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Abstract

We study some dynamical features of certain coupled cell networks that consist of two (unidirectional or
bidirectional) rings of cells coupled through a ‘buffer’ cell. Depending on how the rings and the buffer cell
are coupled, the full network may have a non-trivial group of symmetries or a nontrivial group of ‘interior’
symmetries. This group is Zp × Zq in the unidirectional case and Dp ×Dq in the bidirectional case. We
are interested in finding quasi-periodic motion in these networks, motivated by an example presented by
Golubitsky, Nicol and Stewart (Some curious phenomena in coupled cell systems, J. Nonlinear Sci. 14 (2)
(2004) 207–236). In the examples considered here, we obtain quasi-periodic states through a sequence of
Hopf bifurcations. Interestingly, we observe relaxation oscillation phenomena appearing further away from
the last Hopf bifurcation point. We use XPPAUT and MATLAB to compute numerically the relevant states.
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1. Introduction

Networks of dynamical systems arise in many areas of science such as biology, economics, physics and
ecology. See for example Strogatz [25], Wang [27], Stewart [23], Lieberman et al. [21], Boccaletti et al. [9],
Alon [3], Albert et al. [2], Watts et al. [28], Milo et al. [22], and references therein. Several general formal
theories have emerged and aiming to relate the dynamics of the networks and the network structure. We
follow here the theory of coupled cell networks developed in Stewart et al. [24] and Golubitsky et al. [19].
For a survey see Golubitsky and Stewart[16]. In this theory, networks of dynamical systems are idealized
through coupled cell networks – directed graphs where the nodes represent the individual systems and the
edges the couplings between cells. The idea is that the graph abstracts important properties of the systems.
Certain dynamical phenomena such as synchronization, phase-locking, quasi-periodic states, synchronized
chaos, recurrent behaviour, etc, are common in networks of dynamical systems and the architecture of the
network (graph) plays an important role in the appearance of such phenomena. See for example Aguiar et
al. [1], Ashwin et al. [7, 8] and Golubitsky et al. [13].

In this paper we consider networks consisting of two (unidirectional or bidirectional) (see Figure 1)
rings coupled through a ‘buffer’ cell, exhibiting two types of architecture: ‘exact symmetry’ and ‘interior
symmetry’ (see Figure 2). Specifically, we study periodic and quasi-periodic solutions arising through Hopf
bifurcations in the coupled cell systems associated to the networks with the above architecture.
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Recall that a symmetry of a network represented by a directed graph is a permutation of the nodes (cells)
that preserves the edges (arrows). The notion of interior symmetry, recently introduced by Golubitsky et
al. [14], generalizes the usual definition of symmetry. The schematic diagram on the right of Figure 2 is an
example of a network with interior symmetry. Observe that if we delete the arrows directed from the rings
to the ‘buffer’ cell then we obtain the schematic diagram on the left of Figure 2 which is an example of a
network with exact symmetry (assuming that the arrows directed from the buffer cell to the rings respect
the symmetry of the rings).

Figure 1: Schematic diagram of rings of n coupled cells. (Left) Unidirectional ring with Zn symmetry. (Right) Bidirectional
ring with Dn symmetry.

RING 1
RING 2

BUFFER
CELL

RING 1
RING 2

BUFFER
CELL

Figure 2: Schematic diagram of networks composed by two rings coupled through a buffer cell. (Left) The arrows directed
from the buffer cell to the rings represent couplings that respect the symmetry of the rings, therefore the full network has
symmetry Γ1 × Γ2 where Γi is the symmetry group of ring i. (Right) The arrows directed from the rings to the buffer cell
represent couplings that break the symmetry of the rings, therefore the full network has interior symmetry Γ1 × Γ2 where Γi

is the symmetry group of ring i.

We consider four networks that represent the abstract framework presented above. The first two examples
are networks of two unidirectional rings, in which the first ring consists of three cells and the second ring
of five cells, see Figure 3. The network in Figure 3(a) has Z3 × Z5 exact symmetry and the network in
Figure 3(b) has Z3 × Z5 interior symmetry. The remaining networks are similar to these where now the
cells in the two rings are coupled bidirectionally, see Figure 4. These latter networks have D3 ×D5 exact
symmetry (Figure 4(a)) and D3 ×D5 interior symmetry (Figure 4(b)), respectively. Observe that network
in Figure 3(a) is the result of ignoring the couplings from the xi and the yj cells to the buffer cell in the
network in Figure 3(b), similarly for the networks in Figures 4(a)-(b).

It is known that symmetric ODE’s exhibit robust patterns of oscillations which possess spatio-temporal
symmetries. In Golubitsky et al. [17] it is shown how to determine and classify all permitted types of spatio-
temporal symmetry that a periodic solution of a system of ODE’s, with symmetry group Γ, can robustly
support in terms of pairs of subgroups of Γ. This is called H/K-Theorem.

The first question that comes to mind is: Which of these periodic solutions can be obtained by Hopf
bifurcation? The answer to this question is that not all types of spatio-temporal symmetry will arise in a
Hopf bifurcation, however if one considers secondary (tertiary, etc.) Hopf bifurcations then it may be possible
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Figure 3: Networks of two coupled unidirectional rings, one with three cells and the other with five, connected through a
buffer cell b. The network on the left (a) has exact Z3 × Z5-symmetry whereas the network on the right (b) has interior
Z3 × Z5-symmetry.
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Figure 4: Networks of two coupled bidirectional rings, one with three cells and the other with five, connected through a
buffer cell b. The network on the left (a) has exact D3 × D5-symmetry whereas the network on the right (b) has interior
D3 ×D5-symmetry.

that the answer is ‘all solutions’. For example, in [17] there are several examples of networks displaying
periodic solutions exhibiting spatio-temporal symmetries obtained through a secondary Hopf bifurcation,
but would not appear in a primary Hopf bifurcation. Recently, Filipsky [12] has addressed this question in
the context of equivariant dynamical systems with finite abelian symmetry and gives necessary and sufficient
conditions in order to obtain a periodic solution with prescribed spatio-temporal symmetry by a primary
Hopf Bifurcation.

Motivated by this difficult question, we have looked at some simple examples of networks with symmetry
which could indicate a possible approach. In the course of our investigation we came across several other
questions which are interesting by themselves and maybe relevant to the above problem. In this paper we
further explore some of our findings that were already reported in Antoneli, Dias and Pinto [5, 6].

In part, our choice of examples was motivated by some of the phenomena presented by Golubitsky et
al. [13], where a quasi-periodic motion was observed in a numerical simulation of a coupled cell network of
the same type as considered here with interior symmetry. By further exploring their example, numerically,
we propose a bifurcation scenario where this quasi-periodic behaviour is obtained through a sequence of
Hopf bifurcations. The next step was to consider other network examples with similar structure in order to
inspect if the same behaviour could occur and through a similar mechanism.

We conclude that the kind of network architecture studied here favors the appearance of quasi-periodic
states. Moreover, several interesting questions and conjectures have arisen:
(1) When does a secondary Hopf bifurcation produces a quasi-periodic motion and when does it produces

a periodic solution in the network?
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(2) The presence of symmetry (exact or interior) constrains the dynamical behavior of the cells in each of
the rings, but the structure of the vector field seems to select the periodicity or quasi-periodicity of the
global solution of the network. More specifically, we believe that resonance is strongly dependant on
the choice of the vector field.

(3) Another interesting phenomena observed is the appearance of relaxation oscillations, after a sequence
of Hopf bifurcations, that seems to be explained by the network structure. This structure imposes a
symmetry group that is a direct product of two (interior) symmetry groups, each of which is a symmetry
group of a distinguished sub-network. Moreover, it is surprising to observe this type of behavior in these
coupled systems since they are not a priori multiple time scales systems, where these solutions frequently
occur (Krupa and Szmolyan [20]). Can this relaxation oscillation phenomena be explained in the context
of fast-slow systems through a canard explosion?

(4) In these questions, the type of symmetry, either exact or interior, does not seem to affect in an essential
way the answer to these questions.

2. Network Formalism

Recently, a new framework for the dynamics of networks has been proposed, with particular attention to
patterns of synchrony and associated bifurcations. See Stewart, Golubitsky and Pivato [24, 14], Golubitsky,
Nicol and Stewart [13], and Golubitsky, Stewart and Török [19]. For a survey, overview and examples,
see Golubitsky and Stewart [16]. Nevertheless, we shall only need a simplified version of the ‘multiarrow
formalism’ of Golubitsky, Stewart and Török [19], called ‘single arrow formalism’, which we shall briefly
recall in this section.

Coupled cell networks can be represented by directed graphs whose nodes (cells) are identified with dy-
namical systems and whose edges (arrows) represent the couplings between them. Different node/cell sym-
bols represent distinct internal dynamics. Different couplings are drawn as different styles of edges/arrows.
Figures 3 and 4, depict four examples of coupled cell networks in which the nodes are indicated by circles
and squares. In Figure 3(b) there are three different types of coupling whereas in Figure 4(b) there are seven
different types of couplings.

Let us consider a coupled cell network with a finite number of nodes C = {c1, . . . , cn} and a finite number
of edges. If cj is a cell then the input set I(cj) of cj is the set of cells whose edges are directed to cj . A
bijection β : I(cj) → I(ck) is called an input isomorphism from cell cj to cell ck if for every d ∈ I(cj) one has
that (i) cell d and cell β(d) have both the same cell type, that is, are represented by the same node symbol
and (ii) the edge directed from cell d to cell cj and the edge directed from cell β(d) to cell ck have the same
arrow type, that is, are represented by the same edge symbol.

Each cell cj has an internal phase space Pj – here we always assume that Pj is a euclidean space Rk.
Cells represented by the same symbol have identical internal phase space. The total phase space of the
network being the direct product of internal phases spaces of each cell:

P =
n∏

i=1

Pi .

Coordinates on Pj are denoted by xj and coordinates on P are denoted by (x1, . . . , xn). The state of the
system at time t is (x1(t), ..., xn(t)) where xj(t) ∈ Pj is the state of cell cj at time t.

A vector field f on P is called admissible for a network if f is compatible with the network architecture,
that is, f must satisfy the two following conditions (see Golubitsky and Stewart [16] for a precise statement):

(i) each component fj corresponding to a cell cj is a function only of the variables associated with the
cells ck that have edges directed to cj (domain condition),

(ii) two components fj and fk corresponding to cells cj and ck with isomorphic input sets are identical up
to a suitable permutation of the relevant variables (pull-back condition).

With the definition of admissible vector field at hand, we can speak about ‘robustness’ of a dynamical
property of a coupled cell system, namely, a property of admissible vector fields that is persistent under
admissible perturbations.
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2.1. Symmetry and Interior Symmetry
Coupled cell systems often possess a non-trivial group of symmetries Γ. Symmetry is an important

concept in the study of networks, since it adds more constraints on the generic behavior than if there is no
symmetry at all. In particular, it helps to explain some features that seem to be exotic from the point of
view of general dynamical systems theory.

A symmetry of a system of differential equations is a transformation of the phase space that sends
solutions to solutions. Equivalently, if we have a system of differential equations

dx

dt
= f(x) ,

where x ∈ P and f is a smooth vector field, then a symmetry is a linear transformation γ : P → P satisfying
the equivariance condition:

f(γx) = γf(x) , ∀x ∈ P . (1)

A symmetry of a network is a permutation γ, acting on the set of cells and on the set of arrows that preserves
the network architecture, that is, for every arrow e from cell ci to cell cj we have that γ(e) is an arrow from
cell γ(ci) to cell γ(cj), for all i, j = 1, . . . , n. The set of symmetries of a network form a group Γ, which can
be regarded as a subgroup of Sn, the full group of permutations on n symbols.

The permutation action of the symmetry group Γ of the network on the cells induces an action of the
symmetry group Γ on the phase space P of the coupled cell system by permuting the cell coordinates:

γ(x1, . . . , xn) = (xγ−1(1), . . . , xγ−1(n)) , (2)

for all γ ∈ Γ and (x1, . . . , xn) ∈ P . If f is an admissible vector field then it follows from the “pull-back
condition” that the equivariance condition (1) is satisfied for all γ ∈ Γ, with respect to the action given by
(2). In other words,

{admissible vector fields} ⊆ {equivariant vector fields} .

The concept of ‘interior symmetry’ was introduced in Golubitsky, Pivato and Stewart [14]. It is a
generalization of the notion of a symmetry of a network that singles out a new class of networks that lies
between the class of general networks and the class of symmetric networks. In this case, there is a group
of permutations that acts in a subset of cells (but not on the entire set of cells) and partially preserves the
network structure (cell-types and edges-types).

The network in Figure 3(b) gives an example of Z3 × Z5 ‘interior symmetry’. This means that if we
consider the sub-network formed by ignoring the couplings from cells x1, x2, x3 to the buffer cell and from
cells y1, y2, y3, y4, y5 to the buffer cell, then the resulting network is Z3×Z5-exactly symmetric. Formally,
we say that the network has interior Z3 × Z5-symmetry on the set of cells {x1, x2, x3, y1, y2, y3, y4, y5}.
Similarly, for the network in Figure 4(b). This network is D3×D5 interiorly symmetric, and by removing the
arrows from the cells in the two rings to the buffer cell, the symmetry becomes exact. This is a consequence
of a general characterization of a coupled cell network with ‘interior symmetry’ (see Proposition 3.3 in
Antoneli, Dias and Paiva [4]).

2.2. Bifurcations in Coupled Cell Systems
The theory of local bifurcations of systems of ODE’s with symmetry is a well established subject (see [17,

18, 15]). The main results are the Equivariant Branching Lemma and the Equivariant Hopf Bifurcation
Theorem, which give sufficient conditions for the occurrence of “symmetry-breaking” bifurcations. More
precisely, the Equivariant Branching Lemma ensures the existence certain of branches of equilibrium solutions
bifurcating from a fully symmetric equilibrium, provided certain conditions are satisfied. Similarly, the
Equivariant Hopf Bifurcation Theorem ensures the existence of branches of periodic solutions bifurcating
from a fully symmetric equilibrium. In both cases, the bifurcating solutions have less symmetry than the
primary equilibrium.
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More recently, Golubitsky, Pivato and Stewart [14] have given “interior symmetry-breaking” analogs of
the Equivariant Branching Lemma and the Equivariant Hopf Bifurcation Theorem. The analogue of the
Equivariant Branching Lemma is a natural generalisation of the symmetric case, whereas their analogue
for the Equivariant Hopf Theorem imposes rather restrictive features. Specifically, it provides states whose
linearization on certain subsets of cells, near bifurcation, are superpositions of synchronous states with
states having spatial symmetries. Antoneli, Dias and Paiva [4] extend the result of Golubitsky, Pivato and
Stewart, giving a full analogue of the Equivariant Hopf Theorem for networks with interior symmetry. Their
result provides states whose linearization on certain subsets of cells, near bifurcation, are superpositions of
synchronous states with states having spatio-temporal symmetries.

Since we are interested here only in the Hopf bifurcation case, we shall recall the main ideas of the
Equivariant Hopf Bifurcation Theorem and its interior symmetry version.

Suppose we have a smooth one-parameter family of ODE’s

dx

dt
= f(x, λ) , (3)

where x ∈ P and f(·, λ) is equivariant with respect to an action finite group Γ. Assume that f(0, λ) ≡ 0.
Let λ = 0 be a parameter value where (3) undergoes a local bifurcation. This means that the linearization
L = (df)(0,0) of f about (0, 0) has one or more critical eigenvalues. In the case we are concerned here, all
the critical eigenvalues are purely imaginary. Let Ec(L) denote the corresponding center subspace, that is,
the subspace generated by all generalized eigenvectors corresponding to the critical eigenvalues.

Now, in several important cases considered in equivariant bifurcation theory, one has a unique decom-
position

P = V0 ⊕ V1 ⊕ . . .⊕ Vk ,

where, V0 = FixP (Γ) and for j = 1, . . . , k each Vj is of one of three types: (i) Vj is absolutely irreducible – the
only linear mappings commuting with Γ are the real scalar multiples of the identity, (ii) Vj is non-absolutely
irreducible or (iii) Vj = W+

j ⊕W−
j , with W+

j , W−
j both absolutely irreducible and mutually Γ-equivalent

(see [17, 18]). Here,

FixP (Γ) = {x ∈ P : γx = x , ∀ γ ∈ Γ}
denotes the fixed-point subspace of Γ, which is the largest Γ-invariant subspace of P where Γ acts trivially.
In the (ii) and (iii) cases, we say that Vj is Γ-simple.

On the other hand, one of the consequences of the equivariance condition for (3) is that Ec(L) is a
Γ-invariant subspace of P . Furthermore, it can be shown that, generically, in the Hopf case, when all the
critical eigenvalues are purely imaginary, Ec(L) should be a Γ-simple subspace (see [17, 18]). In particular,
this implies that there is only one pair of purely imaginary eigenvalues (perhaps) with high multiplicity and
thus coordinates can be chosen such that

Lc = L|Ec(L) =
(

0 −I
I 0

)

if the purely imaginary eigenvalues are rescaled to ±i. Therefore, there is a rather small list of candidates for
the center subspace Ec(L) of an equivariant bifurcation problem under the above circumstances. Whenever,
Ec(L) is a non-trivial (Ec(L) 6= FixP (Γ)) Γ-simple subspace we say that we have a symmetry-breaking Hopf
bifurcation.

From now on we assume that Ec = Ec(L) is a Γ-simple subspace. Since Lc commutes with Γ, we may
consider the action of (γ, θ) ∈ Γ× S1 on Ec defined by

(γ, θ) · x = e−θLc

γx = γe−θLc

x , ∀x ∈ Ec .

A subgroup Σ ⊂ Γ× S1 is called C-axial (on Ec(L)) if

dim FixEc(L)(Σ) = 2 .
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Theorem 2.1 (Equivariant Hopf Theorem [18]). Consider a smooth one-parameter family of ODE’s

dx

dt
= f(x, λ) ,

such that f(0, λ) ≡ 0 and f(·, λ) is equivariant with respect to a finite group Γ. Suppose that one has
a symmetry-breaking Hopf bifurcation when λ = 0, that is, the center subspace Ec of L = (df)(0,0) is
non-trivial and Γ-simple. Assume the eigenvalue crossing condition: the critical eigenvalues µ of L extend
uniquely and smoothly to eigenvalues µ(λ) of (df)(x0,λ) for λ near 0 and

d
dλ

Re(µ(λ))
∣∣∣∣
λ=0

6= 0 .

Then for each C-axial subgroup Σ ⊂ Γ × S1 on Ec there exists a unique branch of periodic solutions with
period ≈ 2π emanating from the origin and with spatio-temporal symmetries Σ.

In order to state an analogue theorem in the interior symmetry context we need to assume that the
system (3) is a coupled cell system associated to a network with interior symmetry Γ. The main difference
from the previous situation is that f is no longer Γ-equivariant. However, since Γ acts non-trivially on a
subset S ⊂ C of the cells, we have a natural decomposition of the phase space P as

P = PS ⊕ PC\S ,

where

PS =
∏

i∈S
Pi and PC\S =

∏

i∈C\S
Pi ,

with coordinates (xS , xC\S). If f : P → P is an admissible vector field then we can write f = (fS , fC\S)
where fS : P → PS and fC\S : P → PC\S . The pull-back condition for the coupled cell system implies that

γfS(xS , xC\S) = fS(γxS , xC\S) , (4)

for all γ ∈ Γ.
On the other hand, we may introduce another set of coordinates on P , adapted to the action of the

interior symmetry group Γ. First of all it can be shown that the subspace FixP (Γ) is flow-invariant (see
[4, 14]). Since FixP (Γ) is Γ-invariant and Γ acts trivially on the cells in C \ S we have that PC\S ⊂ FixP (Γ).

The action of the group Γ on S induces a decomposition

S = S1 ∪ . . . ∪ Sk ,

where the sets Si (i = 1, . . . , k) are the orbits of the Γ-action. Let U = FixP (Γ) and

W =

{
x ∈ P : xc = 0 ∀ c ∈ C \ S and

∑

s∈Si

xs = 0 for 1 6 i 6 k

}
.

Since W is a Γ-invariant subspace of PS and W ∩U = {0} we can decompose the phase space P as a direct
sum of Γ-invariant subspaces

P = U ⊕W .

By further decomposing W into irreducible components under the Γ action we arrive at a decomposition

P = U0 ⊕ U1 ⊕ . . .⊕ Uk ,

where, U0 = U = FixP (Γ). Once again, in several important cases we have that each Uj with j = 1, . . . , k is of
one of three types: (i) Uj is absolutely irreducible, (ii) Uj is non-absolutely irreducible or (iii) Uj = W+

j ⊕W−
j ,

with W+
j , W−

j both absolutely irreducible and mutually Γ-equivalent.
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Now choose a basis of P adapted to the decomposition P = U⊕W and then an admissible linear mapping
L can be written as

L =
[
A 0
C B

]
,

where B = L|U : U → U , C : W → U and from (4) A : W → W satisfies

A γ = γA , ∀ γ ∈ Γ .

The spectral properties of the linear mappings L as above are given by
Lemma 2.2 (Golubitsky et al.[14]). Let L : P → P be linear mapping admissible for a coupled cell
system with interior symmetry Γ. Then

(i) The eigenvalues of L are the eigenvalues of A together with the eigenvalues of B.

(ii) A vector u ∈ U = FixP (Γ) is an eigenvector of B with eigenvalue ν if and only if u is an eigenvector
of L with eigenvalue ν.

(iii) If w ∈ W is an eigenvector of A with eigenvalue µ, then there exists an eigenvector v of L with
eigenvalue µ of the form v = w + u, where u ∈ U = FixP (Γ).

(iv) All eigenspaces of A are Γ-invariant.

As mentioned before, in general, f is not Γ-equivariant and L does not commute with Γ. In particular,
Ec(L) 6⊂ W . However, the block matrix A does commute with Γ and thus Ec(A) ⊂ W is Γ-invariant.
Moreover, if A has purely imaginary eigenvalues there is a natural action of Γ×S1 on Ec(A), where S1 acts
by exp(−θA).

We say that f undergoes an interior symmetry-breaking Hopf bifurcation if the following conditions hold:

(i) All the critical eigenvalues µ of L come from the Γ-equivariant sub-block A of L.

(ii) The matrix A is non-singular and (after rescaling time if necessary) all the critical eigenvalues have
the form ±i and the associated center subspace is given by

Ei(A) = {x ∈ W : (A2 + 1)x = 0} .

A subgroup Σ ⊂ Γ× S1 is called interiorly C-axial (on Ec(A)) if

dim FixEc(A)(Σ) = 2 .

Theorem 2.3 (Interior Symmetry Breaking Hopf Theorem [5]). Consider a smooth one-parameter
family of ODE’s

dx

dt
= f(x, λ) ,

such that f(0, λ) ≡ 0 and f(·, λ) is a coupled cell system associated with a network with interior symmetry Γ.
Suppose that one has an interior symmetry-breaking Hopf bifurcation when λ = 0. Assume the eigenvalue
crossing condition: the critical eigenvalues µ of L extend uniquely and smoothly to eigenvalues µ(λ) of
(df)(x0,λ) for λ near 0 and

d
dλ

Re(µ(λ))
∣∣∣∣
λ=0

6= 0 .
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Then for each interiorly C-axial subgroup Σ ⊂ Γ × S1 on Ec(A) there exists a unique branch of periodic
solutions with period ≈ 2π emanating from the origin such that to lowest order in the bifurcation parameter
λ, the solution x(t) is of the form

x(t) ≈ w(t) + u(t) ,

where w(t) = exp(tL)w0 (w0 ∈ FixW (Σ)) has exact spatio-temporal symmetry Σ on the cells in S and
u(t) = exp(tL)u0 (u0 ∈ FixP (Γ)) is synchronous on the Γ-orbits of cells in S.

We can produce a list of all spatio-temporal patterns satisfying the conditions of the above results and
that are expected to occur when one of the coupled cell systems associated to the networks of Figures 3-4
undergoes a (interior) symmetry-breaking Hopf bifurcation. In both cases the C-axial subgroups and the
interiorly C-axial subgroups are the same for the networks (a) and (b). It is only the form of the solutions
that depend on weather the symmetry is interior or exact.

First we observe that, since we are considering coupled cells systems the action of the groups are by
permutation of coordinates. Second, in all cases, the groups in question are direct products Γ = Γ1 × Γ2,
with the following properties: (i) the first factor Γ1 acts non-trivially on the subset of cells R1 in one of the
rings and acts trivially on C \ R1; (ii) the second factor Γ2 acts non-trivially on the subset of cells R2 in
one of the rings and acts trivially on C \R2; (iii) R1 and R2 are disjoint; (iv) the whole group Γ = Γ1 × Γ2

acts trivially on C \ (R1 ∪R2). It follows then – since the action is by permuting the coordinates – that the
phase space P can be decomposed as

P = P0 ⊕ P1 ⊕ P2 ,

with the following properties: (i) Γ acts trivially on P0, that is, P0 = FixP (Γ); (ii) Γ1 acts non-trivially on
P1 and acts trivially on P0 ⊕ P2; (iii) Γ2 acts non-trivially on P1 and acts trivially on P0 ⊕ P1.

Now recall that an irreducible representation of a direct product Γ = Γ1 × Γ2 is a tensor product of
irreducible representations of the factors. Combining this fact with our previous observations, it follows
that when we decompose P into irreducible components of Γ the only components that appear are of two
types: (i) a tensor product of a non-trivial irreducible representation of Γ1 with the one-dimensional trivial
representation of Γ2; or (ii) a tensor product of a non-trivial irreducible representation of Γ2 with the one-
dimensional trivial representation of Γ1. This fact in turn, implies that the C-axial subgroups of Γ in any
of the Γ-simple subspaces that occur in our examples are of the form

Σ1 × Γ2 or Γ1 × Σ2 ,

where Σi ⊂ Γi × S1 (i = 1, 2) are C-axial subgroups.
We also need a classification of the non-trivial irreducible representations of Zn and Dn in order to find

all the possible candidates to a center subspace. In the case of Zn we have that all non-trivial and faithful
irreducible representations are 2-dimensional and non-absolutely irreducible [18, pg. 361].

Recall that a representation is faithful if the only element of the symmetry group that acts trivially is the
identity. Therefore, all non-trivial faithful irreducible subspaces of Zn are Zn-simple subspaces and support
Hopf bifurcations. In the case of Dn we have that all non-trivial faithful irreducible representations are
2-dimensional and absolutely irreducible [18, pg. 368]. Therefore, the Dn-simple subspaces are a direct sum
of two copies of a non-trivial absolutely irreducible representation of Dn and so are 4-dimensional subspaces.
Furthermore, it is possible to show that the bidirectional rings support Hopf bifurcations only if the internal
phase spaces of the cells in the rings are at least 2-dimensional.

Now we can proceed to the calculation of the (interiorly) C-axial subgroups for all four networks depicted
in Figure 3 and Figure 4. In the first case (Figure 3), we need to compute the (interiorly) C-axial subgroups
of Zn (n odd prime). This computation can be found in [18, pg. 362]. It follows that, taking into account
the context described above, there is only one type of C-axial subgroup, which is denoted Z̃n. The periodic
solution corresponding to this type of subgroup is called discrete rotating wave and has spatio-temporal
symmetry generated by a rotation.
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Returning to the example with Z3 ×Z5 (interior) symmetry, we conclude there are only two (interiorly)
C-axial subgroups: Z̃3 × Z5 and Z3 × Z̃5. The solutions corresponding to these subgroups are also called
rotating waves in the case of exact symmetry and approximate rotating waves in the case of interior symmetry.

Now let us describe the form of the periodic solutions corresponding to the (interiorly) C-axial subgroups
of the networks in Figure 3. When the symmetry is exact the periodic solution of type Z̃3 × Z5 is such
that its components corresponding to the cells in the 3-ring are periodic and have the same wave form but
they are 1/3 out of phase and the components corresponding to the cells in the 5-ring stay in equilibrium.
Similarly, the periodic solution of type Z3 × Z̃5 is such that its components corresponding to the cells in
the 5-ring are periodic and have the same wave form but they are 1/5 out of phase and the components
corresponding to the cells in the 3-ring stay in equilibrium. When the symmetry is only interior it is almost
the same as in the case when it is exact, with the exception that the components that stayed in equilibrium,
are now oscillating as well. In fact, in the unidirectional case they are all synchronized with the buffer cell.

In the second case (Figure 4), we need to compute the (interiorly) C-axial subgroups of Dn (n odd prime).
This computation can be found in [18, pg. 368]. It follows that, taking into account the context described
above, there are three types of C-axial subgroup: Z̃n, Z2 and Z̃2. The periodic solution corresponding to the
first type is called discrete rotating wave and has spatio-temporal symmetry generated by a rotation. The
periodic solution corresponding to the second type has purely spatial symmetry generated by a reflexion.
The periodic solution corresponding the third type has spatio-temporal symmetry generated by a reflexion.
Returning to the example with D3 × D5 (interior) symmetry, we conclude that there are six (interiorly)
C-axial subgroups: Z̃3 ×D5, Z2 ×D5, Z̃2 ×D5, D3 × Z̃5, D3 × Z2 and D3 × Z̃2.

The description of the periodic solutions corresponding to the (interiorly) C-axial subgroups of the
networks in Figure 4 is similar the the first case. We shall not need to describe all of them explicitly since
in our simulations we only observe (approximate) rotating waves, which have the same form as in the case
of unidirectional rings.

3. Numerical Simulations

In this section, we shall describe some numerical simulations of coupled cell systems associated with
the four networks depicted in Figures 3-4, which exhibit a branching pattern similar to the schematic
bifurcation diagram presented in Figure 5. The numerical simulations are performed using MATLAB [29]
and XPPAUT [11].

Let us start by describing the qualitative features of the bifurcation scenario represented by Figure 5.
This is a schematic bifurcation diagram of a sequence of three Hopf bifurcations where the first branch
emanates from a trivial branch of steady states.

HB1

HB2

RO

HB3

Figure 5: Schematic (partial) bifurcation diagram for the coupled cell systems considered here, near the equilibrium point.
Solid lines represent stable solutions, dashed lines correspond to unstable solutions.

The solutions corresponding to the primary branch, which emanates from the trivial branch at the first
Hopf bifurcation point (HB1) represented in Figure 5 can be explained using the Equivariant Hopf Theorem
for coupled cell systems in the symmetric case, and the Interior Symmetry-Breaking Hopf Theorem for
coupled cell systems with interior symmetry. All possible types of periodic solutions were classified in the
previous section.



11

Recall that the (interior) symmetry groups of the networks considered here are of the form Γ = Γ1×Γ2,
where Γ1 is the symmetry group of the ring R1 and Γ2 is the symmetry group of the ring R2. Moreover,
the (interiorly) C-axial subgroups in our examples are of the form Σ1 × Γ2 or Γ1 ×Σ2, where Σi ⊂ Γi × S1

(i = 1, 2) are C-axial subgroups. This form of the (interiorly) C-axial subgroups motives the following
terminology:

(1) when the periodic solution corresponds to a subgroup of the form Σ1 ×Γ2 with Σ1 ⊂ Γ1 ×S1 a C-axial
subgroup we say that the Hopf bifurcation has occurred in the ring R1.

(2) when the periodic solution corresponds to a subgroup of the form Γ1 ×Σ2 with Σ2 ⊂ Γ2 ×S1 a C-axial
subgroup we say that the Hopf bifurcation has occurred in the ring R2.

Thus, in our simulations the primary Hopf bifurcation will occur in one of the rings, say R1 leading to a
periodic solution with a spatio-temporal symmetry Σ1 on the cells in R1 whereas the cells in R2 stay in
equilibrium or oscillate in synchrony.

The secondary branch represented in Figure 5 is provided by a secondary Hopf bifurcation along the
primary branch at the second Hopf bifurcation point (HB2). In the situation where the primary Hopf
bifurcation has occurred in the ring R1, we expect that the secondary Hopf bifurcation is provided by
the occurrence of purely imaginary eigenvalues with eigenvectors in a Γ2-simple subspace, where Γ2 is the
symmetry group of the ring R2. In other words, the secondary Hopf bifurcation “occurs” in the remaing ring
(the one that displayed equilibrium or total synchrony after the first Hopf bifurcation). The symmetry type
of the periodic solution in the second ring R2 has an associated (interiorly) C-axial subgroup Σ2 ⊂ Γ2 ×S1

and so the symmetry type of the full solution has an associated (non C-axial) subgroup Σ1 × Σ2 ⊂ (Γ1 ×
S1)× (Γ2 × S1) and is quasi-periodic.

The tertiary branch represented in Figure 5 is provided by a tertiary Hopf bifurcation along the secondary
branch at the third Hopf bifurcation point (HB3). In this parameter region the solution is quasi-periodic
with the same symmetry type as in the secondary branch. However, further away along this branch there
is a transition to a relaxation oscillation state (RO), where now the solution is quasi-periodic and exhibits
large amplitude and relaxation oscillatory behaviour.

3.1. Unidirectional Networks
For the networks in Figure 3 we consider the same coupled cell system used by Golubitsky, Nicol and

Stewart [13] and studied in Antoneli et al. [5]. Here we summarize the key points of those works.
The internal phase space of all nine cells is the real line R and the internal dynamics is given by:

g(u) = µu− 1
10

u2 − u3 ,

where µ is a real parameter. Moreover, we assume that the coupling between all cells is linear. The full
coupled cell system is

ẋj = g(xj) + c (xj − xj+1) + d b j = 1, . . . , 3
ḃ = g(b) + λ (x1 + y1)
ẏj = g(yj) + c (yj − yj+1) + d b j = 1, . . . , 5

(5)

where c, d, λ are real numbers, and the indexing assumes x4 ≡ x1 and y6 ≡ y1. Note that if λ = 0 then
the structure of the coupled cell system (5) is consistent with the network of Figure 3(a) and thus has exact
symmetry Z3×Z5; if λ 6= 0 then the coupled cell system (5) is associated to the network of Figure 3(b) and
thus has interior symmetry Z3 × Z5. For the numerical simulations we set c = 0.75, d = 2 and we vary the
parameter µ ∈ [−1.05, 1.45] (going from positive values to negative values).

Figure 6 shows the time series after the primary Hopf bifurcation (HB1) in the coupled cell system 5.
On the panel on the left we plot the time series for a network with exact symmetry (λ = 0) and on the
right panel we plot the time series for a network with interior symmetry (λ 6= 0). The symmetry type of the
periodic solution is Z3× Z̃5. In the case with exact symmetry, we observe a rotating wave on the 5-ring and
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Figure 6: Simulation of the coupled system (5) with Z3 × Z5 (exact and interior) symmetry. Time series from the nine cells
after the first Hopf bifurcation point (HB1). (Left) Coupled cell system with exact symmetry (λ = 0). Cells in the 3-ring are
at equilibrium and cells in the 5-ring display a rotating wave. (Right) Coupled cell system with interior symmetry (λ 6= 0).
Cells in the 3-ring are in synchrony and cells in the 5-ring display a rotating wave.

the cells in the 3-ring stay in equilibrium. In the case with interior symmetry, we observe an approximate
rotating wave in the 5-ring and the cells in the 3-ring oscillate in synchrony.

Figures 7-8 show the time series after the secondary Hopf bifurcation (HB2) in the coupled cell system
5. Here the Hopf bifurcation “occurs” in the 3-ring, leading to a Z̃3 rotating wave on the 3-ring. The full
solution is quasi-periodic with symmetry type Z̃3× Z̃5. In Figure 7 we present the results regarding the case
with exact symmetry (λ = 0) whereas in Figure 8 we present the results regarding the case with interior
symmetry (λ 6= 0). On the left panel we plot the time series of all nine cells and on the right panel we plot
cell x1 versus cell y5 showing that the solution fills in the visible region, featuring the quasi-periodicity of
the solution.

It seems that there is no qualitative difference between the case with exact symmetry and the case with
interior symmetry – except that, in the former case the buffer cell is in equilibrium whereas in the latter it
is not. In the case with exact symmetry we have “true” rotating waves in both rings and in the case with
interior symmetry they are both approximate rotating waves.
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Figure 7: Simulation of the coupled system (5) with Z3 ×Z5 exact symmetry (λ = 0), after the second Hopf bifurcation point
(HB2). (Left) Time series from the nine cells. (Right) Cell x1 vs cell y5.
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Figure 8: Simulation of the coupled system (5) with Z3 × Z5 interior symmetry (λ 6= 0), after the second Hopf bifurcation
point (HB2). (Left) Time series from the nine cells. (Right) Cell x1 vs cell y5.

Figures 9-10 show the time series further away from the tertiary Hopf bifurcation (HB3) in the coupled
cell system (5). In Figures 9-10, we plot, on the left panel, the time series for the nine cells and on the right
panel cell x1 vs cell y5, for the case with exact symmetry and the case with interior symmetry (λ 6= 0),
respectively. Note that in Figure 10 the buffer cell appears to exhibit a much more complicated dynamics
than the cells in the rings.
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Figure 9: Simulation of the coupled system (5) with Z3 × Z5 exact symmetry (λ = 0), further away from the third Hopf
bifurcation point (HB3) and near the region of relaxation oscillation (RO). (Left) Time series from the nine cells. (Right) Cell
x1 vs cell y5.

The full solution is quasi-periodic and seems to have a symmetry type Z̃3× Z̃5, that is, the time series on
the 3-ring looks like a Z̃3 (approximate) rotating wave and the time series on the 5-ring a Z̃5 (approximate)
rotating wave. The dynamic behavior of the coupled system (5) is qualitatively different from the one
observed in Figures 7-8. Unlike in previous case (Figures 7-8), the amplitude is much higher and wave form
is qualitatively different, displaying typical relaxation oscillatory features.

This curious behavior presented in Figure 10 was found by Golubitsky et al. [13, Section 8], where they
have conjectured that the solution in the nine-dimensional phase space is either periodic of long period, or
quasi-periodic. This coupled cell system was thoroughly studied by Antoneli et al. [5], where it was shown,
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Figure 10: Simulation of the coupled system (5) with Z3 × Z5 interior symmetry (λ 6= 0), further away from the third Hopf
bifurcation point (HB3) and near the region of relaxation oscillation (RO). (Left) Time series from the nine cells. (Right) Cell
x1 vs cell y5.

by numerical simulation, that the state described in Golubitsky et al. [13] can be obtained through a series
of Hopf bifurcations starting at an equilibrium point.

3.2. Bidirectional Networks
For the networks in Figure 4, we assume the internal phase space of the nine cells to be two-dimensional

R2. The internal dynamics is given by:

g(u) = a(µ)u− 1
10

u‖u‖4, (6)

where a(µ) is the following 2× 2 matrix depending on a real parameter µ:

a(µ) =
( −0.1− µ −1.5

1.5 −0.1

)
.

Moreover, we assume that the couplings between all cells is .... The full coupled cell system is

ẋj = g(xj) + c1 (xj−1 + xj+1) + c2(‖xj‖2xj+1) + d b j = 1, . . . , 3

ḃ = −b + λ
(∑3

k=1 ekxk +
∑5

k=1 fkyk

)

ẏj = g(yj) + c1 (yj−1 + yj+1) + c2(‖yj‖2yj+1) + d b j = 1, . . . , 5

(7)

where c, d are real numbers and ej (j = 1, . . . , 3), fk (k = 1, . . . , 5) are 2 × 2 real matrices with ej 6= ek,
fj 6= fk for j 6= k. The indexing assumes x4 ≡ x1, x0 ≡ x3 and y6 ≡ y1, y0 ≡ y5. Note that if λ = 0 then
the structure of the coupled cell system (7) is consistent with the network of Figure 4(a) and thus has exact
symmetry D3 ×D5; if λ 6= 0 then the coupled cell system (7) is associated to the network of Figure 4(b)
and thus has interior symmetry D3×D5. For the numerical simulations we set c1 = −0.1, c2 = −0.01 d = 2
and we vary the parameter µ ∈ [−3, 0.13] (going from positive values to negative values).

In Figure 11 (left), we plot the time series solution of the coupled cell system (7) for the case with exact
symmetry. The solution is a rotating wave state in the 5-ring, obtained by a Hopf bifurcation (HB1), from
the trivial equilibrium branch. In Figure 11 (right), we plot the time series solution of the coupled cell
system (7) for the case with interior symmetry. The solution is a superposition of a rotating wave in the
5-ring and a synchronous periodic state in the 3-ring.
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Figure 11: Simulation of the coupled system (7) with D3 ×D5 (exact and interior) symmetry. Time series from the nine cells
after the first Hopf bifurcation point (HB1). (Left) Coupled cell system with exact symmetry (λ = 0). Cells in the 3-ring are
at equilibrium and cells in the 5-ring display a rotating wave. (Right) Coupled cell system with interior symmetry (λ 6= 0).
Cells in the 3-ring are in synchrony and cells in the 5-ring display a rotating wave.

By varying further the parameter µ, there is a secondary Hopf bifurcation point (HB2) where the time
series of the cells in the 3-ring appear to show a Z̃3 rotating wave. In Figure 12, we plot, in the left panel,
the individual time series of the nine cells and on the right panel we plot cell x1 versus cells y5, for the
case with exact symmetry. In Figure 13, we plot, in the left panel, the individual time series of the nine
cells and on the right panel we plot cell x1 versus cell y5, for case with interior symmetry. The full solution
is quasi-periodic with symmetry type Z̃3 × Z̃5. The quasi-periodic behavior is indicated by the non-closed
curve that fills almost all the square (in both cases).
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Figure 12: Simulation of the coupled system (7) with D3 × D5 exact symmetry (λ = 0), after the second Hopf bifurcation
point (HB2). (Left) Time series from the nine cells. (Right) Cell x1 vs cell y5.

Continuing the variation of parameter µ, we find a third Hopf bifurcating point (HB3). Further away
from this point (HB3) – in fact, after the relaxation oscillation transition point (RO) – the dynamic behavior
of the coupled system (7) is qualitatively different from the one observed in Figures 12-13. In Figure 14, we
plot, in the left panel, the individual time series of the nine cells and on the right panel we plot cell x1 versus
cells y5, for the case of exact symmetry. In Figure 15, we plot, in the top panel, the individual time series
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Figure 13: Simulation of the coupled system (7) with D3 ×D5 interior symmetry (λ 6= 0), after the second Hopf bifurcation
point (HB2). (Left) Time series from the nine cells. (Right) Cell x1 vs cell y5.

of the nine cells and on the right panel we plot cell x1 versus cells y5, for the case of interior symmetry.
The time series of the cells in the 3-ring appear to show a Z̃3 rotating wave state and the cells in the

5-ring appear to show a Z̃5 rotating wave state and the full solution is quasi-periodic. However, like in the
case of unidirectional ring, we observe that there is a significant growth of the amplitude and the wave form
becomes qualitatively different, exhibiting typical features of a relaxation oscillation state. Note also that in
Figure 15 the buffer cell appears to exhibit a much more complicated dynamics than the cells in the rings.
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Figure 14: Simulation of the coupled system (7) with D3 ×D5 exact symmetry (λ = 0), further away from the third Hopf
bifurcation point (HB3) and near the region of relaxation oscillation (RO). (Left) Time series from the nine cells. (Right) Cell
x1 vs cell y5.

It is worth mentioning that in Antoneli et al. [6] the authors present numerical simulations of another
coupled cell system associated with the networks with D3 × D5 symmetry considered here, obtaining a
slightly different bifurcation scenario. The main difference is that after the second Hopf bifurcation (HB2)
the full state is still a periodic solution; only after the third Hopf bifurcation (HB3) a quasi-periodic behaviour
is obtained. This is an indication that the structure of the vector field seems to select the periodicity or
quasi-periodicity of the global solution of the network.
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Figure 15: Simulation of the coupled system (7) with D3 ×D5 interior symmetry (λ 6= 0), further away from the third Hopf
bifurcation point (HB3) and near the region of relaxation oscillation (RO). (Left) Time series from the nine cells. (Right) Cell
x1 vs cell y5.

4. Conclusion

In this paper we study the dynamical behavior of networks consisting of two rings coupled through a
buffer cell, that admits Z3 × Z5 and D3 ×D5 exact and interior symmetry.

These networks exhibit a large variety of dynamic features, from states where the cells in one of the rings
are at equilibrium and cells in the second ring show a rotating wave state, till a curious phenomena, namely
the behaviour shown in Figures 9-10, presented by Golubitsky et al. [13] and studied in Antoneli et al. [5],
for the Z3 × Z5 symmetric case, and in Figures 14-15 for the D3 × D5 case. The numerical simulations
strongly suggest, as is the case studied in Antoneli et al. [5], that this dynamical feature needs a relaxation
oscillation phenomena to occur. Relaxation oscillations are solutions characterized by long periods of quasi-
static behavior interspersed with short periods of rapid transition. These solutions are studied in the context
of the canard phenomenon [20? , 26].

We use XPPAUT and MATLAB to compute a partial bifurcation diagram and the corresponding dynamical
states in each bifurcating branch. The bifurcation scenario is similar to the one suggested in Golubitsky
et al. [13] and Antoneli et al. [5]. In particular, the curious phenomena show in Golubitsky et al. [13]
seems to arise through a sequence of Hopf bifurcations. Additionally, the bifurcation scenario is valid to the
symmetric and to the interiorly symmetric case.

In Table 1, we summarize the information, computed by XPPAUT, related to the schematic (partial)
bifurcation diagram in Figure 5, and describe the dynamical behavior of the coupled cell systems at the
different bifurcating branches.
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