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A Time–Frequency Analysis on the Impact of
Climate Variability on Semi-Natural

Mountain Meadows
Mario Cunha and Christian Richter

Abstract—This paper analyzes the impact of climate dynamics
on vegetation growth for a rural mountainous region in northeast-
ern Portugal. As a measure of vegetation growth, we use the nor-
malized difference vegetation index (NDVI), which is based on the
ten-day synthesis data set (S10) from Satellite Pour l’Observation
de la Terre (SPOT-VEGETATION) imagery from 1998 to 2011.
We test whether the dynamic growth pattern of the NDVI has
changed due to climate variability, and we test the relationship of
NDVI with temperature and available soil water (ASW). In order
to do so, we use a time–frequency approach based on Kalman filter
regressions in the time domain. The advantage of our approach is
that it can be used even in the case where the sample size is rela-
tively small. By estimating the important relationships in the time
domain first and transferring them into the frequency domain, we
are still able to derive a complete spectrum over all frequencies. In
our example, we find a change of the cyclical pattern for the spring
season and different changes if we take into account all seasons.
In other words, we can distinguish between deterministic changes
of the vegetation cycles and stochastic changes that only occur
randomly. Deterministic changes imply that the data-generating
process has changed (such as climate), whereas stochastic changes
imply only temporary changes. We find that individual seasons
undergo cyclical changes that are different from other seasons.
Moreover, our analysis shows that temperature and ASW are the
main drivers of vegetation growth. We can also recognize a shift of
the relative importance away from temperature to soil water.

Index Terms—Climate variability, Kalman filter, mountain
meadows, normalized difference vegetation index (NDVI), time-
varying spectra, vegetation dynamics.

I. INTRODUCTION

T IME–frequency analysis is used in engineering for quite
some time [1]. Time–frequency analysis investigates cy-

cles whose properties may change over time. The inspiration for
this paper is therefore to investigate whether climate change has
a (changing) impact on natural growth cycles. Climate changes
are particularly serious for mountainous regions because they
are among the most fragile environments in the world [2], [3]
and are recognized as the key supporting ecosystem service
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related to natural resources conservation, as defined by the
Millennium Ecosystem Assessment [4]. Therefore, if climate
change has an impact on growth cycles, it should be mea-
surable in a sensitive system such as mountainous regions.
As an example, we study the mountainous grassland system
in northeast Portugal. The traditional landscape of the moun-
tainous region of northeastern Portugal is characterized by the
ancestral agropastoral or grassland system extensively used
for hay and grazing. The increased water constrains due to
sectorial competition for water uses and the foreseeable climate
warming endangers the sustainability of these lameiros. Hence,
our results may be also used for conservation strategies to
preserve these meadows.

Remote sensing of vegetation dynamics at regional and field
scales is often pursued using high-temporal-resolution sensors
[advanced very high resolution radiometer, medium resolution
imaging spectrometer, moderate resolution imaging spectrora-
diometer, and Satellite Pour l’Observation de la Terre (SPOT-
VEGETATION)]. The data received from these sensors provide
large area coverage with high frequency, limited only by the
compositing period needed to remove the effects of clouds and
cloud shadow [5]–[7]. Results from previous works show that
the normalized difference vegetation index (NDVI) profile pro-
vided by the VEGETATION sensor, on board the most recent
SPOT—SPOT_VGT—fits well the characteristics of vegetation
growth dynamics and associated management practices in the
semi-natural meadows of the mountainous region of northeast
Portugal [8]–[10]. Hence, in this paper, we use the NDVI time
series based on SPOT_VGT sensor imagery to infer about the
impact of climate on these semi-natural meadows and to model
vegetation dynamics.

Several approaches based on temporal trajectory analysis
have been proposed for smoothing and detecting temporal
changes in vegetation dynamics such as change vector analysis
[11], Best Index Slope Extraction [12], moving averages [13],
double logistic model [14], asymmetric Gaussian [15], sliding
windows [16], wavelet decomposition [17], harmonic series and
higher order splines [18], [19], Breaks For additive Seasonal
and Trend [20], Whittaker smoother [21], changing-weight fil-
ter [22], discrete Fourier transform [23], and frequency analysis
[24]. Many of these techniques need complementary compli-
cate and tedious tests (e.g., derivatives, specific threshold, or
change trajectories) to extract the time-series changes. Reviews
of the merits and limitations of these techniques can be found
in [18], [21], [22], and [24]–[26]. According to this literature,
stationarity assumptions, data quality, sensor noise, and compli-
cations of the methods can make it challenging to quantify the
separate sources of information that influence the signal and
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Fig. 1. Location of the study area (Montalegre) in northeast Portugal and the
test site located in PRR, showing the meadow coverage in Montalegre (in gray).
The PRR (2 × 2 pixels) coordinates (Datum WGS84) of the upper left site
corner are 7◦55′04 W and 41◦48′32′′ N. Details of meadow coverage per
pixel in the test site are also given as percentages.

to determine what constitutes a significant change. Moreover,
the frequently used time-series analysis of satellite derived veg-
etation growth data (e.g., [8], [27]) are not capable to integrate
and quantify the seasonal and interannual impacts of climate on
vegetation dynamics.

It is well known that vegetation dynamics depend on the cli-
mate. However, an open question is how sensitive are seasonal
and interannual cycles to climate variability. Therefore, a time-
varying spectral approach, which is capable of separating out
changes at different cyclical frequencies (including trend) in the
grassland growth, is needed to provide the flexibility to capture
these features.

We identify the importance of variability of climate for cycli-
cal properties in the satellite-based grassland growth rate and
consider how the impacts of these events may be predicted. The
following section describes the test site and the methods used to
derive the data. Section III briefly explains the statistical meth-
ods used in this paper. Section IV gives the results. A discussion
is provided in Section V, and Section VI concludes this paper.

II. MATERIALS AND METHODS

A. Study Area

The region of analysis covers a large area of the mountainous
region of Montalegre, northeast Portugal (see Fig. 1).

The large pixel size of SPOT_VGT images (1 km) deter-
mines the criteria for selection of the test site, which have to
include large contiguous areas with lameiros fields. Therefore,
one suitable test site was selected in Montalegre municipality,
location of Paredes do Rio (PRR). The test sites have 2 × 2
pixels (of 1 × 1 km), in a compact group of contiguous pixels,
all with 65% or more lameiros coverage. The average lameiros
coverage occupancy of the PRR test site is 77.8% (see Fig. 1).

These meadows are conveniently located in areas of high
water availability, loamy soils, and over 700–800 m high.
In this region, the Atlantic climate favors high precipitation
occurrence (1531 mm/year), mainly occurring from autumn
to spring, autumn–winter temperatures lower than 12 ◦C. and
mean monthly temperatures ranging from 3.5 ◦C to 17.2 ◦C.

B. Meteorological Data and Soil Water Balance

We use meteorological observations for the years 1998 to
2011 from the weather station of Montalegre (41◦49′ N :
7◦47′ W: 1005 m above sea level) located in the proximity of the
test site. The meteorological data consist of daily observations
of temperature (maximum and minimum) and precipitation.
These general meteorological parameters are used to derive
other variables: mean temperature (Tm, ◦C), potential evap-
otranspiration (ETP, mm), and other variables related to soil
water balance.

The Thornthwaite–Matter (T–M) [28] mass conservation
climatic water budget model is then performed to simulate ten-
day soil water balance. Dekadal ETP is estimated using the
empirical Thornthwaite equation that relies on mean temper-
ature and average day length (in hours per day). The T–M
model tracks the soil water through time by balancing the inputs
(precipitation) and outputs of water (ETP). The soil operates as
a “bucket” with a user-defined field available water capacity:
100 mm in this study. The ability to remove soil moisture
has been set to decrease exponentially with the decreasing
soil-moisture content. The model output includes available soil
water (ASW) that ranges from 0 to 100 mm. This methodology
was chosen because of its simplicity and small quantity of input
meteorological data needed.

C. Satellite Data

In this paper, we use the satellite imagery provided by SPOT_
VGT for the period 1998 (April) to 2011 (March) to examine
the dynamic patterns of grassland grow inferred by the NDVI.
This satellite has an intermediate spatial resolution (1 km), and
the images are corrected for radiometric, geometric, and at-
mospheric effects. Ten-day composite VEGETATION products
(S10) are obtained from the compilation of daily data. In the
SPOT_VGT S10 composites, the resulting surface reflectance
value for each pixel corresponds to the date with the maximum
NDVI reflectance at the top of the atmosphere for that pixel [29].

The pixels of the test site (2 × 2 pixels) were averaged to
create the NDVI value for each time period. This was done
to prevent misregistration and errors from other sources; these
errors could contaminate the temporal profiles.

The NDVI is a variable that is truncated (it can only adopt
values between −1 and 1). In a truncated sample, information
on the regressors is available only if the regressand is actually
observed. In our example, we cannot observe values of the
NDVI below −1 and above 1 (may be seen as a truncated dis-
tribution), which results in a nonnomal distribution [30]. This
implies that either one has to adopt an estimation technique that
takes truncated variables into account or we have to transform
NDVI data into a nontruncated variable. For this reason, we
transformed NDVI into a growth rate. This growth rate is not
truncated anymore; thus, common estimation techniques can
be used. Given our data set, we can construct different growth
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rates. We have tested these different growth rates such as ten-
day growth rates and monthly growth rates, but we found that
the model using the annual growth rate was statistically superior
to all other models in the sense that it minimized the Akaike and
Schwartz information criteria [31]. We calculated the annual
growth rate in the following way: we first calculated for all
observations of NDVI the annual growth rate. In accordance
with the seasonal calendar, we then calculated the average
annual growth rate for a particular season. Therefore, in this
paper, we work with average data on seasonal level, and we use
annual growth rates rather than level values.

To make the approach consistent, we also use the same
growth rates for temperature and soil water. Hence, in all
regressions to come, all variables refer to the same time period
and have the same dimension, namely, percent.

III. TIME–FREQUENCY ANALYSIS OF THE NDVI

A. First Step: Estimation in the Time Domain

In contrast to “common” frequency approaches, we do not
estimate the spectrum directly. The reason is that this usually re-
quires a large number of observations. If one takes into account
nonstationary spectra as well, then the number of necessary
observations increases even more. By estimating a time-series
model, first, we avoid this problem. Moreover, an important
advantage of our approach is that we can calculate a spectrum
showing all frequencies (even the long ones) with a relatively
small sample size. We can further test whether the properties of
the long cycles may have changed over the sample period. Thus,
our conclusions concerning the long-run (and short-run) cycle
properties are only valid for the sample under consideration and
may change afterward or have been different before our sample.
The crucial point is, however, that we can infer from small-
sample long-run cycle properties.

In the first step, we estimate the cyclic behavior of the growth
rate of each individual variable, i.e., NDVI, ASW, and Tm. In
order to do so, we have to estimate an autoregressive model of
order p, i.e., AR(p), where p is determined by statistical tests.
In order to allow for the possible changes in the parameters, we
will employ a time-varying model AR(p) by applying a Kalman
filter to the chosen model as follows:

yt = α0,t +
9∑

i=1

αi,tyt−i + εt (1)

where yt is the NDVI growth rate, and

αi,t = αi,t−1 + ηi,t, for i = 0, . . . , 9 (2)

and εt, ηi,t ∼ i.i.d.(0, σ2
ε,ηi

), for i = 0, . . . , 9.
αs are the unknown coefficients to be estimated. We employ

a general to specific approach (starting with p = 9) to obtain
a final specification for (1), eliminating insignificant lags. The
maximum number of lags was determined by the Akaike infor-
mation criterion (AIC). For each regression, we applied a set of
diagnostic tests, as shown in Tables I–III, to confirm the final
specification found.

Using the aforementioned specification implies that we get a
set of parameter values for each point in time (here, a point
in time is one season). Hence, a particular parameter could
be significant for all points in time or at some periods but

TABLE I
REGRESSION RESULTS FOR dlNDVI

TABLE II
REGRESSION RESULTS BETWEEN dlNDVI AND TEMPERATURE

TABLE III
REGRESSION RESULTS BETWEEN dlNDVI AND ASW

not others, or it might never be significant. These parameter
changes are at the heart of this paper as they imply changes in
the lag structure and, hence, changes in the spectral results. If
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a parameter was significant for some periods but not others, it
was kept in the equation with a parameter value of zero for those
periods in which it was insignificant. This strategy minimized
the AIC and led to a parsimonious specification. Finally, we
tested the residuals in each regression for autocorrelation and
heteroscedasticity.

The final specification [see (1) and (2)] was then validated
using two different stability tests. The first is the fluctuation
test in Ploberger et al. [32], which detects discrete breaks at
any point in time in the coefficients of a (possibly dynamic)
regression. The second test is due to LaMotte and McWorther
[33] and is specifically designed to detect random parameter
variation of a specific unit root form (our specification). We
found that the random walk hypothesis for the parameters was
justified for each model (results available on request). We also
test for autocorrelation of the residuals. For this purpose, we use
the Ljung–Box test, which allows for autocorrelated residuals
of order p. In all our regressions, we could reject the hypothesis
of autocorrelation.

It should be noted that all our tests of significance and
significant differences in parameters are being conducted in the
time domain before transferring to the frequency domain. This
is because no statistical tests exist for calculated spectra (the
data transformations are nonlinear and involve complex arith-
metic). Stability tests are important here because our spectra
are sensitive to changes in the underlying parameters. However,
given the extensive stability and specification tests conducted,
we know there is no reason to switch to another model that fails
to pass those tests.

Once this regression is done, it gives us a time-varying AR(p)
model. From this AR(p) we can then calculate the short–time
Fourier transform as outlined below, and as originally suggested
by Gabor [34], in order to calculate the associated time-varying
spectrum.

B. Second Step: Spectrum Analysis

Having estimated the time-series model, we are now able
to analyze the power spectral density (PSD) function of the
growth rate of NDVI. The PSD function shows the strength of
the variations (energy) of a time series at each frequency of os-
cillation. In the diagram, it shows at which frequency variations
are strong/powerful and at which frequencies the variations are
weak (expressed in “energy”). The unit of measurement in the
PSD is energy (variance) per frequency, frequency band, or
cycle length.

In order to calculate the spectrum from an estimated repre-
sentation of (1), we use the fast Fourier transform (FFT). Using
the FFT, the time-varying spectrum of the growth rate series can
be calculated as follows [35]:

Pt(ω) =
σ2

∣∣∣∣1 +
9∑

i=1

αi,t exp(−jωi)

∣∣∣∣
2

t

(3)

where ω is the angular frequency, and j is a complex number.
The main advantage of this method is that, at any point in
time, a power spectrum can be instantaneously calculated from
the updated parameters of the model. Hence, we are able to

generate a power spectrum even if we have a short time series
and even if that time series contains structural breaks.

C. Third Step: Cross-Spectrum Analysis

In this paper, we also investigate the linkage between dif-
ferent NDVI-based vegetation growth cycles. In the frequency
domain, the natural tool to do that is the coherence.

Suppose now we are interested in the relationship between
two variables {yt} and {xt}, where {yt} is the grass growth
rate and {xt} is the temperature variability, for example.
We can then estimate an autoregressive distributed lag model
(ARDL(p, q) of the order (p, q), where p gives the number of
lags of the endogenous variable and q gives the number of lags
of the exogenous variable. Using the lag polynomial, we can
write the (ARDL(p, q) model in general terms as follows:

V (L)tyt = A(L)txt + ut, ut ∼ i.i.d.(0, σ2) (4)

where A(L)t and V (L)t are filters, and L is the lag operator
such that Lzt = zt−1. Notice that the lag structures A(L)t and
V (L)t are time varying. That means we need to use a state-
space model (we use the Kalman filter again) to estimate the
implied lag structure. That is

vi,t = vi,t−1 + εi,t, for i = 1, . . . , p and εi,t ∼
(
0, σ2

εi

)
ai,t = ai,t−1 + ηi,t, for i = 0, . . . , q and ηi,t ∼

(
0, σ2

ηi

)
. (5)

As before, we test for the random walk property using the
LaMotte–McWorther test. In addition, for structural breaks, we
employ the fluctuation test [32]. Finally, we use our previous
general-to-specific approach to estimate (4), starting off with
lag lengths of 9 and p = q, and dropping those lags that were
never significant (as we did before).

Having estimated the coefficients in (4), we can calculate the
gain, coherence, and cross spectra based on the time-varying
spectra just obtained. A direct estimation of the cross spectra
is a particular problem in the case of structural breaks since the
subsamples would typically be too small to allow the associated
spectra to be directly estimated.

For the cross-spectral analysis, we use the methods intro-
duced in Hughes Hallett and Richter [36]–[38]. The time-
varying cross spectrum fY X(ω)t using the FFT can be written as

fY X(ω)t = |T (ω)|t fXX(ω)t (6)

where T (ω)t is the transfer or filter function defined in (6) and
calculated as follows:

T (ω)t =

⎛
⎜⎜⎝

q∑
b=0

ab,t exp(−jωb)

1−
p∑

i=1

vi,t exp(−jωi)

⎞
⎟⎟⎠ , for t = 1, . . . , T. (7)

In (7), a’s and v’s are estimated using (4). The last term in (6),
i.e., fXX(ω)t, is the spectrum of the predetermined variable.
This spectrum may be time varying as well (see above). How-
ever, in this paper, we are interested in the coherence and in the
composition of the changes to that coherence over time. Thus,
we need to establish expressions for the coherence and gain
between xt and yt to show the degree of association and size
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of impact of xt on yt. The spectrum of any dependent variable
is defined as (e.g., [39])

fY Y (ω)t = |T (ω)t|2 fXX(ω)t + fvv(ω)t. (8)

From (3), we get the time-varying residual spectrum

fvv(ω)t =
fuu(ω)t∣∣∣∣1−

p∑
i=1

vi,t exp(−jωi)

∣∣∣∣
2 (9)

and the gain as A(ω)t = |T (ω)t|2 and is calculated as described
in (7).

Finally, given knowledge of fY Y (ω)t, |T (ω)t|2, and
fXX(ω)t, we can calculate the coherence at each frequency as
follows (as defined in Hughes Hallett and Richter [37], [40]:

K2
Y X,t =

1{
1 + fV V (ω)t/

(
|T (ω)t|2 fXX(ω)t

)} . (10)

The spectral coherence K2
XY is a statistic that can be used to

examine the relation between two signals or data sets. Values of
the coherence will always satisfy 0 ≤ K2

XY ≤ 1. For a strictly
proportional linear system with a single input xt and single
output yt, the coherence will be equal to one. If xt and yt are
completely unrelated, then the coherence will be zero. If K2

XY
is less than one but greater than zero, it is an indication that
output yt is being produced by input xt, as well as by other
inputs. Hence, the coherence is nothing else than the R2 in the
frequency domain. Since we are calculating the coherence using
the short-time Fourier transform, the coherence may be also
time varying. Thus, we have to extend K2

XY by a time index.
For the rest of this paper, we will write K2

XY,t.
For example, if the coherence has a value of 0.6 at a fre-

quency of 1.2, then it means that the temperature cycle at a
frequency of 1.2 determines an NDVI-based vegetation growth
cycle at that point in time by 60%. Similarly, a gain of 0.5 means
that half the variance in temperature cycle at that frequency is
transmitted to the NDVI.

IV. RESULTS

A. NDVI-Based Growth of Semi-Natural Grassland
and Climate

As mentioned before, instead of analyzing the level of NDVI,
we analyze its growth rate. Fig. 2 shows the annual growth rate
of NDVI. The aggregation of the ten-day data for the period
1999–2010 results in 48 seasons (12 years × 4 seasons/year).

Interestingly, the growth rate fluctuates between +15% and
−15% (see Fig. 2). Seasonal effects are visible but maybe not
as clear-cut as one would have expected. Although it does hold
that in winter the growth rate is usually negative, it is not always
positive in spring. Fig. 3 presents the growth rate of NDVI for
spring time only.

For the first half of the sample, there seems to be a two-
year cycle: starting in 1999, the growth rate is positive, it then
becomes negative, and in 2001, it is positive again. However,
one should bear in mind that a negative growth rate does not
imply that vegetation is not growing in spring. It merely states
that in 2000 vegetation, growth was 4% less than in 1999. In

Fig. 2. Annual growth rate of NDVI for the period 1999–2000.

Fig. 3. Relationship between spring NDVI, temperature, and ASW growth
rates for the period 1999–2010.

other words, a “good” year is followed by a “bad” year, which
is then followed by a “good” year again.

Importantly, from 2005 onward, the two-year cycle becomes
a four-year cycle. Hence, a “good” year is followed by another
good year, and this one is then followed by two “bad” years. It
is worth noting that, at this stage, we cannot be sure whether
this change of cycles implies a change of the temporal pattern
or an irregular interannual variation. It is merely an observation
without applying any statistical methods.

Remarkably, aggregation of the data reveals a symmetric
behavior of the natural NDVI spring cycles as opposed to
seasonal cycles. This refers to the amplitude (±8%) and the
clear cyclic behavior, which also recently changed.

In the next step, we compare the spring NDVI cycles with the
spring temperature cycles. A first indication of this link can be
seen if we combine both growth rates of NDVI and temperature
in one figure (see Fig. 3).

As in the case of the NDVI growth rate, there are two-
year cycles visible up to 2007, where the cycle potentially
becomes a four-year cycle. In difference to the NDVI growth
rate, temperature variability is bigger. The temperature varies
at some points in time (1999, 2005) by more than 15%.

The NDVI growth rate and the temperature growth rate be-
have in a cyclical way to each other until 2008. From 2008 on-
ward, the link is different. In particular, for the years following
2008, it looks as if temperature and NDVI behave anticyclically
with each other (see Fig. 3). Despite the obvious link of the
two variables, it is remarkable that the higher fluctuation of
temperature has only a reduced effect on the variability of the
NDVI growth, if at all.
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Fig. 4. Spectrum of the NDVI growth rate.

Last but not least, we also look at the growth rates of the
spring NDVI and the ASW (see Fig. 3). The variability is higher
than for the other two variables. The maximum is −50% in
2009. From 2001 to 2010, there is a two-year cycle visible,
only once interrupted in 2005. Moreover, there also seems to
be a nine-year cycle visible, namely, from 2001 to 2010.

Despite their different variability, both variables seem to
move in line until 2008. As with the temperature, the relation-
ship between NDVI and ASW should be positive.

In summary, these indicative results clearly show the exis-
tence of natural growth cycles. We discovered not only two-
year cycles but also longer term cycles. Moreover, we could
also see that the cycles are not constant. For the NDVI spring
series, in particular, the two-year cycles seem to have changed
to four-year cycles.

The variability of the three variables under consideration
differs and so does their relationships.

The indicative results imply several issues: We need to detect
which cycles are the most important one when we consider all
seasons. We need a method that takes into account that cycles
are not (necessarily) constant. Finally, we need a method that
allows us to test the changing relationship between NDVI, soil
water, and temperature.

For this reason, we decided to use a time–frequency approach
that can tackle all the preceding issues. In what follows, we will
shortly introduce time–frequency analysis before we apply it to
the three variables.

B. Single Spectra of the NDVI Growth Rate

Fig. 4 shows the time-varying spectrum of the NDVI. The
regression is based on all seasons rather than just the spring sea-
sons, as shown earlier in this paper. For this reason, we should
not necessarily expect the same cyclical behavior as in Fig. 3.

If the NDVI growth rate was a white noise process, then the
spectrum would be completely flat. As one can see in Fig. 4, this
is not the case. The spectrum shows peaks at the following fre-
quencies: 0.5, 1, 2.1, and 2.5. Of these, the most important cy-
cles are at the frequencies of 0.5 and 2.1. This corresponds to 12
and 3 seasons, respectively. The frequency of 1 corresponds to
6 seasons, and the frequency of 2.5 corresponds to 2.5 seasons.

Fig. 5. Graphical interpretation of NDVI growth cycles. There are two fluctu-
ations of equal strengths: one has a length of 3 years (solid line), and there is a
shorter one of 0.75 year (dashed line).

In other words, the vegetation growth rate mainly follows
12- and 3-season cycles. Fig. 5 highlights the result.

In Fig. 5, the 12-season cycle represents 3 years and is
the main cycle, whereas the 3-season cycle (or 0.75 years)
fluctuates around the main cycle.

Table I shows the regression results for the series dlNDVI.
This AR(8) model is the basis for the spectrum shown in
Fig. 5. As one can see, the regression is robust as there is no
autocorrelation. For the chosen model, this was, in fact, the
lowest AIC value we could achieve. R2 is relatively high with
99%, but there is also unexplained variance. Although the first
four lags are statistically not significant at the end of the sample,
they were at other sample points in time, which is why we
kept them in the regression (see Table I). Hence, this table only
shows the final regression for the last observation for reason of
restricted space.

C. Cross-Spectra and Simulation Results

In the next step, we estimated the dependence of the NDVI
growth rate on temperature and ASW rates according to (4) and
(5). We used a bivariable approach in order to avoid potential
multicollinearity. In other words, in the first regression, we
estimated the dependence of the growth rate of NDVI on the
growth rate of temperature, and in the second step, we estimated
the dependence of the growth rate of NDVI on the growth rate
of ASW. We start off with the temperature results.

Table II shows the regression results. As in the previous
section, we only show the final observation results. All other
results are available on request. The resulting coherence is
shown in Fig. 6.

Fig. 6 shows that there are two cycles at which the link be-
tween the growth rate of NDVI and the temperature is biggest,
namely, at frequencies of 0.8 and 2.4. These frequencies are
very close to the original frequencies in Fig. 5. They correspond
to cycles of 7.8 seasons (or 2 years) and 2.6 seasons (or
three quarters of a year). The coherence close to these two
cycles is very high as well. Thus, we can conclude that the
temperature explains a lot of the spectrum apart from the short
term (frequency of “π”), the long-run growth (frequency of
“0”), and the cycle at a frequency of 1.6 (or 4 seasons, i.e.,
1 year).

In order to analyze the NDVI-based growth rate sensitivity of
the model, a number of simulations about changes in tempera-
ture and ASW were computed.

The regression results also allow us to look at the impact of
a 10% change of the temperature on NDVI if everything else
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Fig. 6. Coherence between the growth rate of NDVI and the temperature.

Fig. 7. Effects on the NDVI growth rate of a 10% change in the temperature
and ASW growth rates.

remains constant. Fig. 7 assumes a 10% one-off increase in
temperature and ASW.

Fig. 7 shows that most of the shock has been absorbed after
10 quarters, where the system returns to the steady state. From
a time-series point of view, this indicates a stationary process,
i.e., after a shock, the system returns to a steady-state value.
It is worth noting that stationarity has not been imposed by the
regression. It is the outcome of the regression, which could have
been nonstationary as well.

It is interesting to note that the dynamics that are caused
by a one-off increase in temperature by 10% imply positive
and negative NDVI growth rates. The immediate effect of the
increase in temperature is a 1% increase in the NDVI, which
is followed by a 0.5% increase 4 seasons later. This increase
is then completely removed in the following season, where the
NDVI growth is reduced by 1.5%. These two-year cycles are in
line with our observations made earlier in this paper. It is also
important to note that the reaction of the NDVI growth rate to
a change in temperature is underproportional to the change in
temperature (about 10%).

Finally, we also analyze the impact of ASW on vegetation.
We ask what NDVI growth cycles are determined by ASW.
Fig. 8 gives the answer.

The coherence shown in Fig. 8 is based on the regression
results in Table III. The coherence shows that the growth rate

Fig. 8. Coherence between the growth rate of NDVI and the growth rate
of ASW.

of the absorbed soil water explains 95% of the NDVI cycle
at a frequency of 0.7, i.e., 9 seasons or 4.5 years. The second
cycle the growth rate of ASW is explaining is at a frequency
of 2.4 or 2.6 seasons. ASW explains about 50% of this cycle.
This cycle closely corresponds to the cycle shown in Fig. 7,
the spectrum of the NDVI growth rate. There is also coherence
at a cycle of 1.3 of 0.5 years, but this coherence diminishes
over time. The two main coherences stay important throughout
the sample, although the long-run cycle coherence has slightly
increased toward the end of the sample.

Overall, the mass of the spectrum, which the growth rate
of ASW is explaining, is less than the temperature. Given an
R2 of 0.95, this highlights that time-series results alone may
sometimes be misleading: One may not capture the crucial
cycles if one only takes into account time-series properties. This
is not to say that time-series results are wrong; one just has to
be careful on interpreting them.

Like in the case of the temperature, we can also investigate
the effects of a 10% increase in the ASW (see Fig. 7).

In Fig. 7, we can see that a 10% change in the growth rate
of ASW leads to a 0.4% change in the growth rate of NDVI.
Like in the case of the temperature, most adjustments have
been finished after 10 seasons. Given that the behavior of the
system is very similar to the temperature shock, this supports
the hypothesis that a particular area can only support a certain
vegetation level. From this point of view, it is certainly no
coincidence that, like in the case of temperature, after 5 seasons,
there is a negative effect on NDVI by about 0.6%, which is
balanced four seasons later. Overall, the impact of a 10% on the
NDVI growth rate is close to zero after the system returns to the
steady state.

V. DISCUSSION

The increased importance of satellite data in support of re-
search in impact of climate on the vegetation dynamics leads to
a strong need for a more comprehensive understanding of time-
series changes. We apply a time–frequency approach, which
not only gives us the cyclical properties but also gives how
they changed over time. This alternative approach was partially
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presented in previous work of Cunha and Richter [41] and
Hughes Hallett and Richter [37], [40].

We achieved all of the results by estimating a dynamic time-
series model. The time-series model is characterized by its lag
polynomials and the time-varying weights. The lag polynomial
allows us to describe the dynamic properties of the estimated
relationships. As the lag polynomial is time varying itself,
the Fourier transform becomes time varying. As a result, we
have a time-varying spectrum and a time-varying coherence.
In traditional frequency-domain analysis, a time series has to
be stationary for the frequency estimators to be unbiased. By
using a time-varying estimator, the series does not have to be
stationary anymore as long as the nonstationarity was caused by
structural breaks of which the Kalman filter is able to take care
of. Therefore, with this approach, we gain more insights in the
dynamic properties of a system than with the more “common”
approaches (see Section I).

The results of the satellite-based grassland growth rate
clearly show the existence of not only two-year spring cycles
but also longer term cycles (see Figs. 2 and 3). Moreover, these
cycles are not constant. In particular, the two-year cycles have
changed to four-year cycles. However, if we look at the cyclical
behavior of all seasons, a change of the cyclical behavior could
not be observed (see Fig. 4). As a result, it seems that individual
seasons may undergo cyclical changes that are offset by other
seasons. This area therefore needs further research.

Our results also stated that temperature and ASW are im-
portant drivers of vegetation growth rate cycles. The variability
of the three variables under consideration differs and so does
their relationships. However, the link between satellite-derived
vegetation growth rate and temperature is positive, as well as
the link between vegetation growth rate and ASW.

We can also recognize a relative increase in importance of
soil water at constant importance of temperature (see Fig. 7).
Despite soil water explaining about 50% of short-term cycles,
temperature still explains about 90% of those cycles. Because
evapotranspiration rates are positively related to temperature,
increased temperatures are likely to be associated with in-
creased rates of soil water loss. Therefore, if temperature warms
without a compensating increase in precipitation, plants may
become increasingly water stressed, which could lead to de-
creases in growth rate where the irrigation was not possible.

The individual shocks of the temperature and ASW to the
system have similar dynamic effects/consequences (see Fig. 7).

The question is what drives this behavior? Why is the growth
rate of the NDVI stationary? It seems that a particular area
can only support a certain vegetation level. A shock to this
system can therefore only have a temporary effect, but not
a permanent one, unless all other determinants of vegetation
growth will support an increased vegetation, which in this
scenario/regression they do not do (all other variables stayed
the same). As a result, an increase in vegetation has to be offset
later. The estimation results show that this offsetting starts a
year later. This was not imposed in the regression and is purely
a regression result. It also indicates that a shock to the system
causes a two-year cycle: in the first year, vegetation increases;
in the second year, it decreases.

The perennial nature of grasslands and the extensive man-
agement of soil nutrient cycles (no fertilizers added) means that
soil organic matter (SOM) is a main source of soil nutrients,

and thus, carry effects from year to year should be expected.
Our study also shows that grass growth rates depend both on the
immediate impact of the spring temperature and on the spring
temperature from the previous year. As such, we hypothesize
that the SOM dynamics and nitrogen cycle are intimately
coupled, and temperature in mountain meadows colimits this
process so that it extends for several years.

The results support the hypothesis that vegetation dynamics
are physiologically dependent in several ways on the previous
years. Therefore, a time-varying spectral approach, capable of
separating out changes at different cyclical frequencies and
points in time with respect to grassland growth, will need
to provide the flexibility to capture these features and the
important ecophysiological information contained therein.

VI. CONCLUSION

We have modeled cyclical satellite-based grassland growth
rate with a time–frequency approach. It provides the cyclical
properties of the satellite-based growth rate and what cycles, in
particular, are explained by the climate variables.

The cyclical analysis revealed that there are more than just
seasonal cycles working for the NDVI-based vegetation growth.
We could show that the cyclical properties of NDVI are not
constant over time.

While this time–frequency approach of satellite-based veg-
etation growth cycles can only give indications of causal re-
lationships on potential climatic growth impact, they provide
the catalyst for causal hypothesis generation, namely, for the
plant–soil interactions, which could be tested where other data
sources are available. The quantification of the relative impact
of these myriad factors on the grassland dynamics is still a
huge challenge for developing strategies for the sustainable use
of grassland resources in northeast Portugal, as well as other
extensively managed grassland systems worldwide.
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A Time–Frequency Analysis on the Impact of
Climate Variability on Semi-Natural

Mountain Meadows
Mario Cunha and Christian Richter

Abstract—This paper analyzes the impact of climate dynamics
on vegetation growth for a rural mountainous region in northeast-
ern Portugal. As a measure of vegetation growth, we use the nor-
malized difference vegetation index (NDVI), which is based on the
ten-day synthesis data set (S10) from Satellite Pour l’Observation
de la Terre (SPOT-VEGETATION) imagery from 1998 to 2011.
We test whether the dynamic growth pattern of the NDVI has
changed due to climate variability, and we test the relationship of
NDVI with temperature and available soil water (ASW). In order
to do so, we use a time–frequency approach based on Kalman filter
regressions in the time domain. The advantage of our approach is
that it can be used even in the case where the sample size is rela-
tively small. By estimating the important relationships in the time
domain first and transferring them into the frequency domain, we
are still able to derive a complete spectrum over all frequencies. In
our example, we find a change of the cyclical pattern for the spring
season and different changes if we take into account all seasons.
In other words, we can distinguish between deterministic changes
of the vegetation cycles and stochastic changes that only occur
randomly. Deterministic changes imply that the data-generating
process has changed (such as climate), whereas stochastic changes
imply only temporary changes. We find that individual seasons
undergo cyclical changes that are different from other seasons.
Moreover, our analysis shows that temperature and ASW are the
main drivers of vegetation growth. We can also recognize a shift of
the relative importance away from temperature to soil water.

Index Terms—Climate variability, Kalman filter, mountain
meadows, normalized difference vegetation index (NDVI), time-
varying spectra, vegetation dynamics.

I. INTRODUCTION

T IME–frequency analysis is used in engineering for quite
some time [1]. Time–frequency analysis investigates cy-

cles whose properties may change over time. The inspiration for
this paper is therefore to investigate whether climate change has
a (changing) impact on natural growth cycles. Climate changes
are particularly serious for mountainous regions because they
are among the most fragile environments in the world [2], [3]
and are recognized as the key supporting ecosystem service
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related to natural resources conservation, as defined by the
Millennium Ecosystem Assessment [4]. Therefore, if climate
change has an impact on growth cycles, it should be mea-
surable in a sensitive system such as mountainous regions.
As an example, we study the mountainous grassland system
in northeast Portugal. The traditional landscape of the moun-
tainous region of northeastern Portugal is characterized by the
ancestral agropastoral or grassland system extensively used
for hay and grazing. The increased water constrains due to
sectorial competition for water uses and the foreseeable climate
warming endangers the sustainability of these lameiros. Hence,
our results may be also used for conservation strategies to
preserve these meadows.

Remote sensing of vegetation dynamics at regional and field
scales is often pursued using high-temporal-resolution sensors
[advanced very high resolution radiometer, medium resolution
imaging spectrometer, moderate resolution imaging spectrora-
diometer, and Satellite Pour l’Observation de la Terre (SPOT-
VEGETATION)]. The data received from these sensors provide
large area coverage with high frequency, limited only by the
compositing period needed to remove the effects of clouds and
cloud shadow [5]–[7]. Results from previous works show that
the normalized difference vegetation index (NDVI) profile pro-
vided by the VEGETATION sensor, on board the most recent
SPOT—SPOT_VGT—fits well the characteristics of vegetation
growth dynamics and associated management practices in the
semi-natural meadows of the mountainous region of northeast
Portugal [8]–[10]. Hence, in this paper, we use the NDVI time
series based on SPOT_VGT sensor imagery to infer about the
impact of climate on these semi-natural meadows and to model
vegetation dynamics.

Several approaches based on temporal trajectory analysis
have been proposed for smoothing and detecting temporal
changes in vegetation dynamics such as change vector analysis
[11], Best Index Slope Extraction [12], moving averages [13],
double logistic model [14], asymmetric Gaussian [15], sliding
windows [16], wavelet decomposition [17], harmonic series and
higher order splines [18], [19], Breaks For additive Seasonal
and Trend [20], Whittaker smoother [21], changing-weight fil-
ter [22], discrete Fourier transform [23], and frequency analysis
[24]. Many of these techniques need complementary compli-
cate and tedious tests (e.g., derivatives, specific threshold, or
change trajectories) to extract the time-series changes. Reviews
of the merits and limitations of these techniques can be found
in [18], [21], [22], and [24]–[26]. According to this literature,
stationarity assumptions, data quality, sensor noise, and compli-
cations of the methods can make it challenging to quantify the
separate sources of information that influence the signal and
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Fig. 1. Location of the study area (Montalegre) in northeast Portugal and the
test site located in PRR, showing the meadow coverage in Montalegre (in gray).
The PRR (2 × 2 pixels) coordinates (Datum WGS84) of the upper left site
corner are 7◦55′04 W and 41◦48′32′′ N. Details of meadow coverage per
pixel in the test site are also given as percentages.

to determine what constitutes a significant change. Moreover,
the frequently used time-series analysis of satellite derived veg-
etation growth data (e.g., [8], [27]) are not capable to integrate
and quantify the seasonal and interannual impacts of climate on
vegetation dynamics.

It is well known that vegetation dynamics depend on the cli-
mate. However, an open question is how sensitive are seasonal
and interannual cycles to climate variability. Therefore, a time-
varying spectral approach, which is capable of separating out
changes at different cyclical frequencies (including trend) in the
grassland growth, is needed to provide the flexibility to capture
these features.

We identify the importance of variability of climate for cycli-
cal properties in the satellite-based grassland growth rate and
consider how the impacts of these events may be predicted. The
following section describes the test site and the methods used to
derive the data. Section III briefly explains the statistical meth-
ods used in this paper. Section IV gives the results. A discussion
is provided in Section V, and Section VI concludes this paper.

II. MATERIALS AND METHODS

A. Study Area

The region of analysis covers a large area of the mountainous
region of Montalegre, northeast Portugal (see Fig. 1).

The large pixel size of SPOT_VGT images (1 km) deter-
mines the criteria for selection of the test site, which have to
include large contiguous areas with lameiros fields. Therefore,
one suitable test site was selected in Montalegre municipality,
location of Paredes do Rio (PRR). The test sites have 2 × 2
pixels (of 1 × 1 km), in a compact group of contiguous pixels,
all with 65% or more lameiros coverage. The average lameiros
coverage occupancy of the PRR test site is 77.8% (see Fig. 1).

These meadows are conveniently located in areas of high
water availability, loamy soils, and over 700–800 m high.
In this region, the Atlantic climate favors high precipitation
occurrence (1531 mm/year), mainly occurring from autumn
to spring, autumn–winter temperatures lower than 12 ◦C. and
mean monthly temperatures ranging from 3.5 ◦C to 17.2 ◦C.

B. Meteorological Data and Soil Water Balance

We use meteorological observations for the years 1998 to
2011 from the weather station of Montalegre (41◦49′ N :
7◦47′ W: 1005 m above sea level) located in the proximity of the
test site. The meteorological data consist of daily observations
of temperature (maximum and minimum) and precipitation.
These general meteorological parameters are used to derive
other variables: mean temperature (Tm, ◦C), potential evap-
otranspiration (ETP, mm), and other variables related to soil
water balance.

The Thornthwaite–Matter (T–M) [28] mass conservation
climatic water budget model is then performed to simulate ten-
day soil water balance. Dekadal ETP is estimated using the
empirical Thornthwaite equation that relies on mean temper-
ature and average day length (in hours per day). The T–M
model tracks the soil water through time by balancing the inputs
(precipitation) and outputs of water (ETP). The soil operates as
a “bucket” with a user-defined field available water capacity:
100 mm in this study. The ability to remove soil moisture
has been set to decrease exponentially with the decreasing
soil-moisture content. The model output includes available soil
water (ASW) that ranges from 0 to 100 mm. This methodology
was chosen because of its simplicity and small quantity of input
meteorological data needed.

C. Satellite Data

In this paper, we use the satellite imagery provided by SPOT_
VGT for the period 1998 (April) to 2011 (March) to examine
the dynamic patterns of grassland grow inferred by the NDVI.
This satellite has an intermediate spatial resolution (1 km), and
the images are corrected for radiometric, geometric, and at-
mospheric effects. Ten-day composite VEGETATION products
(S10) are obtained from the compilation of daily data. In the
SPOT_VGT S10 composites, the resulting surface reflectance
value for each pixel corresponds to the date with the maximum
NDVI reflectance at the top of the atmosphere for that pixel [29].

The pixels of the test site (2 × 2 pixels) were averaged to
create the NDVI value for each time period. This was done
to prevent misregistration and errors from other sources; these
errors could contaminate the temporal profiles.

The NDVI is a variable that is truncated (it can only adopt
values between −1 and 1). In a truncated sample, information
on the regressors is available only if the regressand is actually
observed. In our example, we cannot observe values of the
NDVI below −1 and above 1 (may be seen as a truncated dis-
tribution), which results in a nonnomal distribution [30]. This
implies that either one has to adopt an estimation technique that
takes truncated variables into account or we have to transform
NDVI data into a nontruncated variable. For this reason, we
transformed NDVI into a growth rate. This growth rate is not
truncated anymore; thus, common estimation techniques can
be used. Given our data set, we can construct different growth
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rates. We have tested these different growth rates such as ten-
day growth rates and monthly growth rates, but we found that
the model using the annual growth rate was statistically superior
to all other models in the sense that it minimized the Akaike and
Schwartz information criteria [31]. We calculated the annual
growth rate in the following way: we first calculated for all
observations of NDVI the annual growth rate. In accordance
with the seasonal calendar, we then calculated the average
annual growth rate for a particular season. Therefore, in this
paper, we work with average data on seasonal level, and we use
annual growth rates rather than level values.

To make the approach consistent, we also use the same
growth rates for temperature and soil water. Hence, in all
regressions to come, all variables refer to the same time period
and have the same dimension, namely, percent.

III. TIME–FREQUENCY ANALYSIS OF THE NDVI

A. First Step: Estimation in the Time Domain

In contrast to “common” frequency approaches, we do not
estimate the spectrum directly. The reason is that this usually re-
quires a large number of observations. If one takes into account
nonstationary spectra as well, then the number of necessary
observations increases even more. By estimating a time-series
model, first, we avoid this problem. Moreover, an important
advantage of our approach is that we can calculate a spectrum
showing all frequencies (even the long ones) with a relatively
small sample size. We can further test whether the properties of
the long cycles may have changed over the sample period. Thus,
our conclusions concerning the long-run (and short-run) cycle
properties are only valid for the sample under consideration and
may change afterward or have been different before our sample.
The crucial point is, however, that we can infer from small-
sample long-run cycle properties.

In the first step, we estimate the cyclic behavior of the growth
rate of each individual variable, i.e., NDVI, ASW, and Tm. In
order to do so, we have to estimate an autoregressive model of
order p, i.e., AR(p), where p is determined by statistical tests.
In order to allow for the possible changes in the parameters, we
will employ a time-varying model AR(p) by applying a Kalman
filter to the chosen model as follows:

yt = α0,t +
9∑

i=1

αi,tyt−i + εt (1)

where yt is the NDVI growth rate, and

αi,t = αi,t−1 + ηi,t, for i = 0, . . . , 9 (2)

and εt, ηi,t ∼ i.i.d.(0, σ2
ε,ηi

), for i = 0, . . . , 9.
αs are the unknown coefficients to be estimated. We employ

a general to specific approach (starting with p = 9) to obtain
a final specification for (1), eliminating insignificant lags. The
maximum number of lags was determined by the Akaike infor-
mation criterion (AIC). For each regression, we applied a set of
diagnostic tests, as shown in Tables I–III, to confirm the final
specification found.

Using the aforementioned specification implies that we get a
set of parameter values for each point in time (here, a point
in time is one season). Hence, a particular parameter could
be significant for all points in time or at some periods but

TABLE I
REGRESSION RESULTS FOR dlNDVI

TABLE II
REGRESSION RESULTS BETWEEN dlNDVI AND TEMPERATURE

TABLE III
REGRESSION RESULTS BETWEEN dlNDVI AND ASW

not others, or it might never be significant. These parameter
changes are at the heart of this paper as they imply changes in
the lag structure and, hence, changes in the spectral results. If
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a parameter was significant for some periods but not others, it
was kept in the equation with a parameter value of zero for those
periods in which it was insignificant. This strategy minimized
the AIC and led to a parsimonious specification. Finally, we
tested the residuals in each regression for autocorrelation and
heteroscedasticity.

The final specification [see (1) and (2)] was then validated
using two different stability tests. The first is the fluctuation
test in Ploberger et al. [32], which detects discrete breaks at
any point in time in the coefficients of a (possibly dynamic)
regression. The second test is due to LaMotte and McWorther
[33] and is specifically designed to detect random parameter
variation of a specific unit root form (our specification). We
found that the random walk hypothesis for the parameters was
justified for each model (results available on request). We also
test for autocorrelation of the residuals. For this purpose, we use
the Ljung–Box test, which allows for autocorrelated residuals
of order p. In all our regressions, we could reject the hypothesis
of autocorrelation.

It should be noted that all our tests of significance and
significant differences in parameters are being conducted in the
time domain before transferring to the frequency domain. This
is because no statistical tests exist for calculated spectra (the
data transformations are nonlinear and involve complex arith-
metic). Stability tests are important here because our spectra
are sensitive to changes in the underlying parameters. However,
given the extensive stability and specification tests conducted,
we know there is no reason to switch to another model that fails
to pass those tests.

Once this regression is done, it gives us a time-varying AR(p)
model. From this AR(p) we can then calculate the short–time
Fourier transform as outlined below, and as originally suggested
by Gabor [34], in order to calculate the associated time-varying
spectrum.

B. Second Step: Spectrum Analysis

Having estimated the time-series model, we are now able
to analyze the power spectral density (PSD) function of the
growth rate of NDVI. The PSD function shows the strength of
the variations (energy) of a time series at each frequency of os-
cillation. In the diagram, it shows at which frequency variations
are strong/powerful and at which frequencies the variations are
weak (expressed in “energy”). The unit of measurement in the
PSD is energy (variance) per frequency, frequency band, or
cycle length.

In order to calculate the spectrum from an estimated repre-
sentation of (1), we use the fast Fourier transform (FFT). Using
the FFT, the time-varying spectrum of the growth rate series can
be calculated as follows [35]:

Pt(ω) =
σ2

∣∣∣∣1 +
9∑

i=1

αi,t exp(−jωi)

∣∣∣∣
2

t

(3)

where ω is the angular frequency, and j is a complex number.
The main advantage of this method is that, at any point in
time, a power spectrum can be instantaneously calculated from
the updated parameters of the model. Hence, we are able to

generate a power spectrum even if we have a short time series
and even if that time series contains structural breaks.

C. Third Step: Cross-Spectrum Analysis

In this paper, we also investigate the linkage between dif-
ferent NDVI-based vegetation growth cycles. In the frequency
domain, the natural tool to do that is the coherence.

Suppose now we are interested in the relationship between
two variables {yt} and {xt}, where {yt} is the grass growth
rate and {xt} is the temperature variability, for example.
We can then estimate an autoregressive distributed lag model
(ARDL(p, q) of the order (p, q), where p gives the number of
lags of the endogenous variable and q gives the number of lags
of the exogenous variable. Using the lag polynomial, we can
write the (ARDL(p, q) model in general terms as follows:

V (L)tyt = A(L)txt + ut, ut ∼ i.i.d.(0, σ2) (4)

where A(L)t and V (L)t are filters, and L is the lag operator
such that Lzt = zt−1. Notice that the lag structures A(L)t and
V (L)t are time varying. That means we need to use a state-
space model (we use the Kalman filter again) to estimate the
implied lag structure. That is

vi,t = vi,t−1 + εi,t, for i = 1, . . . , p and εi,t ∼
(
0, σ2

εi

)
ai,t = ai,t−1 + ηi,t, for i = 0, . . . , q and ηi,t ∼

(
0, σ2

ηi

)
. (5)

As before, we test for the random walk property using the
LaMotte–McWorther test. In addition, for structural breaks, we
employ the fluctuation test [32]. Finally, we use our previous
general-to-specific approach to estimate (4), starting off with
lag lengths of 9 and p = q, and dropping those lags that were
never significant (as we did before).

Having estimated the coefficients in (4), we can calculate the
gain, coherence, and cross spectra based on the time-varying
spectra just obtained. A direct estimation of the cross spectra
is a particular problem in the case of structural breaks since the
subsamples would typically be too small to allow the associated
spectra to be directly estimated.

For the cross-spectral analysis, we use the methods intro-
duced in Hughes Hallett and Richter [36]–[38]. The time-
varying cross spectrum fY X(ω)t using the FFT can be written as

fY X(ω)t = |T (ω)|t fXX(ω)t (6)

where T (ω)t is the transfer or filter function defined in (6) and
calculated as follows:

T (ω)t =

⎛
⎜⎜⎝

q∑
b=0

ab,t exp(−jωb)

1−
p∑

i=1

vi,t exp(−jωi)

⎞
⎟⎟⎠ , for t = 1, . . . , T. (7)

In (7), a’s and v’s are estimated using (4). The last term in (6),
i.e., fXX(ω)t, is the spectrum of the predetermined variable.
This spectrum may be time varying as well (see above). How-
ever, in this paper, we are interested in the coherence and in the
composition of the changes to that coherence over time. Thus,
we need to establish expressions for the coherence and gain
between xt and yt to show the degree of association and size
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of impact of xt on yt. The spectrum of any dependent variable
is defined as (e.g., [39])

fY Y (ω)t = |T (ω)t|2 fXX(ω)t + fvv(ω)t. (8)

From (3), we get the time-varying residual spectrum

fvv(ω)t =
fuu(ω)t∣∣∣∣1−

p∑
i=1

vi,t exp(−jωi)

∣∣∣∣
2 (9)

and the gain as A(ω)t = |T (ω)t|2 and is calculated as described
in (7).

Finally, given knowledge of fY Y (ω)t, |T (ω)t|2, and
fXX(ω)t, we can calculate the coherence at each frequency as
follows (as defined in Hughes Hallett and Richter [37], [40]:

K2
Y X,t =

1{
1 + fV V (ω)t/

(
|T (ω)t|2 fXX(ω)t

)} . (10)

The spectral coherence K2
XY is a statistic that can be used to

examine the relation between two signals or data sets. Values of
the coherence will always satisfy 0 ≤ K2

XY ≤ 1. For a strictly
proportional linear system with a single input xt and single
output yt, the coherence will be equal to one. If xt and yt are
completely unrelated, then the coherence will be zero. If K2

XY
is less than one but greater than zero, it is an indication that
output yt is being produced by input xt, as well as by other
inputs. Hence, the coherence is nothing else than the R2 in the
frequency domain. Since we are calculating the coherence using
the short-time Fourier transform, the coherence may be also
time varying. Thus, we have to extend K2

XY by a time index.
For the rest of this paper, we will write K2

XY,t.
For example, if the coherence has a value of 0.6 at a fre-

quency of 1.2, then it means that the temperature cycle at a
frequency of 1.2 determines an NDVI-based vegetation growth
cycle at that point in time by 60%. Similarly, a gain of 0.5 means
that half the variance in temperature cycle at that frequency is
transmitted to the NDVI.

IV. RESULTS

A. NDVI-Based Growth of Semi-Natural Grassland
and Climate

As mentioned before, instead of analyzing the level of NDVI,
we analyze its growth rate. Fig. 2 shows the annual growth rate
of NDVI. The aggregation of the ten-day data for the period
1999–2010 results in 48 seasons (12 years × 4 seasons/year).

Interestingly, the growth rate fluctuates between +15% and
−15% (see Fig. 2). Seasonal effects are visible but maybe not
as clear-cut as one would have expected. Although it does hold
that in winter the growth rate is usually negative, it is not always
positive in spring. Fig. 3 presents the growth rate of NDVI for
spring time only.

For the first half of the sample, there seems to be a two-
year cycle: starting in 1999, the growth rate is positive, it then
becomes negative, and in 2001, it is positive again. However,
one should bear in mind that a negative growth rate does not
imply that vegetation is not growing in spring. It merely states
that in 2000 vegetation, growth was 4% less than in 1999. In

Fig. 2. Annual growth rate of NDVI for the period 1999–2000.

Fig. 3. Relationship between spring NDVI, temperature, and ASW growth
rates for the period 1999–2010.

other words, a “good” year is followed by a “bad” year, which
is then followed by a “good” year again.

Importantly, from 2005 onward, the two-year cycle becomes
a four-year cycle. Hence, a “good” year is followed by another
good year, and this one is then followed by two “bad” years. It
is worth noting that, at this stage, we cannot be sure whether
this change of cycles implies a change of the temporal pattern
or an irregular interannual variation. It is merely an observation
without applying any statistical methods.

Remarkably, aggregation of the data reveals a symmetric
behavior of the natural NDVI spring cycles as opposed to
seasonal cycles. This refers to the amplitude (±8%) and the
clear cyclic behavior, which also recently changed.

In the next step, we compare the spring NDVI cycles with the
spring temperature cycles. A first indication of this link can be
seen if we combine both growth rates of NDVI and temperature
in one figure (see Fig. 3).

As in the case of the NDVI growth rate, there are two-
year cycles visible up to 2007, where the cycle potentially
becomes a four-year cycle. In difference to the NDVI growth
rate, temperature variability is bigger. The temperature varies
at some points in time (1999, 2005) by more than 15%.

The NDVI growth rate and the temperature growth rate be-
have in a cyclical way to each other until 2008. From 2008 on-
ward, the link is different. In particular, for the years following
2008, it looks as if temperature and NDVI behave anticyclically
with each other (see Fig. 3). Despite the obvious link of the
two variables, it is remarkable that the higher fluctuation of
temperature has only a reduced effect on the variability of the
NDVI growth, if at all.
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Fig. 4. Spectrum of the NDVI growth rate.

Last but not least, we also look at the growth rates of the
spring NDVI and the ASW (see Fig. 3). The variability is higher
than for the other two variables. The maximum is −50% in
2009. From 2001 to 2010, there is a two-year cycle visible,
only once interrupted in 2005. Moreover, there also seems to
be a nine-year cycle visible, namely, from 2001 to 2010.

Despite their different variability, both variables seem to
move in line until 2008. As with the temperature, the relation-
ship between NDVI and ASW should be positive.

In summary, these indicative results clearly show the exis-
tence of natural growth cycles. We discovered not only two-
year cycles but also longer term cycles. Moreover, we could
also see that the cycles are not constant. For the NDVI spring
series, in particular, the two-year cycles seem to have changed
to four-year cycles.

The variability of the three variables under consideration
differs and so does their relationships.

The indicative results imply several issues: We need to detect
which cycles are the most important one when we consider all
seasons. We need a method that takes into account that cycles
are not (necessarily) constant. Finally, we need a method that
allows us to test the changing relationship between NDVI, soil
water, and temperature.

For this reason, we decided to use a time–frequency approach
that can tackle all the preceding issues. In what follows, we will
shortly introduce time–frequency analysis before we apply it to
the three variables.

B. Single Spectra of the NDVI Growth Rate

Fig. 4 shows the time-varying spectrum of the NDVI. The
regression is based on all seasons rather than just the spring sea-
sons, as shown earlier in this paper. For this reason, we should
not necessarily expect the same cyclical behavior as in Fig. 3.

If the NDVI growth rate was a white noise process, then the
spectrum would be completely flat. As one can see in Fig. 4, this
is not the case. The spectrum shows peaks at the following fre-
quencies: 0.5, 1, 2.1, and 2.5. Of these, the most important cy-
cles are at the frequencies of 0.5 and 2.1. This corresponds to 12
and 3 seasons, respectively. The frequency of 1 corresponds to
6 seasons, and the frequency of 2.5 corresponds to 2.5 seasons.

Fig. 5. Graphical interpretation of NDVI growth cycles. There are two fluctu-
ations of equal strengths: one has a length of 3 years (solid line), and there is a
shorter one of 0.75 year (dashed line).

In other words, the vegetation growth rate mainly follows
12- and 3-season cycles. Fig. 5 highlights the result.

In Fig. 5, the 12-season cycle represents 3 years and is
the main cycle, whereas the 3-season cycle (or 0.75 years)
fluctuates around the main cycle.

Table I shows the regression results for the series dlNDVI.
This AR(8) model is the basis for the spectrum shown in
Fig. 5. As one can see, the regression is robust as there is no
autocorrelation. For the chosen model, this was, in fact, the
lowest AIC value we could achieve. R2 is relatively high with
99%, but there is also unexplained variance. Although the first
four lags are statistically not significant at the end of the sample,
they were at other sample points in time, which is why we
kept them in the regression (see Table I). Hence, this table only
shows the final regression for the last observation for reason of
restricted space.

C. Cross-Spectra and Simulation Results

In the next step, we estimated the dependence of the NDVI
growth rate on temperature and ASW rates according to (4) and
(5). We used a bivariable approach in order to avoid potential
multicollinearity. In other words, in the first regression, we
estimated the dependence of the growth rate of NDVI on the
growth rate of temperature, and in the second step, we estimated
the dependence of the growth rate of NDVI on the growth rate
of ASW. We start off with the temperature results.

Table II shows the regression results. As in the previous
section, we only show the final observation results. All other
results are available on request. The resulting coherence is
shown in Fig. 6.

Fig. 6 shows that there are two cycles at which the link be-
tween the growth rate of NDVI and the temperature is biggest,
namely, at frequencies of 0.8 and 2.4. These frequencies are
very close to the original frequencies in Fig. 5. They correspond
to cycles of 7.8 seasons (or 2 years) and 2.6 seasons (or
three quarters of a year). The coherence close to these two
cycles is very high as well. Thus, we can conclude that the
temperature explains a lot of the spectrum apart from the short
term (frequency of “π”), the long-run growth (frequency of
“0”), and the cycle at a frequency of 1.6 (or 4 seasons, i.e.,
1 year).

In order to analyze the NDVI-based growth rate sensitivity of
the model, a number of simulations about changes in tempera-
ture and ASW were computed.

The regression results also allow us to look at the impact of
a 10% change of the temperature on NDVI if everything else
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Fig. 6. Coherence between the growth rate of NDVI and the temperature.

Fig. 7. Effects on the NDVI growth rate of a 10% change in the temperature
and ASW growth rates.

remains constant. Fig. 7 assumes a 10% one-off increase in
temperature and ASW.

Fig. 7 shows that most of the shock has been absorbed after
10 quarters, where the system returns to the steady state. From
a time-series point of view, this indicates a stationary process,
i.e., after a shock, the system returns to a steady-state value.
It is worth noting that stationarity has not been imposed by the
regression. It is the outcome of the regression, which could have
been nonstationary as well.

It is interesting to note that the dynamics that are caused
by a one-off increase in temperature by 10% imply positive
and negative NDVI growth rates. The immediate effect of the
increase in temperature is a 1% increase in the NDVI, which
is followed by a 0.5% increase 4 seasons later. This increase
is then completely removed in the following season, where the
NDVI growth is reduced by 1.5%. These two-year cycles are in
line with our observations made earlier in this paper. It is also
important to note that the reaction of the NDVI growth rate to
a change in temperature is underproportional to the change in
temperature (about 10%).

Finally, we also analyze the impact of ASW on vegetation.
We ask what NDVI growth cycles are determined by ASW.
Fig. 8 gives the answer.

The coherence shown in Fig. 8 is based on the regression
results in Table III. The coherence shows that the growth rate

Fig. 8. Coherence between the growth rate of NDVI and the growth rate
of ASW.

of the absorbed soil water explains 95% of the NDVI cycle
at a frequency of 0.7, i.e., 9 seasons or 4.5 years. The second
cycle the growth rate of ASW is explaining is at a frequency
of 2.4 or 2.6 seasons. ASW explains about 50% of this cycle.
This cycle closely corresponds to the cycle shown in Fig. 7,
the spectrum of the NDVI growth rate. There is also coherence
at a cycle of 1.3 of 0.5 years, but this coherence diminishes
over time. The two main coherences stay important throughout
the sample, although the long-run cycle coherence has slightly
increased toward the end of the sample.

Overall, the mass of the spectrum, which the growth rate
of ASW is explaining, is less than the temperature. Given an
R2 of 0.95, this highlights that time-series results alone may
sometimes be misleading: One may not capture the crucial
cycles if one only takes into account time-series properties. This
is not to say that time-series results are wrong; one just has to
be careful on interpreting them.

Like in the case of the temperature, we can also investigate
the effects of a 10% increase in the ASW (see Fig. 7).

In Fig. 7, we can see that a 10% change in the growth rate
of ASW leads to a 0.4% change in the growth rate of NDVI.
Like in the case of the temperature, most adjustments have
been finished after 10 seasons. Given that the behavior of the
system is very similar to the temperature shock, this supports
the hypothesis that a particular area can only support a certain
vegetation level. From this point of view, it is certainly no
coincidence that, like in the case of temperature, after 5 seasons,
there is a negative effect on NDVI by about 0.6%, which is
balanced four seasons later. Overall, the impact of a 10% on the
NDVI growth rate is close to zero after the system returns to the
steady state.

V. DISCUSSION

The increased importance of satellite data in support of re-
search in impact of climate on the vegetation dynamics leads to
a strong need for a more comprehensive understanding of time-
series changes. We apply a time–frequency approach, which
not only gives us the cyclical properties but also gives how
they changed over time. This alternative approach was partially
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presented in previous work of Cunha and Richter [41] and
Hughes Hallett and Richter [37], [40].

We achieved all of the results by estimating a dynamic time-
series model. The time-series model is characterized by its lag
polynomials and the time-varying weights. The lag polynomial
allows us to describe the dynamic properties of the estimated
relationships. As the lag polynomial is time varying itself,
the Fourier transform becomes time varying. As a result, we
have a time-varying spectrum and a time-varying coherence.
In traditional frequency-domain analysis, a time series has to
be stationary for the frequency estimators to be unbiased. By
using a time-varying estimator, the series does not have to be
stationary anymore as long as the nonstationarity was caused by
structural breaks of which the Kalman filter is able to take care
of. Therefore, with this approach, we gain more insights in the
dynamic properties of a system than with the more “common”
approaches (see Section I).

The results of the satellite-based grassland growth rate
clearly show the existence of not only two-year spring cycles
but also longer term cycles (see Figs. 2 and 3). Moreover, these
cycles are not constant. In particular, the two-year cycles have
changed to four-year cycles. However, if we look at the cyclical
behavior of all seasons, a change of the cyclical behavior could
not be observed (see Fig. 4). As a result, it seems that individual
seasons may undergo cyclical changes that are offset by other
seasons. This area therefore needs further research.

Our results also stated that temperature and ASW are im-
portant drivers of vegetation growth rate cycles. The variability
of the three variables under consideration differs and so does
their relationships. However, the link between satellite-derived
vegetation growth rate and temperature is positive, as well as
the link between vegetation growth rate and ASW.

We can also recognize a relative increase in importance of
soil water at constant importance of temperature (see Fig. 7).
Despite soil water explaining about 50% of short-term cycles,
temperature still explains about 90% of those cycles. Because
evapotranspiration rates are positively related to temperature,
increased temperatures are likely to be associated with in-
creased rates of soil water loss. Therefore, if temperature warms
without a compensating increase in precipitation, plants may
become increasingly water stressed, which could lead to de-
creases in growth rate where the irrigation was not possible.

The individual shocks of the temperature and ASW to the
system have similar dynamic effects/consequences (see Fig. 7).

The question is what drives this behavior? Why is the growth
rate of the NDVI stationary? It seems that a particular area
can only support a certain vegetation level. A shock to this
system can therefore only have a temporary effect, but not
a permanent one, unless all other determinants of vegetation
growth will support an increased vegetation, which in this
scenario/regression they do not do (all other variables stayed
the same). As a result, an increase in vegetation has to be offset
later. The estimation results show that this offsetting starts a
year later. This was not imposed in the regression and is purely
a regression result. It also indicates that a shock to the system
causes a two-year cycle: in the first year, vegetation increases;
in the second year, it decreases.

The perennial nature of grasslands and the extensive man-
agement of soil nutrient cycles (no fertilizers added) means that
soil organic matter (SOM) is a main source of soil nutrients,

and thus, carry effects from year to year should be expected.
Our study also shows that grass growth rates depend both on the
immediate impact of the spring temperature and on the spring
temperature from the previous year. As such, we hypothesize
that the SOM dynamics and nitrogen cycle are intimately
coupled, and temperature in mountain meadows colimits this
process so that it extends for several years.

The results support the hypothesis that vegetation dynamics
are physiologically dependent in several ways on the previous
years. Therefore, a time-varying spectral approach, capable of
separating out changes at different cyclical frequencies and
points in time with respect to grassland growth, will need
to provide the flexibility to capture these features and the
important ecophysiological information contained therein.

VI. CONCLUSION

We have modeled cyclical satellite-based grassland growth
rate with a time–frequency approach. It provides the cyclical
properties of the satellite-based growth rate and what cycles, in
particular, are explained by the climate variables.

The cyclical analysis revealed that there are more than just
seasonal cycles working for the NDVI-based vegetation growth.
We could show that the cyclical properties of NDVI are not
constant over time.

While this time–frequency approach of satellite-based veg-
etation growth cycles can only give indications of causal re-
lationships on potential climatic growth impact, they provide
the catalyst for causal hypothesis generation, namely, for the
plant–soil interactions, which could be tested where other data
sources are available. The quantification of the relative impact
of these myriad factors on the grassland dynamics is still a
huge challenge for developing strategies for the sustainable use
of grassland resources in northeast Portugal, as well as other
extensively managed grassland systems worldwide.
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