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Abstract

From the point of view of coupled systems developed by Stewart, Golubitsky, and

Pivato, lattice differential equations consist of choosing a phase space R
k for each point

in a lattice and a system of differential equations on each of these spaces R
k such that

the whole system is translation invariant. The architecture of a lattice differential equa-

tion is the specification of which sites are coupled to which (nearest neighbor coupling

is a standard example). A polydiagonal is a finite-dimensional subspace of phase space

obtained by setting coordinates in different phase spaces equal; a pattern of synchrony

is a polydiagonal that is flow-invariant for every lattice differential equation with a

given architecture. We prove that every pattern of synchrony for a fixed architecture

in planar lattice differential equations is spatially doubly periodic assuming that the

couplings are sufficiently extensive. For example, nearest and next nearest neighbor

couplings are needed for square and hexagonal couplings, and a third level of coupling

is needed for the corresponding result to hold in rhombic and primitive cubic lattices.

On planar lattices this result is known to fail if the network architecture consists only

of nearest neighbor coupling. The techniques we develop to prove spatial periodicity

and finiteness can be applied to other lattices.
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1 Introduction

Many physical and biological systems can be modelled by networks of systems of differential

equations. Networks of differential equations possess additional structure, namely, canonical

observables — the dynamical behavior of the individual network nodes [4]. These observables

can be compared, revealing such features as synchrony or in periodic solutions specified

phase-relations. These features are important in many applications and any theoretical

treatment of network dynamics must take this additional structure into account.

Stewart, Golubitsky, Pivato, and Török [5, 6] formalize the concept of a coupled cell

network, where a cell is a system of ordinary differential equations (ODEs) and a coupled cell

system consists of cells whose equations are coupled. Stewart et al. define the architecture

of coupled cell networks and develop a theory that shows how network architecture leads to

synchrony. The architecture of a coupled cell network is a graph that indicates which cells

have the same phase space, which cells are coupled to which, and which couplings are the

same. See also the development by Field [2].

In this paper we study properties of synchrony in lattice differential equations. We use

a strong form of network synchrony, namely, robust synchrony, which we now define. A

polydiagonal ∆ is a subspace of the phase space of a coupled cell system that is defined by

equality of cells coordinates. The polydiagonal ∆ is robustly polysynchronous if ∆ is flow-

invariant for every coupled cell system with the given network architecture. Solutions in a

flow-invariant ∆ have a collection of coordinates equal for all time. If we color two cells

the same when the coordinates are equal, then we can associate robustly polysynchronous

polydiagonals with patterns of synchrony.

Stewart et al. [6, Theorem 6.1] prove that a polydiagonal is robustly polysynchronous

if and only if the coloring given by coloring cells that have the same coordinates with the

same color is balanced. (The definition of balanced is given in Definition 2.9.) Thus, classi-

fying robustly polysynchronous polydiagonals is equivalent to the combinatorial question of

classifying balanced colorings.

A lattice dynamical system is a coupled cell system with cells indexed by a lattice L.

Each cell has a finite set of cells I(c) that are coupled to c. A standard example of network

architecture is given by nearest neighbor coupling in which case I(c) consists of those cells

in the lattice that are nearest to c. A lattice differential equation has the form

ẋc = g(xc, xI(c)) c ∈ L (1.1)
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where xc ∈ Rn, I(c) = {c1, . . . , ck}, xI(c) = (xc1, . . . , xck
) ∈ (Rn)k and g : (Rn)k+1 → Rn.

Golubitsky, Nicol, and Stewart [3] give an infinite class of two-color patterns of synchrony

on square lattice systems with nearest neighbor coupling. Wang and Golubitsky [7] classify all

possible two-color patterns of synchrony of square and hexagonal lattice differential equations

with two different architectures — nearest neighbor coupling (NN) and both nearest neighbor

and next nearest neighbor coupling (NNN). It follows from these results that with NNN

architecture balanced two-colorings are finite in number and spatially doubly-periodic. Thus,

there is a profound difference between balanced two-colorings in the NN and NNN cases:

one classification is finite, the other is infinite; one set has spatially periodic and nonperiodic

colorings, the other has only periodic colorings.

In this paper we show that each balanced k-coloring on a square and hexagonal lattice

with NNN architecture is spatially periodic and that there are only a finite number of k-

colorings for each k. See Theorem 4.1. The techniques we develop are general enough to

prove similar theorems for other lattices; the general principle seems to be that if there is

enough coupling, then balanced k-colorings are spatially periodic.

In Section 2 we discuss the general structure of lattice differential equations. The tech-

niques that we use to prove spatial periodicity and finiteness (namely, the notions of ‘window’

and ‘determining boundaries’) are discussed in Section 3. The theorems on planar lattices

are given in Section 4 and a cubic lattice is discussed in Section 5.

2 Lattice Dynamical Systems

In this section we define what we mean by a lattice dynamical system. We begin by defining

a coupled cell system abstractly as in [5].

Definition 2.1 A coupled cell network G consists of:

(a) A countable set C of cells.

(b) An equivalence relation ∼C on cells in C.

(c) A countable set E of edges or arrows.

(d) An equivalence relation ∼E on edges in E .

3



(e) (Local finiteness) There is a head map H : E → C and a tail map T : E → C such that

for every c ∈ C the sets H−1(c) and T −1(c) are finite.

We also require a consistency condition:

(f) Equivalent arrows have equivalent tails and heads; that is, if e1 ∼E e2 in E , then

H(e1) ∼C H(e2) and T (e1) ∼C T (e2). 3

Remark 2.2 Associated with each cell c ∈ C is a set of edges that represent couplings into

c. In the abstract setting of [5] multiple connections between cells and self-coupling are

permitted. Because of this it is most natural to think of inputs as arrows. This generality is

not needed in our discussion of lattice dynamical systems; so we can identify input arrows

with their tail cells, as was done originally in [6]. 3

Definition 2.3 Let c ∈ C. The input set of c is

I(c) = T (H−1(c)) (2.1)

An element of the finite set I(c) is called an input cell of c. 3

Two input sets are isomorphic if there is a bijection between the input sets that preserves

coupling types. A coupled cell network is homogeneous if the input sets of all cells are

isomorphic.

An n-dimensional lattice L is a subset of Rn of the form

L = {α1v1 + · · ·+ αnvn : αi ∈ Z}

where {v1, . . . , vn} is a set of linearly independent vectors in Rn called the generators of the

lattice L. Note that L is a discrete subgroup of Rn.

Definition 2.4 We call a lattice L Euclidean if it satisfies

(a) All generators of L have the same length.

(b) The generators of L are exactly those lattice vectors that are nearest to the origin in

Euclidean distance. 3
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Euclidean lattices are the most relevant for applications of bifurcation theory [4]. Planar

square and hexagonal lattices are Euclidean. The generators v1, v2 of a rhombic lattice can

be assumed to be in the first quadrant. A rhombic lattice satisfies (b) only when the angle

between v1 and v2 is greater than π/3.

Let r0 < r1 < · · · be the possible lengths of vectors in a fixed lattice L. We can partition

the vectors in L by length as follows. Let

Ji = {v ∈ L : |v| = ri}

The vectors in L can be divided into classes of neighbors as follows. The nearest neighbors

to a vector c ∈ L is the set of vectors {c + v : v ∈ J1}. The next nearest neighbors to c

is the set of vectors {c + v : v ∈ J2}. The pth nearest neighbors to c is the set of vectors

{c + v : v ∈ Jp}.

Definition 2.5 An n-dimensional lattice network consists of:

(a) An n-dimensional lattice L.

(b) A homogeneous coupled cell system GL whose cells are indexed by L.

(c) The set I(0) = J1 ∪ · · · ∪ Jp for some p.

(d) The edge type of two cells in the same class of neighbors is the same and each class

of neighbors corresponds to a different edge type. 3

We say that a lattice in which the cells are coupled to neighbors of order p is a lattice with

p-th nearest neighbor coupling. In particular, if p = 1 we have a lattice with nearest neighbor

coupling and if p = 2 we have a lattice with nearest and next nearest neighbor coupling.

Figure 1 shows examples of two-dimensional lattice networks.

Remarks 2.6 (a) Lattice networks are bidirectional, that is, for each arrow from c to d

there is an arrow of the same type from d to c. This follows from Definition 2.5.

(b) The symmetry group of the lattice is the symmetry group of the lattice network. In

particular, translations by any vector in the lattice is a symmetry of the lattice network.

Example 2.7 Up to equivalence there is exactly one lattice L in R. If we normalize the

length of the generator of the lattice to be 1, L ∼= Z. In a network defined on Z each cell i

has exactly two neighbors of order p, namely the left (i − p) and the right (i + p). 3
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Figure 1: (Left) square lattice network with nearest neighbor coupling (solid lines). (Center)

square lattice network with nearest neighbor and next nearest neighbor coupling (dashed

lines). (Right) rhombic lattice network with nearest neighbor, next nearest neighbor, and

next next nearest neighbor coupling (dotted lines).

Definition 2.8 An n-dimensional lattice dynamical system is a system of ordinary differen-

tial equations associated to a n-dimensional lattice network GL given by

ẋc = f(xc, xI(c)) c ∈ L

where xc ∈ Rk, I(c) = {c1, . . . , c`}, xI(c) = (xc1, . . . , xc`
) ∈ Rk ` and the map f : Rk(`+1) →

Rk is smooth. The corresponding vector field is said to be GL-admissible. 3

A pattern of synchrony in a lattice dynamical system is identified with a robustly polysyn-

chronous equivalence relation, that is, an equivalence relation ./ on the cells such that the

associated polydiagonal

∆./ = {x ∈ Rk(`+1) : xc = xd whenever c, d ∈ L and c ./ d}

is flow-invariant under every GL-admissible vector field. It has been proved [5, 6] that an

equivalence relation is robustly polysynchronous if and only if it is balanced.

Suppose that we have a finite number ` of ./-equivalence classes and we color the cells

in the lattice so that two cells have the same color precisely when they are in the same

./-equivalence class, that is, an equivalence relation can be represented by an `-coloring of

the cells. Now let K1, . . . , K` be the colors of an `-coloring of a lattice network GL.

Definition 2.9 The `-coloring is balanced if and only if each cell of color Ki receives the

same number of inputs from cells of color Kj (j = 1, . . . , `) of each edge type.
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3 Techniques for Proving Spatial Periodicity

Definition 3.1 Let GL be a lattice network and let U ⊂ L be a subset. The closure of U

consists of all cells that are connected by some arrow to a cell in U , that is,

cl(U) = {T (e) : e ∈ E and H(e) ∈ U}.

The boundary of U is the set

bd(U) = cl(U) r U

3

For each Euclidean lattice network GL there is a natural expanding sequence of finite

subsets that covers the lattice. Let

W0 = {0} and Wi+1 = cl(Wi) (3.1)

for i > 0. Since the input set of each cell contains the generators of the lattice, we have

L = W0 ∪ W1 ∪ · · ·

It follows that for any coloring of a lattice L by k colors, there is some j such that all k

colors are represented by cells in Wj. In fact, more is true for balanced colorings.

Lemma 3.2 Let GL be a lattice network with a balanced k-coloring. Then Wk−1 contains

all k colors.

Proof: We claim that if ` < k, then W` contains at least ` + 1 colors. The proof proceeds

by induction on W`. W0 = {0} contains one cell and one color.

Assume that the statement is true for ` < k − 1; we prove that it is also true for ` + 1.

Suppose that the number m of colors contained in W`+1 = cl(W`) is the same as the number

of colors in W`. Then every cell c ∈ W`+1 has a color that is the same as the color of a cell

d in W`. So, all cells connected to d lie in W`+1 and are colored by the m colors. Therefore,

balanced implies that the cells connected to c must also be colored by one of the m colors.

It follows that the cells in W`+2 = cl(W`+1) are also colored by these m colors. By induction

the entire lattice is colored by m colors; hence m = k. So if m < k, the number of colors in

W`+1 must be greater than the number of colors in W`. That is, W`+1 contains at least `+2

colors. It follows that Wk−1 contains all k colors. 2
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Definition 3.3 Let GL be a lattice network and let U ⊂ L be a subset of cells. We say that

U is connected if for every pair of cells c, d ∈ U there is a sequence of cells c = e1, e2, . . . , ej =

d ∈ U such that ei ∈ I(ei+1) for all i = 1, . . . , j − 1. 3

Definition 3.4 Let GL be a lattice network and let U ⊂ GL be a finite connected set.

(a) A cell c ∈ bd(U) is 1-determined if there is a cell d ∈ U such that c is in the input set

of d and each cell in the input set of d that has the same coupling type as c, except c

itself, belongs to U .

(b) A cell c ∈ bd(U) is p-determined, where p > 1 if there is a cell d ∈ U such that c is in

the input set of d and each cell in the input set of d that has the same coupling type

as c, except c itself, either belongs to U or belongs to bd(U) and is q-determined for

some q < p.

(c) A cell c ∈ bd(U) is determined if it is p-determined for some p.

(d) The set U determines its boundary if all cells in bd(U) are determined. 3

Definition 3.5 Let GL be a lattice network. Then the set Wi0 is a window if Wi determines

its boundary for all i > i0. 3

Remark 3.6 Note that if there are no 1-determined cells then, by induction, there are no

p-determined cells for any p. In particular, if there are no 1-determined cells, then windows

do not exist.

Example 3.7 Let L be the square lattice of length 1 which we can identify with Z2. Let GL

be the associated lattice network such that each cell has four nearest neighbors at distance

1. See Figure 1 (left). This network has no window, as we show. (Note that in this case, it

is shown in [7] that there are infinitely many balanced 2-colorings.)

We claim that no set Wi is a window. By Remark 3.6 it is sufficient to show that there

are no 1-determined cells. For example, consider W2 and its boundary (Figure 2). Since the

cells on the boundary are in a diagonal line it is not possible for them to be the only cell in

the input set of a cell in W2 that is not in W2. Note that when i > 2 the set Wi has the same

“diamond shape” as W2. So there are no 1-determined cells in bd(Wi). By Remark 3.6, this

network has no window. 3
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Figure 2: The set W2 (black cells) and its boundary (white cells with a cross).

Example 3.8 Let GL be the lattice network associated to the square lattice L = Z2 such

that each cell has four nearest neighbors at distance 1 and four next nearest neighbors at

distance
√

2. See Figure 1 (center).

Let W0, W1, . . . the sequence of sets generated by cell 0. It is clear that each set Wi is a

square of size 2i + 1. The size of a square is the number of cells in one (and hence all) of its

sides.

We show that the sets Wi for i > 2 determine their boundaries. To show this we just

need (by symmetry) to analyze one of the corners of such a square because all the cells on

each side, except the last two on both extremes, are 1-determined since they are the only

nearest neighbor outside the square (Figure 3).
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Figure 3: The set W2 (black cells) and the 1-determined cells of its boundary.

The three cells in the corners of the square are 2-determined using the next nearest

neighbors coupling as long as the square has size greater than 3. See Figure 4. 3

Definition 3.9 Let GL be a lattice network and let U ⊂ L be a subset. The interior of U

consists of all cells c ∈ U such that any cell connected to c is also in U , that is,

int(U) = {c ∈ U : I(c) ⊂ U}.
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Figure 4: The corner of a set Wi (black cells), the 1-determined cells (white cells with a

cross) and 2-determined cells (white cells connected to 1-determined cells by dashed lines).

3

Lemma 3.10 Let GL be a lattice network where L is an Euclidean lattice and assume that

Wi0 is a window. Suppose that a balanced k-coloring restricted to int(Wi) for some i > i0

contains all k colors. Then the k-coloring is uniquely determined on the whole lattice by its

restriction to Wi.

Proof: Let K be a balanced k-coloring. Then for any two cells c and d of the same color,

there is a bijection β : I(c) → I(d) that preserves arrow type and color. So if we know the

colors of all cells in I(c) and we know the colors of all cells except one in I(d), then the fact

that the coloring is balanced tells us what the color of the last cell in I(d) must be.

Suppose that c ∈ bd(Wi) and that c is 1-determined. Then there exists d ∈ Wi and

c ∈ I(d) such that all other input cells in I(d) that have the same coupling type as c are in

Wi. Since int(Wi) contains all k colors, there exists a cell e ∈ int(Wi) with the same color

as d. Since all neighbors of e are in Wi (by definition of interior), their colors are known. In

particular, the colors of the cells in I(d) that have the same coupling type as c are known

except for the color of c. Now we apply the reasoning in the previous paragraph to deduce

the color of cell c.

Assume that the colors of all q-determined cells in bd(Wi) when q < p have been de-

termined. Suppose c ∈ bd(Wi) is p-determined. Then there exists d ∈ Wi and c ∈ I(d)

such that all other input cells in I(d) that have the same coupling type as c are in Wi or

are q-determined for some q < p. We use the same argument as in the previous paragraph

to deduce the color of cell c. Since bd(Wi) is finite and Wi determines its boundary, this

process ends when all the cells in bd(Wi) are colored. Hence, the balanced coloring has been

extended from Wi to Wi+1.
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Finally, we continue inductively to color Wi+` for ` > 1. It follows that the balanced

k-coloring restricted to Wi can be uniquely extended to the whole lattice. 2

Theorem 3.11 Let L be an Euclidean lattice and GL a lattice network with a window. Fix

k > 1. Then there are a finite number of balanced k-colorings on L and each balanced

k-coloring is spatially multiply-periodic.

Proof: Let Wj be a window for GL where j > k. Since there is only a finite number of

possible ways to distribute k colors on the cells in Wj it follows that there are only a finite

number of balanced k-colorings restricted to Wj. Moreover, by Lemma 3.2, the interior of

Wj contains all k-colors. Lemma 3.10 states that any balanced k-coloring restricted to Wj

extends uniquely to the whole lattice. Therefore, the number of balanced k-colorings of GL

is finite.

Let K be a balanced k-coloring on GL and let v ∈ L. Let Tv(K) be the coloring obtained

by shifting the coloring K by v, that is, the color of cell c in Tv(K) is the same as the color

of cell c − v in K. Since translations are symmetries of the lattice network Tv(K) is also a

balanced coloring. It also follows by symmetry that the subset Tv(Wj) = {c + v : c ∈ Wj}
has the window property that balanced k-colorings restricted to Tv(Wj) uniquely extend to

the whole plane.

Let v be a generator of the lattice and consider all translates of Wj in the direction of

v. Since there are only a finite number of balanced k-colorings and an infinite number of

translates of Wj, there must be at least two translates W 1
j and W 2

j exhibiting exactly the

same balanced k-coloring. Therefore the balanced k-colorings determined by W 1
j and W 2

j

are the same. Since that translation of a balanced k-coloring is again a balanced k-coloring,

it follows that the translation that takes W 1
k to W 2

k leaves the balanced k-coloring invariant

and hence it is periodic in the direction of v. The same argument can be applied to all the

generators of the lattice, thus all balanced k-colorings are spatially multiply-periodic. 2

The fundamental property that we have identified in the course of the proof of the

theorems in this section is determinacy, which is related to the architecture of the network

defined by the choice of the structure of the input set.

Example 3.12 Consider the one-dimensional lattice L = Z. Let GL be the lattice net-

work with nearest neighbor coupling. The input set of a cell c consists of c plus its

left and right neighbors. Let W0, W1, . . . be the sequence of sets defined in (3.1). Then
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Wi = {−i, . . . , 0, . . . , i} is an interval of 2i + 1 consecutive cells. Note that the boundary of

any interval has two cells that are not in the interval and both of them are 1-determined.

Therefore, the sets Wi for i ≥ 1 are windows. Theorem 3.11 implies the finiteness of balanced

k-colorings and spatial periodicity of all balanced k-colorings for the one-dimensional lattice

network with nearest neighbor coupling. This special case is proved directly in [1]. 3

4 Planar Lattices

Our main result about balanced colorings of planar lattice networks is the following.

Theorem 4.1 Let

L = {αu + βv : α, β ∈ Z},

be a planar lattice, where the generators u and u are norm 1 linearly independent vectors.

Assume that the angle θ between u and v satisfies

π

3
≤ θ ≤ π

2

Let GL be the associated network such that the input set of each cell c contains cells whose

distance from c is less than or equal to |u + v|. Then for each k > 0 the network GL admits

only a finite number of balanced k-colorings each of which is spatially doubly-periodic.

Remark 4.2 Theorem 4.1 covers three types of lattice:

(a) square lattice: u = (1, 0) and v = (0, 1)

(b) hexagonal lattice: u = (1, 0) and v = (1,
√

3)/2

(c) rhombic lattice: u = (1, 0) and v = (cos θ, sin θ) where π
3

< θ < π
2
.

For each of these lattices we define the critical distance as |u + v|. The couplings allowed

by the critical distance are nearest and next nearest neighbor for all three lattices and next

next nearest neighbor for the rhombic lattices.

Proof: It is sufficient to show that the three types of lattices mentioned in the Remark 4.2

have windows. More precisely, let W0, W1, . . . be the sets defined in (3.1) for one of the

12



lattices satisfying the hypothesis of the theorem. We shall prove that Wi determines its

boundary for all i > 2 and is a window. The conclusion follows from Theorem 3.11.

First, let L be the square lattice. We already have shown in Example 3.8 that for all

i > 2 the set Wi determines its boundary.

Second, let L be a rhombic lattice with π
3

< θ < π
2
. Since this lattice is a deformation of

the square lattice, the same argument that is used in Example 3.8 shows that Wi determines

its boundary for all i > 2. The only new issue is that the set of next nearest neighbors has

four elements in the square lattice breaks into two sets of two elements each in the rhombic

lattice. See Figure 1 (right).

Third, let L be the hexagonal lattice. The input set of a cell c in the hexagonal lattice

with nearest and next nearest neighbor coupling has 12 cells: 6 nearest neighbors at distance

1 from c and 6 next nearest neighbors at distance
√

3 from c (Figure 5).
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Figure 5: Hexagonal lattice network. Nearest neighbor (solid lines) and next nearest neighbor

(dashed lines) coupling. The dotted lines show the hexagonal region W1.

The set Wi+1 r Wi is a hexagonal annulus surrounding Wi. Indeed, the cells in the input

set of one cell c in Wi are within a distance less or equal than
√

3 from c, so they must lie

inside this region. See Figure 6. Another observation is that the three lines through 0 and

the next nearest neighbors of 0 divide each set Wi into six sectors. Since rotations by π/3

are symmetries of the lattice, we can restrict the analysis to one of these sectors.

In the hexagonal lattice the boundaries of the sets Wi in a given sector consists of three

lines of cells. See Figure 7. Note that cells on the first line of Wi are nearest neighbors of

cells on the second line of Wi−1; cells on the second line of Wi are nearest neighbors of the

cells on the third line of Wi−1; and cells on the third line of Wi are nearest neighbors of the

cells on the first line of Wi.

The first line of the boundary of a set Wi is 1-determined. This follows from the fact

that a cell c in the first line of bd(Wi) is a nearest neighbor of a cell d in the second line of

Wi and all other nearest neighbors of d are in Wi. See Figure 8. The same argument shows
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Figure 6: The next nearest neighbors of 0 and the sets W1, W2 and W3 (hexagonal regions

defined by dotted lines). The six sectors defined by the next nearest neighbors are separated

by solid lines.
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Figure 7: One sector of the sets Wi+1 r Wi with the three lines of cells connected by dots,

dashes, and solid.

that cells in the second line, with the exception of the two cells nearest the sector boundary,

are 2-determined; and cells in the third line of one sector, with the exception of the two cells

on the sector boundary and the two cells nearest the sector boundary, are 3-determined. So

far, we have shown that, except for six cells near or on the boundary of the sector, all cells

are determined.
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Figure 8: One sector of the set Wi (black cells) and a sector of its boundary bd(Wi). The

first line of bd(Wi) is 1-determined.

Reflections allow us to restrict ourselves to cells near one of corner of a sector. Thus we

must show that the three remaining cells are determined. We now assume that i > 2.

To see that cell c1 near the sector boundary on the second line of bd(Wi) is determined,

consider the next nearest neighbors of the cell d1 near the sector boundary on the second

line of bd(Wi−1). Since c1 is the only next nearest neighbor of d1 that has not yet been

determined, c1 is determined. See Figure 9(a).
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Figure 9: The corner of one sector of the set Wi. The three remaining cells are determined.

To see that cell c2 on the third line but not on the sector boundary is determined, consider

the nearest neighbors of cell d2 nearest the second line of bd(Wi). Since c2 is the only nearest

neighbor of d2 that has not yet been determined, c2 is determined. See Figure 9(b).
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To see that cell c3 on the third line of bd(Wi) and the sector boundary is determined,

consider the next nearest neighbors of cell d3 on the sector boundary and the third line of

bd(Wi−1). Since c3 is the only next nearest neighbor of d3 that has not yet been determined,

c3 is also determined. See Figure 9(c). 2

5 The Cubic Lattice

In this section we show that our techniques can also work on three-dimensional lattices

by considering the standard (or primitive) cubic lattice L = Z3. This lattice is the direct

generalization to R3 of the linear lattice in R and the square lattice in R2.

Proposition 5.1 Let GL be the standard cubic lattice network with nearest, second nearest

and third nearest neighbor couplings. Then Ws determines its boundary for all s > 3 and GL

admits a window.

Proof: Note that if a cell with coordinates y = (y1, y2, y3) is in the input set of a cell with

coordinates x = (x1, x2, x3), then the coordinates must satisfy

|yi − xi| 6 1, for i = 1, 2, 3. (5.1)

Therefore,

Ws = {(x1, x2, x3) : −s 6 xi 6 s, xi ∈ Z}

is the cube centered at the origin whose sides have 2s + 1 cells. We prove that Ws (s > 3)

determines its boundary. Observe that

bd(Ws) = cl(Ws) r Ws

= Ws+1 r Ws

= {(x1, x2, x3) ∈ Ws+1 : ∃ i ∈ {1, 2, 3} such that |xi| = s + 1}.

By symmetry it is sufficient to prove that all the cells in the set

Q = {(s + 1, x2, x3) : 0 6 x3 6 x2 6 s + 1}.

are determined by Ws. We partition Q into

Q = (P11 ∪ P12 ∪ P13 ∪ P14) ∪ (P21 ∪ P22) ∪ P3

16



where
P11 = {(s + 1, x2, x3) : 0 6 x3 6 x2 6 s − 1}
P12 = {(s + 1, s, x3) : 0 6 x3 6 s − 2}
P13 = {(s + 1, s, s)}
P14 = {(s + 1, s, s − 1)}
P21 = {(s + 1, s + 1, x3) : 0 6 x3 6 s − 1}
P22 = {(s + 1, s + 1, s)}
P3 = {(s + 1, s + 1, s + 1)}.

We show that all cells in each of these sets are determined.

P11 is 1-determined: Note that cells (s, x2, x3) with 0 6 x3 6 x2 6 s−1 are in Ws. These

cells have six nearest neighbors: (s± 1, x2, x3), (s, x2 ± 1, x3), and (s, x2, x3 ± 1). Except for

the cell (s + 1, x2, x3), all other nearest neighbors of these cells are in Ws. Hence, all cells

(s + 1, x2, x3) are 1-determined.

P12 is 2-determined: Note that cells (s, s − 1, x3) with 0 6 x3 6 s − 2 are in Ws. These

cells have 12 next nearest neighbors whose coordinates are:

(s ± 1, (s − 1) ± 1, x3), (s ± 1, (s − 1) ∓ 1, x3),

(s ± 1, s − 1, x3 ± 1), (s ± 1, s − 1, x3 ∓ 1),

(s, (s − 1) ± 1, x3 ± 1), (s, (s − 1) ± 1, x3 ∓ 1).

Except for (s + 1, s, x3), all other next nearest neighbors are in Ws ∪ P11 (or in one of its

symmetric images). Thus, all cells (s + 1, s, x3) are 2-determined.

P13 is 3-determined: The set P13 has one cell c = (s+1, s, s). Note that d = (s, s−1, s−1)

is in Ws and has c as its next next nearest neighbor. Thus the distance between c and d is√
3. Since the coordinates of d satisfy (5.1), it follows that, except for (s + 1, s, s), all other

next next nearest neighbors of d are in Ws ∪ P11 ∪ P12 (or in one of its symmetric images).

Indeed, (s, s − 1, s − 1) + (1, 1, 1) = (s + 1, s, s) 6∈ Ws ∪ P11 ∪ P12 (or one of its symmetric

images) and it is a next next nearest neighbor of d. Hence P13 is 3-determined.

P14 is 4-determined: The set P14 has one cell c = (s + 1, s, s − 1). Note that d =

(s, s − 1, s − 2) is in Ws and has c as its next next nearest neighbor. This implies that

17



the distance between c and d is
√

3. Since the coordinates of d satisfy (5.1), it follows that,

except for (s+1, s, s−1), all other next next nearest neighbors of d are in Ws∪P11∪P12∪P13

(or in one of its symmetric images). Hence, c is 4-determined.

P21 is 5-determined: Let c = (s+1, s+1, x3) where 0 6 x3 6 s−1. Note that d = (s, s, x3)

is in W and has c as its next nearest neighbor. Thus the distance between c and d is
√

2.

Since the coordinates of d satisfy (5.1), it follows that, except for (s + 1, s + 1, x3), all other

next nearest neighbors of d are in Ws ∪ P11 ∪ P12 ∪ P13 ∪ P14 (or in one of its symmetric

images). Hence, P21 is 5-determined.

P22 is 6-determined: The set P22 has one cell c = (s + 1, s + 1, s). Note that d =

(s, s, s−1) is in Ws and has c as one of its next next nearest neighbors. Moreover, except for

(s+1, s+1, s), all other next next nearest neighbors of d are in Ws∪P11∪P12∪P13∪P14∪P21

(or in one of its symmetric images). Hence, c is 6-determined.

P3 is 7-determined: The set P3 has one cell c = (s+1, s+1, s+1). Note that d = (s, s, s)

is in Ws and has c as one of its next next nearest neighbors. Moreover, except for (s + 1, s +

1, s+1), all other next next nearest neighbors of d are in Ws∪P11∪P12∪P13∪P14∪P21∪P22

(or in one of its symmetric images). Hence, P3 is 7-determined.

This concludes the proof that Ws determines its boundary for all s > 3. 2

Corollary 5.2 Let GL be the standard cubic lattice network with nearest, second nearest and

third nearest neighbor couplings. Then for each k > 0 the network GL admits only a finite

number of balanced k-colorings each of which is spatially triply-periodic.
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