uα̃)A(DAξ) =
d

dt
|t=0 Uα̃(A + tDAξ)

=
d

dt
|t=0 Uα̃(A + tB)

=
d

dt
|t=0

∑
r≥0

α̃((A + tB)r)

= α̃(B) + α̃(AB + BA) + α̃(AAB + ABA + BAA) + · · ·

Now using the differential constraints (0.3.2) to (0.3.5), and denoting C = [A, ξ], we have:

α̃(B) = α̃(dξ + C) = α̃(C)
α̃(AB + BA) = [α̃(A), ξ(p)]− α̃(C) + α̃(AC + CA)

α̃(AAB + ABA + BAA) = [α̃(AA), ξ(p)]− α̃(AC + CA) +
+α̃(AAC + ACA + CAA)

α̃(AAAB + AABA + ABAA + BAAA) = [α̃(AAA), ξ(p)]− α̃(AAC + ACA +
CAA) + α̃(AAAC + AACA + ACAA + CAAA)

· · ·

and so formally:

d(Uα̃)A(DAξ) =
∑
n≥1

(
[α̃(AA · · ·A︸ ︷︷ ︸

n−1

), ξ(p)] + Rn(α̃; A, ξ)−Rn−1(α̃; A, ξ)
)

(0.4.3)

where:

Rn(α̃; A, ξ) = α̃
( d

ds
|s=0 (A + s[A, ξ])n

)

= α̃(AA · · ·A︸ ︷︷ ︸
n−1

[A, ξ] + AA · · ·A︸ ︷︷ ︸
n−2

[A, ξ]A + · · ·+ [A, ξ] AA · · ·A︸ ︷︷ ︸
n−1

)

(0.4.4)

Consider the partial sum of the N ≥ 1 first terms of the series (0.4.3):

SN ≡ [ N∑
n=1

α̃(AA · · ·A︸ ︷︷ ︸
n−1

), ξ(p)
]
+ RN(α̃; A, ξ) (0.4.5)

(we put α̃(AA · · ·A︸ ︷︷ ︸
n−1

) = Id for n = 1). So we see that if
∑N

n=1 α̃(AA · · ·A︸ ︷︷ ︸
n−1

) converges to

Uα̃(A) (in G ⊂ GL(p), when N →∞), then the formal generalized holonomy Uα̃ will be
gauge covariant iff:

lim
N→∞

RN(α̃; A, ξ) = 0 (0.4.6)

Thus we obtain the same result of T. Schilling, who has also given several examples
of non covariance of generalized holonomies (see [16]).



0.4. (Non) Covariance of Generalized Holonomies 17

However, if we work with nilpotent connections, i.e., those for which Ar = 0 for some
r ≥ 1, then everything works well. In fact, assume that A ∈ Ω1M⊗Nr, where Nr denotes
the Lie algebra of nilpotent upper triangular (r + 1)× (r + 1) matrices. In this case, the
series (0.3.13) for Uα̃ is finite and so convergent. For example, if ω1, ..., ωr ∈ Ω1M and:

A =




0 ω1 0 . . . . . . 0
0 0 ω2 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 ωr

0 0 0 . . . 0 0




then, for every generalized loop α̃, we have:

Uα̃(A) =




1 α̃(ω1) α̃(ω1ω2) α̃(ω1ω2ω3) . . . α̃(ω1ω2...ωr)
0 1 α̃(ω2) α̃(ω2ω3) . . . α̃(ω2...ωr)
0 0 1 α̃(ω3) . . . α̃(ω3...ωr)
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 α̃(ωr)
0 0 0 . . . 0 1




Moreover in this case condition (0.4.6) is verified, and so Uα̃(A) is covariant for every
generalized loop α̃.

However in the general case this seems not to be true, first because it seems very
difficult to give a general criterion for convergence of the series (0.3.13) for Uα̃, and second
because condition (0.4.6) is not always verified, even if the series (0.3.13) converges! (see
the examples in [16]).
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