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Abstract

In this paper we present results for the systematic study of reversible-equivariant
vector fields – namely, in the simultaneous presence of symmetries and reversing
symmetries – by employing algebraic techniques from invariant theory for compact
Lie groups. The Hilbert-Poincaré series and their associated Molien formulae are in-
troduced, and we prove the character formulae for the computation of dimensions of
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spaces of homogeneous anti-invariant polynomial functions and reversible-

equivariant polynomial mappings. A symbolic algorithm is obtained for the compu-

tation of generators for the module of reversible-equivariant polynomial mappings

over the ring of invariant polynomials. We show that this computation can be ob-

tained directly from a well-known situation, namely from the generators of the ring

of invariants and the module of the equivariants.

1 Introduction

The conventional notion of presence of symmetries (equivariances) and revers-
ing symmetries in a system of differential equations consists of phase space
transformations, including time transformations for reversing symmetries, that
leave the equations of motion invariant. The formulation of this situation is
given as follows: consider the system

ẋ = G(x) (1.1)

defined on a finite-dimensional vector space V of state variables, where
G : V → V is a smooth vector field. The space V carries an action of a com-
pact Lie group Γ together with a distinguished subgroup Γ+ such that γ ∈ Γ+

maps trajectories onto trajectories of (1.1) with the direction of time being
preserved, while γ ∈ Γ \ Γ+ maps trajectories onto trajectories of (1.1) with
the direction of time being reversed. Dynamical systems with such property
are called reversible-equivariant systems and Γ is called the reversing sym-
metry group of the ordinary differential equation (1.1). The elements of the
subgroup Γ+ act as spatial symmetries or simply symmetries and the elements
of the subset Γ− = Γ\Γ+ act as time-reversing symmetries or simply reversing
symmetries.

Let (ρ, Γ) denote V under the representation ρ of Γ. The requirement of G
being reversible-equivariant with respect to Γ is

G(ρ(γ)x) = σ(γ)ρ(γ) G(x) , (1.2)

for all γ ∈ Γ and x ∈ V , where

σ : Γ → Z2 = {±1} (1.3)

is the Lie group homomorphism which is 1 on the subgroup Γ+ of the sym-
metries and −1 on the subset Γ− of the reversing symmetries. We note that
Γ+ = ker(σ), so it is a normal subgroup of Γ of index 2.
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The starting point for local or global analysis of systems under symmetries
is to find the general form of the vector field G in (1.1) that satisfies the
symmetry constraints.

In the equivariant case, the Theorems by Schwarz and Poénaru (Golubitsky
et al. [8, Theorem XII 4.3 and Theorem XII 5.2]) reduce this task to a purely
algebraic problem in invariant theory. We find a set of generators for the ring
PV (Γ) of invariant polynomial functions V → R and for the module ~PV (Γ) of
all equivariant polynomial mappings V → V . What makes it feasible through
computational methods is the simple observation that PV (Γ) and ~PV (Γ) are
graded algebras by the polynomial degree, that is,

PV (Γ) =
∞
⊕

d=0

Pd
V (Γ) and ~PV (Γ) =

∞
⊕

d=0

~Pd
V (Γ) ,

where Pd
V (Γ) is the space of homogeneous polynomial invariants of degree d

and ~Pd
V (Γ) is the space of equivariant mappings with homogeneous polynomial

components of degree d. Since these are finite dimensional vector spaces, gener-
ating sets may be found by Linear Algebra together with the Hilbert-Poincaré
series and their associated Molien formulae. See Sturmfels [16] for example, or
Gatermann [7], where the tools of computational invariant theory are devel-
oped with the view towards their applications to equivariant bifurcation the-
ory. The symbolic computation packages GAP [5] and Singular [10] have all
these tools implemented in their libraries. In the reversible-equivariant case we
face a similar situation. The space ~QV (Γ) of reversible-equivariant polynomial
mappings is a finitely generated graded module over the ring PV (Γ) and so
the same methods described before could be adapted to work in this context.

In this paper we follow a different approach, based on a link existent between
the invariant theory for Γ and for its normal subgroup Γ+. In order to provide
this link, we observe that PV (Γ) is a subring of PV (Γ+) and so this may be
regarded as a module over PV (Γ). Next we introduce the space QV (Γ) of anti-
invariant polynomial functions: a polynomial function f : V → R is called
anti-invariant if

f(ρ(γ)x) = σ(γ)f(x) , (1.4)

for all γ ∈ Γ and x ∈ V . We have that QV (Γ) is a finitely generated graded
module over PV (Γ). Now, by means of the relative Reynolds operators, we
obtain our first main result which states that there are decompositions

PV (Γ+) = PV (Γ) ⊕QV (Γ) and ~PV (Γ+) = ~PV (Γ) ⊕ ~QV (Γ)

as direct sums of modules over PV (Γ).

These decompositions are the basis for our second main result, namely the
algorithm that computes a generating set for reversible-equivariant polynomial
mappings as a module over the ring of invariant polynomial functions. The
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procedure uses relative Reynolds operators, a Hilbert basis of PV (Γ+) and a

generating set of the module ~PV (Γ+). We note that these two sets can be
readily obtained by the standard methods of computational invariant theory
applied to Γ+. It should be pointed out that it is not evident, a priori, that
by applying the Reynolds operator to a Hilbert basis of PV (Γ+) one produces
a generating set of QV (Γ) as a module over the ring PV (Γ). In fact, it is
remarkable that such a simple prescription gives a non-trivial procedure to
obtain a generating set of QV (Γ) from a Hilbert basis of PV (Γ+).

We have also included here a brief presentation of the Hilbert-Poincaré series
and their associated Molien formulae. In addition, we prove character formulae
for the anti-invariants and reversible-equivariants. Although these tools are not
used in the proofs of the main results, we felt that, on one hand, it is instructive
to show that the standard concepts of invariant theory can be adapted to the
reversible-equivariant context; on the other hand, it is convenient for future
references to have all this material collected in one place.

2 The Structure of Anti-Invariants and Reversible-Equivariants

We start this section with some basic facts about the reversible-equivariant
theory. Next we obtain results about the structure of the spaces of anti-
invariant functions and reversible-equivariant mappings. Finally, we gener-
alize, for these spaces, the character formulae given by Sattinger [13, Theorem
5.10] for the dimensions of the subspaces of homogeneous polynomials of each
fixed degree.

2.1 The General Setting

Let Γ be a reversing symmetry group and σ the non-trivial homomorphism
(1.3). We choose δ ∈ Γ− to write Γ as a disjoint union of left-cosets:

Γ = Γ+

.
∪ Γ− = Γ+

.
∪ δ Γ+ .

If (η, W ) is also a representation of Γ, let us denote by ~PV,W (Γ) the PV (Γ)-
module of equivariant polynomial mappings G : V → W ,

G(ρ(γ)x) = η(γ)G(x) ,

for all γ ∈ Γ and x ∈ V . When (η, W ) = (ρ, V ), this is ~PV (Γ) defined in
Section 1.
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We proceed by introducing the dual of a representation: given the homomor-
phism (1.3), the σ-dual of the representation ρ is the representation ρσ of Γ
on V defined by

ρσ : Γ −→ GL(V )

γ 7→ σ(γ)ρ(γ)
.

Notice that (ρσ)σ = ρ.

A representation (ρ, V ) of Γ is said to be self-dual if it is Γ-isomorphic to
(ρσ, V ) or, equivalently, if there exists a reversible-equivariant linear isomor-
phism on V . In this case, we say that V is a self-dual vector space.

Remark 2.1 Using the σ-dual representation ρσ of ρ, condition (1.2) may be
written as

G(ρ(γ)x) = ρσ(γ)G(x) .

In this way, we may regard a reversible-equivariant mapping on V as an equiv-
ariant mapping from (ρ, V ) to (ρσ, V ). Also, equation (1.4) is equivalent to the
requirement that f is an equivariant mapping from (ρ, V ) to (σ,R). Therefore,

the existence of a finite generating set for QV (Γ) and for ~QV (Γ) is guaranteed
by Poénaru’s Theorem (Golubitsky et al. [8, Theorem XII 5.2]). 3

Remark 2.2 We make the following two observations:
(i) There is an important particular case in the reversible-equivariant theory,
i. e., when Γ is a two-element group. This is the purely reversible framework,
where there are no non-trivial symmetries and only one non-trivial reversing
symmetry which is an involution.
(ii) When σ in (1.3) is the trivial homomorphism, (ρ, V ) and (ρσ, V ) are the
same representation and so we encounter the purely equivariant framework. 3

2.2 The Application of the Invariant Theory

In this subsection we relate the rings of invariant polynomial functions of
Γ and Γ+, the module of anti-invariants playing a fundamental role in this
construction. We start by observing that PV (Γ+) (as well as QV (Γ)) is a
module over PV (Γ).

Let us consider the relative Reynolds operator from Γ+ to Γ on PV (Γ+), RΓ
Γ+

:
PV (Γ+) → PV (Γ+). In our particular case, it is simply given by

RΓ
Γ+

(f)(x) =
1

2

∑

γΓ+

f(γx) =
1

2

(

f(x) + f(δx)
)

, (2.1)

for an arbitrary (and fixed) δ ∈ Γ−.
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Now we define the relative Reynolds σ-operator on PV (Γ+), SΓ
Γ+

: PV (Γ+) →
PV (Γ+), by

SΓ
Γ+

(f)(x) =
1

2

∑

γΓ+

σ(γ)f(γx) .

So

SΓ
Γ+

(f)(x) =
1

2

(

f(x) − f(δx)
)

, (2.2)

for an arbitrary (and fixed) δ ∈ Γ−.

Let us denote by IPV (Γ+) the identity map on PV (Γ+). We then have:

Proposition 2.3 The relative Reynolds operator and σ-operator RΓ
Γ+

SΓ
Γ+

sat-
isfy the following properties:

(i) They are homomorphisms of PV (Γ)-modules and

RΓ
Γ+

+ SΓ
Γ+

= IPV (Γ+) . (2.3)

(ii) They are idempotent projections with

ker(RΓ
Γ+

) = QV (Γ) and ker(SΓ
Γ+

) = PV (Γ) ,

im(RΓ
Γ+

) = PV (Γ) and im(SΓ
Γ+

) = QV (Γ) .

(iii) The following decompositions (as direct sum of PV (Γ)-modules) hold:

PV (Γ+) = ker(RΓ
Γ+

) ⊕ im(RΓ
Γ+

) = ker(SΓ
Γ+

) ⊕ im(SΓ
Γ+

) .

Proof. Item (i) is straightforward. For (ii) and (iii), the statements referring
to the operator RΓ

Γ+
can be found in Neusel [12, p. 103]. Moreover, these proofs

can be easily modified in order to obtain the analogous results for the operator
SΓ

Γ+
. 2

Corollary 2.4 The following direct sum decomposition of modules over the
ring PV (Γ) holds:

PV (Γ+) = PV (Γ) ⊕QV (Γ) .

Now we relate the modules of equivariant polynomial mappings under Γ and
Γ+. This can be done by a similar construction as above for the rings of invari-
ant polynomial functions under Γ and Γ+: we consider the relative Reynolds
operator from Γ+ to Γ on ~PV (Γ+), ~RΓ

Γ+
: ~PV (Γ+) → ~PV (Γ+), which is, in the

present case, given by

~RΓ
Γ+

(G)(x) =
1

2

∑

γΓ+

γ−1G(γx) =
1

2

(

G(x) + δ−1G(δx)
)

, (2.4)

for an arbitrary δ ∈ Γ−.
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Now we define the relative Reynolds σ-operator from Γ+ to Γ on ~PV (Γ+),
~SΓ

Γ+
: ~PV (Γ+) → ~PV (Γ+), by

~SΓ
Γ+

(G)(x) =
1

2

∑

γΓ+

σ(γ)γ−1G(γx) .

So
~SΓ

Γ+
(G)(x) =

1

2

(

G(x) − δ−1G(δx)
)

, (2.5)

for an arbitrary δ ∈ Γ−.

Let us denote by I ~PV (Γ+) the identity map on ~PV (Γ+). We then have:

Proposition 2.5 The Reynolds operator ~RΓ
Γ+

and the Reynolds σ-operator
~SΓ

Γ+
satisfy the following properties:

(i) They are homomorphisms of PV (Γ)-modules and

~RΓ
Γ+

+ ~SΓ
Γ+

= I ~PV (Γ+) . (2.6)

(ii) They are idempotent projections with

ker(~RΓ
Γ+

) = ~QV (Γ) and ker(~SΓ
Γ+

) = ~PV (Γ) ,

im(~RΓ
Γ+

) = ~PV (Γ) and im(~SΓ
Γ+

) = ~QV (Γ) .

(iii) The following decompositions (as direct sum of PV (Γ)-modules) hold:

~PV (Γ+) = ker(~SΓ
Γ+

) ⊕ im(~SΓ
Γ+

) = ker(~RΓ
Γ+

) ⊕ im(~RΓ
Γ+

) .

Proof. It is analogous to the proof of Proposition 2.3. 2

We are now in position to state the following corollary which, together with
Corollary 2.4, forms our first main result.

Corollary 2.6 The following direct sum decomposition of modules over the
ring PV (Γ) holds:

~PV (Γ+) = ~PV (Γ) ⊕ ~QV (Γ) .

We end this subsection with a remark.

Remark 2.7 The notion of anti-invariant polynomial function is a particular
case of the definition of relative invariant of a group Γ. Stanley [15] carried out
a study of the structure of relative invariants when Γ is a finite group generated
by pseudo-reflections. Smith [14] has focused attention to the invariant theory
by using results on relative invariants when Γ is also an arbitrary finite group.
Let us switch to the notation of Smith. Let F be a field, ρ : Γ → GL(n, F)
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a representation of a finite group Γ and χ : Γ → F× be a linear character.
Therein, the ring of invariants of Γ is denoted by

F[V ]Γ = {f ∈ F[V ] : f(γx) = f(x) , ∀ γ ∈ Γ}

and the module of χ-relative invariants of Γ by

F[V ]Γχ = {f ∈ F[V ] : f(γx) = χ(γ) f(x) , ∀ γ ∈ Γ} .

Now let Σ be a subgroup of Γ of index m = [Γ : Σ]. Then,

F[V ]Σ = F[V ]Γ ⊕ F[V ]Γχ ⊕ · · · ⊕ F[V ]Γχm−1 . (2.7)

If γχΣ generates the cyclic group Γ/Σ, then the subspaces F[V ]Γχj , for j =

0, . . . , m−1, are the eigenspaces associated with the eigenvalues χ(γχ)j of the
action of γχ on F[V ]Σ. In particular, when Γ is generated by pseudo-reflections,
Smith [14, Theorem 2.7] shows that F[V ]Γχ is a free module over F[V ]Γ on a
single generator which can be constructed from the action of Γ on Fn. Switch-
ing back to our notation, the module QV (Γ) of anti-invariants is the module
of σ-relative invariants R[V ]Γσ. Thus, when Γ is a finite group, the ring PV (Γ)
and the module QV (Γ) are the eigenspaces associated to the eigenvalues 1 and
−1, respectively, of the action of δ ∈ Γ− on PV (Γ+). Therefore, decomposition
(2.7) is a generalization of Corollary 2.4 (where m = 2 and χ is a real-valued
linear character). On the other hand, Corollary 2.4 is a natural extension of
the decomposition (2.7) for arbitrary compact Lie groups. 3

2.3 Hilbert-Poincaré Series, Molien Formulae and Character Formulae for
Anti-Invariants and Reversible-Equivariants

As well as for invariants and equivariants, we define below the Hilbert-Poincaré
series for the modules QV (Γ) and ~QV (Γ) and establish Molien formulae for
them.

We begin by writing the natural gradings for QV (Γ) and ~QV (Γ):

QV (Γ) =
∞
⊕

d=0

Qd
V (Γ) and ~QV (Γ) =

∞
⊕

d=0

~Qd
V (Γ) , (2.8)

where Qd
V (Γ) is the space of homogeneous polynomial anti-invariants of degree

d and ~Qd
V (Γ) is the space of reversible-equivariant mappings with homogeneous

polynomial components of degree d. It follows from Corollaries 2.4 and 2.6 that
we have the direct sum decompositions of vector spaces

Pd
V (Γ+) = Pd

V (Γ) ⊕Qd
V (Γ) (2.9)
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and
~Pd

V (Γ+) = ~Pd
V (Γ) ⊕ ~Qd

V (Γ) (2.10)

for every degree d ∈ N.

The Hilbert-Poincaré series for QV (Γ) and for ~QV (Γ) are defined as the fol-
lowing formal power series:

Φ̃Γ
V (t) =

∞
∑

d=0

dimQd
V (Γ) td and Ψ̃Γ

V (t) =
∞
∑

d=0

dim ~Qd
V (Γ) td .

If we apply the general Molien formula (see Gatermann [6, Theorem 12.2]),
we obtain each Hilbert-Poincaré series above in terms of the normalized Haar
integral over Γ:

Φ̃Γ
V (t) =

∫

Γ

σ(γ)

det(1 − tρ(γ))
dγ and Ψ̃Γ

V (t) =
∫

Γ

σ(γ)χV (γ)

det(1 − tρ(γ))
dγ ,

where χV is the character of (ρ, V ).

We now present in Corollary 2.9 the expressions for the dimensions of the
homogeneous component of (2.8) in terms of the character function and of the
normalized Haar integral over Γ. See Sattinger [13, Theorem 5.10] or Antoneli
et al. [1] for the cases of invariants and of purely equivariants.

Let Pd
V denote the space of homogeneous polynomial functions of degree d and

let Ld
s(V ) denote the space of real-valued symmetric d-multilinear functions

on V d. Then we have a canonical isomorphism

Ld
s(V ) ∼= Pd

V . (2.11)

With the analogue for W -valued mappings, we also have

Ld
s(V, W ) ∼= ~Pd

V,W . (2.12)

Now, from Goodman et al. [9, p. 621]),

Ld
s(V, W ) ∼= Hom(SdV, W ) . (2.13)

Since V ∗ = Hom(V,R) and V ∗ ⊗ W ∼= Hom(V, W ) (see Goodman et al.
[9, p. 618]),

Ld
s(V, W ) ∼= Hom(SdV, W ) ∼= (SdV )∗ ⊗ W ,

which, together with (2.12), gives

~Pd
V,W

∼= (SdV )∗ ⊗ W . (2.14)
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If (ρ, V ) and (η, W ) are two representations of Γ, then the group Γ acts nat-

urally on the space of W -valued mappings ~PV,W by

γ · G = η(γ−1) Gρ(γ) ,

for all γ ∈ Γ and G ∈ ~PV,W . So we have

~Pd
V,W (Γ) = Fix~Pd

V,W
(Γ) . (2.15)

Combining (2.14) with (2.15) we get

~Pd
V,W (Γ) ∼= Fix(SdV )∗⊗W (Γ) . (2.16)

We then obtain:

Theorem 2.8 Let Γ be a compact Lie group. Let (ρ, V ) and (η, W ) be two
finite-dimensional representations of Γ with corresponding characters χV and
χW . Then

dim ~Pd
V,W (Γ) =

∫

Γ
χV (d)(γ)χW (γ)dγ ,

where χV (d) is the character afforded by the induced action of Γ on SdV .

Proof. The Trace Formula for fixed-point subspaces (Golubitsky et al.
[8, Theorem XIII 2.3]) combined with equation (2.16) leads to

dim ~Pd
V,W (Γ) = dim Fix(SdV )∗⊗W (Γ)

=
∫

Γ
χ(SdV )∗⊗W (γ)dγ

=
∫

Γ
χ(SdV )∗(γ)χW (γ)dγ

=
∫

Γ
χ(SdV )(γ

−1)χW (γ)dγ

=
∫

Γ
χV (d)(γ)χW (γ)dγ ,

as desired. 2

We observe that Sattinger’s Theorem (see Sattinger [13, Theorem 5.10]) can
now be seen as a particular case of Theorem 2.8, with W = R under the
trivial action of Γ in the invariant case and with (η, W ) = (ρ, V ) in the purely
equivariant case.

Now, recalling Remark 2.1 and applying the above theorem, we obtain:

Corollary 2.9 Let Γ be a compact Lie group. Let (ρ, V ) be a finite-
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dimensional representation of Γ with corresponding character χ. Then

dimQd
V (Γ) =

∫

Γ
σ(γ)χ(d)(γ)dγ

and
dim ~Qd

V (Γ) =
∫

Γ
σ(γ)χ(d)(γ)χ(γ)dγ ,

where χ(d) is the character afforded by the induced action of Γ on SdV .

In order to evaluate these character formulae it is necessary to compute the
character χ(d) of SdV . There is a well-known recursive formula, whose proof
can be found for example in Antoneli et al. [1, Section 4]:

d χ(d)(γ) =
d−1
∑

i=0

χ(γd−i)χ(i)(γ) , (2.17)

where χ(0) = 1. Also, see Section 6 therein for several examples of calculations
using (2.17).

We now recall the Fubini-type theorem that gives the Haar integral over a
compact Lie group as an iteration of integrals (see Bröcker and tom Dieck
[4, Proposition I 5.16]). Applying the theorem to the character formulae, we
get the following useful integral expressions for the dimensions of the spaces
of invariants, anti-invariants, equivariants and reversible-equivariants: for an
arbitrary (and fixed) δ ∈ Γ−,

dimPd
V (Γ) =

1

2

[∫

Γ+

χ(d)(γ)dγ +
∫

Γ+

χ(d)(δγ)dγ
]

,

dimQd
V (Γ) =

1

2

[
∫

Γ+

χ(d)(γ)dγ −
∫

Γ+

χ(d)(δγ)dγ
]

,

dim ~Pd
V (Γ) =

1

2

[∫

Γ+

χ(d)(γ)χV (γ)dγ +
∫

Γ+

χ(d)(δγ)χV (δγ)dγ
]

,

dim ~Qd
V (Γ) =

1

2

[∫

Γ+

χ(d)(γ)χV (γ)dγ −
∫

Γ+

χ(d)(δγ)χV (δγ)dγ
]

.

From these, we obtain

dimPd
V (Γ) + dimQd

V (Γ) =
∫

Γ+

χ(d)(γ)dγ = dimPd
V (Γ+) (2.18)

and

dim ~Pd
V (Γ) + dim ~Qd

V (Γ) =
∫

Γ+

χ(d)(γ)χV (γ)dγ = dim ~Pd
V (Γ+) , (2.19)

in agreement with Corollaries 2.4 and 2.6.

Next we present two necessary conditions for a representation (ρ, V ) of Γ to
be self-dual.
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Proposition 2.10 Let Γ be a reversing symmetry group. If V is self-dual,
then every reversing symmetry has vanishing trace.

Proof. For σ as in (1.3), we have, for every γ ∈ Γ,

tr(ρ(γ)) = tr(ρσ(γ)) = tr(σ(γ)ρ(γ)) = σ(γ) tr(ρ(γ)) .

If γ ∈ Γ−, then tr(ρ(γ)) = − tr(ρ(γ)), that is, tr(ρ(γ)) = 0. 2

Corollary 2.11 Let Γ be a reversing symmetry group. If V is self-dual, then
the Hilbert-Poincaré series of ~PV (Γ) e ~QV (Γ) are equal. Moreover, every co-

efficient of the Hilbert-Poincaré series of ~PV (Γ+) is even.

Proof. By Proposition 2.10, we have χV (γ) = 0 for all γ ∈ Γ−. Hence,

dim ~Pd
V (Γ) = dim ~Qd

V (Γ) ,

for every d ∈ N, and so the Hilbert-Poincaré series of ~PV (Γ) e ~QV (Γ) coincide.
Moreover, the equality above together with (2.19) implies immediately that

dim ~Pd
V (Γ+) is even for every d ∈ N. 2

Remark 2.12 If V is self-dual, then from Proposition 2.10 and (2.17) it fol-
lows that χ(d)(γ) = 0 for all γ ∈ Γ− whenever d is odd. Therefore, by a similar
argument as applied above to the equivariants and reversible-equivariants, we
conclude that

dimPd
V (Γ) = dimQd

V (Γ), if d is odd.

From (2.18), dimPd
V (Γ+) is even whenever d is odd. 3

We finish this section with some examples.

Example 2.13 (Γ = S2) Consider the action of the group Γ = S2 on R2

by permutation of the coordinates. This action is generated by the matrix
δ = ( 0 1

1 0 ) , which we take to be a reversing symmetry. So Γ+ = {1} and
Γ− = {δ}. Hilbert bases for PR2(S2) and PR2 are {x + y, xy} and {x, y},
respectively. From (2.18) we have that

dimQ1
R2(S2) = dimQ2

R2(S2) = 1 , dimQ3
R2(S2) = dimQ4

R2(S2) = 2 .

Note that xn − yn are anti-invariants for all n ∈ N. From the identity

xn − yn = (x + y)(xn−1 − yn−1) − xy(xn−2 − yn−2)

and cumbersome calculations it is possible to show that QR2(S2) is generated
by u = x − y. However, we delay this proof to the next section by a simple
and direct use of Theorem 3.1.
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By the Molien formula for the equivariants (Gatermann [6, Theorem 12.2])

the Hilbert-Poincaré series of ~PR2(S2) is ΨΓ
R2(t) = 1

(1−t)2
. Furthermore, it is

easy to check that

L =

(

1 0
0 −1

)

is the matrix of an S2-reversible-equivariant linear isomorphism and so this
representation of S2 on R2 is self-dual. Therefore, by Corollary 2.11, the
Hilbert-Poincaré series of ~QR2(S2) is Ψ̃Γ

R2(t) = ΨΓ
R2(t) = 1

(1−t)2
. 3

Example 2.14 (Γ = O) Consider the action of the octahedral group O on
R3 generated by

κx =







−1 0 0
0 1 0
0 0 1





 , Sx =







1 0 0
0 0 −1
0 1 0





 , Sy =







0 0 1
0 1 0
−1 0 0





 .

Here, κx is the reflection on the plane x = 0 and Sx, Sy are the rotations of
π/2 about the axis x e y, respectively. Let δ = κx act as reversing symmetry
and Sx, Sy act as symmetries. Hence Γ+ = 〈Sx, Sy〉 ∼= S4 and Γ− = κx Γ+.
Using the software Singular to compute the generators of PR3(S4) we find

u1 = x2 + y2 + z2 , u2 = x2y2 + y2z2 + x2z2 , u3 = x2y2z2 ,

u4 = x3(yz5 − y5z) + y3(x5z − xz5) + z3(xy5 − x5y) .

By Melbourne [11, Lemma A.1] u1, u2 and u3 generate PR3(O). Note that u4

is a homogeneous O-anti-invariant (of degree 9) and, from (2.18), that

dimQi
R3(O) = 0 , ∀ i = 1, . . . , 8 and dimQ9

R3(O) = 1 .

Hence, it follows that QR3(O) admits only one generator of degree 9, which can
be taken to be u4. Finally, using the software GAP to compute the Hilbert-
Poincaré series of ~PR3(S4) we obtain

Ψ̃S4

R3(t) =
t − t2 + t3

(1 − t)(1 − t2)(1 − t4)

= t + 2t3 + t4 + 4t5 + 2t6 + 6t7 + 4t8 + · · · .

Since dim ~P1
R3(S4) = 1 is odd, it follows from Corollary 2.11 that such a

representation of the octahedral group is non self-dual. 3

3 The Algorithm

In this section we prove the second main result of this paper, namely the algo-
rithmic way to compute anti-invariants and reversible-equivariants. The basic
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idea is to take advantage of the direct sum decompositions from Corollaries
2.4 and 2.6 to transfer the appropriate basis and generating sets from one ring
or module to another. We finish this section by applying these results to some
important examples.

3.1 Generators of Anti-Invariants

Based on the direct sum decomposition into two PV (Γ)-modules given by
Corollary 2.4, in this subsection we show how to obtain generating sets of
QV (Γ) and PV (Γ+) as modules over PV (Γ) from a Hilbert basis of PV (Γ+).

Theorem 3.1 Let Γ be a compact Lie group acting on V . Let {u1, . . . , us} be
a Hilbert basis of the ring PV (Γ+). Set

ũj = SΓ
Γ+

(uj) .

Then {ũ1, . . . , ũs} is a generating set of the module QV (Γ) over PV (Γ).

Proof. We need to show that every polynomial function f̃ ∈ QV (Γ) can be
written as

f̃(x) =
s
∑

j=1

pj(x)ũj(x) , ∀ x ∈ V ,

where pj ∈ PV (Γ) and ũj = SΓ
Γ+

(uj). We prove this by induction on the
cardinality s of the set {u1, . . . , us}.

Let us fix δ ∈ Γ− and let {u1, . . . , us} be a Hilbert basis of PV (Γ+). From
Proposition 2.3, there exists f ∈ PV (Γ+) such that SΓ

Γ+
(f) = f̃ . First we write

f(x) =
∑

α1,...,αs

aα1...αs
uα1

1 (x) . . . uαs

s (x) ,

where aα1...αs
∈ R. Using multi-index notation, we rewrite f as

f(x) =
∑

α

aα uα(x) ,

with aα ∈ R, where α = (α1, . . . , αs), and uα = uα1

1 . . . uαs
s . We now compute

f̃ = SΓ
Γ+

(f) to get

f̃(x) =
∑

α

aα (uα(x) − uα(δx)) .

• Assume s = 1. Then we may write

f̃(x) =
∑

i

ai (u
i(x) − ui(δx)) , (3.1)
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where ai ∈ R and i ∈ N. Recall the well-known polynomial identity

ui(x) − ui(δx) = (u(x) − u(δx))





i−1
∑

j=0

uj(x)u(i−1)−j(δx)





from which we extract the following polynomial:

pi(x) =
i−1
∑

j=0

uj(x)u(i−1)−j(δx) .

We now show that pi ∈ PV (Γ). Since Γ+ is a normal subgroup of
Γ, it follows that for every γ ∈ Γ+ there exists γ̃ ∈ Γ+ such that
u(δγx) = u(γ̃δx) = u(δx) , ∀ x ∈ V . Thus, for all γ ∈ Γ+, we have

pi(γx) =
i−1
∑

j=0

uj(γx) u(i−1)−j(δγx) =
i−1
∑

j=0

uj(x) u(i−1)−j(δx) = pi(x) .

Furthermore, since δ2 ∈ Γ+,

pi(δx) =
i−1
∑

j=0

uj(δx) u(i−1)−j(δ2x) =
i−1
∑

j=0

uj(δx) u(i−1)−j(x) = pi(x) .

Therefore, (3.1) becomes

f̃(x) =
∑

i

ai pi(x)(u(x) − u(δx)) = p(x)ũ(x) ,

where p = 2
∑

i ai pi ∈ PV (Γ).

• Assume that for all sets {u1, . . . , uℓ} with 1 6 ℓ 6 s we have

∑

α

aα (uα(x) − uα(δx)) =
ℓ
∑

j=1

pj(x)ũj(x), (3.2)

where pj ∈ PV (Γ) and α ∈ Nℓ.

Now consider the set {u1, . . . , uℓ} ∪ {uℓ+1} and let f̃ ∈ QV (Γ). Then we may
write

f̃(x) =
∑

α,αℓ+1

aα,αℓ+1
(uα(x)u

αℓ+1

ℓ+1 (x) − uα(δx)u
αℓ+1

ℓ+1 (δx))

=
∑

α,αℓ+1

aα,αℓ+1

[

uα(x)(u
αℓ+1

ℓ+1 (x) − u
αℓ+1

ℓ+1 (δx)) + u
αℓ+1

ℓ+1 (δx)(uα(x) − uα(δx))
]

,

with uα, u
αℓ+1

ℓ+1 ∈ PV (Γ+), α ∈ Nℓ and αℓ+1 ∈ N. We use (2.9) to write

uα(x) = vα(x) + wα(x) and u
αℓ+1

ℓ+1 (x) = vαℓ+1
(x) + wαℓ+1

(x),
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with vα, vαℓ+1
∈ PV (Γ) and wα, wαℓ+1

∈ QV (Γ). Then

uα(δx) = vα(x) − wα(x) and u
αn+1

ℓ+1 (δx) = vαℓ+1
(x) − wαℓ+1

(x) .

By subtracting, we get

uα(x) − uα(δx) = 2wα(x) and u
αℓ+1

ℓ+1 (x) − u
αℓ+1

ℓ+1 (δx) = 2wαℓ+1
(x) .

Therefore,

f̃(x) =
∑

α,αℓ+1

aα,αℓ+1

[

(vα(x) + wα(x))2wαℓ+1
(x) + (vαℓ+1

(x) − wαℓ+1
(x))2wα(x)

]

=
∑

α,αℓ+1

aα,αℓ+1
(2vα(x)wαℓ+1

(x) + 2vαℓ+1
(x)wα(x))

=
∑

α,αℓ+1

aα,αℓ+1

[

vα(x)(u
αℓ+1

ℓ+1 (x) − u
αℓ+1

ℓ+1 (δx)) + vαℓ+1
(x)(uα(x) − uα(δx))

]

=
∑

α,αℓ+1

aα,αℓ+1
vα(x)(u

αℓ+1

ℓ+1 (x) − u
αℓ+1

ℓ+1 (δx))

+
∑

αℓ+1

vαℓ+1
(x)

(

∑

α

aα,αℓ+1
(uα(x) − uα(δx))

)

.

By the induction hypothesis (3.2) we can write

(u
αℓ+1

ℓ+1 (x) − u
αℓ+1

ℓ+1 (δx)) = pℓ+1,αℓ+1
(x)ũℓ+1(x)

and
∑

α

aα,αℓ+1
(uα(x) − uα(δx)) =

ℓ
∑

j=1

pj,αℓ+1
(x)ũj(x) ,

with pℓ+1,αℓ+1
, pj,αℓ+1

∈ PV (Γ). Then

f̃(x) =
∑

α,αℓ+1

aα,αℓ+1
vα(x)(pℓ+1,αℓ+1

(x)ũℓ+1(x)) +
∑

αℓ+1

vαℓ+1
(x)





ℓ
∑

j=1

pj,αℓ+1
(x)ũj(x)





=





∑

α,αℓ+1

aα,αℓ+1
vα(x)pℓ+1,αℓ+1

(x)



ũℓ+1(x) +
ℓ
∑

j=1





∑

αℓ+1

vαℓ+1
(x)pj,αℓ+1

(x)



ũj(x).

But now we observe that

pℓ+1 =
∑

α,αℓ+1

aα,αℓ+1
vα pℓ+1,αℓ+1

∈ PV (Γ)

and
pj =

∑

αℓ+1

vαℓ+1
pj,αℓ+1

∈ PV (Γ) .

Therefore,

f̃(x) =
ℓ+1
∑

j=1

pj(x)ũj(x) . 2
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Example 3.2 (Continuation of Examples 2.13 and 2.14)
It is a straightforward consequence of the theorem above that the S2-anti-
invariant u = x− y in Example 2.13 generates QR2(S2) as a PR2(S2)-module.
Also, the O-anti-invariant

u4 = x3(yz5 − y5z) + y3(x5z − xz5) + z3(xy5 − x5y)

in Example 2.14 generates QR3(O) as a PR3(O)-module. 3

Here is the result that gives a generating set of the module PV (Γ+) over the
ring PV (Γ):

Corollary 3.3 Let Γ be a compact Lie group acting on V . Let {u1, . . . , us} be
a Hilbert basis of the ring PV (Γ+). Set ũi = SΓ

Γ+
(ui) , for i = 1, . . . , s. Then

{1, ũ1, . . . , ũs} is a generating set of the module PV (Γ+) over PV (Γ).

3.2 Algorithm for Computing the Reversible-Equivariants

Consider the direct sum decomposition into two PV (Γ)-modules of Corollary
2.6. Based on that, we show in this subsection how to obtain generating sets
of ~PV (Γ+) and ~QV (Γ) as modules over PV (Γ) from a Hilbert basis of PV (Γ+)

together with a generating set of ~PV (Γ+) as a module over PV (Γ+). In par-
ticular, we achieve our ultimate goal, which is to show how the construction
of a generating set for the module ~QV (Γ) of reversible-equivariant polyno-
mial mappings over PV (Γ) can be reduced to a problem in standard invariant
theory, whose solution is well known in several important cases.

Lemma 3.4 Let Γ be a compact Lie group acting on V . Let {u1, . . . , us} be a
Hilbert basis of PV (Γ+). Let {ũ0 ≡ 1, ũ1, . . . , ũs} be the generating set of the
module PV (Γ+) over the ring PV (Γ) obtained from {u1, . . . , us} as in Corollary

3.3 and {H0, . . . , Hr} a generating set of the module ~PV (Γ+) over the ring
PV (Γ+). Then

{Hij = ũiHj : i = 0, . . . , s ; j = 0, . . . , r}

is a generating set of the module ~PV (Γ+) over the ring PV (Γ).

Proof. Let G ∈ ~PV (Γ+). Then

G =
r
∑

j=0

pj Hj , (3.3)
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with pj ∈ PV (Γ+). Since {ũ0, . . . , ũs} is a generating set of the module PV (Γ+)
over the ring PV (Γ), it follows that

pj =
s
∑

i=0

pij ũi , (3.4)

with pij ∈ PV (Γ). From (3.3) and (3.4) we get

G =
r
∑

j=0

(

s
∑

i=0

pij ũi

)

Hj =
s,r
∑

i,j=0

pij

(

ũiHj

)

,

as desired. 2

Lemma 3.5 Let Γ be a compact Lie group acting on V . Let {H00, . . . , Hsr}

be a generating set of the module ~PV (Γ+) over the ring PV (Γ) given as in
Lemma 3.4. Then

{H̃ij = ~SΓ
Γ+

(Hij) : i = 0, . . . , s ; j = 0, . . . , r}

is a generating set of the module ~QV (Γ) over the ring PV (Γ).

Proof. Let {H00, . . . , Hsr} be a generating set of the PV (Γ)-module ~PV (Γ+)

and let G̃ ∈ ~QV (Γ). From Proposition 2.5, there exists G ∈ ~PV (Γ+) such that

G̃ = ~SΓ
Γ+

(G). Now write

G =
s,r
∑

i,j=0

pij Hij

with pij ∈ PV (Γ). Applying ~SΓ
Γ+

on both sides, we get

G̃ =
s,r
∑

i,j=0

pij
~SΓ

Γ+
(Hij) =

s,r
∑

i,j=0

pij H̃ij ,

as desired. 2

It is now immediate from the two lemmas above the following result:

Theorem 3.6 Let Γ be a compact Lie group acting on V . Let {u1, . . . , us} be
a Hilbert basis of PV (Γ+) and {H0, . . . , Hr} be a generating set of the module
~PV (Γ+) over the ring PV (Γ+). Let {ũ0 ≡ 1, ũ1, . . . , ũs} be the generating set
of the module PV (Γ+) over the ring PV (Γ) obtained from {u1, . . . , us} as in
Corollary 3.3. Then

{H̃ij = ~SΓ
Γ+

(ũiHj) : i = 0, . . . , s ; j = 0, . . . , r}

is a generating set of the module ~QV (Γ) over PV (Γ).
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Here is the procedure to find a generating set of the module ~QV (Γ) over the
ring PV (Γ):

Algorithm 3.7 (Generating Set of Reversible-Equivariants)

Input: · compact Lie group Γ ⊂ O(n)
· normal subgroup Γ+ ⊂ Γ of index 2
· δ ∈ Γ \ Γ+

· Hilbert basis {u1, . . . , us} of PV (Γ+)

· generating set {H0, . . . , Hr} of ~PV (Γ+) over PV (Γ+)
Output: generating set {K̃1, . . . , K̃ℓ} of the module of reversible-

equivariants ~QV (Γ) over the ring PV (Γ)
Procedure:

k := 1
for i from 1 to s do

ũi(x) := 1
2
(ui(x) − ui(δx))

for j from 0 to r do
H0j(x) := Hj(x)
Hij(x) := ũi(x) Hj(x)
H̃ij(x) := 1

2
(Hij(x) − δ−1Hij(δx))

if H̃ij 6= 0 then
K̃k := H̃ij

k := k + 1
end

end
end
l := k − 1
return {K̃1, . . . , K̃ℓ}

The number ℓ ≤ rs that appears in the algorithm output is the resulting
number of non-zero generating polynomials for ~QV (Γ).

3.3 Examples

We now illustrate the method with some examples. We reproduce all the
steps of Algorithm 3.7 for the first example. We omit the steps for the oth-
ers, presenting the output (generators of the reversible-equivariants) and also
the anti-invariants computed by the algorithm. It is worthwhile to point out
here that, despite our method is general, it is necessary only when the rep-
resentation at hand is non self-dual. Otherwise, when the representation is
self-dual, there is a much more efficient procedure which takes advantage of
the existence of a reversible-equivariant linear isomorphism L : V → V to
obtain the generators of ~QV (Γ) from those of ~PV (Γ) via the “pull-back” of L.
See Baptistelli and Manoel [3] for details.
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Example 3.8 (Γ = Dn) Consider the action of the dihedral group Γ = Dn

on C generated by the complex conjugation κ and the rotation R2π/n:

κz = z̄ and R 2π
n

z = ei 2π
n z .

Let us take δ = R2π/n ∈ Γ− and κ ∈ Γ+. We observe that this is only possible
for n even (see [2, p. 249]). Then

Γ+ = 〈κ, R2
2π
n

〉 = Dn
2

.

It is well known (Golubitsky et al. [8, Section XII 4]) that

u1(z) = zz̄ and u2(z) = z
n
2 + z̄

n
2

constitute a Hilbert basis for PC(Dn/2). Also, from Golubitsky et al.
[8, Section XII 5],

H0(z) = z and H1(z) = z̄
n
2
−1 .

are generators of ~P(Dn/2). The algorithm then computes

ũ1(z) = 1
2
(u1(z) − u1(e

i 2π
n z)) = 0

ũ2(z) = 1
2
(u2(z) − u2(e

i 2π
n z)) = z

n
2 + z̄

n
2 ,

H00(z) = H0(z) = z ,

H01(z) = H1(z) = z̄
n
2
−1 ,

H10(z) = ũ1(z)H0(z) = 0 ,

H11(z) = ũ1(z)H1(z) = 0 ,

H20(z) = ũ2(z)H0(z) = z
n
2
+1 + (zz̄)z̄

n
2
−1 ,

H21(z) = ũ2(z)H1(z) = (zz̄)
n
2
−1z + z̄n−1

and

H̃00 = H̃21 ≡ 0 ,

H̃01(z) = z̄
n
2
−1 ,

H̃20(z) = z
n
2
+1 + (zz̄)z̄

n
2
−1 .

The output is
K̃1 = z̄

n
2
−1, K̃2 = (zz̄)

n
2
−1z + z̄n−1 .

By noting that zz̄ is a Dn-invariant, it is obvious that {z̄n/2−1, zn/2+1} is also

a generating set of the module ~QC(Dn) over the ring PC(Dn). We observe
that Baptistelli and Manoel [2, p. 249] use a different approach to deal with
this example, obtaining this set of generators by direct calculations. 3
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Example 3.9 (Γ = Z2) Consider the action of the group Γ = Z2 on R2 gen-

erated by the reflection δ =
(

−1 0
0 −1

)

, which we take to be a reversing symme-

try. So Γ+ = {1} and Γ− = {δ}. It is clear that u1(x, y) = x and u2(x, y) = y
constitute a Hilbert basis of PR2 . Also, H0(x, y) = (1, 0) and H1(x, y) = (0, 1)

constitue a generating set of the module ~PR2 over the ring PR2 . Algorithm 3.7
produces

ũ1(x, y) = x, ũ2(x, y) = y

and

K̃1(x, y) = (1, 0), K̃2(x, y) = (0, 1) . 3

Example 3.10 (Γ = Z2 ⊕ Z2) Consider the action of the group Γ = Z2 ⊕Z2

on R2 generated by the reflections

κ1 =

(

1 0
0 −1

)

and κ2 =

(

−1 0
0 1

)

.

Let us take δ = κ1 ∈ Γ− and κ2 ∈ Γ+. So Γ+ = Z2(κ2) = {1, κ2} and
Γ− = {κ1,−1}. It is well known that u1(x, y) = x2 and u2(x, y) = y constitute
a Hilbert basis of PR2(Z2(κ2)). Also, H0(x, y) = (x, 0) and H1(x, y) = (0, 1)

constitute a generating set of ~PR2(Z2(κ2)). By Algorithm 3.7,

ũ1(x, y) = 0, ũ2(x, y) = y,

and

K̃1(x, y) = (0, 1), K̃2(x, y) = (xy, 0) .

Observe that if we choose Γ+ = Z2(κ1) = {1, κ1} and Γ− = {κ2,−1},

then QR2(Z2 ⊕ Z2) is generated by {x} and ~QR2(Z2 ⊕ Z2) is generated by
{(1, 0), (0, xy)} over PR2(Z2 ⊕ Z2). 3

Example 3.11 (Γ = O(2)) Consider the orthogonal group O(2) acting on
C × R, where the rotations θ ∈ SO(2) and the flip κ act as

θ(z, x) = (eiθz, x) and κ(z, x) = ( z̄,−x) .

Consider Γ+ = SO(2) and δ = κ ∈ Γ−. We have that u1(z, x) = zz̄
and u2(z, x) = x form a Hilbert basis of PC×R(SO(2)). Also H0(z, x) =
(iz, 0), H1(z, x) = (z, 0) and H3(z, x) = (0, 1) constitute a generating set

of ~PC×R(SO(2)). By Algorithm 3.7,

ũ1(z, x) = 0, ũ2(z, x) = x

and

K̃1(z, x) = (iz, 0), K̃2(z, x) = (xz, 0), K̃3(z, x) = (0, 1) . 3
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Our last example deals with the group given by the semi-direct product
D6 ∔ T2 summing direct with Z2. This is the full group of symmetries of the
PDE that models the Rayleigh-Bénard convection. The steady-state bifurca-
tion problem of this fluid motion has been treated in Golubitsky et al. [8, Case
Study 4]. In this example, the dihedral group D6 is realized as the group gen-
erated by a 3-element permutation and by a flip.

Example 3.12 (Γ = (D6 ∔ T2) ⊕ Z2) Consider the group Γ = (D6 ∔ T2) ⊕
Z2 acting on C3 as follows: for (z1, z2, z3) ∈ C3,

(a) the even permutations in D6 act by permuting the coordinates of
(z1, z2, z3),

(b) the flip permutation in D6 acts as (z1, z2, z3) 7→ (z̄1, z̄2, z̄3),
(c) θ = (θ1, θ2) in the torus T2 acts as

θ · (z1, z2, z3) = (eiθ1pz1, e
iθ2pz2, e

−i(θ1+θ2)pz3) ,

(d) the reflection κ ∈ Z2 acts as minus the identity:

κ(z1, z2, z3) = (−z1,−z2,−z3) .

In this example we consider δ = κ ∈ Γ− and so Γ+ = D6 ∔ T2.

Let vj = zj z̄j (j = 1, 2, 3) and consider the elementary symmetric polynomials
in vj :

u1 = v1 + v2 + v3, u2 = v1v2 + v1v3 + v2v3, u3 = v1v2v3 .

Also, let u4 = z1z2z3 + z̄1z̄2z̄3. It is well known that {u1, . . . , u4} is a Hilbert
basis for PC3(D6∔T2) (see Golubitsky et al. [8, Theorem 3.1(a), p. 156]). Also,
from Golubitsky et al. [8, Theorem 3.1(b), p. 156], we have that a generating

set for ~PC3(D6 ∔ T2) is given by

H0(z1, z2, z3) = (z1, z2, z3) ,

H1(z1, z2, z3) = (u1z1, u2z2, u3z3) ,

H2(z1, z2, z3) = (u2
1z1, u

2
2z2, u

2
3z3) ,

H3(z1, z2, z3) = (z̄2z̄3, z̄1z̄3, z̄1z̄2) ,

H4(z1, z2, z3) = (u1z̄2z̄3, u2z̄1z̄3, u3z̄1z̄2) ,

H5(z1, z2, z3) = (u2
1z̄2z̄3, u

2
2z̄1z̄3, u

2
3z̄1z̄2) .

Algorithm 3.7 gives

ũj(z1, z2, z3) = 0 (j = 1, 2, 3), ũ4(z1, z2, z3) = z1z2z3 + z̄1z̄2z̄3
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and

K̃1(z1, z2, z3) = (z̄2z̄3, z̄1z̄3, z̄1z̄2) ,

K̃2(z1, z2, z3) = (u1z̄2z̄3, u2z̄1z̄3, u3z̄1z̄2) ,

K̃3(z1, z2, z3) = (u2
1z̄2z̄3, u

2
2z̄1z̄3, u

2
3z̄1z̄2) ,

K̃4(z1, z2, z3) = (u4z1, u4z2, u4z3) ,

K̃5(z1, z2, z3) = (u4u1z1, u4u2z2, u4u3z3) ,

K̃6(z1, z2, z3) = (u4u
2
1z1, u4u

2
2z2, u4u

2
3z3) .

We observe that the generators of the ((D6 ∔T2)⊕Z2)-reversible-equivariants
turned out to be u4H0, u4H1, u4H2, H3, H4, H5, while the ((D6 ∔ T2) ⊕ Z2)-
equivariants are H0, H1, H2, u4H3, u4H4, u4H5 (as given in Golubitsky et al.
[8, Corollary 3.2, p. 157]). 3
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