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Abstract. Hopf bifurcation in the presence of the symmetric group Sn (acting
naturally by permutation of coordinates) is a problem with relevance to coupled
oscillatory systems. To study this bifurcation it is important to construct the
Taylor expansion of the equivariant vector field in normal form. We derive
generating functions for the numbers of linearly independent invariants and
equivariants of any degree, and obtain recurrence relations for these functions.
This enables us to determine the number of invariants and equivariants for all
n, and show that this number is independent of n for sufficiently large n. We
also explicitly construct the equivariants of degree three and degree five, which
are valid for arbitrary n.

1. Introduction. One of the few classic problems in equivariant bifurcation theory
that has not been completely investigated is Hopf bifurcation with Sn-symmetry.
This problem is relevant to, for example, the behaviour of all-to-all coupled nonlinear
oscillators [13]. Consider the symmetric group Sn consisting of all bijections from
{1, 2, . . . , n} to itself using the usual composition of functions as the group operation.
The standard irreducible representation of Sn can be realized by considering the
restriction of the action of Sn on R

n by permutation of coordinates to the invariant
subspace given by the vectors with coordinates summing zero, denoted by R

n,0. It
follows then that Hopf bifurcation occurs for the sum of two isomorphic copies of
such representation. Moreover, R

n,0 ⊕ R
n,0 is isomorphic to the subspace of C

n

given by the vectors with complex coordinates summing zero, denoted by C
n,0 and

where Sn acts by permutation of the coordinates. When studying Hopf bifurcation,
it is important to find the truncation of appropriate degree of the Taylor expansion
at the bifurcation point of the commuting vector field assumed in Birkhoff normal
form. Also, we need to consider the equivariance under the circle group S1; it can
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be assumed that the action of S1 on C
n,0 is given by multiplication by eiθ for θ ∈ S1.

See Golubitsky et al. [11, Section XVI 3].

When Hopf bifurcation occurs for problems posed on C
n,0, the Equivariant Hopf

Theorem [11, Theorem XVI 4.1] guarantees the generic existence of branches of
periodic solutions for each isotropy subgroup of Sn×S1 with two-dimensional fixed-
point subspace. These isotropy subgroups are called C-axial, have been calculated
by Stewart [18] and are classified by the spatio-temporal symmetries of the periodic
solutions. In order to investigate the stability of these periodic solutions, we need
to construct the polynomial invariant functions and the equivariant mappings with
polynomial components under Sn. Previous work has done this for the specific cases
n = 3 [3] and n = 4 [2].

In this paper we ask how many invariants and equivariants for Sn × S1 there
are, degree by degree. We give the answer by constructing generating functions for
finite n and using these to find recursive relations. With these relations we obtain
results for general n. Rodrigues [15] proves that when n ≥ 5, degree 5 terms of the
vector field in Birkhoff normal form are necessary to determine the stability of the
periodic solutions guaranteed by the Equivariant Hopf Theorem. See also Dias and
Rodrigues [4]. We show explicit generators for equivariant mappings with cubic and
quintic homogeneous polynomial components under Sn × S1.

One advantage of Birkhoff normal form is that it is possible to control, in prin-
ciple, all of the dynamics of the vector field truncated to any finite order. However,
the Birkhoff normal form method is valid only to any finite order, see Golubitsky et
al. [11, Section XVI 5], and the occurrence of certain dynamics in the normal form
truncated vector field does not immediately imply that the same dynamics persist
when the S1 symmetry is broken. (For example, in the D4-equivariant Hopf bifur-
cation, Swift [20] proves the existence of submaximal branches of limit cycles which
are associated with quasi-periodic torus flows. These toral flows are not relative
equilibria and the dynamics change when we break normal form theory.) This issue
is addressed for example by Field and Swift [8] and Field [6, 7].

The paper is organized in the following way. In Section 2 we review a few
facts about generating functions, Hilbert-Poincaré series, Cohen-Macaulay rings
and the standard irreducible representation of Sn. In Section 3 we present Hilbert-
Poincaré series for the ring of invariant polynomial functions and the module of
equivariant mappings with polynomial components under the standard irreducible
representation of Sn. Section 4 reviews recently obtained formulas for invariants
and equivariants under Sn × S1 on C

n,0. In particular, generating functions for
Sn ×S1 can be obtained by averaging over S1 the generating functions for the ring
of invariants and module of equivariants for Sn acting on the real vector space C

n

by permutation of complex coordinates.
Section 5 contains our main results. We obtain recursive formulas for deriving

the generating functions for Sn from the generating functions for Sk, k < n (Theo-
rem 5.1, Corollary 5.4 and Proposition 5.8). Using these we relate in Theorem 5.5
and Corollaries 5.6, 5.9 the generating functions for Sn and Sn−1, leading to general
results for arbitrary n. In Section 6 we use our results of Section 5 to derive the
numbers of polynomial invariant functions and equivariant mappings with polyno-
mial components of degree less than 10 for Hopf bifurcation with Sn-symmetry.
We finish with Section 7 where we give explicit generators for the vector spaces
of equivariant mappings with polynomial components of degree 3 and 5 under the
action of the group Sn × S1 on C

n,0.
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2. Background. The aim of this section is to set up notation and review a few facts
about generating functions, Hilbert-Poincaré series and the standard irreducible
representation of Sn.

2.1. Generating Functions. We start by introducing generating functions. See
for example Sagan [16, Chapter 4] and references therein.

Definition 2.1. Given a sequence (an)n≥0 = a0, a1, a2, . . . of complex numbers,
the corresponding generating function is the power series

f(t) =
∑

n≥0

antn.

If the an enumerate some set of combinatorial objects, then f(t) is said to be the
generating function for those objects. 3

To obtain information about a sequence it is often easier to manipulate its gen-
erating function. Moreover, sometimes there is no known simple expression for an

and yet f(t) is easy to compute.

Example 2.2. A partition of n is a sequence λ = (λ1, . . . , λl) where the λi are

weakly decreasing and
∑l

i=1 λi = n. The generating function
∑

n≥0 p(n)tn, where

p(n) is the number of partitions of n is

1

1 − t

1

1 − t2
1

1 − t3
· · ·

This result is a famous theorem of Euler [5]. There is no known closed-form formula
for p(n) itself. In the context of the symmetric group Sn, p(n) is the number of
conjugacy classes (and hence also the number of irreducible representations). 3

2.2. Hilbert-Poincaré Series. Let G be a compact Lie group acting linearly on
a finite-dimensional real or complex vector space V . In what follows, K = R or
K = C and to simplify notation we denote the linear action of g ∈ G on a vector
v ∈ V by gv.

A polynomial function f : V → K is invariant under G if f(gv) = f(v) for
all g ∈ G, v ∈ V . A polynomial mapping F : V → V is equivariant under G
if F (gv) = gF (v) for all g ∈ G, v ∈ V . The vector space PV (G) of G-invariant
polynomials is a sub-algebra of the algebra of all polynomial functions PV on V and
Pk

V (G) = PV (G) ∩Pk
V is the vector space of homogeneous G-invariant polynomials

of degree k.
The space of G-equivariant polynomial mappings from V to V is a module over

the ring PV (G), and we denote it by ~PV (G). Similarly, the space of homogeneous

G-equivariant polynomial maps from V to V of degree k is ~Pk
V (G) = ~PV (G) ∩ ~Pk

V .
We are interested in calculating the number of linearly independent homogeneous

G-invariants or G-equivariants of a certain degree. Generating functions for these
dimensions are generally known as “Molien functions” or “Hilbert-Poincaré series”.

The original definition of Hilbert-Poincaré series is for complex representations.
In this paper we are interested in real representations. As we explain (see Re-
mark 2.3 below) the ‘real’ and ‘complex’ Hilbert-Poincaré series are the same.

Let G be a compact Lie group acting on V = R
m. Without loss of generality, we

can assume that G acts orthogonally and linearly on V , so that any g ∈ G acts as
an orthogonal matrix Mg with real entries. Moreover, we can view it as a matrix

acting on V C = C
m. If (x1, . . . , xm) denote real coordinates on R

m, xj ∈ R, then
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we obtain complex coordinates on C
m by permitting the xj to be complex. Note

that there is a natural inclusion

R[x1, . . . , xm] ⊆ C[x1, . . . , xm]

where these are the rings of polynomials in the xj with coefficients in R, C respec-
tively.

Remark 2.3. Every real-valued G-invariant in R[x1, . . . , xm] is also a complex-
valued G-invariant in C[x1, . . . , xm]. Conversely, the real and imaginary parts of
a complex valued invariant are real invariants (because the matrices Mg have real
entries). Therefore a basis over R for the real vector space of degree k real-valued
invariants is also a basis over C for the complex vector space of degree k C-valued
invariants. Similar remarks apply to the equivariants. 3

We suppose now that V is a m-dimensional vector space over C, where x1, . . . , xm

denote coordinates relative to a basis for V , and G ⊆ GL(V ) is a compact Lie group
acting on V . Let PV (G) denote the sub-algebra of C[x1, . . . , xm] formed by the
invariant polynomials under G (over C). Note that C[x1, . . . , xm] is graded:

C[x1, . . . , xm] = R0 ⊕ R1 ⊕ R2 ⊕ · · ·

where Rk consists of all homogeneous polynomials of degree k. Now observe that
if f(x) ∈ Rk for some k then f(gx) ∈ Rk for all g ∈ G. Therefore the space PV (G)
has the structure

PV (G) = P0
V (G) ⊕ P1

V (G) ⊕ P2
V (G) ⊕ · · ·

of a graded C-algebra given by Pk
V (G) = Rk ∩ PV (G).

The Hilbert-Poincaré series of the graded algebra PV (G) is a generating function
for the dimension of the vector space of invariants at each degree defined by

ΦG(t) =

∞
∑

d=0

(dimPd
V (G))td.

Consider the normalised Haar measure µG defined on G and denote by
∫

G f
the integral with respect to µG of a continuous function f defined on G. Molien’s
Theorem gives an explicit formula for ΦG:

ΦG(t) =

∫

G

1

det(1 − gt)
dµG(g) .

See Molien [14] for the original proof of the finite case, and Sattinger [17] for the
extension to a compact group.

If G is finite, the Molien formula for the Hilbert-Poincaré series of PV (G) is

ΦG(t) =
1

|G|

∑

g∈G

1

det(1 − gt)
. (1)

The Hilbert series for the graded module ~PV (G) over the ring PV (G) is the
generating function

ΨG(t) =

∞
∑

d=0

dim(~Pd
V (G))td

and an explicit formula for ΨG is given by:

ΨG(t) =

∫

G

χ(g−1)

det(1 − gt)
dµG(g) (2)
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where χ is the character for the G action on V [17]. Observe that if the action of
G on V is orthogonal then g−1 = gT and χ(g−1) = χ(g).

2.3. The Cohen-Macaulay Property. Invariant rings admit a nice decomposi-
tion: they are Cohen-Macaulay. We review a few concepts and results related with
this. See for example Sturmfels [19, Section 2.3] and references therein.

Let p1, p2, . . . , pk be algebraically independent elements of C[x1, . . . , xm] which
are homogeneous of degrees d1, d2, . . . , dk, respectively. Then the Hilbert series of
the graded subring C[p1, . . . , pk] is

1

(1 − td1)(1 − td2) · · · (1 − tdk)
(3)

(see for example [19, Lemma 2.2.3]).
Let R = R0 ⊕ R1 ⊕ R2 ⊕ · · · be a graded C-algebra of dimension n. Thus

R0 = C, Ri · Rj ⊆ Ri+j and n is the maximal number of elements of R which are
algebraically independent over C. The number n is called the Krull dimension of
R. A set {θ1, . . . , θn} of homogeneous elements of positive degree in R is said to
be a homogeneous system of parameters (h.s.o.p.) provided R is finitely generated
as a module over its subring C[θ1, . . . , θn]. In particular this implies that θ1, . . . , θn

are algebraically independent. A basic result of commutative algebra, the Noether
Normalization Lemma, implies that an h.s.o.p. for R always exists. Moreover, the
following result from commutative algebra [19, Theorem 2.3.1] holds:
If θ1, . . . , θn is an h.s.o.p. for R, then the following conditions are equivalent:
(a) R is a finitely generated free module over C[θ1, . . . , θn]. That is, there exist
η1, . . . , ηm ∈ R (which may be chosen to be homogeneous) such that

R =

m
⊕

i=1

ηiC[θ1, . . . , θn]. (4)

(b) For every h.s.o.p. φ1, . . . , φn of R, the ring R is a finitely-generated free
C[φ1, . . . , φn]-module.

A graded C-algebra R satisfying the conditions (a) and (b) above is said to be
Cohen-Macaulay. The decomposition (4) is called a Hironaka decomposition of the
Cohen-Macaulay algebra R. If we know the explicit decomposition (4) then the
Hilbert series of R is

m
∑

i=1

tdeg ηi

n
∏

j=1

(1 − tdeg θj )

. (5)

If G is compact then the invariant ring PV (G) is Cohen-Macaulay. See Hochster
and Roberts [12], or Sturmfels [19, Theorem 2.3.5] for the case of finite groups. If

PV (G) =

m
⊕

i=1

ηiC[θ1, . . . , θn]

then every invariant I(x) can be written uniquely as

I(x) =

m
⊕

i=1

ηi(x)pi(θ1(x), . . . , θn(x))
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where p1, . . . , pm are suitable n-variate polynomials. Also, {θ1, . . . , θn, η1, . . . , ηm}
is a set of fundamental invariants for G, also called a Hilbert basis of the ring
PV (G). The polynomials θi in the h.s.o.p. are called primary invariants and the
ηj are called secondary invariants. Note that for a given group G there are many
different Hironaka decompositions and also the degrees of the primary and secondary
invariants are not unique.

2.4. Standard Irreducible Representation of Sn. Here we review some classic
results about the standard action of Sn [16].

Consider Sn acting on R
n by permutation of coordinates:

σ (x1, x2, . . . , xn) =
(

xσ−1(1), xσ−1(2), . . . , xσ−1(n)

)

(6)

for σ ∈ Sn and x = (x1, . . . , xn) ∈ R
n. The action of Sn is reducible, and decom-

poses R
n into the direct sum of two distinct irreducible Sn-invariant spaces:

R
n = R

n,0 ⊕ U (7)

where

R
n,0 = {x ∈ R

n : x1 + x2 + · · · + xn = 0}, U = {(x, x, . . . , x) : x ∈ R} .

The action of Sn is trivial on U and absolutely irreducible on R
n,0. A representation

is said to be absolutely irreducible if the only equivariant linear maps are scalar
multiples of the identity. Also, absolute irreducibility implies irreducibility. To
prove that the action on R

n,0 is absolutely irreducible, let L : R
n,0 → R

n,0 be
linear and Sn-equivariant. Write it as L(x) = (L1(x), . . . , Ln(x)) and so L1(x) +
· · · + Ln(x) = 0 when

∑n
i=1 xi = 0. Now observe that Sn is generated by the

transpositions (12), (13), . . . , (1n). From the equivariance conditions

L((1j)x) = (1j)L(x)

for all x ∈ R
n,0 and j = 2, . . . , n, it follows in particular that

Lj(x) = L1((1j)x)

for j = 1, . . . , n. Thus in order for L to be Sn-equivariant it is necessary that L has
the following form:

L(x) = (L1(x), L1((12)x), . . . , L1((1n)x)) . (8)

We claim that L in the above form is Sn-equivariant if and only if L1 is Sn−1-
invariant in the n−1 coordinates x2, . . . , xn. Therefore L1(x) = ax1+b(x2+· · ·+xn)
for some real constants a, b ∈ R and so

L(x) = (a − b)x + b

n
∑

i=1

xi(1, . . . , 1) .

As x ∈ R
n,0 and so

∑n
i=1 xi = 0 we have that

L(x) = (a − b)x,

that is, L is a scalar multiple of the identity on R
n,0. Thus R

n,0 is Sn-absolutely
irreducible. To prove the claim, use for example the equivariance of (8) under
the transposition (12): from (12)L(x) = L((12)x) for all x ∈ R

n,0 it follows that
L1 ((1q)x) = L1 ((1q)(12)x) for any q ≥ 3 and so L1(y) = L1 ((1q)(12)(1q)y) =
L1 ((2q)y). Thus L1 is Sn−1-invariant in the last n − 1 coordinates. Obviously
if we take L as in (8) where L1 satisfies this Sn−1-invariance condition then L is
Sn-equivariant.
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Denoting by χS the character of the representation of Sn on the Sn-invariant
space S, we have then that

χR
n(σ) = χU (σ) + χ

R
n,0(σ) = 1 + χ

R
n,0(σ) (9)

for σ ∈ Sn.

3. Hilbert-Poincaré Series for Sn- Equivariant Steady-State Theory. Con-
sider Sn acting on R

n as in (6). It is known that PR
n(Sn) is a polynomial ring gener-

ated for example by the algebraically independent polynomials xi
1 +xi

2 + · · ·+xi
n for

i = 1, . . . , n. Moreover, ~PR
n(Sn) is a free module over the ring PR

n(Sn) generated

by the equivariant mappings Ei : R
n → R

n defined by Ei(x) = (xi
1, x

i
2, . . . , x

i
n)T

for i = 0, . . . , n− 1. See for example Golubitsky and Stewart [10, Proposition 2.27].
That is,

PR
n(Sn) = R[x1 + x2 + · · · + xn, . . . , xn

1 + xn
2 + · · · + xn

n],

~PR
n(Sn) =

n−1
⊕

i=0

EiR[x1 + x2 + · · · + xn, . . . , xn
1 + xn

2 + · · · + xn
n].

Denoting by fn, gn the Hilbert-Poincaré series of PR
n(Sn) and ~PR

n(Sn), respec-
tively, it follows then by (3) and (5) that

fn(t) =
1

(1 − t)(1 − t2) · · · (1 − tn)
(10)

and

gn(t) =
1 + t + t2 + · · · + tn−1

(1 − t)(1 − t2) · · · (1 − tn)
.

Remark 3.1. By an analogous argument to the one used in Section 2.4, we have
that a polynomial function f = (f1, . . . , fn) : R

n → R
n is Sn-equivariant if and

only if f1 : R
n → R is invariant under the permutation group Sn−1 in the last

n− 1-variables and fi(x) = f1((1i)x) for i = 2, . . . , n. Thus, the number of linearly
independent Sn-equivariant mappings with polynomial homogeneous components
of a given degree d is equal to the number of linearly independent Sn−1-invariant
polynomial functions from R

n to R where Sn−1 acts trivially on x1 and permutes
the last coordinates x2, . . . , xn. Thus an alternative way to describe the generating

function gn for ~PR
n(Sn) is given by

gn(t) =
1

1 − t
fn−1(t) =

1

1 − t

1

(1 − t) (1 − t2) . . . (1 − tn−1)

which is the generating function for the ring R[x1, x2 + · · ·+ xn, . . . , xn−1
2 + · · ·+

xn−1
n ]. 3

We are now interested in the restriction of the action (6) of Sn on R
n to the

absolutely irreducible space R
n,0. We make the following observations:

Remarks 3.2. (a) The restriction to R
n,0 of a Sn-invariant polynomial function on

R
n is a Sn-invariant on R

n,0. Moreover, any Sn-invariant polynomial function
on R

n,0 is the restriction to R
n,0 of a Sn-invariant polynomial function on R

n.
Equivalently, if we denote by v = (v1, u) coordinates on R

n according to the
decomposition (7), then the function F : PR

n(Sn) → P
R

n,0(Sn) defined by

F (f)(v1) = f(v1, 0)
(

f ∈ PR
n(Sn)

)
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is well defined and it is a surjection.
(b) The restriction to R

n,0 of a Sn-equivariant polynomial function on R
n followed

by projection according to the decomposition (7) onto R
n,0 is a Sn-equivariant

polynomial function on R
n,0. Conversely, any Sn-equivariant polynomial func-

tion on R
n,0 is the restriction to R

n,0 of a Sn-equivariant polynomial function
on R

n followed by projection according to the decomposition (7) onto R
n,0.

Equivalently, the function H : ~PR
n(Sn) → ~P

R
n,0(Sn) defined by

H(f)(v1) = f1(v1, 0)

for f = (f1, f2) : R
n → R

n, is well-defined and it is a surjection.
3

Denote by Fn, Gn the generating functions for P
R

n,0(Sn), ~P
R

n,0(Sn), respec-
tively. We have then the following result:

Theorem 3.3. (a) The ring P
R

n,0(Sn) is a polynomial ring generated by pi :

R
n,0 → R for i = 2, . . . , n defined by pi(x1, . . . , xn) = xi

1 + xi
2 + · · · + xi

n. Its
generating function is

Fn(t) =
1

(1 − t2) · · · (1 − tn)
. (11)

(b) The module ~P
R

n,0(Sn) over the ring P
R

n,0(Sn) is free and it is generated by the

functions Hi : R
n,0 → R

n,0 for i = 1, . . . , n − 1, defined by

H1(x) = (x1, x2, . . . , xn)T ,

Hi(x) = (xi
1, x

i
2, . . . , x

i
n)T −

1

n
(xi

1 + xi
2 + · · · + xi

n)(1, 1, . . . , 1)T

for i ≥ 2. Its generating function Gn is

Gn(t) =
t + t2 + · · · + tn−1

(1 − t2) · · · (1 − tn)
=

t − tn

(1 − t) · · · (1 − tn)
. (12)

Proof. It follows directly from Remarks 3.2 and from the facts that PR
n(Sn) is

a polynomial ring generated by xi
1 + xi

2 + · · · + xi
n for i = 1, . . . , n and ~PR

n(Sn)
is a free module over the ring PR

n(Sn) generated by the equivariant functions

Ei(x) = (xi
1, x

i
2, . . . , x

i
n)T for i = 0, . . . , n − 1.

An alternative way to prove this theorem is by using the Molien formulas (1) and
(2) and the decomposition of the reducible representation described in Section 2.4.
Since det(1 − σt)Rn = (1 − t) det(1 − σt)

R
n,0 ,

fn(t) =
1

(1 − t)
Fn(t)

which is (11). By (9) we have that χR
n(σ−1) = 1 + χ

R
n,0(σ−1) and thus

gn(t) =
1

(1 − t)
(Fn(t) + Gn(t)) ,

which can be rearranged to give (12).
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4. Hilbert-Poincaré Series for Sn-Equivariant Hopf Theory. Consider now
the action of Sn on the 2n-dimensional real vector C

n given by

σ (z1, z2, . . . , zn) =
(

zσ−1(1), zσ−1(2), . . . , zσ−1(n)

)

(13)

for σ ∈ Sn and (z1, z2, . . . , zn) ∈ C
n. When studying Hopf bifurcation, we consider

the action of Sn × S1, where the circle group S1 acts by

θ (z1, z2, . . . , zn) =
(

eiθz1, e
iθz2, . . . , e

iθzn

)

(14)

for θ ∈ S1. Observe that if we write z = (z1, . . . , zn) and use multi-indices, any
polynomial function p : C

n → R can be written as

p(z, z) =
∑

α,β

aαβzαzβ (15)

where α, β ∈ (Z+
0 )n, zα = zα1

1 zα2

2 . . . zαn
n and the coefficients aαβ may be required

to be complex. Moreover, p is S1-invariant if and only if for each α, β such that
aαβ 6= 0 we have |α| = |β|. In particular, it follows that p has even degree in z, z.
Similarly, if g : C

n → C
n has components

gj(z, z) =
∑

α,β

bαβzαzβ

then the S1-equivariance is equivalent to having |α| = |β| + 1 if bαβ 6= 0. This is
[11, Lemma XVI 9.3]. Therefore g has odd degree components in z, z.

Applying the formulas obtained by Antoneli et al. [1] we have that for fixed n
and degree 2k, the number of Sn×S1-invariant homogeneous polynomials of degree
2k is given by

dimR P2k
C

n(Sn × S1) =
1

n!

∑

σ∈Sn

χ(k)(σ)2.

Also, the number of Sn × S1-equivariant polynomial functions with homogeneous
components of degree 2k + 1 is

dimC
~P2k+1

C
n (Sn × S1) =

1

n!

∑

σ∈Sn

χ(k+1)(σ)χ(k)(σ)χ(σ) .

Here, χ(k) denotes the character of the induced action of Sn on the k-th symmetric

tensor power SkR
n of R

n. Observe that if we have a representation of a group
G on a vector space V , then there is a natural representation of G on the tensor
product V ⊗ V given by g(v ⊗ w) = gv ⊗ gw. By iteration of this construction one
obtains an action of G on the k-th tensor powers V ⊗k. By restriction, one obtains a
representation of G on the k-th symmetric tensor power SkV , since it is an invariant
subspace of V ⊗k under the action of G.

We use now the idea of bigraded Hilbert-Poincaré series introduced by Forger [9].
Denoting by cq,r the dimension of the space of real Sn-invariant functions from
C

n → R of bidegree (q, r), the generating function of two variables

fn(t, s) =

∞
∑

q,r =0

cq,rt
qsr

is the bigraded Hilbert-Poincaré series for PC
n(Sn). The two variables t and s

correspond to z and z in (15). Moreover, Forger [9] obtains the following integral
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form:

fn(t, s) =
1

n!

∑

σ∈Sn

1

det(1 − σt) det(1 − σs)
. (16)

Here, σ denotes the matrix representing the action of σ on R
n.

Antoneli et al. [1] generalize this concept to the equivariants. Denoting by eq,r

the complex dimension of the space of Sn-equivariant mappings from C
n → C

n with
homogeneous polynomial components of bidegree (q, r), the generating function of
two variables

gn(t, s) =

∞
∑

q,r =0

eq,rt
qsr

is the bigraded Hilbert-Poincaré series of ~PC
n(Sn) and the integral form for that is:

gn(t, s) =
1

n!

∑

σ∈Sn

χ
(

σ−1
)

det(1 − σt) det
(

1 − σs
) (17)

where χ is the character of the representation of Sn on R
n.

Another result of [1] is that the bigraded Hilbert-Poincaré series for PC
n(Sn×S1)

and for ~PC
n(Sn × S1) are given by

ΦSn×S1(t, s) =
1

2π

∫ 2π

0

fn

(

eiθt, e−iθs
)

dθ (18)

and

ΨSn×S1(t, s) =
1

2π

∫ 2π

0

e−iθgn

(

eiθt, e−iθs
)

dθ, (19)

where fn and gn are as in (16) and (17), respectively. Note that (18) extracts from
fn those terms which have the same degree in t and s, that is, those that satisfy the
S1-invariance condition |α| = |β|; hence ΦSn×S1(t, s) in fact depends only on the
single variable ts. Similarly, (19) selects the terms that satisfy the S1-equivariance
condition |α| = |β| + 1.

These results can also be used when taking Sn acting on the Sn-invariant space
C

n,0 = {z ∈ C
n : z1 + z2 + · · · + zn = 0}. In (18) and (19), instead of using the

generating functions fn, gn, we use the generating functions for the ring P
C

n,0(Sn)

and the module ~P
C

n,0(Sn) that we will denote by Fn, Gn, respectively.

These formulas (18) and (19) show that the generating functions for the invari-
ants and equivariants for Sn ×S1 are obtained by integrating over the group S1 the
two-variable generating functions for Sn. In the next section we obtain recursive
formulas for fn, gn, Fn, Gn (for the Sn reducible and irreducible cases). In bifurca-
tion theory we are interested in the irreducible case; but it is easier to start from
the reducible case.

5. Generating Functions for Sn Hopf Bifurcation. Throughout we consider
Sn acting on the real vector space C

n by permutation of the coordinates as in (13).
As before, we denote by fn(t, s) the bigraded generating function for the ring of
Sn-invariant polynomial functions C

n → R and gn(t, s) the bigraded generating
function for the module of the Sn-equivariant mappings with polynomial compo-
nents C

n → C
n.

There is no simple criterion for writing down the generating functions for the
case of Hopf bifurcation as in the steady-state case. The ring of invariants is not
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a polynomial ring. Moreover, the module of the equivariants is not a free module
over the ring of the invariants.

Using the Molien formula (16) we can derive explicit formulas for specific values
of n. For n = 2 we have

f2(t, s) =
1

2

[

1

(1 − t)2(1 − s)2
+

1

(1 − t2)(1 − s2)

]

=
1 + ts

(1 − t)(1 − s)(1 − t2)(1 − s2)

indicating that there are four primary invariants: two of degree 1, one in the vari-
ables z1, z2 and the other in the variables z1, z2; and two of degree 2, again, one
in the variables z1, z2 and the other in the variables z1, z2. Moreover, there is a
secondary invariant of degree 2. We can take the degree 1 primary invariant gener-
ators: z1 + z2, z1 + z2; the degree 2 primary invariant generators: z2

1 + z2
2 , z2

1 + z2
2;

it can be easily checked that the ring of polynomial S2-invariant functions C
2 → R

has the Hironaka decomposition:

P
C

2(S2) = C[z1 + z2, z1 + z2, z2
1 + z2

2 , z2
1 + z2

2]⊕

(z1z1 + z2z2) C[z1 + z2, z1 + z2, z2
1 + z2

2 , z2
1 + z2

2] .

The integral (18) can be evaluated using standard contour integral techniques, sub-
stituting z = eiθ and using the Cauchy residue theorem, and the result is

ΦS2×S1(t, s) =
1 + t2s2

(1 − ts)2(1 − t2s2)
.

For n = 3, using (16) we get

f3(t, s) =
1

6

[

1

(1 − t)3(1 − s)3
+

3

(1 − t)(1 − s)(1 − t2)(1 − s2)
+

2

(1 − t3)(1 − s3)

]

=
1 + ts + t2s + ts2 + t2s2 + t3s3

(1 − t)(1 − s)(1 − t2)(1 − s2)(1 − t3)(1 − s3)
.

As we increase n we have more complicated formulas where the number of pri-
mary and secondary invariants increase. We present here a useful recursive formula
that permits the derivation of fn in terms of fi for i < n.

Theorem 5.1. Let n ≥ 1. We have the following recursive formula for the two
variable generating function fn of the ring of the Sn-invariant polynomial functions
from C

n to R:

nfn(t, s) =

n
∑

k=1

1

1 − tk
1

1 − sk
fn−k(t, s). (20)

Proof. By (16) we have that

fn(t, s) =
1

n!

∑

σ∈Sn

1

det(1 − σt) det(1 − σs)
.

For k = 1, 2, . . . , n, let Pk denote the set of permutations of Sn that have the
integer 1 in a k-cycle. We have then that Sn decomposes into the disjoint union

Sn = P1 ∪̇P2 ∪̇ · · · ∪̇Pn
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and

n fn(t, s) =
1

(n − 1)!

n
∑

k=1

∑

σ∈Pk

1

det(1 − σt) det(1 − σs)
. (21)

Given k between 1 and n, we calculate now
∑

σ∈Pk

1

det(1 − σt) det(1 − σs)
.

Observe that the number of k-cycles that have a 1 from n symbols is (n − 1)(n −
2) · · · (n− k + 1) = (n− 1)!/(n− k)!. As the order of Sn−k is (n− k)!, we have that
the cardinality of the set Pk is

(n − 1)!

(n − k)!
(n − k)! = (n − 1)! .

Choose the subset of Pk formed by permutations of Pk that include in their cycle
decomposition the k-cycle (123 . . . k). Denote that subset by (123 . . . k)S{k+1,...,n}.
Then

∑

σ∈(123...k)S{k+1,...,n}

1

det(1 − σt) det(1 − σs)

=
1

1 − tk
1

1 − sk

∑

σ∈S{k+1,...,n}

1

det(1 − σt) det(1 − σs)

=
(n − k)!

(1 − tk)(1 − sk)
fn−k(t, s).

Observe that if we choose any other subset of Pk given by a specific k-cycle including
1 we will get the same answer. That is, if i2, i3, . . . , in are any distinct integers of
the set {2, 3, . . . , n} then

∑

σ∈(1i2...ik)S{1,2,...,n}\{1,i2,...,ik}

1

det(1 − σt) det(1 − σs)
=

(n − k)!

(1 − tk)(1 − sk)
fn−k(t, s).

Since the number of k-cycles that have a 1 from n symbols is (n − 1)!/(n − k)!,
we have that

∑

σ∈Pk

1

det(1 − σt) det(1 − σs)

=
(n − 1)!

(n − k)!

(n − k)!

(1 − tk)(1 − sk)
fn−k(t, s)

= (n − 1)!
1

(1 − tk)(1 − sk)
fn−k(t, s).

Finally, using (21),

nfn(t, s) =
1

(n − 1)!

n
∑

k=1

(n − 1)!
1

(1 − tk)(1 − sk)
fn−k(t, s)

=

n
∑

k=1

1

(1 − tk)(1 − sk)
fn−k(t, s).
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Remark 5.2. In one variable, when Sn acts on R
n by permutation of coordinates,

if fn(t) denotes the one-variable generating function for the ring of Sn-invariant
polynomial functions R

n → R, we have

nfn(t) =

n
∑

k=1

1

1 − tk
fn−k(t).

Now recall that there is an explicit formula for fn(t) given by (10) and so fn(t) =
1

1−tn fn−1(t).
3

Lemma 5.3. Let n ≥ 1. The two variable generating function gn of the module of
the Sn-equivariant polynomial functions C

n → C
n is related to fn in the following

way:

gn(t, s) =
1

1 − t

1

1 − s
fn−1(t, s). (22)

Proof. Observe that the number of linearly independent polynomial mappings C
n →

C
n which are Sn-equivariant and have homogeneous components of degree d is equal

to the number of linearly independent polynomial functions C
n → C of degree d

that have the form

p(z1, z1) q(z2, . . . , zn, z2, . . . , zn)

where p(z1, z1) is a polynomial in the variables z1, z1 and q(z2, . . . , zn, z2, . . . , zn) is
a polynomial Sn−1-invariant.

Corollary 5.4. Let n ≥ 1. The recursive formula for gn is given by

(n − 1) gn(t, s) =

n−1
∑

k=1

1

1 − tk
1

1 − sk
gn−k(t, s).

Proof. Direct application of Lemma 5.3 and Theorem 5.1 leads to the above recur-
sive formula.

In the next theorem, O(n) means a polynomial where every term is greater or
equal to n in total degree.

Theorem 5.5. For n ≥ 1 we have:

fn(t, s) − fn−1(t, s) = O(n). (23)

Proof. We prove by induction that fn(t, s) − fn−1(t, s) = O(n) for all n ≥ 1. For
n = 1 we have

f1(t, s) − f0(t, s) =
1

(1 − t)(1 − s)
− 1 =

t + s − ts

(1 − t)(1 − s)
= O(1)

and so (23) is true for n = 1. Assume (23) is true for 1 ≤ n ≤ k. We prove now
that it is true for n = k + 1. By Theorem 5.1 we have that

(k + 1)fk+1(t, s) =

k+1
∑

i=1

1

(1 − ti)(1 − si)
fk+1−i(t, s),

kfk(t, s) =

k
∑

i=1

1

(1 − ti)(1 − si)
fk−i(t, s).
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Subtracting the above expressions, we obtain

k (fk+1(t, s) − fk(t, s)) + fk+1(t, s)

=

k
∑

i=1

1

(1 − ti)(1 − si)
(fk+1−i(t, s) − fk−i(t, s)) +

1

(1 − tk+1)(1 − sk+1)
f0(t, s)

=

k
∑

i=1

(1 + O(i)) (fk+1−i(t, s) − fk−i(t, s)) + (1 + O(k + 1)) f0(t, s) .

As k+1− i ≤ k for i = 1, . . . , k, by the induction hypothesis, we have fk+1−i(t, s)−
fk−i(t, s) = O(k + 1 − i). Thus

k (fk+1(t, s) − fk(t, s)) + fk+1(t, s)

=

k
∑

i=1

(fk+1−i(t, s) − fk−i(t, s)) +

k
∑

i=1

O(i)O(k + 1 − i) + (1 + O(k + 1)) f0(t, s)

= fk(t, s) − f0(t, s) + O(k + 1) + f0(t, s) + O(k + 1) .

We have then that

(k + 1) (fk+1(t, s) − fk(t, s)) = O(k + 1)

and so fk+1(t, s) − fk(t, s) = O(k + 1).

Corollary 5.6. For n ≥ 1 we have

gn(t, s) − gn−1(t, s) = O(n − 1).

Proof. From Lemma 5.3 and the above theorem we obtain the formula.

Remarks 5.7. (a) From Theorem 5.5, we have that Sn and Sn−1 have the same
number of invariants for degree d < n. Fixing the degree d, for all n ≥ d, the
number of Sn-invariants of degree d is the same. Therefore we have results for
Sn for arbitrary n.

(b) From Corollary 5.6, we have that Sn and Sn−1 have the same number of equiv-
ariants for degree d < n − 1. Thus, for all n such that n − 1 ≥ d, the number
of Sn-equivariants of degree d is the same. 3

See Section 6 for the numbers of polynomial invariant functions and equivariant
mappings with polynomial components of several degrees for Sn Hopf bifurcation.

All of the above results are for the reducible representation; we now obtain the
analogous results for the irreducible representation.

Proposition 5.8. Let n ≥ 1. Consider the restriction of the action (13) of Sn on
C

n to the subspace C
n,0 formed by the vectors satisfying z1 + · · · + zn = 0. The

generating function for the ring of Sn-invariant polynomial functions C
n,0 → R is

Fn(t, s) = (1 − t)(1 − s)fn(t, s) (24)

and the generating function for the module of Sn-equivariant mappings C
n,0 → C

n,0

with polynomial components is

Gn(t, s) = fn−1(t, s) − (1 − t)(1 − s)fn(t, s) . (25)

Proof. Recall from Section 2.4 that the reducible representation of Sn on R
n de-

composes into a trivial one-dimensional representation and the irreducible on R
n,0

(7). So the action of any σ splits into its trivial action on U and its action on R
n,0.
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Thus det(1 − σt)Rn = (1 − t) det(1 − σt)
R

n,0 , for all σ ∈ Sn. Hence by applying

(16) we obtain

fn(t, s) = Fn(t, s)/(1 − t)(1 − s).

For the generating function for the equivariants, we apply (17) to the reducible
representation, and make use of (9). This gives

gn(t, s) =
1

n!

∑

σ∈G

1 + χ
R

n,0

(

σ−1
)

(1 − t) det(1 − σt)
R

n,0(1 − s) det(1 − σs)
R

n,0

which can be written as

gn(t, s) =
1

(1 − t)(1 − s)
(Fn(t, s) + Gn(t, s)).

Rearranging this formula and making use of (22) and (24) gives the result (25).

Using Proposition 5.8 and Theorem 5.5 we obtain:

Corollary 5.9. For n ≥ 1 we have the following formulas:

Fn(t, s) − Fn−1(t, s) = O(n),

Gn(t, s) − Gn−1(t, s) = O(n − 1).

Example 5.10. Consider the case n = 3. Note that it is the generating function
Gn(t, s) for the number of equivariants in the irreducible representation that is of
most interest for bifurcation theory. Using (25) and the explicit formulas for f2(t, s)
and f3(t, s) given at the beginning of section 5, we obtain

G3(t, s) =
t + s − st + ts2 + st2

(1 − t)(1 − s)(1 − t3)(1 − s3)
.

Carrying out the integral analogous to (19) using contour integration gives the result

ΨSn×S1(t, s) =
t(1 + t2s2)

(1 − ts)2(1 − t3s3)
= t + 2t2s + 4t3s2 + 7t4s3 + . . . ,

so we deduce that for the Hopf bifurcation with S3 symmetry there are two linearly
independent equivariants of degree three, four of degree five, and seven of degree
seven. These results are consistent with the work of Dias and Paiva [3] who studied
this bifurcation problem in detail.

6. Numbers of Invariants and Equivariants for Sn Hopf Bifurcation. In
this section we present the numbers of polynomial invariant functions and equivari-
ant mappings with polynomial components of all degrees d < 10 for Hopf bifurcation
with Sn-symmetry, for all n. We do this both for the reducible representation of
Sn × S1 on C

n and for the standard irreducible representation of Sn × S1 on C
n,0.

Recall that the action of Sn on C
n,0 is Sn-simple, that is, C

n,0 is the sum of two
isomorphic absolutely irreducible representations of Sn. In what follows, we refer to
the first and the second actions as reducible and irreducible, respectively, for Hopf
bifurcation with Sn-symmetry.

Table 1 gives the numbers of invariants in the reducible representation. These
are found by using the recurrence relation (20) to construct the generating func-
tion fn(t, s), and then taking the term in td/2sd/2 in its Taylor expansion (using
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Maple). Recall Theorem 5.1, Remark 5.7 (a) and the discussion in Section 4. Al-
ternatively, we may first evaluate the integral (18), after which only a one-variable
Taylor expansion is required.

For the equivariants in Table 2, we use the generating function (22) obtained in
Lemma 5.3 and then pick terms in x(d+1)/2y(d−1)/2 in its Taylor expansion.

For the irreducible representation we use the formulas obtained in Proposi-
tion 5.8: (24) for the number of invariants in Table 3, and (25) for the number
equivariants in Table 4.

Remarks 6.1. (a) From Theorem 5.5, we have that for a fixed degree d, the num-
ber of Sn × S1-invariant polynomial functions on the reducible space C

n is
constant for n ≥ d. Also from Corollary 5.6, the number of Sn ×S1-equivariant
mappings with polynomial components on C

n is constant for n − 1 ≥ d. In
particular, using Table 2, we conclude that for n ≥ 4 there are 11 linearly in-
dependent Sn × S1-equivariants of degree three (this result was proved using a
different method in [1]). Moreover, for n ≥ 6, there are 52 linearly independent
Sn × S1-equivariants of degree five.

(b) By Corollary 5.9, we have that for a fixed degree d, the number of Sn × S1-

invariant polynomial functions on the irreducible space C
n,0 is constant for

n ≥ d. Also the number of Sn × S1-equivariant mappings with polynomial
components on C

n,0 is constant for n− 1 ≥ d. Using Table 4, we conclude that
for n ≥ 4 there are 3 linearly independent Sn ×S1-equivariants of degree three,
and for n ≥ 6, there are 12 linearly independent Sn ×S1-equivariants of degree
five.

3

d\n 2 3 4 5 6 7 8 9 ≥10
2 2 2 2 2 2 2 2 2 2
4 5 8 9 9 9 9 9 9 9
6 8 19 27 30 31 31 31 31 31
8 13 42 74 95 105 108 109 109 109

Table 1. Number of reducible invariants of degrees d = 2, 4, 6, 8,
for Sn Hopf bifurcation.

d\n 2 3 4 5 6 7 8 9 ≥10
3 6 10 11 11 11 11 11 11 11
5 12 32 46 51 52 52 52 52 52
7 20 78 145 188 206 211 212 212 212
9 30 162 382 581 703 758 777 782 783

Table 2. Number of reducible equivariants of degrees d = 3, 5, 7,
9, for Sn Hopf bifurcation.

7. Cubic and Quintic Equivariants for Sn Hopf Bifurcation. In this section
we obtain bases for the complex vector spaces of Sn×S1-equivariant mappings from
C

n,0 to C
n,0 with cubic and quintic homogeneous polynomial components. This is
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d\n 2 3 4 5 6 7 8 9 ≥10
2 1 1 1 1 1 1 1 1 1
4 1 2 3 3 3 3 3 3 3
6 1 3 6 7 8 8 8 8 8
8 1 5 13 19 24 25 26 26 26

Table 3. Number of irreducible invariants of degrees d = 2, 4, 6,
8, for Sn Hopf bifurcation.

d\n 2 3 4 5 6 7 8 9 ≥10
3 1 2 3 3 3 3 3 3 3
5 1 4 9 11 12 12 12 12 12
7 1 7 21 33 41 43 44 44 44
9 1 10 43 84 119 137 146 148 149

Table 4. Number of irreducible equivariants of degrees d = 3, 5,
7, 9, for Sn Hopf bifurcation.

done by explicit construction, which is greatly facilitated by the fact that we know
the correct number of independent terms from Table 4.

Theorem 7.1. Suppose n ≥ 4. Consider the action of Sn × S1 on C
n,0 defined

by the restrictions to C
n,0 of the actions (13) and (14) on C

n. Then the following
functions Hi : C

n,0 → C
n,0 for i = 1, 2, 3 constitute a basis of the complex vector

space of the Sn×S1-equivariant functions with homogeneous polynomial components
of degree 3:

Hi(z) = (hi(z), hi((12)z), . . . , hi((1n)z))

where z = (z1, . . . , zn) ∈ C
n,0 and

h1(z) = |z1|
2z1 −

1

n

n
∑

j=1

|zj |
2zj ,

h2(z) = z1

n
∑

j=1

z2
j ,

h3(z) = z1

n
∑

j=1

|zj|
2 .

Proof. The Sn × S1-equivariant functions with homogeneous polynomial compo-
nents of degree 3 are obtained by restriction to C

n,0 and projection onto C
n,0 of

the Sn × S1-equivariant functions from C
n to C

n with homogeneous polynomial
components of degree 3.

Observe that with respect to the direct sum decomposition of C
n into Sn-

invariant spaces,

C
n = {(z, z, . . . , z) : z ∈ R} ⊕ C

n,0,

the projection vector of z = (z1, . . . , zn) ∈ C
n onto C

n,0 is:

z −
1

n
(z1 + · · · + zn) (1, . . . , 1) .



18 ANA PAULA S. DIAS, PAUL C. MATTHEWS AND ANA RODRIGUES

Thus given a Sn ×S1-equivariant function f : C
n → C

n where f = (f1, . . . , fn) for
fi : C

n → C, the restriction of f to C
n,0 and projection onto C

n,0 is given by

f |
C

n,0 −
1

n

n
∑

i=1

fi|Cn,0 (1, . . . , 1) .

By Remark 6.1 (a), we have that there are 11 linearly independent functions
from C

n to C
n with homogeneous polynomial components of degree 3 that are

Sn × S1-equivariant. Let f : C
n → C

n be Sn × S1-equivariant with homogeneous
polynomial components of degree 3. The equivariance of f under Sn is equivalent to
the invariance say of the first component f1 under Sn−1 in the last n−1 coordinates
z2, . . . , zn, and then

f(z) = (f1(z1, z2, . . . , zn−1, zn), f1(z2, z1, . . . , zn−1, zn), . . . , f1(zn, z2, . . . , zn−1, z1)) .

This follows from

f ((1i)(z1, z2, . . . , zn)) = (1i)f (z1, z2, . . . , zn)

for i = 2, 3, . . . , n. Now using the S1-equivariance, for z = (z1, . . . , zn), taking
z = (z1, . . . , zn) and using multi-indices, we have that f1 can be written as

f1(z) =
∑

aαβzαzβ

with |α| = |β| + 1, as discussed in section 4, so for terms of degree 3, |α| = 2 and
|β| = 1.

The rest of the proof consists in characterizing the first component f1. That
is, we describe the homogeneous polynomials of degree 3 that are Sn−1-invariant
in the last n − 1-coordinates z2, . . . , zn and are S1-equivariant. We consider the
Sn × S1-equivariants where the first component is an homogeneous polynomial of
degree 3 which can be written as

za
1z1

bp(z2, . . . , zn)

where a, b ∈ Z
+
0 , a + b ≥ 0 and p is Sn−1-invariant. See [15, Theorems 4.2, 4.6] for

details.

Remark 7.2. Table 4 shows that for n = 3 there are only two linearly independent
equivariants, indicating that h1(z), h2(z), h3(z), are not linearly independent for
n = 3. In fact it can easily be shown that

6H1(z) − H2(z) − 2H3(z) = 0 for n = 3, z ∈ C
3,0.

3

The above results have been used by Rodrigues [15, Section 4] and Dias and
Rodrigues [4] to investigate the stability of the branches of periodic solutions guar-
anteed by the Equivariant Hopf Theorem [11, Theorem XVI 4.1], in the Hopf bifur-
cation with Sn-symmetry posed on C

n,0. They found that for some of the solution
branches, the quintic terms of the Taylor expansion at the bifurcation point of a
general Sn × S1-equivariant Birkhoff normal form are necessary to determine the
stability. That is, the cubic terms of the normal form are too degenerate to de-
termine the stability in certain directions. Moreover, the quintic terms determine
completely the stability for most of those branches. See [15, Theorem 4.13] and
[4] for details. By Remark 6.1 (b) we have that for n ≥ 6 there are 12 linearly
independent Sn × S1-equivariants with quintic polynomial components.
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Theorem 7.3. Suppose n ≥ 6. Consider the action of Sn × S1 on C
n,0 defined

by the restrictions to C
n,0 of the actions (13) and (14) on C

n. Then the following

functions Hi : C
n,0 → C

n,0 for i = 1, . . . , 12 constitute a basis of the complex vector
space of the Sn×S1-equivariant functions with homogeneous polynomial components
of degree 5:

Hi(z) = (hi(z), hi((12)z), . . . , hi((1n)z))

where z = (z1, . . . , zn) ∈ C
n,0 and

h1(z) = |z1|
4z1 −

1

n

n
∑

i=1

|zi|
4zi, h2(z) =

n
∑

i=1

|zi|
4z1,

h3(z) =
n
∑

i=1

z2
i

n
∑

j=1

z2
j z1, h4(z) =

(

n
∑

i=1

|zi|
2

)2

z1,

h5(z) =

n
∑

j=1

|zj |
2zj z2

1 −
1

n

n
∑

j=1

|zj|
2zj

n
∑

i=1

z2
i , h6(z) =

n
∑

i=1

|zi|
2

n
∑

j=1

z2
j z1,

h7(z) =

n
∑

j=1

z2
jz

3
1 −

1

n

n
∑

j=1

z2
j

n
∑

i=1

z3
i , h8(z) =

n
∑

i=1

|zi|
2z2

i z1,

h9(z) =

n
∑

j=1

z3
j z2

1 −
1

n

n
∑

j=1

z3
j

n
∑

i=1

z2
i ,

h10(z) =

n
∑

j=1

|zj|
2zj|z1|

2 −
1

n

n
∑

j=1

|zj |
2zj

n
∑

i=1

|zi|
2,

h11(z) =

n
∑

j=1

|zj|
2|z1|

2z1 −
1

n

n
∑

j=1

|zj |
2

n
∑

i=1

|zi|
2zi,

h12(z) =
n
∑

j=1

z2
j |z1|

2z1 −
1

n

n
∑

j=1

z2
j

n
∑

i=1

|zi|
2zi .

Proof. The proof follows the lines of the proof of Theorem 7.1. Now recall Re-
mark 6.1 (b) where we conclude that there are 12 linearly independent Sn × S1-
equivariant functions on C

n,0. By Remark 6.1 (a), we know that 52 is the number
of linearly independent functions from C

n to C
n with homogeneous polynomial

components of degree 5 and Sn × S1-equivariant. See [15, Theorems 4.5, 4.10] for
details.

Remark 7.4. With the notation of Theorem 7.3, for n = 5 we have

H9(z) = 30H1(z) − 9
2H2(z) + 3

4H3(z) + 3
2H4(z) − 3H5(z) + 3

2H6(z)−

3
2H7(z) − 3H8(z) − 6H10(z) − 9H11(z) − 9

2H12(z)

where z ∈ C
5,0 and so we obtain (over the complex field) only eleven linearly

independent S5×S1-equivariants on C
5,0 with homogeneous polynomial components

of degree five. This is consistent with Table 4. 3
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