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Abstract

Following the ideas of Élie Cartan (1928), we use Cartan’s equivalence method and the notion of Cartan’s affine

generalized space and development to geometrize non holonomic mechanics.1

1 Introduction

The purpose of this paper is to give, using modern differential geometrical tools, a detailed version of the
ideas of Élie Cartan, exposed in his adress at the 1928 International Congress of Mathematicians (see [5]),
about geometrization of non holonomic systems.

This important paper seems forgotten in the mathematical literature devoted to non holonomic systems.
To our knowledge, the only exception is due to Jair Koiller and his colaborators, in a recent preprint that
has appeared during the preparation of this work (see [12]), in which they also make a tentative to bring
at daylight Cartan’s paper. However their methods are very different from those we develop here. In fact,
they use extensively the traditional Koszul approach to connection theory, based in covariant derivatives, as
is explained for example in [19], and they put emphasis in other issues that are not considered here. In this
paper we have tryed instead to follow closely the two key ideas of Cartan’s approach to geometric structures,
namely his equivalence method, or in modern terms the geometry of G-structures (see [8], [10], [20]), which
hopefully seems the strongest way to treat the geometric structure behind non holonomic systems, and his
notion of “generalized space”, here space with affine connection (see [6], [7], and for a modern approach, the
recent book [18]). These two key ideas were developed by Cartan along several years, in a lot of papers,
where he has applied them extensively, for example, to relativity theory (see [6]) and to his program of
geometrization of differential equations (see the third volume of his “Oeuvres complètes”).

Given a non-holonomic mechanical system M with configuration space Q, a n-dimensional smooth Rie-
mannian manifold, with Riemannian metric g (the kinetic energy), and non-holonomic constraints given by a
completely non integrable distribution D of dimension d, the main idea is to associate to M, an intrinsically
defined Euclidean (or metric) connection, in general with torsion, and to use it to develope the space Q,
along any of its curves, into a fixed affine space Do, for some fixed point o ∈ Q.

1Work supported by Fundação para a Ciência e a Tecnologia (FCT) through the Centro de Matemática da Universidade
do Porto (CMUP). Available as a PDF file from http://www.fc.up.pt/cmup.
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The tentactive of associating to a non-holonomic mechanical system a connection, goes back to Synge,
Vancreanu, and more recently, citing just a few, to Vershik and Gershkovich ([21], [22]), Bates and Sniatycki
([2]) and Bloch and Crouch ([4]). However, in these papers, the connections found are in general neither
metric nor unique. In fact, often the choice of connection is based on somewhat ad hoc assumptions which
obscures the true geometric realm of the structure of non-holonomic systems. On the contrary, and this one
the main differences of the approach we develop, the connection founded here is intrinsically associated to
the non-holonomic system, at least for 2-step distributions, and moreover it is a metric connection, though
in general with torsion. This difference is very explicit in the example treated in section 4, the constrained
particle, which must be compared with ([2], example 2) and ([4], example 6.2). In both these works the
connection is not metric.

Another subject that we explore is the following - to the non-holonomic system M (in the 2-step situ-
ation), we associate a Cartan (affine) connection to the affine frame bundle of Q (in Cartan’s terminology
[6], [7], a “generalized space” - this is part of Cartan’s generalization of Klein’s Erlangen programm, as is
explained in the recent book [18]), which is then used to develope Q, along any of its curves, into a fixed
affine space Do, for some fixed point o ∈ Q. This strongly resembles the analogous situation for holonomic
systems, when we roll (eventually with skidding or spinning) a d-dimensional submanifold on another d-
dimensional submanifold (a d-plane, for example) in IRn (see the beautiful paper of Nomizu [14]). However,
in general, we have now torsion, whose geometrical meaning is made clear, in our context, in section 3 and
more concretely in the example of section 4 - take a “small” loop, based in o ∈ Q, and develop it in Do

to obtain a curve that starts in o. In general, this curve doesn’t close, and, to second order, the failure to
close is measured by a vector which is exactly the torsion of the connection at o (see section 3 for a rigorous
approach).

The paper is organized as follows. In section 1, we use Cartan’s equivalence method to geometrize non
holonomic mechanics, by associating to such a system an Euclidean connection. For a 2-step generating
distribution D, we are able to associate intrinsically two Euclidean connections, in general with torsion,
recovering the results of Cartan in [5]. We also include, for pedagogical reasons and also to make the paper
as much self-contained as possible, a short exposition about Cartan’s equivalence method, following closely
references [20] and the very influential recent book [13], since this method seems poorly used in the non-
holonomic context. Section 2, gives a detailed version of the notion of Cartan’s affine generalized space and
also of the notion of development. This is then used to develope Q, along any of its curves, into a fixed affine
space Do, for some fixed point o ∈ Q. Finally, in section 3, we ilustrate the previous theory by working out
the detailed computations in the example of a constrained particle in IR3.

2 Cartan Geometrization of Non Holonomic Mechanics

Consider a non-holonomic mechanical system M with configuration space Q, a n-dimensional smooth Rie-
mannian manifold, with Riemannian metric g (the kinetic energy), a smooth 1-form F ∈ Ω1(Q) (the force
field), and non-holonomic constraints2, given by a smooth rank d completely non integrable vector subundle
of TQ, i.e, a completely non integrable distribution D of dimension d in Q.

We also assume that D is brackett generating which, by Chow theorem (see [13]), guarantees that the
set of all possible positions of our mechanical system M is all of Q.

The d’Alembert-Lagrange principle (see [1]) says that the dynamics of M obeys the following condition:

[L]− F ∈ D⊥ (2.1)

where [L] is the Lagrange derivative of the Lagrangian L = 1
2g (see [1], pag. 12) and D⊥ is the anihilator of

D in T ∗Q.

Hereafter we use the following indices conventions: i, j, k, ` = 1, · · · , d = dimD; α, β, γ, λ = d+1, · · · , n =
dim Q and a, b, c = 1, · · · , n.

We denote by V the vector space IRn of column vectors, with a fixed basis {εa}, and by V ∗ its dual of
row vectors, with the dual basis {εa}, and we also consider the subspace S of V , generated by the first d

2we consider only the time independent case, for simplicity.
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vectors {εi}i=1,···,d of the basis {εa}. By a 0-adapted coframe θq for Dq, q ∈ Q, we mean an isomorphism
θq : TqQ → V , which satisfies θq(Dq) = S and θ∗q 〈 , 〉|S = gq|Dq

, where 〈 , 〉|S is the usual Euclidean

inner product on S ∼= IRd. Moreover, we denote by G0 the subgroup of GL(V ) consisting on the linear
isomorphisms of V that fix S, and which, when restricted to S, are orthogonal transformations of S. In
terms of the basis {εa} = {εi; εα} for V , G0 is the subgroup of GL(n) given by the following block triangular
matrices: [

C B
0 A

]
(2.2)

where A and B are arbitrary real matrices (of functions), respectively (n− d)× (n− d), d× (n− d), C is an
orthogonal d× d matrix, and detC detA 6= 0.

Consider a (local) 0-adapted coframe θ for D. Put θ = θiεi + θαεα and look at θ as a column vector of

1-forms on Q: θ = [θa] =
[

θi

θα

]
. Thus (locally) θα anihilates D and g|D = (θ1)2 + · · ·+ (θd)2

∣∣
D. Of course

such a coframe is not unique - the indeterminacy is measured by the gauge group G0. Formally, we have a
G0-structure π : B0 = BG0 → Q, where G0 is the subgroup of GL(n) given by the above mentioned block
triangular matrices. The group G0 acts on the right of B0 by the rule Rg(θ) = θ · g = g−1θ where θ = [θa],
and g ∈ G0 ⊂ GL(n).

If we fix a 0-adapted coframe θ = [θa], defined on an open set U ⊆ Q (i.e., a local section of B0 over U),
then we have a trivialization of the G0-bundle over U , given by:

τθ : U ×G0 −→ B0|U
(q, g) 7−→ g−1θq

(2.3)

that is equivariant in the sense that τθ(q, gh) = (gh)−1θq = h−1g−1θq = h−1τθ(q, g) = τθ(q, g) · h.

We now consider the soldering form Θ (or tautological V -valued 1-form), defined on B0, through the
formula:

Θη(v) = η ◦ π∗(v), v ∈ TηB0, η ∈ B0 (2.4)

Note that on the LHS of (2.4), η is considered as a point of B0, while on the RHS is considered as an
isomorphism η : Tπ(η)Q → V , defined by η(v) = [ηa(v)], v ∈ Tπ(η)Q. The soldering form has the following
properties (see [10],[13], [20]):

• Equivariance: R∗gΘ = g−1Θ.

• Semi-basic: ιXΘ = 0, for every vertical vector field X (tangent to the fibers).

• Reproducing property: if σ : U → B0 is a local section, then σ∗Θ = σ, where on the RHS σ is
viewed as a V -valued form on U .

Using the local trivialization (2.3), it’s easy to see that (τ∗θ Θ)(q,g) = g−1θq. Let us denote τ∗θ Θ simply
by Θ. Then we have:

Θ(q,g) =
[

Θi
(q,g)

Θα
(q,g)

]
=

[
C B
0 A

]−1 [
θj

q

θβ
q

]
, where g =

[
C B
0 A

]
∈ G0 (2.5)

Following the equivalence method of E. Cartan (see [10],[13], [20]), we now choose a connection form, that
is, an equivariant g0-valued 1-form ω on B0, where g0 = Lie(G0), that verifies the following two properties:

• ω(Xξ) = ξ, ∀ξ ∈ g0, where Xξ is the infinitesimal generator of the G0-right action on B0.

• R∗gω = g−1ωg, ∀g ∈ G0.
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If we put g = exp(tξ), ξ ∈ g0 in the equivariance property R∗gΘ = g−1Θ, and differentiate for t = 0, we
obtain LXξ

Θ = −ξ ·Θ, and since Θ(Xξ) = 0 we get:

dΘ(Xξ,v) =
(

ιXξ
dΘ

)
(v)

=
(
LXξ

Θ− dιXξ
Θ

)
(v)

= −ξ ·Θ(v)

= −
(
ω(Xξ) ·Θ(v)− ω(v) ·Θ(Xξ)

)

def= −(ω ∧Θ)(Xξ,v) (2.6)

which shows that dΘ + ω ∧Θ is a V -valued semi-basic 2-form on B0, and thus can be written as:

dΘ + ω ∧Θ = T (2.7)

where T is a V -valued semi-basic 2-form on B0. This is the so called Cartan first structure equation.
T = T[ω] is the torsion of the connection ω, and can be expanded T = Ta

efΘ
e ∧Θf ⊗ εa. However, if

we put, for each η ∈ B0, kerωη = Hη we know that η 7→ Hη is a n-dimensional distribution transversal to
the fibers and that Θη|Hη

: Hη → V is an isomorphism. Using this isomorphism we can consider T as a
function:

T : B0 → V ⊗ ∧2V ∗ ∼= Hom(∧2V, V ), T = Ta
efεa ⊗ εe ∧ εf (2.8)

that satisfies the equivariance:

T(η · g)(v ∧ w) = g−1 T(η)(gv ∧ gw), v, w ∈ V, η ∈ B0, g ∈ G0 (2.9)

Now we study how the torsion varies with the choice of the connection. So, let us assume that we choose
another connection form ω̂. Then ω̂ = ω + ϕ, for some g0-valued semi-basic 1-form of adjoint type, i.e.,
R∗gϕ = g−1ϕg and ιXϕ = 0, ∀X vertical. Therefore, we can write ϕ = ϕaΘ

a, for g0-valued functions ϕa.
Using again the above mentioned isomorphism Θη|Hη

: Hη → V , and in terms of a basis {ξr} for g0 and
{εa} for V ∗, we can write ϕ as a function:

ϕ : B0 → g0 ⊗ V ∗ ∼= Hom(V,g0), ϕ = ϕr
a ξr ⊗ εa (2.10)

for certain functions ϕr
a on B0. Therefore we see that the space g0 ⊗ V ∗ parametrizes the ambiguity in the

choice of the connection 1-form. We also have that ϕ is G-equivariant:

ϕ(η · g)(v) = g−1 ·ϕ(η)(gv) · g, v ∈ V, η ∈ B0, g ∈ G0 (2.11)

By Cartan first structure equation (2.7), we now have:

dΘ = −ω ∧Θ + T = −ω̂ ∧Θ + T̂

where T̂ is the torsion of ω̂, and so:

T̂−T = (ω̂ − ω) ∧Θ = ϕ ∧Θ (2.12)

By (2.8), we have, for each η ∈ B0, that T̂(η) − T(η) ∈ V ⊗ ∧2V ∗, and by (2.10) ϕ(η) ∈ g0 ⊗ V ∗ ↪→
(V ⊗ V ∗) ⊗ V ∗. Of course ϕ(η) ∧Θ(η) must be in V ⊗ ∧2V ∗, and we can prove that, for each η ∈ B0, we
have:

T̂(η)−T(η) = ϕ(η) ∧Θ(η) = δ(ϕ(η)) (2.13)

where δ is the torsion map δ : g0 ⊗ V ∗ → V ⊗ ∧2V ∗, obtained by the composition:

δ : g0 ⊗ V ∗ ↪→ (V ⊗ V ∗)⊗ V ∗ −→ V ⊗ ∧2V ∗ (2.14)
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where the last map skew-symmetrizes the final two V ∗-factors. In fact, in terms of the isomorphisms
g0 ⊗ V ∗ ∼= Hom(V,g0) and V ⊗∧2V ∗ ∼= Hom(∧2V, V ), the torsion map δ can be written in the useful form:

δ(ψ)(v ∧ w) = ψ(v)w − ψ(w) v, v, w ∈ V, ψ ∈ Hom(V,g0) (2.15)

from where (2.13) is clear.

So we see that, under a change ω 7−→ ω̂ = ω + ϕ, the torsion changes acording to T 7−→ T̂ = T− δ(ϕ),
which suggests studying the kernel and cokernel of the torsion map δ:

ker δ
def= g(1)

0 coker δ
def= H0,2(g0) (2.16)

g(1)
0 is called the first prolongation of g0, and H0,2(g0) the intrinsic torsion space of g0. Because the

map δ is G0-equivariant, it follows that these two vector spaces have natural induced G0-actions ρ(1) : G0 →
GL(g(1)

0 ) and ρ0,2 : G0 → GL(H0,2(g0)).

For an element t ∈ V ⊗ ∧2V ∗, denote by [t] ∈ H0,2(g0), its projection into the intrinsic torsion space.
Then the computation above shows that [T̂] = [T], as maps from B0 to H0,2(g0). In other words, the map
[T] : B0 → H0,2(g0) is independent of the choice of the connection ω, and so defines an intrinsic torsion
function of the G0-structure B0, which is equivariant:

[T](η · g) = ρ0,2(g−1)([T](η)), ∀η ∈ Bo, ∀g ∈ G0

One of the main steps in Cartan’s equivalence method is to choose the connection ω, using the freedom
ω 7→ ω + ϕ, so that the torsion simplifies as much as possible (this is usually called “torsion absorsion”). In
our case we have:

ω =
[

ωi
j ωi

β

0 ωβ
γ

]
∈ Ω1(B0;g0)

that coincides with the left-invariant Maurer-Cartan form on each fiber π−1(q) ∼= G0, q ∈ Q, and Cartan
structure equation (2.7) takes the form:

[
dΘi

dΘα

]
= −

[
ωi

j ωi
β

0 ωα
β

]
∧

[
Θj

Θβ

]
+

[
Ti

jkΘ
j ∧Θk + Ti

kβΘk ∧Θβ + Ti
βγΘ

β ∧Θγ

Tα
jkΘ

j ∧Θk + Tα
kβΘk ∧Θβ + Tα

βγΘ
β ∧Θγ

]
(2.17)

where ωi
j = −ωj

i . But we are free to add arbitrary semi-basic parts ϕi
β and ϕα

β , respectivelly to ωi
β and ωα

β .
If we expand these semi-basic parts ϕi

β = ϕi
βkΘ

k + ϕi
βγΘ

γ and ωα
β = ωα

βjΘ
j + ωα

βγΘ
γ , and substitute in

the structure equation (2.17), we see that we can choose these ϕ′s so that the Ti
kβ ,Ti

βγ ,Tα
kβ and Tα

βγ all
vanish. Now add a semi-basic part ϕi

j , with ϕi
j + ϕj

i = 0, to ωi
j . We expand ϕi

j = ϕi
jkΘ

k + ϕi
jγΘ

γ , and
we can assume already that ϕi

jγ = 0. Now note that we can also assume that ϕi
jk = −ϕi

kj , since any three
tensor ϕi

jk skew in two indices and symmetric in the other two (i.e., ϕi
jk = ϕi

kj = −ϕj
ik), must be zero (this

is called the S3 lemma). So, if we choose ϕi
jk = 1

2 (Ti
jk −Tj

ik) we vanish (absorve) the Ti
jk torsion terms.

Therefore by an appropriate choice of connection we can reduce the torsion terms in (2.17) to the form:
[

0
Tα

jkΘ
j ∧Θk

]

and, with this choice of connection the corresponding structure equation is (omiting the ·̂):
[

dΘi

dΘα

]
= −

[
ωi

j ωi
β

0 ωα
β

]
∧

[
Θj

Θβ

]
+

[
0

Tα
jkΘ

j ∧Θk

]
(2.18)

or (compare with [5], eq. (5)):
{

dΘi = −ωi
j ∧Θj − ωi

β ∧Θβ

dΘα = − ωα
β ∧Θβ + Tα

jk Θj ∧Θk (2.19)
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The second equation in (2.19) can be written in the form:

dΘα = Tα
jk Θj ∧Θk mod {Θα} (2.20)

which reveals that Tα
jk are the components of the structure tensor of the distribution D. More precisely,

if we choose a 0-adapted (local) coframe θ = [θa] =
[

θi

θα

]
to the distribution D, with dual frame {Xi;Xα},

then, pulling back (2.41) via θ, we obtain:

dθα = Tα
jk θj ∧ θk mod {θα} (2.21)

where Tα
jk(q) = Tα

jk(θ(q)), and so:

2Tα
jk = dθα(Xj , Xk)

= Tα
jk θj ∧ θk(Xj , Xk)

= −θα([Xj , Xk]) (2.22)

Incidentally, the previous computations shows that the intrinsic torsion space H0,2(g0) is V/S ⊗∧2S∗ ∼=
Hom(S ∧S, V/S), where we recall that S is the subspace of V generated by the first d vectors {εi}i=1,···,d of
the basis {εa} for V :

H0,2(g0) = (V ⊗ ∧2V ∗)/Im δ = V/S ⊗ ∧2S∗ ∼= Hom(S ∧ S, V/S) (2.23)

Now choose an adapted 0-coframe θ = [θa] =
[

θi

θα

]
, and consider the Riemannian space with Rieman-

nian metric:
ds2 =

∑

i

(θi)2 +
∑
α

(θα)2

Consider also the connection 1-form given, in the gauge θ, by the g0-valued 1-form ω = θ∗ω, with structure
equations the pull-back to the base of (2.19):

dθ = −ω ∧ θ + T (2.24)

(recall the reproducing property θ∗Θ = θ. We have also puted T = θ∗T). Let Xa denote the frame dual to
θa. If we consider a trajectory γ : I → Q, the corresponding velocity is the vector field V , along γ:

V (t) = va(t)Xa(γ(t)), where va(t) = θa(γ̇)

and its (ω-covariant) acceleration is given by:

DV

dt
=

dva

dt
Xa + va(t)

DXa

dt
(γ(t))

=
dva

dt
Xa + va(t)∇γ̇Xa

=
dvb

dt
Xb + va(t)ωb

a(γ̇)Xb

=
(

dvb

dt
+ va(t)ωb

a(γ̇)
)

Xb (2.25)

In particular, if we assume that γ is horizontal. i.e., γ̇ ∈ Dγ(t), ∀t, then splitting again the indices a = (i; α),
we have that vα = θα(γ̇) = 0, and so, since ωα

j (γ̇) = 0:

DV

dt
=

(
dvi

dt
+ vj(t)ωi

j(γ̇)
)

Xi

=
(

dθi(γ̇)
dt

+ ωi
j(γ̇) θj(γ̇)

)
Xi(γ(t)) (2.26)
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But what happens if we change the gauge? To see this, let us differentiate the equation R∗gΘ = g−1Θ, for a

fixed g ∈ G0, with Θ =
[

Θi

Θα

]
and g−1 =

[
C B
0 A

]−1

=
[

C−1 −C−1BA−1

0 A−1

]
. We then have:

R∗g

[
Θi

Θα

]
=

[
C−1 −C−1BA−1

0 A−1

] [
Θi

Θα

]
=

[
C−1Θi − C−1BA−1Θα

A−1Θα

]

and so, using the structure equations (2.19):

dΘ̂
i

= d(R∗gΘ
i)

= d
(
C−1Θi − C−1BA−1Θα

)

= C−1 dΘi − C−1BA−1 dΘα

= (C−1)i
j

(
−ωj

k ∧Θk − ωj
β ∧Θβ

)
− (C−1BA−1)i

α

(
−ωα

γ ∧Θγ + Tα
jkΘ

j ∧Θk
)

' −(C−1)i
j ωj

k ∧Θk − (C−1BA−1)i
α Tα

`k Θ` ∧Θk

' −(C−1)i
j ωj

k ∧Θk − (C−1)i
jB

j
β(A−1)β

α Tα
`k Θ` ∧Θk

' −(C−1)i
j

(
ωj

k −Bj
β(A−1)β

αTα
`kΘ

`
)
∧Θk

' −(C−1)i
j

(
ωj

k −Bj
β(A−1)β

αTα
`kΘ

`
)
∧ Ck

mΘ̂
m

' −(C−1)i
j

(
ωj

kCk
m −Bj

β(A−1)β
αTα

`kCk
mΘ`

)
∧ Θ̂

m

' −(C−1)i
j

(
ωj

kCk
m −Bj

β(A−1)β
αTα

`kCk
mC`

pΘ̂
p
)
∧ Θ̂

m

' −(C−1)i
j

(
ωj

kCk
m −Bj

β(A−1)β
αTα

`kCk
mC`

pΘ̂
p
)
∧ Θ̂

m

' −
(
(C−1)i

jω
j
kCk

m

)
∧ Θ̂

m − (C−1)i
jB

j
βT̂β

pm Θ̂
p ∧ Θ̂

m
(2.27)

where ' means = mod {Θα}, and we have also used (2.34). But, on the other side:

dΘ̂
i
= −ω̂i

m ∧ Θ̂
m

mod {Θα} (2.28)

and ω̂i
m = (C−1)i

jω
j
kCk

m, mod {Θα}, and so, comparing (2.27) with (2.28), we deduce that, in order to
preserve covariance of the covariant acceleration (2.26), for horizontal curves, we must have:

(C−1)i
jB

j
βT̂β

mp = 0

or equivalently (compare with equation (6) in [5]):

Bj
βT̂β

mp = 0 (2.29)

But this restricts the set of admissible coframes. In fact, if for example T(η) ∈ Hom(S∧S, V/S) is surjective
∀η ∈ B0, which means that D is a 2-step brackett generating distribution, then (2.29) implies that Bj

β = 0,
and so we must reduce the gauge group to3:

G1 =
{[

C 0
0 A

]
: C ∈ SO(d), A ∈ Gl(n− d)

}
⊂ G0

Hereafter we assume that D is a 2-step generating distribution. We then consider the corresponding G1-
structure π : B1 = BG1 → Q, and we choose a g1-connection form ω, on B1, with structure equations:

[
dΘi

dΘα

]
=

[
ωi

j 0
0 ωα

β

]
∧

[
Θj

Θβ

]
+

[
Ti

jkΘ
j ∧Θk + Ti

jβΘj ∧Θβ + Ti
βγΘ

β ∧Θγ

Tα
jkΘ

j ∧Θk + Tα
jβΘj ∧Θβ + Tα

βγΘ
β ∧Θγ

]
(2.30)

3this is the case treated in [5].
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Arguing as before, we add an arbitrary semibasic form ϕα
β = ϕα

βjΘ
j + ϕα

βγΘ
γ to ωα

β , and using this
freedom, we absorve the Tα

jβ and Tα
βγ torsion terms. Analogously, adding an arbitrary semibasic form

ϕi
j = ϕi

jkΘ
k to ωi

j , with ϕi
j + ϕj

i = 0, we absorve the Ti
jk torsion terms. With this choice of connection

form, the structure equation (2.30) reduces to:

[
dΘi

dΘα

]
=

[
ωi

j 0
0 ωα

β

]
∧

[
Θj

Θβ

]
+

[
Ti

jαΘj ∧Θα + Ti
αβΘα ∧Θβ

Tα
jkΘ

j ∧Θk

]
(2.31)

or (compare with [5], eq. (8)):
{

dΘi = ωi
j ∧Θj + Ti

kαΘk ∧Θα + Ti
αβΘα ∧Θβ

dΘα = ωα
β ∧Θβ + Tα

jkΘ
j ∧Θk (2.32)

Finally we can add an arbitrary semibasic form ϕi
j = ϕi

jαΘα to ωi
j , with ϕi

j + ϕj
i = 0, and arrange things

so that:
Ti

kα = Tk
iα (2.33)

and in this way the ωi
j-part of the connection ω is uniquely defined.

Now look at the Tα
jk-part of the torsion T = T[ω], defined by the second equation in (2.32). Denote this

torsion part simply by T̃, and recall that we may see T̃ as a map η ∈ B0 7→ T̃(η) ∈ Hom(S ∧ S, V/S) ∼=
∧2S∗⊗V/S. To see explicitly how G0 acts on this torsion part T̃, let us take a fixed g ∈ G0. Then, with g−1 =[

C−1 −C−1BA−1

0 A−1

]
, the equation Θ̂ def= R∗gΘ = g−1Θ implies that: Θ̂

i
= (C−1)i

kΘ
k mod {Θβ},

Θ̂
α

= (A−1)α
βΘβ , and so Θα changes to (A−1)α

βΘβ , when we apply the gauge transformation g. On the
other side, Θj ∧Θk changes to (C−1)j

`(C
−1)k

mΘl ∧Θm mod {Θβ}. So, in one hand we have:

dΘ̂
α

= T̂α
`mΘ̂

` ∧ Θ̂
m

mod {Θ̂α} = mod {Θα}
and on the other:

dΘ̂
α

= (A−1)α
β dΘβ

= (A−1)α
β Tβ

ik Θi ∧Θk mod {Θα}
= (A−1)α

β Tβ
ik Ci

`C
k
m Θ̂

l ∧ Θ̂
m

mod {Θα}
which means that the torsion part, that we are considering, changes according to:

Tα
`m(η · g) = (A−1)α

β Tβ
ik(η) Ci

`C
k
m, η ∈ B0, g =

[
C B
0 A

]
(2.34)

In particular we see that G1 acts exactly in the same way, since the B′s have no appearance in (2.34).

When D is a 2-step generating distribution, we can “normalize” the torsion part T̃ in the following way.
In this case, we know that T̃(η) : S ∧S → V/S is surjective ∀η ∈ B1, and thus, for each α = d + 1, · · · , n, we
can choose a bicovector Bα = Tα

ij(η) εi ∧ εj ∈ ∧2S∗, such that T̃(η)(Bα) form a basis for V/S. But in ∧2S∗

we have a metric, since S is Euclidean, and we can choose the linearly independent Bα orthonormal, with
respect to that metric, acting if necessary with an appropriate C-part of g (recall that C ∈ SO(d)). This
imposes the conditions (compare with (11) in [5]):

∑

ij

Tα
ijT

β
ij = δαβ (2.35)

Which g′s preserve this T̃-torsion normalization ? Of course those for which A ∈ SO(n − d). So we must
reduce the group to:

G2 =
{

g =
[

C 0
0 A

]
, C ∈ SO(d), A ∈ SO(n− d)

}
(2.36)

and this new B2-structure defines an intrinsic metric for the normal bundle TM/D.
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We proceed as before, choosing a connection for B2 and doing torsion absortion. The structure equation
has now the form:

[
dΘi

dΘα

]
=

[
ωi

j 0
0 ωα

β

]
∧

[
Θj

Θβ

]
+

[
Ti

jkΘ
j ∧Θk + Ti

jβΘj ∧Θβ + Ti
βγΘ

β ∧Θγ

Tα
jkΘ

j ∧Θk + Tα
jβΘj ∧Θβ + Tα

βγΘ
β ∧Θγ

]
(2.37)

with ωi
j + ωj

i = 0 and ωα
β + ωβ

α = 0. Arguing as before (the S3-lemma), we absorve the Ti
jk and the Tα

βγ

torsion terms. Then we can add an arbitrary semibasic form ϕi
j = ϕi

jαΘα to ωi
j , with ϕi

j + ϕj
i = 0, and

arrange things so that:
Ti

kα = Tk
iα (2.38)

and in this way the ωi
j-part of the connection ω is uniquely defined. Analousgly, we can add an arbitrary

semibasic form ϕα
β = ϕα

βiΘ
i to ωα

β , with ϕα
β + ϕβ

α = 0, and arrange things so that:

Tα
jβ = Tβ

jα (2.39)

and in this way the ωα
β -part of the connection ω is also uniquely defined. With this choice of connection

form, the structure equation (2.37) finally reduces to:

[
dΘi

dΘα

]
=

[
ωi

j 0
0 ωα

β

]
∧

[
Θj

Θβ

]
+

[
Ti

jαΘj ∧Θα + Ti
αβΘα ∧Θβ

Tα
jkΘ

j ∧Θk + Tα
jβΘj ∧Θβ

]
(2.40)

or (compare with [5], eq. (8’)):
{

dΘi = ωi
j ∧Θj + Ti

jαΘj ∧Θα + Ti
αβΘα ∧Θβ

dΘα = ωα
β ∧Θβ + Tα

jkΘ
j ∧Θk + Tα

jβΘj ∧Θβ (2.41)

with the following symmetries:

ωi
j = −ωj

i , ωα
β = −ωβ

α, Ti
kα = Tk

iα, Tα
jβ = Tβ

jα,
∑

ij

Tα
ijT

β
ij = δαβ (2.42)

This finish Cartan’s intrinsic geometrization of 2-step non-holonomic systems. In section 4 we examine a
detailed example.

3 Cartan’s affine generalized spaces. Development

Denote by An the space IRn with its canonical affine structure, and its canonical affine frame, {0; Ea}. As
usual we identify a point P ∈ An with its position vector P = −→0P . An affine isomorphism A : An → An

is a mapping of the form:
A : P 7→ a + A(P), P ∈ An (3.1)

where A ∈ GL(n, IR) and a = A(0) ∈ An (only depends on A). They form a group GA(n), which is the
semi-direct product of IRn by GL(n), and for which we use the following homogeneous representation
GA(n) ↪→ GL(n + 1, IR):

A
def= (a,A) ∼=

[
1 0
a A

]
with A ∈ GL(n, IR), a ∈ IRn (3.2)

which corresponds to identifying An with the affine hiperplane IRn × {1} ⊂ IRn × IR, through P 7→
[

1
P

]
.

The Lie algebra ga(n) can be identified with the Lie subalgebra of gl(n+1, IR) consisting of matrices of the
form: [

0 0
ξ Λ

]
def= ξ ⊕ Λ with ξ ∈ IRn, Λ ∈ gl(n) (3.3)
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The Lie brackett ga(n) is given by:

[ξ ⊕ Λ, η ⊕Ψ] = (Λη −Ψξ)⊕ [Λ,Ψ] (3.4)

and the adjoint representation GA(n) on ga(n), by:

Ad(a,A)(ξ ⊕ Λ) = (−AΛA−1a + Aξ)⊕ (AΛA−1) (3.5)

So:
ga(n) = IRn ⊕ gl(n) (3.6)

and this direct sum is reductive:
AdGA(n)IR

n ⊆ IRn (3.7)

In fact:
Ad(a,A)(ξ ⊕ 0) = Aξ ⊕ 0, ∀(a,A) ∈ GA(n), ∀ξ ∈ IRn (3.8)

Let Q be a n-dimensional smooth manifold, and for each point q ∈ Q let AqQ be the affine tangent
space, i.e., the tangent space TqQ with its canonical affine structure. Points in AqQ will be denoted by
0q,Pq,Qq, ..., and vectors on TqQ by Xq,Yq, ... (but we omit the subscrite q when there is no danger of
confusion). An affine frame for AqQ consists on a point P ∈ AqQ together with a linear frame {Xa}a=1,···,n
for TqQ. We denote such a frame by {P; Xa}.

Let A(Q) the affine frame bundle over Q (see [11], section III.3 or [15]), which is a principal fiber bundle
with group GA(n), acting on the right of A(Q) by:

{P; Xa} · (a = (aa),A = (Aa
b )) = {P + aaXa; XaAa

b}

If {P; Xa} and {Q; Ya} are two frames for AqQ, then there is a unique g = (a,A) = (aa,Aa
b ) ∈ GA(n)

such that {P; Xa} · (aa,Aa
b ) = {Q; Ya}. In fact we determine a and A by the equations Q = P + aaXa

and Yb = XaAa
b , i.e., (a,A) measure the relative position of the second frame relative to the first one.

Hereafter we identify a point q ∈ Q with the point 0q ∈ AqQ (the origin of TqQ). Consider an linear
moving frame {0q;Xa(q)}, defined on an open set U ⊆ Q. For example, if (U ; qa) is a local coordinate
neighbourhood for Q, then, for each q ∈ U , {0q; ∂/∂qa} is an affine frame for AqQ. Each other frame
{P; Ya} for AqQ determine unique (ya, Y a

b ) ∈ GA(n) such that P = yaXa and Yb = XaY a
b . Thus we see

that (qa, ya, Y a
b ) is a trivializing local coordinate system for π−1(U) ∼= U ×GA(n) ⊂ A(Q).

Now let us consider a generalized affine connection on Q, i.e., a connection on A(Q). Let ω̃ the
corresponding connection 1-form, which is a ga(n) = IRn ⊕ gl(n)-valued 1-form on A(Q):

ω̃ = ϕa ⊕ ωa
b (3.9)

By the general theory (see [11] or [15]), we know that on π−1(U) = U×GA(n), ω̃ has the following expression:

ω̃ = ϕ⊕ ω = ϕa ⊕ ωa
b

= Ad(y,Y)−1(ϕ⊕ ω) + (y,Y)−1d(y,Y)

= (−Y−1y,Y−1) (ϕ⊕ ω) (y,Y) + (−Y−1y,Y−1)(dy, dY)
=

(
Y−1 (ϕ + ωy + dy)

)⊕ (
Y−1ωY + Y−1dY

)

= (Y −1)a
b

(
dyb + ϕb + ωb

c yc
) ⊕ (Y −1)a

c (dY c
b + ωc

e Y e
b ) (3.10)

(where y = ya,Y = Y a
b , ϕ = ϕa, ω = ωa

b ), for a unique ga(n) = IRn ⊕ gl(n)-valued local “gauge potential”
ω = ϕa ⊕ ωa

b defined on U . If we put:

ϕa = Γa
b θb

ωa
b = Γa

bc θc (3.11)
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where (0q;Xa(q)) is a linear (affine) moving frame defined on an open set U ⊆ Q, θa(q) the corresponding
linear dual coframe, and Γa

b , Γa
bc ∈ C∞(U), then from (3.10):

ϕa = (Y −1)a
b

(
dyb + ϕb + ωb

c yc
)

= (Y −1)a
b

(
dyb + Γb

c θc + Γb
ce θe yc

)
(3.12)

ωa
b = (Y −1)a

c (dY c
b + ωc

e Y e
b )

= (Y −1)a
c

(
dY c

b + Γc
ef θf Y e

b

)
(3.13)

When Γa
b = δa

b , so that ϕa = θa, then (the pull-back to the linear frame bundle of) ϕa is equal to

Θa def= (Y −1)a
b θb which is the canonical (tautological or soldering) form on the linear frame bundle of

Q. In this case, we call ω̃ an affine connection on Q (see [11], pag. 129 or [15]). Moreover we see that (the
pull-back to the linear frame bundle of) ωa

b defines a linear connection on Q. Hereafter we only consider
affine connections.

Consider now a curve τ = qt, 0 ≤ t ≤ 1, contained on an open subset U ⊆ Q, where is defined a linear
moving frame {0q;Xa(q)}q∈U . Then we can define the horizontal lift τ̃ of τ , with respect to the affine

connection ω̃, as the curve τ̃ on A(Q) (i.e., a curve of affine frames) such that π(τ̃t) = qt and ω̃
(

˙̃τt

)
= 0.

In local coordinates, if qt = qa(t), then τ̃t = (qa(t), ya(t), Y a
b (t)), and:

˙̃τ t = θa(q̇t)Xa(qt) + ẏa ∂

∂ya
+ Ẏ a

b

∂

∂Y a
b

and therefore, by (3.12) and (3.13), the condition of horizontality, ω̃
(

˙̃τt

)
= 0, translates into the following

system of ODE’s: 



dyb

dt + dθb

dt + ωb
c yc = 0

dY a
b

dt + ωa
e Y e

b = 0
(3.14)

or more explicitly: 



dyb

dt + dθb

dt + Γb
cey

c dθe

dt = 0

dY a
b

dt + Γa
efY e

b
dθf

dt = 0
(3.15)

where dθb

dt means of course dθb(q̇t)
dt .

Take a linear (affine) frame {0q0 ;Ya} for Aq0Q. Then the horizontal lift τ̃t, obtained solving the above
ODE’s (3.15), with initial conditions ya(0) = 0 and Y a

b (0) = Y a
b , where Yb = Y a

b Xa, defines an affine
isomorphism, called the affine parallel transport along τ , that we denote by the same symbol:

τ̃t : Aq0Q −→ AqtQ
{0q0 ;Ya} 7−→ {Pt;Yb(t)} (3.16)

that maps the frame {0q0 ;Ya} into the frame {Pt;Yb(t)}, where:




Pt = ya(t)Xa(qt)

Yb(t) = Y a
b (t)Xa(qt)

(3.17)

and, as above, ya(t), Y a
b (t) is the solution to the above ODE’s (3.15), with initial conditions ya(0) = 0 and

Y a
b (0) = Y a

b .

Now, from the second equation in (3.17), we see that:

Pt = ya(t)Xa(qt)
= ya(t)(Y −1)b

a(t)Yb(t) (3.18)
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and so the point 0qt
∈ Aqt

Q is the point −ya(t)(Y −1)b
a(t)Yb(t), with respect to the affine frame (Pt; Ya(t)).

Therefore τ̃−1
t maps this position vector onto −ya(t)(Y −1)b

a(t)Yb, which, as t varies, describes a curve in
Aq0Q, which we denote by:

P (t) = −ya(t)(Y −1)b
a(t)Yb (3.19)

and is called the development of the curve τ = qt in Aq0Q. If we differentiate this, taking into account the

second equation in (3.14), from which we deduce that d(Y −1)b
a

dt = (Y −1)b
eω

e
a, we compute that:

dP

dt
= −

(
dya

dt
(Y −1)b

a(t) + ya(t)
d(Y −1)b

a

dt

)
Yb

= −
((

−dθa

dt
− ωa

eye

)
(Y −1)b

a(t) + ya(t)(Y −1)b
e(t)ω

e
a

)
Yb

=
dθa

dt
(Y −1)b

a(t)Yb (3.20)

In particular, if in (3.20) we take Yb = Xb(q0) = Xb as our initial frame and put:

ea(t) def= (Y −1)b
a(t)Xb

with (Y −1)b
a(0) = δb

a, then {ea(t)} is the image in Aq0Q of the linear frame {Xa(qt)} by (the linear part of)
τ̃−1
t : AqtQ → Aq0Q, i.e.:

ea(t) = τ̃−1
t (Xa(qt))

and {ea(t)} is a moving frame in Aq0Q. Using the second equation in (3.14), from which we deduce that
d(Y −1)b

a

dt = (Y −1)b
eω

e
a, we compute that:

dea

dt
= (Y −1)b

e(t) ωe
a Xb = Γc

ae

dθe

dt
ec(t) (3.21)

Thus the solution (P (t); ea(t)) of the system of ODE’s:





dP
dt = dθa(q̇t)

dt ea(t)

dea

dt = ωc
a(qt) ec(t) = Γc

ae(qt)
dθe(q̇t)

dt ec(t)
(3.22)

gives a moving frame in Aq0Q, and P (t) describes a curve starting at the origin q0, which is the development
of τ = qt in Aq0Q.4

The curve τ = qt is called a geodesic (or auto-parallel curve) of the affine connection ω̃ if the development
of τ in Aq0Q is a straight line. So we must have P (t) = at + b, where a,b are constant vectors in Tq0Q.
Differenting P (t) twice we obtain, using (3.22):

d2θa

dt2
+ Γa

bc

dθb

dt

dθc

dt
= 0 (3.24)

which are the equations of a geodesic.

Assume now that the linear connection ω is a g0-connection:

ωa
b =

[
ωi

j ωi
β

0 ωγ
δ

]

4Cartan usually writes the system (3.22) in the simplified form (see, for example, equation (10) in [5],[6],[7] and also reference
[9]): {

dP = θa ea

dea = ωc
a ec

(3.23)
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Choose a linear frame {0q; Xa(q)}, so that {Xa} = {Xi;Xα} and Xi is a local basis for the distribution D.
Then ei(0) = Xi(q0) is a basis for D0 = Dq0

∼= IRd. Let us compute the development in Aq0Q of a curve
τ = qt (not necessarilly horizontal). We have:

dei

dt
= Γc

ie

dθe

dt
ec(t)

= Γc
ij

dθj

dt
ec(t) + Γc

iα

dθα

dt
ec(t)

= Γk
ij

dθj

dt
ek(t) + Γk

iα

dθα

dt
ek(t)

=
(

Γk
ij(qt)

dθj(q̇t)
dt

+ Γk
iα(qt)

dθα(q̇t)
dt

)
ek(t) (3.25)

because Γβ
j = 0, which means that the moving frame {ei(t)} always evolves within D0. After solving the

ODE’s (3.25) for the {ei(t)}, with initial condition ei(0) = Xi(q0), we substitute in:

dP

dt
=

dθi(q̇t)
dt

ei(t) (3.26)

and we obtain now an ODE for the development P (t) of τ = qt in D0
∼= IRd. In particular for an horizontal

curve, i.e., θα(q̇t) = 0, its development is the curve in Do obtained solving the above ODE’s. In section 4 we
will see an explicit computation of development of a curve.

For an affine connection ω̃ = θa ⊕ ωa
b , we can define the corresponding curvature 2-form in the usual

way:
Ω̃ = dω̃ + ω̃ ∧ ω̃

Then its pull-back to the linear frame bundle is given by:
[

0 0
Ωa Ωa

b

]
= d

[
0 0
θa ωa

b

]
+

[
0 0
θa ωa

b

]
∧

[
0 0
θa ωa

b

]

=
[

0 0
dθa + ωa

b ∧ θb dωa
b + ωa

c ∧ ωc
b

]
(3.27)

from which we read the structural equations:
{

Ωa = dθa + ωa
b ∧ θb

Ωa
b = dωa

b + ωa
c ∧ ωc

b

(3.28)

The first one:
dθa = −ωa

b ∧ θb + Ωa (3.29)

defines the torsion Ωa of the affine connection - an IRn-valued semi-basic 2-form on te linear frame bundle
L(Q) over Q, that can be written in the form:

Ωa = Ωa
bc θb ∧ θc (3.30)

The meaning of this torsion is well known (see for example [9], [6]) - take an ordered pair (u, v) of tangent
vectors u, v ∈ TqQ, and extend them to vector fields U, V ∈ X(O), defined in an open set O ⊂ Q, containing
q. We may also assume that [U, V ] = 0 in O. Consider now a “small” loop Λ(U,V )

ε , based in q, defined by:

Λ(U,V )
ε = ΦV

−εΦ
U
−εΦ

V
ε ΦU

ε (q) (3.31)

where ΦU (resp., ΦV ) is the local flow of U (resp., V ). Then we develop the loop Λ(U,V )
ε in TqQ, to

obtain a curve P ε(t), 0 ≤ t ≤ 1 that starts in q ∼= 0q. But, in general, this curve P ε(t) doesn’t close, i.e.,
P ε(0) 6= P ε(1). In fact, we can prove that, to second order in ε, the failure of P ε(t) to close is measured by a
vector in TqQ ∼= IRn, depending only on u∧ v ∈ ∧2TqQ (and not on the vector fields U, V ), which is exactly
the torsion of the connection at q evaluated in u ∧ v: Ωa(u ∧ v).
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If we look again to equations (2.41), of section 2:
{

dΘi = ωi
j ∧Θj + Ti

jαΘj ∧Θα + Ti
αβΘα ∧Θβ

dΘα = ωα
β ∧Θβ + Tα

jkΘ
j ∧Θk + Tα

jβΘj ∧Θβ

that gives the Cartan’s intrinsic geometrization of 2-step non-holonomic systems, we see that we have two
Euclidean connections ωi

j and ωα
β , that conduces to two developments, respectively in D0 and D⊥0 (we

choose a complementary subspace D⊥0 to D0 so that D⊥0 ∼= V/S). The first development has torsion along
“infinitesimal loops” u∧v ∈ ∧2Tq0Q, with u ∈ D0, v ∈ D⊥0 or u, v ∈ D⊥0 , and the torsion vanishes if u, v ∈ D0.
The second development has torsion along “infinitesimal loops” u ∧ v ∈ ∧2Tq0Q, with u ∈ D0, v ∈ D⊥0 or
u, v ∈ D0 (in this last case the torsion relates to the integrability tensor of the distribution D), and the
torsion vanishes if u, v ∈ D⊥0 . Moreover we have the symmetries given by (2.42).

4 Example. The constrained particle.

Here we apply the above methods to the so called constrained particle in Q = IR3
xyz (see [17], pag. 256,

[4], pag. 2035 or [3], pag. 53), with kinetic energy:

g = 2T = ẋ2 + ẏ2 + ż2

and constraint:
θ3 = dz − y dx

As we have already remarked in the introduction, in these papers, the connection found is neither metric
nor unique. On the contrary, and this one the main differences of the approach we develop here, the
connection found below is intrinsically associated to the non-holonomic system, and moreover it is a metric
connection, though in general with torsion. The difference is therefore very explicit (compared with [2],
example 2 and [4], example 6.2). In both these works the connection is not metric. Another subject that
is treated here and not elsewhere (to our knowledge), is related to the development of Q = IR3 into (affine)
IR2 ∼= D0 ⊂ A0IR3, along any curve starting at 0, associated to the intrinsic affine Euclidean connection
that is determined below.

We have that D = ker θ3 = span{Y1, Y2}, where Y1 = ∂y and Y2 = ∂x + y ∂z. Note that {Y1, Y2} is a
T -orthogonal basis for D. Moreover Y12 = [Y1, Y2] = ∂z, and so the nonholonomy degree is 2. We call D a
2-step distribution with grow vector (2, 3).

We start with the following 0-adapted orthonormal basis:

X1 = ∂y, X2 =
∂x + y ∂z√

1 + y2
, X3 =

−y ∂x + ∂z√
1 + y2

(4.1)

so that D = span{X1, X2}, with corresponding dual basis:

θ1 = dy, θ2 =
dx + y dz√

1 + y2
, θ3 =

dz − y dx√
1 + y2

(4.2)

so that D = ker θ3. By construction, (θ1)2 + (θ2)2
∣∣
D = g|D, and so this is in fact a 0-adapted coframe to

D. We consider now the G1-structure B1
∼= IR3 ×G1, over Q = IR3, trivialized with respect to our choice of

the initial 0-adapted coframe (4.2), where G1 is the group:

G1 =








cosϕ − sin ϕ 0
sin ϕ cosϕ 0

0 0 a


 , ϕ ∈ IR, a ∈ IR− {0}





The corresponding tautological form on B1 is:

Θ =




Θ1

Θ2

Θ3


 =




cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1/a







θ1

θ2

θ3
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So:
Θ1 = cos ϕθ1 + sin ϕθ2, Θ2 = − sin ϕθ1 + cos ϕθ2, Θ3 =

1
a
θ3 (4.3)

where θa are given by (4.2), and we compute that:

θ1 ∧ θ2 = Θ1 ∧Θ2

θ1 ∧ θ3 = a cosϕΘ1 ∧Θ3 − a sinϕΘ2 ∧Θ3

θ2 ∧ θ3 = a sin ϕΘ1 ∧Θ3 + a cosϕΘ2 ∧Θ3 (4.4)

We also need the following computations:

dθ1 = 0, dθ2 =
1

1 + y2
θ1 ∧ θ3, dθ3 = − 1

1 + y2
θ1 ∧ θ2 (4.5)

Therefore the first derived system I(1) is generated by θ1 ∧ θ2. So, from (4.3), (4.4) and (4.5), we deduce
that:

dΘ1 = dϕ ∧Θ2 +
sin ϕ

1 + y2

(
a cos ϕΘ1 ∧Θ3 − a sin ϕΘ2 ∧Θ3

)

dΘ2 = −dϕ ∧Θ1 +
cos ϕ

1 + y2

(
a cos ϕΘ1 ∧Θ3 − a sin ϕΘ2 ∧Θ3

)

dΘ3 = −da

a
∧Θ3 − 1

a

1
1 + y2

Θ1 ∧Θ2 (4.6)

and thus the structure equation is:



dΘ1

dΘ2

dΘ3


 =




0 dϕ 0
−dϕ 0 0

0 0 −da
a


 ∧




Θ1

Θ2

Θ3


 +




a sin ϕ cos ϕ
1+y2 Θ1 ∧Θ3 − a sin2 ϕ

1+y2 Θ2 ∧Θ3

a cos2 ϕ
1+y2 Θ1 ∧Θ3 − a cos ϕ sin ϕ

1+y2 Θ2 ∧Θ3

− 1
a

1
1+y2 Θ1 ∧Θ2


 (4.7)

Now take a look at the T3
12-torsion term, defined by the last equation dΘ3 = T3

12 Θ1 ∧Θ2 mod{Θ3}:

T3
12(x, y, z, a, ϕ) = −1

a

1
1 + y2

Of course we can choose a section of our B1
∼= IR3 ×G1 bundle, trivialized with respect to our choice of the

initial 0-adapted coframe (4.2), say:

σ : (x, y, z) 7−→ (x, y, z, a(x, y, z), ϕ(x, y, z))

so that T3
12 becomes constant and equal to 1 (this is called torsion normalization or group parameter

normalization). In fact, take for example:

σ : (x, y, z) 7−→
(

x, y, z, a(x, y, z) =
−1

1 + y2
, ϕ(x, y, z) = 0

)

Then, for the corresponding moving coframe, obtained from the initial O-adapted coframe (4.2), acting on
the right with g:




θ̂1

θ̂2

θ̂3


 =




1 0 0
0 1 0
0 0 −(1 + y2)







θ1 = dy

θ2 = dx+y dz√
1+y2

θ3 = dz−y dx√
1+y2


 =




θ1

θ2

−(1 + y2) θ3


 (4.8)

we will have T3
12(σ(x, y, z, a, ϕ)) ≡ 1. Now we ask - for which coframes the torsion remains constant and

equal to one ? To answer this, let us see how T3
12 changes under the G1-action? We know that R∗gΘ = g−1Θ,

so, with g−1 =




cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1/a


, with a 6= 0, this implies that:

R∗gΘ
3 =

1
a

Θ3
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We take the exterior derivative of both sides mod{Θ3}:
1
a

dΘ3 =
1
a

T3
12Θ

1 ∧Θ2 = R∗gdΘ
3 = (R∗gT

3
12)R

∗
g(Θ

1 ∧Θ2) = (R∗gT
3
12)Θ

1 ∧Θ2 mod{Θ3}

and so the T3
12 changes according to:

R∗gT
3
12 =

1
a

T3
12

So we must have a = 1, and we reduce our G1 group to the G2 group:

G2 =








cos ϕ − sin ϕ 0
sinϕ cos ϕ 0

0 0 1


 , ϕ ∈ IR



 ⊂ G1

and take a G2 bundle B2
∼= IR3 ×G2, trivialized with respect to our choice of the 1-adapted coframe given

by (4.8) (this is called group reduction). We then choose a connection for this B2 bundle, and compute
the corresponding structure equation (we have omited the “hats” over the Θ’s):




dΘ1

dΘ2

dΘ3


 =




0 dϕ 0
−dϕ 0 0

0 0 0


 ∧




Θ1

Θ2

Θ3


 +



− sin ϕ cos ϕ

(1+y2)2 Θ1 ∧Θ3 + sin2 ϕ
(1+y2)2 Θ2 ∧Θ3

− cos2 ϕ
(1+y2)2 Θ1 ∧Θ3 + cos ϕ sin ϕ

(1+y2)2 Θ2 ∧Θ3

Θ1 ∧Θ2 + 2y
1+y2 Θ1 ∧Θ3


 (4.9)

Now changing:
dϕ 7−→ dϕ + C1Θ1 + C2Θ2 + C3Θ3

we get:



dΘ1

dΘ2

dΘ3


 =




0 dϕ 0
−dϕ 0 0

0 0 0







Θ1

Θ2

Θ3


 +




C1Θ1 ∧Θ2 + C3Θ3 ∧Θ2

−C2Θ2 ∧Θ1 − C3Θ3 ∧Θ1

0


 +



− sin ϕ cos ϕ

(1+y2)2 Θ1 ∧Θ3 + sin2 ϕ
(1+y2)2 Θ2 ∧Θ3

− cos2 ϕ
(1+y2)2 Θ1 ∧Θ3 + cos ϕ sin ϕ

(1+y2)2 Θ2 ∧Θ3

Θ1 ∧Θ2 + 2y
1+y2 Θ1 ∧Θ3


 (4.10)

and choosing C1 = 0 = C2 and C3 = 1
2(1+y2)2 , we get the structure equation:




dΘ1

dΘ2

dΘ3


 =




0 ω 0
−ω 0 0
0 0 0







Θ1

Θ2

Θ3


 +




AΘ1 ∧Θ3 + B Θ2 ∧Θ3

B Θ1 ∧Θ3 −AΘ2 ∧Θ3

Θ1 ∧Θ2 + 2y
1+y2 Θ1 ∧Θ3


 (4.11)

where:

ω = dϕ +
1

2(1 + y2)2
Θ3, A = − sin ϕ cosϕ

(1 + y2)2
, B =

1− 2 cos2 ϕ

2(1 + y2)2
(4.12)

The development in D0, with respect to the ω-connection, has symmetric (according to (2.42)) torsion along
“infinitesimal loops” u ∧ v ∈ ∧2Tq0Q, with u ∈ D0, v ∈ D⊥0 , and the torsion vanishes if u, v ∈ D0.

If we choose a gauge corresponding to ϕ ≡ 0, i.e., our 1-adapted coframe given by (4.8), then the base
structural equations become:





dθ1 = ω ∧ θ2 + B θ2 ∧ θ3

dθ2 = −ω ∧ θ1 + B θ1 ∧ θ3

dθ3 = θ1 ∧ θ2 + 2y
1+y2 θ1 ∧ θ3

(4.13)

where:
ω =

1
2(1 + y2)2

θ3, B =
−1

2(1 + y2)2
(4.14)
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and:
θ1 = dy, θ2 =

dx + y dz√
1 + y2

, θ3 = −
√

1 + y2 (dz − y dx) (4.15)

Take a parametrized curve in IR3, γ(t) = (x(t), y(t), z(t)), so that γ̇ = ẋ∂x + ẏ∂y + ż∂z = θa(γ̇)Xa(γ(t)),
where the θ′s are given by (4.15), and the X ′s are the corresponding dual basis. We develop this curve into
IR2

xy
∼= D0, with respect to the basis {e1 = X1(0) = ∂y, e2 = X2(0) = ∂x} for D0. The equations for this

development are (see (3.22) and (3.25)):




dP
dt = dθi(γ̇(t))

dt ei(t)

dei

dt =
(
Γk

ij(γ(t))dθj(γ̇(t))
dt + Γk

iα(γ(t))dθα(γ̇(t))
dt

)
ek(t)

(4.16)

With ω = ω1
2 = −ω2

1 = 1
2(1+y2)2 θ3, we have that the only non trivial Γ′s are Γ1

23 = −Γ2
13 = 1

2(1+y2)2 , and so:

{
de1
dt = Γ2

13(γ(t))dθ3(γ̇(t))
dt e2(t) = 1

2(1+y(t)2)2
dθ3(γ̇(t))

dt e2(t)
de2
dt = Γ1

23(γ(t))dθ3(γ̇(t))
dt e1(t) = − 1

2(1+y(t)2)2
dθ3(γ̇(t))

dt e1(t)
(4.17)

which are the differential equations for the moving frame {e1(t), e2(t)}, evolving within D0, starting for
t = 0 with {e1 = ∂y, e2 = ∂x}. After integrating these equations we substitute the ei(t) in the first equation
(4.16), to obtain the differential equation for the development of γ in D0:

dP

dt
=

dθi(γ̇(t))
dt

ei(t) (4.18)

In particular, if γ is an horizontal curve, which implies that θ3(γ̇) ≡ 0, we obtain de1
dt = 0 and de2

dt = 0, i.e.,
e1(t) ≡ ∂y and e2(t) ≡ ∂x, and so:

dP

dt
=

dθ1(γ̇(t))
dt

∂y +
dθ2(γ̇(t))

dt
∂x (4.19)

As a concrete example, take γ(t) = (t2/2, 0,−t2/2). Then θ3(γ̇) = t and
{

de1
dt = 1

2 e2(t)
de2
dt = − 1

2 e1(t)
⇒

{
e1(t) =

(
cos 1

2 t
)

e1 +
(
sin 1

2 t
)

e2

e2(t) = − (
sin 1

2 t
)

e1 +
(
cos 1

2 t
)

e2
(4.20)

where e1 = ∂y and e2 = ∂x. Thus, since θ1(γ̇) = 0 and θ2(γ̇) = t, we have:

dP

dt
= −

(
sin

1
2
t

)
e1 +

(
cos

1
2
t

)
e2 ⇒ P (t) = 2

(
sin

1
2
t,−1 + cos

1
2
t

)
(4.21)

since P (t) must verify the initial condition P (0) = (0, 0).

Now, with X1, X2 given by (4.1), we have:

γ̇ = θ1(γ̇)X1(γ(t)) + θ2(γ̇)X2(γ(t)) def= v1 X1 + v2 X2

= v1∂y + v2 ∂x + y ∂z√
1 + y2

=
v2

√
1 + y2

∂x + v1∂y +
yv2

√
1 + y2

∂z = ẋ∂x + ẏ∂y + ż∂z

⇒





ẋ = v2√
1+y2

ẏ = v1

ż = yv2√
1+y2

⇒
{

v1 = ẏ

v2 =
√

1 + y2 ẋ
(4.22)

and the equations for a geodesic γ are:

d

dt

[
v1

v2

]
=

[
0 ω
−ω 0

] [
v1

v2

]
, with ω =

1
2(1 + y2)2

θ3



REFERENCES 17

So they are (compare with [2]):
{

dv1

dt = ÿ = 0
dv2

dt = yẏ√
1+y2

ẋ +
√

1 + y2 ẍ = 0 ⇒
{

ÿ = 0
ẍ + y

1+y2 ẋẏ = 0 (4.23)

.
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623-637, 1978.

[15] Okubo T., “ Differential Geometry”. Monographs and Textbooks in Pure and Applied Mathematics
112, Marcel Dekker, Inc., 1987.

[16] Pars L.A., “A Treatise on Analytical Dynamics”. Heinemann Educational Books Ltd., 1968.

[17] Rosenberg R.M., “Analytical Dynamics of Discrete Systems”. Plenum Press, 1977.

[18] Sharpe R. W., “Differential Geometry - Cartan’s generalization of Klein’s Erlangen programm”, GTM.
166, Springer-Verlag, 1997.

[19] Spivak M., “A Comprehensive introduaction to Differential Geometry, vol. 2”, 2nd edition, Publish or
Perish, 1979.

[20] Sternberg S., “Lectures on Differential Geometry”. AMS Chelsea Publishing, 1999.

[21] Vershik, A.M.; Gershkovich, V.Ya., “Nonholonomic Dynamical Systems, Geometry of Distributions and
Variational Problems”, in Encyclopaedia of Mathematical Sciences, Dynamical Systems VII, V.I. Arnold
and S.P. Novikov eds., Springer-Verlag, 1994.

[22] Vershik, A.M., “Classical and non-classical dynamics with constraints”, Lecture Notes in Mat. 1108,
Springer-Verlag, pag. 278-301, 1984.

João Nuno Tavares

Dept. Matemática Pura
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